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Seond Order Corretor in the Homogenizationof a Condutive-Radiative Heat TransferProblem ∗Grégoire Allaire† and Zakaria Habibi ‡AbstratThis paper fouses on the ontribution of the so-alled seond orderorretor in periodi homogenization applied to a ondutive-radiativeheat transfer problem. More preisely, heat is di�using in a periodiallyperforated domain with a non-loal boundary ondition modelling the ra-diative transfer in eah hole. If the soure term is a periodially osillatingfuntion (whih is the ase in our appliation to nulear reator physis),a strong gradient of the temperature takes plae in eah periodiity ell,orresponding to a large heat �ux between the soures and the perfo-rations. This e�et annot be taken into aount by the homogenizedmodel, neither by the �rst order orretor. We show that this loal gradi-ent e�et an be reprodued if the seond order orretor is added to thereonstruted solution.Key words : periodi homogenization, orretors, heat transfer,radiative transfer.1 IntrodutionWe study heat transfer in a very heterogeneous periodi porous medium. Sinethe ratio of the heterogeneities period with the harateristi length-sale of thedomain, denoted by ǫ, is very small in pratie, a diret numerial simulationof this phenomenon is either out of reah or very time onsuming on any om-puter. Therefore, the original heterogeneous problem should be replaed by anhomogeneous averaged (or e�etive, or homogenized) one. This approximationan be further improved if one add to the homogenized solution so-alled or-retor terms whih take into aount loal �utuations in eah periodiity ell.
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The goal of homogenization theory [6℄, [7℄, [15℄, [25℄, [27℄, [36℄, [37℄ is to providea systemati way of �nding suh e�etive problems, of reonstruting an au-rate solution by introduing these orretors and of rigorously justifying suh anapproximation by establishing onvergene theorems and error estimates. Thepurpose of this paper is to arry on this program for a model of ondutive-radiative heat transfer in a domain periodially perforated by many in�nitelysmall holes and, more spei�ally, to show that the seond order orretor isruial to ahieve a good approximation in the present ontext.Although our model ould be applied to a large variety of physial prob-lems, our work is motivated by the study of gas-ooled nulear reators whihare one of the possible onepts for the 4th generation of reators, onsidered inthe nulear industry (see [16℄). The ore of these reators is omposed by manyprismati bloks of graphite in whih are inserted the fuel ompats (playing therole of thermal soures). Eah blok is also periodially perforated by severalhannels where the oolant (Helium) �ows. For simpliity, we onsider a rosssetion (orthogonal to the ylindrial hannels) of suh a periodi domain (werefer to our other paper [4℄ for a disussion of the fully 3D ase). In a rosssetion the gas hannels are just a periodi distribution of disonneted irularholes (see Figure 1). The total number of holes is very large (of the order of
104) and their size is very small ompared to the size of the ore. Consequently,the diret numerial analysis of suh a model requires a very �ne mesh of theperiodi domain. This indues a very expensive numerial resolution that be-omes impossible for a real geometry of a reator ore. Therefore, our objetiveis to de�ne a homogenized model, possibly orreted by several ell problems,in order to obtain an approximate solution, whih should be less expensive interm of CPU time and memory, and should onverge to the exat solution as ǫgoes to zero.The homogenization of the ondutive-radiative heat transfer model (8) wasalready arried out in [3℄ for the 2D ase and in [4℄ for a generalization to the3D ase. Thus, the originality of the present paper lies in the improvementof the homogenization approximation by taking into aount the seond orderorretor. To be more spei�, the improvement is dramati when there is alarge osillating soure term: then a strong temperature gradient appears ineah ell between the soure support and the holes boundaries where heat �owsby exhange with the oolant. These loalized gradients do not appear in thehomogenized solution (whih is expeted), neither in the �rst order orretor(whih is more surprising at �rst sight). Indeed, the �rst order orretor, de�nedas a linear ombination of the ell solutions (19), an be interpreted as the loal�utuation of the marosopi temperature. However, it does not take intoaount the possible mirosopi variations of the soure term. It is ratherthe seond order orretor whih is the �rst term in the two-sale asymptotiexpansion to admit a ontribution due to a varying soure term. Our numerialresults on�rm this asymptoti analysis.The seond order orretor is rarely studied in homogenization theory (seenevertheless the textbooks [6℄, [7℄, [36℄, or the paper [17℄) and even more seldomused in numerial homogenization algorithms. To our knowledge the only no-2



tieable exeption is the early numerial work of Bourgat [8℄, [9℄ where a similarphenomenon was emphasized. More preisely, Bourgat showed that the seondorder orretor was again the �rst term in the two-sale asymptoti expansionwhih is in�uened by a strong variation of the di�usion oe�ient. Althoughthese two phenomena (osillating soure term and large amplitude of the di�u-sion tensor) are di�erent, in both ases the onlusion is the same: inludingthe seond order orretor in the reonstrution of an approximate solution im-proves a lot the omparison with the exat solution. One possible reason for theless systemati use of the seond order orretor is that, in theory, it brings aorretion of order ǫ2, muh smaller than some negleted terms of order ǫ in the�rst order orretion (inluding so-alled boundary layers). We shall disuss atlength this issue below but let us simply laim that, for many simple (or sym-metri) geometries like the one onsidered here, these negleted terms of order
ǫ turn out to very small, while the seond order term of order ǫ2 is muh largersine it is proportional to the soure term (whih is large in our situation). Inother words, the improvement is not obtained in the limit when ǫ goes to 0, butfor �xed values of ǫ whih, however small, are not negligible in front of otherparameters like the magnitude of the soure term.The paper is organized as follows. In Setion 2, we de�ne the geometry andthe heat transfer model (8). The main properties of the radiative operator arerealled. It is an integral operator, the kernel of whih is alled the view fator(it amounts to quantify how a point on the hole boundary is illuminated bythe other points on this surfae). Setion 3 is devoted to the formal methodof two-sale asymptoti expansions applied to our problem. Its main result isProposition 3.1 whih gives the preise form of the homogenized problem and theso-alled ell problems whih de�ne the �rst order orretor of the homogenizedsolution. Furthermore, Proposition 3.1 furnishes the seond order orretorwhih an be deomposed as a sum of solutions to auxiliary ell problems (seeCorollary 3.1). The rigorous mathematial justi�ation of the homogenizationproess and of the �rst order approximation (but not of the seond order im-provement) has already been done in [3℄ and [4℄ using the method of two-saleonvergene [1℄, [34℄. We shall not reprodue this argument here and we ontentourselves in brie�y realling these results in Setion 4. Similarly we reall theexpeted onvergene rates in ǫ powers of our homogenization method, withoutany proof. As is well known, the two-sale onvergene method does not justifythe seond order orretor. In truth, suh a justi�ation requires, as a prelimi-nary step, to �rst introdue the ǫ-order boundary layers and to haraterize thenon-osillating part of the �rst-order orretor (see (19) and Remark 3.2). Thisproess of onstruting boundary layers is, in pratie, restrited to retangulardomains and is quite intriate (see e.g. [2℄, [6℄, [30℄, [33℄). The determinationof the non-osillating part of the �rst-order orretor is even more triky and israrely done in numerial pratie (see [2℄, [6℄, [14℄). For the sake of brevity we donot reprodue these onstrutions here and we ontent ourselves in mentioningthem in Setion 4. As a matter of fat we shall not attempt to rigorously jus-tify the improvement brought by the seond order orretor. We simply laimthat, in the geometrial setting under study, the ǫ-order boundary layer and3



the non-osillating part of the �rst-order orretor are numerially negligible.Thus, the seond order orretor brings a signi�ant qualitative improvement inthe approximation of the true solution, at least from a pratial point of view.A formal generalization to the non-linear ase is brie�y skethed in Setion 5.Indeed, the true physial model of radiative transfer is non-linear sine the emit-ted radiations are following the Stefan-Boltzmann law of proportionality to the4th power of temperature. Taking into aount this non-linearity is not di�-ult for the formal method of two-sale asymptoti expansions. Thus we givethe homogenized and ell problems in this ase too, all the more sine all ournumerial omputations are performed in this non-linear setting. EventuallySetion 6 is devoted to some 2D numerial results for data orresponding togas-ooled reators. For this peuliar model the seond order orretor is veryuseful to improve the qualitative behavior of the approximate solution obtainedby homogenization. The results of this paper are part of the PhD thesis of theseond author [22℄ and were announed in [21℄.2 Setting of the problemThe goal of this setion is to de�ne the geometry of the periodially perforateddomain and to introdue the model of ondutive heat transfer problem. Formore details we refer to [22℄ and referenes therein.2.1 GeometryLet Ω =
∏2

j=1(0, Lj) be a retangular open set of R2 with positive lengths
Lj > 0. It is periodially divided in N(ǫ) small ells (Yǫ,i)i=1...N(ǫ), eah of thembeing equal, up to a translation and resaling by a fator ǫ, to the same unitperiodiity ell Y =

∏2
j=1(0, lj) with lj > 0. To avoid unneessary ompliationswith boundary layers (and beause this is the ase in the physial problem whihmotivates this study) we assume that the sequene of small positive parameters

ǫ, going to zero, is suh that Ω is made up of entire ells only, namely Lj/(ǫlj)is an integer for any j = 1, 2.We de�ne a referene solid ell Y S as the ell Y perforated by a smoothhole oupied by a gas with a known temperature Tgas (see Figures 1 and 2).We denote by Γ the boundary between Y S and the hole (whih is assumedto be stritly inluded in Y so that, upon periodi repetition, a olletion ofdisonneted isolated holes is obtained). Note that, for notational simpliity,we onsider only one hole per ell, although there is no di�ulty in treatingseveral disjoint holes per ell (as is the ase in our numerial tests where thereare two holes per ell). Then, we de�ne the domain Ωǫ as the union of Y S
ǫ,i, where

Y S
ǫ,i are the translated and resaled version of Y S for i = 1, ..., N(ǫ) (similar tothe orrespondene between Yǫ,i and Y ). On the same token we de�ne the entire
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holes boundary Γǫ as the union of individual surfaes Γǫ,i. In summary we have
Ωǫ =

N(ǫ)⋃

i=1

Y S
ǫ,i, Γǫ =

N(ǫ)⋃

i=1

Γǫ,i.We de�ne x0,i as the enter of mass of eah ell Yǫ,i suh that
∫

Yǫ,i

(x − x0,i) dx = 0. (1)

Figure 1: The periodi domain Ω (or Ωǫ).
Figure 2: The referene ell Y .
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2.2 Governing equationsFirst, we reall that the urrent study holds in a simpli�ed 2D setting whereonvetion and di�usion are negleted in the gas. A more omplete 3D study,by homogenization, of stationary heat transfer in nulear reator ores is under-taken in [4℄. In the present 2D setting, heat is transported by ondution in thesolid part Ωǫ of the domain and by radiation in the holes Ω \ Ωǫ. A non-loalboundary ondition models the radiative transfer on the hole walls. There is avast literature on heat transfer and we refer the interested reader to [13℄, [32℄,[38℄ for an introdution to the modelling of radiative transfer.We denote by Tǫ the temperature in the domain Ωǫ. The thermal di�usiontensor in Ωǫ is given by
Kǫ(x) = K(x,

x

ǫ
) (2)where K(x, y) ∈ C(Ω; L∞

# (Y ))2×2 is a periodi symmetri positive de�nite ten-sor, satisfying
∀v ∈ R2, ∀ y ∈ Y, ∀ x ∈ Ω, α|v|2 ≤

2∑

i,j=1

Ki,j(x, y)vivj ≤ β|v|2,for some onstants 0 < α ≤ β. The gas oupying the holes, being almosttransparent, the radiative transfer ould be modelled by a non loal boundaryondition on the boundary Γǫ between Ωǫ and the holes:
−Kǫ∇Tǫ · n =

σ

ǫ
Gǫ(Tǫ) on Γǫ, (3)where σ

ǫ > 0 is the Stefan-Boltzmann onstant, n is the unit outward normalon Γǫ and Gǫ is the radiative operator de�ned by
Gǫ(Tǫ)(s) = Tǫ(s) −

∫

Γǫ,i

Tǫ(x)F (s, x)dx = (Id − ζǫ)Tǫ(s) ∀ s ∈ Γǫ,i, (4)with
ζǫ(f)(s) =

∫

Γǫ,i

F (s, x)f(x)dx. (5)The saling ǫ−1 in front of the radiative operator Gǫ in (3) is hosen beause ityields a perfet balane, in the limit as ǫ goes to zero, between the bulk heatondution and the surfae radiative transfer (this saling was �rst proposed in[3℄). In other words, if we perform the hange of variables y = x/ǫ, then theboundary ondition (3) appears at the mirosopi sale without any ǫ saling.In (5) F is the so-alled view fator (see [32℄, [26℄, [23℄) whih is a geometrialquantity between two di�erent points s and x of the same boundary Γǫ,i. Itsexpliit formula for surfaes enlosing onvex domains in 2D is
F (s, x) :=

nx · (s − x)ns · (x − s)

2|x − s|3 (6)6



where nz denotes the unit normal at the point z.In truth, some onvetion and di�usion takes plae in the holes due to thegas. It is further modelled by a �xed gas temperature Tgas ∈ H1(Ω) and a heatexhange oe�ient, given by
hǫ(x) = h(x,

x

ǫ
)with h(x, y) ∈ C(Ω; L∞

# (Y )) satisfying h(x, y) ≥ 0. Then, in absene of radiativetransfer, the heat �ux on the boundary is
−Kǫ∇Tǫ · n = ǫhǫ(Tǫ − Tgas) on Γǫ, (7)where the saling in ǫ is suh that, again, there is a balane in the homogenizedlimit between di�usion and exhange with the gas. Atually, we shall use aombination of (3) and (7).Eventually, the only heat soure is a bulk density of thermal soures in thesolid part whih, furthermore, is an osillating funtion given by

fǫ(x) = f(x,
x

ǫ
),with f(x, y) ∈ L2(Ω × Y ) whih is Y -periodi and satis�es f ≥ 0 (see Figure 3for the geometrial on�guration of the support of f). The external boundaryondition is a simple Dirihlet ondition. Thus, the governing equations of ourmodel are






−div(Kǫ∇Tǫ) = fǫ in Ωǫ

−Kǫ∇Tǫ · n = ǫhǫ(Tǫ − Tgas) +
σ

ǫ
Gǫ(Tǫ) on Γǫ

Tǫ = 0 on ∂Ω.

(8)Applying the Lax-Milgram lemma we easily obtain the following result (see [3℄for a proof, if neessary). The main point is that the operator Gǫ is self-adjointand non-negative (see Lemma 2.1).Proposition 2.1. The boundary value problem (8) admits a unique solution Tǫin H1(Ωǫ) ∩ H1
0 (Ω).We reall in Lemma 2.1 some useful properties of the view fator F and ofthe radiative operator Gǫ (see [22℄ [29, 38, 39℄ for further details).Lemma 2.1. For points x and s belonging to the same isolated hole boundary

Γǫ,i, the view fator F (s, x) satis�es1.
F (s, x) ≥ 0, F (s, x) = F (x, s),

∫

Γǫ,i

F (s, x)ds = 1, (9)2. as an operator from L2(Γǫ,i) into itself,
‖ζǫ‖ ≤ 1, and ker(Gǫ) = ker(Id − ζǫ) = R, (10)7



3. the radiative operator Gǫ is self-adjoint on L2(Γǫ,i) and non-negative inthe sense that
∫

Γǫ,i

Gǫ(f) f ds ≥ 0 ∀ f ∈ L2(Γǫ,i). (11)The following lemma makes the onnetion between the radiative operatorsat the marosopi and mirosopi sales. It will be a key ingredient in thehomogenization proess.Lemma 2.2. De�ne an integral operator G from L2(Γ) into L2(Γ) by
G(φ)(z) = φ(z) −

∫

Γ

φ(y)F (z, y)dy . (12)For any φ ∈ L2(Γ), introduing φǫ(x) = φ(x
ǫ ), we have

Gǫ(φǫ)(x) = G(φ)(
x

ǫ
).Proof This is a simple hange of variable y = x/ǫ and z = s/ǫ using thespei� form (6) of the view fator. �Remark 2.1. Lemma 2.2 applies to a purely periodi funtion φ(y) but it is nolonger true for a loally periodi funtion φ(x, y). Namely, if φǫ(x) = φ(x, x

ǫ ),then usually
Gǫ(φǫ)(x) 6= G

(
φ(x, ·)

)
(y =

x

ǫ
).Remark 2.2. The radiation operator introdued in (4) is a linear operator:this is learly a simplifying assumption. Atually, the true physial radiationoperator is non-linear and de�ned, on eah Γǫ,i, 1 ≤ i ≤ N(ǫ), by

Gǫ(Tǫ) = e(Id − ζǫ)(Id − (1 − e)ζǫ)
−1(T 4

ǫ ). (13)where ζǫ is the operator de�ned by (5). To simplify the exposition, we fous onthe ase of so-alled blak walls, i.e., we assume that the emissivity is e = 1 (wean �nd in [5℄ a study of this kind of problems when the emissivity depends on theradiation frequeny). However, our analysis an be extended straightforwardlyto the other ases 0 < e < 1 and non-linear operator, at the prie of more tediousomputations. Therefore we ontent ourselves in exposing the homogenizationproess for the linear ase. Nevertheless, in Setion 5 we indiate how our resultsan be generalized to the above non-linear setting. Furthermore, our numerialresults in Setion 6 are obtained in the non-linear ase whih is more realistifrom a physial point of view.Remark 2.3. As already said in the introdution, the main novelty of thepresent paper is the introdution of the seond order orretor in the approx-imation of model (8). It is motivated by the appearane of strong gradients of8



the temperature, solution of (8), between the periodi support of the soure termand the holes where heat is exhanged with the exterior. The presene of a ra-diative term plays no role in this phenomenon whih ould appear with the mereexhange boundary ondition (7). Nevertheless, in a high temperature regime,radiation beomes dominant ompared to other means of heat transfer. There-fore, to be physially orret in this study, we take into aount the radiativeheat transfer.3 HomogenizationThe homogenized problem an be formally obtained by the method of two-saleasymptoti expansion as explained in [6℄, [7℄, [15℄, [36℄. It onsists in introduing�rstly two variables x and y = x
ǫ , where x is the marosopi variable and y isthe mirosopi one. Seondly, the solution Tǫ of (8) is assumed to be given bythe following series

Tǫ = T0(x) + ǫ T1(x,
x

ǫ
) + ǫ2 T2(x,

x

ǫ
) + O(ǫ3) (14)where the funtions y → Ti(x, y), for i = 1, 2, are Y -periodi. The funtion

T0 is the homogenized pro�le of Tǫ, while T1 is the �rst order orretor and T2the seond order orretor. Third, plugging this ansatz in the equations of themodel, a asade of equations are dedued for eah term T0, T1, T2. Finally, thetrue solution Tǫ an be approximated either by T0, (T0+ǫT1) or (T0+ǫT1+ǫ2T2),depending on our needs for preision.Introduing (14) in the equations of model (8), we dedue the main resultof this setion.Proposition 3.1. Under assumption (14), the zero-order term T0 of the ex-pansion for the solution Tǫ of (8) is the solution of the homogenized problem
{

−div(K∗(x)∇T0(x)) + h∗(x)(T0(x) − Tgas(x)) = f∗(x) in Ω

T0(x) = 0 on ∂Ω
(15)with the homogenized thermal soure f∗ and homogenized exhange oe�ient

h∗ given by simple averages
f∗(x) =

1

|Y |

∫

Y S

f(x, y)dy, h∗(x) =
1

|Y |

∫

Γ

h(x, y)dy, (16)and the homogenized ondutivity tensor K∗(x), given by its entries, for j, k =
1, 2,
K∗

j,k =
1

|Y |
[ ∫

Y S

K(ej + ∇yωj) · (ek + ∇yωk)dy + σ

∫

Γ

G(ωk + yk)(ωj + yj)dy
]
, (17)

9



where G is the mirosopi radiative operator de�ned by (12) and (ωj(x, y))1≤j≤2are the solutions of the ell problems





−divy

(
K(x, y)(ej + ∇yωj)

)
= 0 in Y S

−K(x, y)(ej + ∇yωj) · n = σG(ωj + yj) on Γ

y 7→ ωj(y) is Y -periodi (18)Furthermore, the �rst order orretor T1(x, y) an be written
T1(x, y) =

2∑

j=1

∂T0

∂xj
(x)ωj(x, y) + T̃1(x), (19)and the seond order orretor T2(x, y) is the solution of the seond order ellproblem






−divy

(
K(x, y) [∇yT2(x, y) + ∇xT1(x, y)]

)
= f(x, y)

+divx

(
K(x, y) [∇xT0(x) + ∇yT1(x, y)]

) in Y S

−K(x, y) [∇yT2(x, y) + ∇xT1(x, y)] · n = h(x, y)
(
T0(x) − Tgas(x)

)

+σG
(
T2 + ∇xT1 · y + 1

2∇x∇xT0 y · y
)

−σG
(
∇xT1 + ∇x∇xT0 y

)
· y on Γ

y 7→ T2(x, y)is Y -periodi. (20)
Remark 3.1. It is proved in [3℄, [4℄ that the homogenized tensor K∗, de�nedby (17), is symmetri positive de�nite. Hene, the homogenized equation (15)admits a unique solution T0 ∈ H1

0 (Ω).Furthermore, the following Fredholm alternative is also proved in [3℄, [4℄:for p(y) ∈ L2
#(Y S) and q(y) ∈ L2(Γ), there exists a unique solution w(y) ∈

H1
#(Y S)/R (i.e., up to an additive onstant) of






−divy(K∇yw) = p in Y S,
−K∇yw · n = σG(w) − q on Γ,

y 7→ w(y) is Y -periodi, (21)if and only if the data satisfy
∫

Y S

p(y) dy +

∫

Γ

q(y) ds(y) = 0. (22)Therefore, it implies that the ell problems (18) admit unique solutions in thesame spae. Similarly, the seond order ell problem (20) admits a unique so-lution too sine the homogenized equation for T0 is preisely the ompatibilityondition (22) in the Fredholm alternative.10



Remark 3.2. The funtion T̃1(x) appearing in (19) is not spei�ed at thispoint. It is alled the non-osillating part of the �rst-order orretor and itwill be haraterized later in Remark 4.1. The fat that the solution of (21)is merely de�ned up to an additive onstant is the reason for introduing thisunknown funtion T̃1(x) in (19).Remark 3.3. As usual in homogenization, the ell problems (18) and (20) arepartial di�erential equations with respet to the mirosopi variable y while xplays the role of a parameter. Naively solving ell problems for eah value of thisparameter x may inrease the ost of the homogenization method. Fortunately,there exist several methods to limit this omputational ost. For example, onean use redued bases methods as in [10℄, [31℄, or one an rely on sparse bases onthe tensorial produt Ω × Y as in [24℄. Nevertheless, if the ondutivity tensordepends only on y, namely K(x, y) ≡ K(y) (whih is the ase in our industrialappliation), the ell problems (18) are ompletely independent of the parameter
x. As an immediate orollary of Proposition 3.1, using the linearity of (20) weobtain the following result (see [22℄ for a proof, if neessary). Note that allseond-order ell problems (26), (27) and (28) below are well-posed sine theysatisfy the ompatibility ondition (22) of the Fredholm alternative.Corollary 3.1. Under the same hypotheses than in Proposition 3.1 and as-suming further that the ondutivity tensor K(x, y) ≡ K(y) depends only on themirosopi variable and that the funtions f and h are given by

f(x, y) = F (x)f#(y) and h(x, y) = H(x)h#(y), (23)introduing the averages
F ∗ =

1

|Y |

∫

Y S

f#(y)dy and H∗ =
1

|Y |

∫

Γ

h#(y)dy, (24)the seond order orretor T2(x, y) an be written
T2(x, y) = T F

2 (y)F (x) + T H
2 (y)H(x)(T0(x) − Tgas(x))

+

2∑

i,j=1

∂2T0

∂xi∂xj
(x) θi,j(y) + T̃2(x), (25)where T F

2 , T H
2 and θi,j are the solutions of the seond order ell problems






−divy

(
K(y)∇yT F

2 (y)
)

= f#(y) in Y S

−K(y)∇yT
F
2 (y) · n = |Y |

|Γ| F
∗ + σG(T F

2 (y)) on Γ

T F
2 (y) is Y -periodi (26)
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−divy

(
K(y)∇yT H

2 (y)
)

= 0 in Y S

−K(y)∇yT H
2 (y) · n = (h#(y) − |Y |

|Γ| H
∗) + σG(T H

2 (y)) on Γ

T H
2 (y) is Y -periodi (27)and






−divy

(
K(y) [∇yθi,j(y) + ejωi(y)]

)
= Ki,j(y) + K(y)∇yωi(y) · ej in Y S

−K(y) [∇yθi,j(y) + ejωi(y)] · n = |Y |
|Γ| K

∗
i,j

+σG
(
θi,j(y) + ωi(y)yj + 1

2yiyj

)
− σG

(
ωi(y) + yi

)
yj on Γ

θi,j(y) is Y -periodi (28)Remark 3.4. The �rst order ell problem (18) does not depend at all on thethermal soure f and on the heat exhange oe�ient h. On the ontrary, theell problem (20) for T2 does depend on f and h. More preisely, Corollary 3.1shows that the seond-order ell problems (26) and (27) depend on the soure
f(x, y) and of the oe�ient h(x, y). Reall that the homogenized problem (15)depends merely on the ell average of f and h. Therefore, the interest of theseond order orretor T2 is obvious if one is onerned with the in�uene ofthe loal variations of f and h. As we shall see in the numerial experiments,these mirosopi variations are at the root of loal temperature gradients for Tǫwhih an be reprodued only by T2.If there are no loal osillations for the oe�ient h, namely h(x, y) ≡ h(x),then the solution of (27) vanishes. Note however that, even if the soure term
f is onstant, i.e., f(x, y) ≡ f(x), the solution of (26) does not vanish.Remark 3.5. The funtion T̃2(x) appearing in (25) is not spei�ed at thispoint. It is similar to T̃1(x) in (19) and is due to the non-uniqueness of thesolution of (21) as explained in Remark 3.2.Proof (of Proposition 3.1) As explained in [3, 4℄, using the method of twosale asymptoti expansions in the strong formulation of problem (8) is um-bersome beause of the non-loal boundary ondition on the holes, arising fromthe radiative transfer operator. Rather, following an original idea of J.-L. Lions[30℄, it is simpler to perform this two-sale asymptoti expansion in the weakformulation of (8), thus taking advantage of its symmetry and minimizing theamount of omputations. The following proof is essentially an extension of thosein [3, 4℄ (whih stopped at �rst order), going one step further, up to the seondorder term.The variational formulation of (8) is: �nd Tǫ ∈ H1

0 (Ωǫ) suh that
aǫ(Tǫ, φǫ) = Lǫ(φǫ) for all funtion φǫ ∈ H1

0 (Ωǫ), (29)with
aǫ(Tǫ, φǫ) =

∫

Ωǫ

Kǫ∇Tǫ · ∇φǫdx +
σ

ǫ

∫

Γǫ

G(Tǫ)φǫdx + ǫ

∫

Γǫ

hǫ(Tǫ − Tgas)φǫdx12



and
Lǫ(φǫ) =

∫

Ωǫ

fǫφǫdx.We hoose φǫ of the same form than Tǫ in (14), without remainder term,
φǫ(x) = φ0(x) + ǫ φ1(x,

x

ǫ
) + ǫ2 φ2(x,

x

ǫ
), (32)with smooth funtions φ0(x) and φi(x, y), i = 1, 2, whih are Y -periodi in yand have ompat support in x ∈ Ω. Inserting the ansatz (14) and (32) in thevariational formulation (29) yields

a0(T0, T1, φ0, φ1) + ǫa1(T0, T1, T2, φ0, φ1, φ2) = L0(φ0, φ1) + ǫL1(φ0, φ1, φ2)

+ O(ǫ2). (33)Equating idential powers of ǫ we suessively obtain:
a0(T0, T1, φ0, φ1) = L0(φ0, φ1)whih is the two-sale limit variational formulation (in the sense of [1℄), namelya ombination of the homogenized problem and of the (�rst order) ell problems,and

a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)whih yields the seond order ell problem de�ning T2 (this is the new partompared to [3, 4℄).For the sake of larity we divide the proof in three steps. The �rst stepis devoted to the ansatz for the di�usion and thermal exhange terms. Theseond step fouses on the radiation term, while the third one ombines thesevarious terms to identify the limit equations. We write the bilinear form in thevariational formulation (29) as
aǫ(Tǫ, φǫ) = aC

ǫ (Tǫ, φǫ) + aR
ǫ (Tǫ, φǫ)with

aC
ǫ =

∫

Ωǫ

Kǫ∇Tǫ · ∇φǫdx + ǫ

∫

Γǫ

hǫ(Tǫ − Tgas)φǫdx,

aR
ǫ =

σ

ǫ

∫

Γǫ

Gǫ(Tǫ)φǫdx.Step 1 : Expansion of aC
ǫ − Lǫ

13



This is a standard alulation that we brie�y sketh
aC

ǫ − Lǫ =

∫

Ωǫ

K(∇xT0 + ∇yT1) · (∇xφ0 + ∇yφ1)dx

+ ǫ

∫

Γǫ

h(T0 − Tgas)φ0dx

+ ǫ

∫

Ωǫ

K(∇xT1 + ∇yT2) · (∇xφ0 + ∇yφ1)dx

+ ǫ

∫

Ωǫ

K(∇xT0 + ∇yT1) · (∇xφ1 + ∇yφ2)dx

+ ǫ2
∫

Γǫ

h [(T0 − Tgas)φ1 + T1φ0] dx

−
∫

Ωǫ

f(φ0 + ǫφ1)dx + O(ǫ2)

(34)
where all funtions are evaluated at (x, x/ǫ). Using Lemma 3.1 below to onvertthe integrals on varying domains, we dedue
|Y |(aC

ǫ − Lǫ) =

∫

Ω

∫

Y S

K(x, y)(∇xT0(x) + ∇yT1(x, y) · (∇xφ0(x) + ∇yφ1(x, y))dydx

+

∫

Ω

∫

Γ

h(x, y)(T0(x) − Tgas(x))φ0(x)dydx −
∫

Ω

∫

Y S

f(x, y)φ0(x)dydx

+ǫ

{∫

Ω

∫

Y S

K(x, y)
[
(∇xT1(x, y) + ∇yT2(x, y)) · (∇xφ0(x) + ∇yφ1(x, y))

+(∇xT0(x) + ∇yT1(x, y)) · (∇xφ1(x, y) + ∇yφ2(x, y))
]
dydx

+

∫

Ω

∫

Γ

h(x, y)
[
(T0(x) − Tgas(x))φ1(x, y) + T1(x, y)φ0(x)

]
dydx

−
∫

Ω

∫

Y S

f(x, y)φ1(x, y)dydx

}
+ O(ǫ2).

(35)
Step 2 : Expansion of aR

ǫ = aR
0 + ǫaR

1 + O(ǫ2)This is the deliate term beause the radiative operator Gǫ is integral. Fol-lowing [3, 4℄, for both Tǫ and φǫ, we perform a Taylor expansion with respetto the marosopi variable x around eah enter of mass x0,i of eah ell Yǫ,i(the hoie of x0,i or of any other point in the ell Yǫ,i is irrelevant as we shallsee in the end). This has the e�et that the integral operator Gǫ will apply onlyto the mirosopi variable. Then, aording to Lemma 2.2 we an resale itin the unit ell as G (in view of Remark 2.1 it is not possible to perform this14



resaling if Gǫ applies to funtions depending on both x and x/ǫ). To simplifythe notations, we introdue
yǫ,i =

x − x0,i

ǫ
.Then we get

Tǫ(x) = T0(x0,i) + ǫ
(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)

+ ǫ2
(
T2(x0,i,

x

ǫ
) + ∇xT1(x0,i,

x

ǫ
) · yǫ,i +

1

2
∇x∇xT0(x0,i)yǫ,i · yǫ,i

)

+ ǫ3T̂3,ǫ(x) + O(ǫ4)

(36)and
φǫ(x) = φ0(x0,i) + ǫ

(
∇xφ0(x0,i) · yǫ,i + φ1(x0,i,

x

ǫ
)
)

+ ǫ2
(
φ2(x0,i,

x

ǫ
) + ∇xφ1(x0,i,

x

ǫ
) · yǫ,i +

1

2
∇x∇xφ0(x0,i)yǫ,i · yǫ,i

)

+ ǫ3φ̂3,ǫ(x) + O(ǫ4)

(37)where the preise form of the terms T̂3,ǫ and φ̂3,ǫ is not important sine the
O(ǫ3)-order terms will anel by simpli�ation as we shall soon see.Reall from Lemma 2.1 that Gǫ is self-adjoint and ker(Gǫ) = R. Thus,
Gǫ(T0(x0,i)) = Gǫ(φ0(x0,i)) = 0 and it yields the following simpli�ed expression
σ

ǫ

∫

Γǫ,i

Gǫ(Tǫ)φǫdx =

σǫ

∫

Γǫ,i

Gǫ

(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)(

∇xφ0(x0,i) · yǫ,i + φ1(x0,i,
x

ǫ
)
)
dx

+σǫ2
∫

Γǫ,i

Gǫ

(
∇xT0(x0,i) · yǫ,i + T1(x0,i,

x

ǫ
)
)(

φ2(x0,i,
x

ǫ
)

+∇xφ1(x0,i,
x

ǫ
) · yǫ,i +

1

2
∇x∇xφ0(x0,i)yǫ,i · yǫ,i

)
dx

+σǫ2
∫

Γǫ,i

Gǫ

(
∇xφ0(x0,i) · yǫ,i + φ1(x0,i,

x

ǫ
)
)(

T2(x0,i,
x

ǫ
)

+∇xT1(x0,i,
x

ǫ
) · yǫ,i +

1

2
∇x∇xT0(x0,i)yǫ,i · yǫ,i

)
dx

+O(ǫ4),

(38)
where we used |Γǫ,i| = ǫ|Γ| in the remainder term. We an now make the hangeof variables y − y0 = (x − x0,i)/ǫ in (38), with y0 the enter of mass of Y , and15



apply Lemma 2.2 to get
σ

ǫ

∫

Γǫ,i

Gǫ(Tǫ)φǫdx = σǫ2
∫

Γ

G
(
∇xT0(x0,i) · (y − y0) + T1(x0,i, y)

)(
φ1(x0,i, y)

+∇xφ0(x0,i) · (y − y0)
)
dy

+σǫ3
∫

Γ

G
(
∇xT0(x0,i) · (y − y0) + T1(x0,i, y)

)(
φ2(x0,i, y)

+∇xφ1(x0,i, y) · (y − y0) +
1

2
∇x∇xφ0(x0,i)(y − y0) · (y − y0)

)
dy

+σǫ3
∫

Γ

G
(
∇xφ0(x0,i) · (y − y0) + φ1(x0,i, y)

)(
T2(x0,i, y)

+∇xT1(x0,i, y) · (y − y0) +
1

2
∇x∇xT0(x0,i)(y − y0) · (y − y0)

)
dy

+O(ǫ4).

(39)
Summing with respet to i and applying Lemma 3.1 shows that (39) is a Rie-mann sum approximating an integral over Ω, namely

aR
ǫ =

σ

ǫ

N(ǫ)∑

i=1

∫

Γǫ,i

Gǫ(Tǫ)φǫ dx = aR
0 + ǫaR

1 + O(ǫ2),with
aR
0 =

σ

|Y |

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ1(x0,i, y)

+∇xφ0(x0,i) · (y − y0)
)
dx dy

(40)and
aR
1 =

σ

|Y |

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ2(x, y)

+∇xφ1(x, y) · (y − y0) +
1

2
∇x∇xφ0(x)(y − y0) · (y − y0)

)
dx dy

+
σ

|Y |

∫

Ω

∫

Γ

G
(
∇xφ0(x) · (y − y0) + φ1(x, y)

)(
T2(x, y)

+∇xT1(x, y) · (y − y0) +
1

2
∇x∇xT0(x)(y − y0) · (y − y0)

)
dx dy.

(41)
Step 3 : Identi�ation of the limit variational formulationsThe zero-th order ǫ0-term of (33), namely a0(T0, T1, φ0, φ1) = L0(φ0, φ1) is

16



equivalent to
∫

Ω

∫

Y S

K(x, y)(∇xT0(x) + ∇yT1(x, y) · (∇xφ0(x) + ∇yφ1(x, y))dx dy

+

∫

Ω

∫

Γ

h(x, y)(T0(x) − Tgas(x))φ0(x)dx dy

+σ

∫

Ω

∫

Γ

G
(
∇xT0(x) · (y − y0) + T1(x, y)

)(
φ1(x, y)

+∇xφ0(x) · (y − y0)
)
dx dy

=

∫

Ω

∫

Y S

f(x, y)φ0(x)dx dy,

(42)
whih is just the variational formulation of the so-alled two-sale limit problemwhih is a ombination of the homogenized and ell problems. Remark that,sine ker(G) = R, the terms ontaining y0 anel in (42) whih thus does notdepend on the hoie of referene point y0. We reover the ell problem (18) andformula (19) for T1 by taking φ0 = 0 in (42). Then, to reover the homogenizedproblem (15) we take φ1 = 0 in (42). It yields the variational formulation of(15), as well as the formula for K∗.The �rst order ǫ-term of (33), namely a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)is equivalent to

∫

Ω

∫

Y S

K
[
(∇xT1 + ∇yT2) · (∇xφ0 + ∇yφ1)

+(∇xT0 + ∇yT1) · (∇xφ1 + ∇yφ2)
]
dy dx

+

∫

Ω

∫

Γ

h
[
(T0 − Tgas)φ1 + T1φ0

]
dy dx + aR

1 =

∫

Ω

∫

Y S

f φ1 dy dx.

(43)We reover the seond order ell problem (20) for T2 by hoosing φ0 = 0 and
φ2 = 0 in (43)
∫

Ω

∫

Y S

K
[
(∇xT1 + ∇yT2) · ∇yφ1 + (∇xT0 + ∇yT1) · ∇xφ1

]
dx dy

+

∫

Ω

∫

Γ

h(T0 − Tgas)φ1dx dy

+σ

∫

Ω

∫

Γ

G
(
∇xT0 · (y − y0) + T1

)
∇xφ1 · (y − y0)dx dy

+σ

∫

Ω

∫

Γ

φ1 G
(
T2 + ∇xT1 · (y − y0) +

1

2
∇x∇xT0(y − y0) · (y − y0)

)
dx dy

=

∫

Ω

∫

Y S

f(x, y)φ1(x, y)dx dy.

(44)
17



Sine φ1 belongs to H1
0 (Ω), we an perform an integration by part with respetto x in the third line of (44) and, using again ker(G) = R, we get

∫

Ω

∫

Γ

G
(
∇xT0 · (y − y0) + T1

)
∇xφ1 · (y − y0)dx dy =

−
∫

Ω

∫

Γ

G
(
∇x∇xT0 · y + ∇xT1

)
· (y − y0)φ1dx dy.Thus, all terms ontaining y0 anel in (44) and we exatly obtain the variationalformulation of (20). This �nishes the proof of Proposition 3.1. �Remark 3.6. In the proof of Proposition 3.1 we obtain the variational formu-lation (44) for T2 by making a speial hoie, φ0 = 0 and φ2 = 0, in (43).One may wonder what ould be dedued from (43) by another hoie. It turnsout that hoosing φ2 6= 0 yields again the �rst-order ell problem for T1. Onthe ontrary, hoosing φ0 6= 0 leads to a new marosopi equation for the nonosillating �rst-order orretor T̃1(x) (see Remark 4.1 below).On the other hand, the proof of Proposition 3.1 annot possibly detet anyboundary layers involved in the asymptoti behavior of Tǫ. The reason is thatthe test funtion is assumed to have ompat support in Ω (a ruial assumptionwhih is used in Lemma 3.1 below). In other words, the results of Proposition3.1 holds true in the interior of the domain, not on its boundary.We reall a lassial lemma used in the proof of Proposition 3.1.Lemma 3.1. Let g(x, y) be a Y -periodi funtion in L1

#(Y ; C2(Ω)), with om-pat support in x ∈ Ω. It satis�es
i.

∫

Ωǫ

g(x,
x

ǫ
)dx =

1

|Y |

∫

Ω

∫

Y S

g(x, y)dydx + O(ǫ2),

ii. ǫ

∫

Γǫ

g(x,
x

ǫ
) dx =

1

|Y |

∫

Ω

∫

Γ

g(x, y) dx dy + O(ǫ2),

iii. ǫ2
N(ǫ)∑

i=1

∫

Γ

g(x0,i, y) dy =
1

|Y |

∫

Ω

∫

Γ

g(x, y) dx dy + O(ǫ2).4 Mathematial onvergeneThe mathematially rigorous justi�ation of that part of Proposition 3.1 on-erning the two �rst terms T0 and ǫT1 in the expansion (14) has been donein [3℄ and [4℄ (with a slightly modi�ed model) using the two sale onvergenemethod [1℄, [34℄. We shall not reprodue this argument and we ontent ourselvesin realling their main theorem. 18



Theorem 4.1 ([3℄, [4℄). Let Tǫ ∈ H1(Ωǫ)∩H1
0 (Ω) be the sequene of solutionsof (8). There exists a positive onstant C, whih does not depend on ǫ, suhthat

‖Tǫ‖H1(Ωǫ) ≤ C. (45)Furthermore, Tǫ two-sale onverges to T0(x) and ∇Tǫ two-sale onverges to
∇xT0(x) + ∇yT1(x, y), where T0 ∈ H1

0 (Ω) is the solution of the homogenizedproblem (15) and T1(x, y) ∈ L2(Ω; H1
#(Y S)) is the �rst order orretor de�nedby (19).The main novelty of the present work is the seond-order orretor T2 whihimproves the approximation by homogenization of problem (8) in the preseneof an osillating heat soure. Unfortunately, the two-sale onvergene methodannot justify it. The usual approah to justify T2 is to write the equationsatis�ed by the remainder term

rǫ = Tǫ −
(
T0(x) + ǫT1(x,

x

ǫ
) + ǫ2T2(x,

x

ǫ
) + ǫ3T3(x,

x

ǫ
)
) (46)(note the neessary presene of the next order term T3) and to get uniform apriori estimate showing that rǫ is small in some norm [6℄, [7℄. Solving for T3requires a ompatibility ondition (see the Fredholm alternative in Remark 3.1)whih delivers a marosopi equation for the (so far unknown) non osillating�rst-order orretor T̃1(x) appearing in (19) (for more details, see Remark 4.1).However, there is one (serious) additional hurdle in the justi�ation of T2 whihis that (14) is not a orret ansatz for Tǫ (or equivalently (46) is not aurate)sine it is missing boundary layers. The reason is that eah orretor, T1, T2,

T3, does not verify the Dirihlet boundary ondition on ∂Ω. Beause of this,it is impossible to prove that rǫ, de�ned by (46), is small. To irumvent thisdi�ulty, boundary layers have to be taken into aount. It amounts to replaethe former ansatz (14) by the new one
Tǫ(x) = T0(x) + ǫ

[
T1(x,

x

ǫ
) + T bl,ǫ

1 (x)
]

+ ǫ2
[
T2(x,

x

ǫ
) + T bl,ǫ

2 (x)
]

+ ..., (47)where eah funtion T bl,ǫ
i (x), alled a boundary layer, satis�es






−div(Kǫ∇T bl,ǫ
i ) = 0 in Ω,

−Kǫ∇T bl,ǫ
i · n = ǫhǫT

bl,ǫ
i +

σ

ǫ
Gǫ(T

bl,ǫ
i ) on Γǫ,

T bl,ǫ
i (x) = −Ti(x,

x

ǫ
) on ∂Ω.

(48)The advantage of the new ansatz (47) is that eah term Ti + T bl,ǫ
i satis�es ahomogeneous Dirihlet boundary ondition. On the other hand, it is lear thatin (47) the �rst boundary layer T bl,ǫ

1 is more important than the seond orderorretor T2. 19



The asymptoti analysis of (48) is deliate sine T bl,ǫ
i (x) is not uniformlybounded in the usual energy spaes (the Dirihlet boundary data is not boundedin H1/2(∂Ω)). It has merely been arried out for retangular domains havingboundaries parallel to the unit ell axes. In suh a ase, it is proved that T bl,ǫ

i (x)is of order 1 in the viinity of the boundary ∂Ω and deays exponentially fast to 0inside Ω (upon a suitable hoie of the additive funtion T̃i(x) in the de�nition of
Ti(x, y)) ; hene its name of boundary layers (see [2℄, [6℄, [7℄, [11℄, [18℄, [19℄, [20℄,[28℄, [30℄, [33℄, [35℄ for more details in the ase of a pure ondution problem).In general, boundary layers should satisfy the following a priori estimates
‖T bl

i ‖H1(Ω) = O(
1√
ǫ
), ‖T bl

i ‖L2(Ω) = O(1), ‖T bl
i ‖H1(ω) = O(1) for all ω ⊂⊂ Ω.Remark 4.1. The non osillating �rst-order orretor T̃1, introdued in (19), isdetermined by the ompatibility ondition of the equation for T3(x, y) in the unitell: this is a standard omputation (see [2℄, [6℄ [7℄, [14℄ for simpler models). Itan also be obtained by taking a test funtion φ0 6= 0 in (43), at the end of theproof of Proposition 3.1 (see Remark 3.6). More preisely, we obtain

−div
(
K∗(x)∇T̃1(x)

)
=

2∑

i,j,k=1

cijk
∂3T0(x)

∂xi∂xj∂xk

+

2∑

i=1

(
mi

∂T0(x)

∂xi
+ di

∂F (x)

∂xi
+ gi

∂H(x)(T0(x) − Tgas(x))

∂xi

) (49)with
cijk =

∫

Y S

[
2∑

l=1

Kkl(y)
∂θij

∂yl
(y) − Kij(y)ωk(y)

]
dy −

∫

Γ

G(yk)
(
θi,j + ωiyj

)
dy,

mi =

∫

Γ

h(y)ωi(y)dy,

di =

∫

Y S

2∑

j=1

Kij(y)
∂T F

2

∂yj
(y)dy −

∫

Γ

G(yi)T
F
2 dy,

gi =

∫

Y S

2∑

j=1

Kij(y)
∂T H

2

∂yj
(y)dy −

∫

Γ

G(yi)T
H
2 dy.The funtion T̃1 is not yet uniquely de�ned sine we do not have any boundaryondition for equation (49). It is ustomary to impose the same boundary on-ditions for T̃1 as for the homogenized solution T0. However, we learly see fromthe de�nition (48) of the boundary layer problem that hanging the boundaryondition for T̃1 is equivalent to hanging the boundary ondition for T bl,ǫ

i .For the numerial omputations onerning our industrial appliation, weshall simply ignore T̃1 and T bl,ǫ
i , namely take them equal to 0. On the other20



hand we hoose T1(x, y) being of zero average with respet to y. Note that,
T̃1 ≡ 0 is a onsequene of ubi symmetry assumptions for the oe�ientsin the periodiity ell Y (whih imply that all parameters ci,jk, mi, gi and divanish). We do not have ubi symmetry of our referene ell (see Figure 2)but our numerial omputations indiated that all values of these parameter arealmost zero.Based on the study of the �rst order boundary layer it was proved [7℄ fora pure ondution problem that one an get expliit onvergene errors for the�rst order approximation of Tǫ. It is thus reasonable to onjeture that thesame holds true in our ontext.Conjeture 4.1. The �rst order approximation of the solution Tǫ of (8) satis-�es

‖Tǫ − (T0 + ǫT1)‖L2(Ωǫ) ≤ Cǫ, ‖Tǫ − (T0 + ǫT1)‖H1(Ωǫ) ≤ C
√

ǫ,where the onstant C does not depend on ǫ.Note that, beause of boundary layers, the onvergene speed in Conjeture4.1 is not ǫ2 and ǫ, respetively, as ould be expeted from the (wrong) ansatz(14). On the same token, the onvergene speed in Conjeture 4.1 is independentof the hoie of the additive funtion T̃1(x) in (19).Remark 4.2. Conjeture 4.1 is most probably valid for any geometry of thedomain Ω whih may yield non trivial boundary layers. For the spei� retan-gular geometry under study, we are going to obtain in Setion 6 a muh betternumerial onvergene, typially
‖Tǫ − (T0 + ǫT1)‖L2(Ωǫ) = O(ǫ2),whih means that the boundary layer T bl,ǫ

1 is negligible. Beause of this atualfat, it makes sense to look at the next term in the ansatz and to onsider theseond order orretor.As we shall see in Setion 6, introduing T2 improves the qualitative behaviorof the approximation but does not hange the speed of onvergene whih is still
‖Tǫ − (T0 + ǫT1 + ǫ2)T2‖L2(Ωǫ) = O(ǫ2).In any ase, it is lear that any mathematial justi�ation of T2, based onan error estimate similar to that in Conjeture 4.1, must rely on a preliminaryasymptoti analysis of the non-osillating �rst order orretor T̃1 and of the �rstorder boundary layer T bl,ǫ

1 (x), a formidable task in whih we do not want toendeavour. Therefore, we will merely numerially hek that adding the seondorder orretor dereases signi�antly the error but not that the onvergenespeed is improved. 21



5 Non-linear aseAs already disussed in Remark 2.2, the true physial problem involves a non-linear radiation operator, de�ned by formula (13) instead of (4). The study ofthe linear ase was a simplifying assumption. However, the formal method oftwo-sale asymptoti expansion is perfetly valid in the non-linear ase too (see[3℄). In this setion we give, without proof, the homogenization result in the non-linear ase when Stefan-Boltzmann law applies, namely the emitted radiationsare proportional to the 4th power of the temperature. More preisely, instead ofusing the linear formula (4) for Gǫ we use rather (13) with the emissivity e = 1,i.e.,
Gǫ(Tǫ)(s) = T 4

ǫ (s) −
∫

Γǫ,i

T 4
ǫ (x)F (s, x)dx ∀ s ∈ Γǫ,i.The non-linear equivalent of Proposition 3.1 is the following.Proposition 5.1. Under assumption (14), the zero-order term T0 of the ex-pansion for the solution Tǫ of (8) is the solution of the nonlinear homogenizedproblem

{
−div

(
K∗(T 3

0 )∇T0(x)
)

+ h∗(x)(T0(x) − Tgas(x)) = f∗(x) in Ω,

T0(x) = 0 on ∂Ω,
(50)with the homogenized soure f∗ and exhange oe�ient h∗ given by (16). Thehomogenized ondutivity tensor K∗ depends on (T0)

3 and is given by its entries,for j, k = 1, 2,
K∗

j,k =
1

|Y |
[ ∫

Y S

K(ej + ∇yωj) · (ek + ∇yωk)dy + 4σT 3
0

∫

Γ

G(ωk + yk)(ωj + yj)dy
]
,where G is the linear radiative operator de�ned by (12) and (ωk(x, y))1≤k≤2 arethe solutions of the (linear) ell problems






−divy

(
K(x, y)(ej + ∇yωj)

)
= 0 in Y S ,

K(x, y)(ej + ∇yωj) · n = 4σT0(x)3G(ωj + yj) on Γ,

y 7→ ωj(x, y) is Y -periodi. (51)Furthermore, the �rst order orretor T1(x, y) is still given by (19) and the
22



seond order orretor T2(x, y) is the solution of





−divy

(
K(x, y) [∇yT2(x, y) + ∇xT1(x, y)]

)
= f(x, y)

+divx

(
K(x, y) [∇xT0(x) + ∇yT1(x, y)]

) in Y S ,

−K(x, y) [∇yT2(x, y) + ∇xT1(x, y)] · n = h(x, y)
(
T0(x) − Tgas(x)

)

+4σT0(x)3G
(
T2 + ∇xT1 · y + 1

2∇x∇xT0 y · y
)

−4σT0(x)3G
(
∇xT1 + ∇x∇xT0 y

)
· y on Γ,

y 7→ T2(x, y) is Y -periodi.Corollary 3.1 beomes, in the non-linear ase :Corollary 5.1. If we assume that the funtions f and h satisfy (23) and thatthe ondutivity tensor depends only on the mirosopi variable, i.e., K(x, y) ≡
K(y), then, de�ning F ∗ and H∗ by (24), T2(x, y) an be written

T2(x, y) = T F
2 (x, y)F (x) + T H

2 (x, y)H(x)(T0(x) − Tgas(x))

+

2∑

i,j=1

∂2T0

∂xi∂xj
(x) θi,j(x, y) + T̃2(x),where T F

2 , T H
2 and θi,j depend on x only through the value of T0(x)3 and aresolutions of the ell problems






−divy(K(y)∇yT F
2 (y)) = f#(y) in Y S ,

−K(y)∇yT
F
2 (y) · n =

|Y |
|Γ| F

∗ + 4σT0(x)3G(T F
2 (y)) on Γ,

T F
2 (y) is Y -periodi, (52)






−divy(K(y)∇yT H
2 (y)) = 0 in Y S ,

−K(y)∇yT
H
2 (y) · n = (h(y) − |Y |

|Γ| H
∗) + 4σT0(x)3G(T H

2 (y)) on Γ,

T H
2 (y) is Y -periodi, (53)and






−divy (K(y) [∇yθi,j(y) + ejωi(y)]) = Ki,j(y) + K(y)∇yωi(y) · ej in Y S ,

−K(y) [∇yθi,j(y) + ejωi(y)] · n = |Y |
|Γ| K

∗
i,j

+4σT0(x)3G
(
θi,j(y) + ωi(y)yj + 1

2yiyj

)
− 4σT0(x)3G

(
ωi(y) + yi

)
yj on Γ,

θi,j(y) is Y -periodi. (54)
23



Conerning the ell problems (of �rst or seond order) the only di�erenewith the linear ase is that the onstant σ, appearing in front of the linearradiative operator G, is replaed by 4σT0(x)3 whih arises from the linearizationof the nonlinear operator. Conerning the homogenized problem (50), the onlynonlinearity appears in the homogenized di�usion tensor K∗ whih depends on
T 3

0 .6 Numerial resultsIn this setion we desribe some numerial experiments to study the asymptotibehaviour of the heat transfer model (8) in the non-linear ase, i.e., when theradiation operator is de�ned as in Remark 2.2. Our goal is to show the e�ienyof the proposed homogenization proedure, to validate it by omparing thereonstruted solution of the homogenized model with the numerial solutionof the exat model (8) for smaller and smaller values of ǫ and to exhibit anumerial rate of onvergene in terms of ǫ. Our omputations do not take intoaount boundary layers nor the non osillating part of the �rst-order orretor.All omputations have been done with the �nite element ode CAST3M [12℄developed at the Frenh Atomi and Alternative Energy Commission (CEA).6.1 Changing variables for the numerial simulationUsually, in homogenization theory, a problem is homogenized in a �xed domain
Ω with ells of size ǫ whih tends to 0. However, in many pratial appliations(inluding ours for nulear reator physis), the size of the period is �xed (forphysial reasons or manufaturing onstraints) and it is rather the total numberof ells, or equivalently the size of the domain, whih is inreasing. Therefore,following [3℄ and [4℄, we proeed di�erently: we �x the size of the periodiity ell(independent of ǫ) and we inrease the total number of ells, i.e., the size of theglobal domain Ω̂ = ǫ−1Ω =

∏2
j=1(0, Lj/ǫ) whih is of order ǫ−1. In other words,instead of using the marosopi spae variable x ∈ Ω, we use the mirosopispae variable y = x/ǫ ∈ Ω̂. For any funtion u(x) de�ned on Ω, we introduethe resaled funtion û(y), de�ned on Ω̂ by

û(y) = u(ǫy) = u(x), (55)whih satis�es ∇yû(y) = ǫ(∇xu)(ǫy) = ǫ∇xu(x). All quantities de�ned in Ω̂ aredenoted with a hat ̂ and, for simpliity, we drop the dependene on ǫ. In thisnew frame of referene, the problem (8) beomes





−div(K̂∇T̂ǫ) = ǫ2f̂ǫ in Ω̂S ,
−K̂∇T̂ǫ · nS = ǫ2ĥ

(
T̂ǫ − T̂gas

)
+ σGǫ(T̂ǫ) on Γ̂,

T̂ǫ = 0 on ∂Ω̂, (56)
24



where Ω̂S , Γ̂ and ∂Ω̂ are de�ned by the same hange of variables relating Ω and
Ω̂. The homogenized problem (50) beomes

{
−div(K̂∗(T̂0

3
)∇T̂0) + ǫ2ĥ∗

(
T̂0 − T̂gas

)
= ǫ2f̂∗ in Ω̂,

T̂0 = 0 on ∂Ω̂. (57)The �rst order orretor T̂1(y) is
T̂1(y) = ǫT1(ǫy, y) =

2∑

i=1

∂T̂0

∂yi
(y)ωi(y) + ̂̃T1(y), (58)and the seond order orretor T̂2(y) is

T̂2(y) = ǫ2T2(ǫy, y)

= ǫ2T F
2 (y)F̂ (y) + ǫ2T H

2 (y)Ĥ(y)
(
T̂0(y) − T̂gas(y)

)

+
∑

i,j

∂2T̂0

∂yi∂yj
(y)θi,j(y) + ̂̃T2(y).

(59)Finally, the homogenization approximation Tǫ(x) ≃ T0(x) + ǫT1(x, x/ǫ) +
ǫ2T2(x, x/ǫ) beomes

T̂ǫ(y) ≃ T̂0(y) + T̂1(y) + T̂2(y). (60)6.2 Algorithm and omputational parametersOur proposed algorithm for the homogenization proess is the following.1. Solve the 2 �rst order ell problems (51) for a range of values of T̂0.Uniqueness of the solution ωi is insured by requiring that ∫

Y

ωi(x, y) dy =

0.2. Compute the homogenized ondutivity (as a funtion of temperature)and the homogenized thermal soure and heat exhange oe�ient.3. Solve the homogenized problem (50) by a �xed point algorithm.4. Compute the �rst order orretor T̂1(y) =

2∑

i=1

∂T̂0

∂yi
(y)ωi(T̂0

3
, y).5. Solve the 6 seond order ell problems (52), (53), (54) for the homogenizedtemperature T̂0. 25



Figure 3: Support of the thermal soure (blak) in the referene ell Y S (gray)perforated by holes (white).6. Compute the seond order orretor
T̂2(y) = ǫ2T F

2 (y)F̂ (y)+ǫ2T H
2 (y)Ĥ(y)(T̂0(y)−T̂gas(y))+

2∑

i,j=1

∂2T̂0

∂yi∂yj
(y)θi,j(y).Although we did not write it expliitly, all orretors depend on T̂0

3.7. Reonstrut an approximate solution: T̂0(y) + T̂1(y) + T̂2(y).We now give our omputational parameters for a referene omputation or-responding to ǫ = ǫ0 = 1
4 . The geometry orresponds to a ross-setion ofa typial fuel assembly for a gas-ooled nulear reator (see [22℄ for furtherreferenes). The domain is Ω̂ = ǫ−1Ω =

∏2
j=1(0, Lj/ǫ), with, for j = 1, 2,

Lj/ǫ = Njℓj where N1 = 3, N2 = 4 and ℓ1 = 0.04m, ℓ2 = 0.07m. Eah period-iity ell ontains 2 holes (see Figure 2), the radius of whih is equal to 0.0035m.Note that the unit ell is not a square but a retangle of aspet ratio 4/7. Theemissivity of the holes boundaries is equal to e = 1. We enfore periodi bound-ary onditions in the x1 diretion and Dirihlet boundary onditions in the otherdiretion whih are given by T̂ǫ(y) = 800K on y2 = 0m and T̂ǫ(y) = 1200K on
y2 = L2/ǫ = 0.28m. Although the referene ell is heterogeneous in the sensethat it is made of at least two materials (graphite and the nulear fuel), forsimpliity we assume that the ondutivity tensor K is onstant and isotropi:its value is 30Wm−1K−1. Similarly, the thermal exhange oe�ient h is alsoonstant throughout the domain. The physial value of the thermal exhangeoe�ient is ǫ20ĥ = 500 W.m−2.K−1, whih takes into aount the resalingproess adopted in Subsetion 6.1. Hene ĥ = 8000 W.m−2.K−1.The osillating thermal soure is given by f#(y) = 7MW/m3 in disks stritlyinluded in Y S (with the same size as the holes) suh that we have a soure be-tween eah two �uid holes (in a hekerboard pattern, see Figure 3). The soure26



is set to zero elsewhere. There is no marosopi variation of the thermal soure.In other words, from de�nition (23) we assume F (x) = 1 in Ω. The physialvalue of the thermal soure is ǫ20f̂# = 7MW/m3. Hene f̂# = 112MW/m3.Remark that it is only for the referene omputation ǫ0 = 1/4 that f̂# and
ĥ are equal to their physial values. While the resaled oe�ients f̂# and ĥare varying with ǫ, the original oe�ients f# and h are independent of ǫ. Thefat that the numerial values of ǫ2f̂# and ǫ2ĥ are not the physial ones for
ǫ 6= ǫ0 = 1/4 is not a problem, sine our onvergene study (as ǫ goes to 0) ispurely a numerial veri�ation of our mathematial result.All omputations are performed with retangular Q1 �nite elements (4 nodesin 2D). A boundary integral method is used for the radiative term (whih in-volves a dense matrix oupling all nodes on the surfae enlosing the holes).The typial number of nodes for the 2D ell problem is 1 061 (from whih 72are on the radiative boundary γ); it is 656 for the homogenized problem (whihhas no radiative term); it is 12 249 for the original problem (8) with ǫ = ǫ0 = 1

4(from whih 864 are on the radiative boundary Γǫ).Remark 6.1. Sine the thermal exhange oe�ient h is onstant the seond-order orretor T H
2 vanishes. The other seond-order orretor ∂2cT0

∂yi∂yj
(y)θi,j(y)is small sine the homogenized solution T̂0 is slowly varying and its seond-orderderivatives is of order ǫ2. The only term whih is not negligible is ǫ2T F
2 (y)F̂ (y)if the soure term is large (this is the only orretor term depending on thesoure term as already said in Remark 3.4). The importane of ǫ2T F
2 (y)F̂ (y)an be heked on Figures 15, 16 and 17 whih are plotted for three di�erentorders of magnitude of the soure term.6.3 Simulation resultsWe start this setion by omparing, in the referene on�guration ǫ = ǫ0 = 1/4,the diret solution of the problem (8) in the non-linear ase, with the solution ofthe homogenized problem (50) plus the orretors T̂1 and T̂2. The homogenizedproblem parameters are

f̂∗(x) = F̂ ∗ =
1

|Y |

∫

Y S

f#(y)dy = 17, 8174 MW/m3,

ĥ∗(x) = Ĥ∗ =
|Γ|
|Y | ĥ = 0, 319383 MW.m−2.K−1.To ompute the homogenized ondutivity, we ompute the solutions of theell problems (51) what we plot in Figure 4 for an homogenized temperature

T0 = 800K. Reall that, in the non linear ase, the solutions of the ell problemsdepend on the marosopi temperature. These solutions of (51) are uniquelydetermined beause we hoose them being of zero average in the ell.The ell solutions allow us to evaluate the homogenized ondutivity whihturns out to numerially be a diagonal tensor (at least for temperatures T0 ≤27



Figure 4: Solutions of the �rst order ell problems (51) for T̂0 = 800K: ω1 (left),
ω2 (right).

Figure 5: Homogenized ondutivity as a funtion of the marosopi tempera-ture T0: K̂∗
11(left), K̂∗

22(right).
1E + 05K with a preision on 14 digits). However, for larger (extreme) tem-peratures, K̂∗ is not any longer a diagonal tensor [3℄ sine the unit ell is nota square but a retangle of aspet ratio 4/7. The diagonal entries of K̂∗ are28



plotted on Figure 5 and two typial values are
K̂∗(T̂0 = 50K) =

(
25.907 0.
0. 25.914

)
, K̂∗(T̂0 = 20000K) =

(
49.801 0.
0. 49.781

)
.

Figure 6: Solution T F
2 of the seond order ell problem (52).By a �xed point algorithm (the homogenized ondutivity K̂∗ is evaluatedwith the previous iterate for the temperature), we solve the homogenized prob-lem (it requires of the order of 5 iterates). By a Newton method we solve alsothe diret model (56) (it requires of the order of 15 iterates). The solutions ofthe seond order ell problems (52) and (54) are displayed on Figures 6 and7. We hoose the unknown additive onstant for these solutions in suh a waythat they are almost equal to zero on the holes' boundaries. Sine the exhangeoe�ient h is onstant, the other seond order ell problem (53) does not needto be solved: its solution is always zero.In Figure 8 we plot the diret, homogenized and reonstruted solutionsomputed for a value of ǫ = ǫ0 = 1/4. The reonstruted solution T̂0 + T̂1is a better approximation of the true solution T̂ǫ than the mere homogenizedsolution T̂0. Clearly the reonstruted solution T̂0 + T̂1 + T̂2 is a muh betterapproximation than T̂0 + T̂1, espeially in the region between holes where largetemperature gradients our from the soure supports to the holes. Even moreonviningly, we display the modules of the temperature gradients in Figure 9and the modules of the gradient error approximations in Figure 10.29



Figure 7: Solutions θi,j , i, j = 1, 2, of the seond order ell problem (54).Remark 6.2. To justify (at least numerially) our hoie of negleting T̃1 in thereonstrution proess (60), following the notations of Remark 4.1, we omputethe parameters cijk, di, mi and gi whih appear in the equation for T̃1. Their30



Figure 8: Diret solution T̂ǫ (top left), homogenized solution T̂0 (top right ),
T̂0 + T̂1 (bottom left) and T̂0 + T̂1 + T̂2 (bottom right).values are equal to

31



Figure 9: Modules of the solution gradients in Ω̂: |∇T̂ǫ| (top left), |∇T̂0| (topright), |∇(T̂0 + T̂1)| (bottom left) and |∇(T̂0 + T̂1 + T̂2)| (bottom right).
c111 = -2.42128E-10 m1 = 0.
c112 = 3.37167E-10 m2 = 0.
c121 = -3.11185E-21
c122 = -1.49058E-21 d1 = 0.
c211 = 2.32272E-21 d2 = 0.
c212 = -4.46678E-23
c221 = -2.42128E-10 g1 = 0.
c222 = 3.37167E-10 g2 = 0.32



Figure 10: Modules of the solution gradients error in Ω̂: |∇T̂ǫ − ∇(T̂0 + T̂1)|(left) and |∇T̂ǫ −∇(T̂0 + T̂1 + T̂2)| (right).Together with a homogeneous Dirihlet boundary ondition, it implies that T̃1,solution of (49), is approximately zero.

Figure 11: From left to right, the line segments D1, D′
1, D′′

1 and P1 for ǫ = 1/4.In order to better show the in�uene of the seond order orretor T2 weplot the di�erent solutions, exat T̂ǫ, homogenized T̂0, �rst order approxi-33



mation (T̂0 + T̂1) and seond order approximation (T̂0 + T̂1 + T̂2) on vari-ous line segments for ǫ = 1/4. On Figure 11 we plot the pro�le segments:
D1 = (a1; a2) with a1 = (L1/2, 0) and a2 = (L1/2, L2/ǫ), D′

1 = (a′
1; a

′
2) with

a′
1 = a1 and a′

2 = (L1/2, 3L2/5ǫ), D′′
1 = (a′′

1 ; a′′
2) with a′′

1 = (L1/2, 7L/16ǫ) and
a′′
2 = (L1/2, 9L/16ǫ), P1 = (b1; b2) with b1 = (1.75263E − 02, 2.0625E − 02/ǫ)and b2 = (8.72628E − 02, 4.5375E − 02/ǫ). Along D1 (and its subsets D′

1 and
D′′

1 ) there is no soure term: thus the in�uene of T2 is almost negligible (seeFigure 12). Along P1 the soure term is osillating from 0 to its nominal value:the in�uene of T2 is dramati (see Figure 15).

Figure 12: Di�erent solutions along the line segment D1.Sine there are not muh variations between the di�erent solutions in Figure12, we display two di�erent zooms in Figures 13 and 14. On the sub-segment
D′′

1 (in the middle of the domain Ω̂) the seond order approximation is betterthan the �rst order one, as we ould expet (see Figure 14). However, on thesub-segment D′
1 (lose to the boundary of Ω̂) the seond order orretor T̂2adds an additional error lose the boundary y2 = 0 sine it does not satisfy ahomogeneous Dirihlet boundary ondition (see Figure 13).To hek that the importane of the seond order orretor is diretly linkedto the amplitude of the soure term (as is obvious in view of the ell problem(52) for T F

2 ), we re-do the same plot of Figure 15 with a di�erent magnitudeof the soure term. Not surprisingly, when f̂ǫ = 0 MW/m3 there are almostno di�erenes between the di�erent approximations (see Figure 16), while for
f̂ǫ = 16000 MW/m3, the seond order approximation is the only one to followlosely the true solution (see Figure 17). For more numerial results (di�erent34



Figure 13: Di�erent solutions along the line segment D′
1.

Figure 14: Di�erent solutions along the line segment D′′
1 .values of ǫ, di�erent values of ĥǫ, et.), we refer the interested reader to [22℄.Eventually, to hek the onvergene of the homogenization proess and to35



Figure 15: Di�erent solutions along the line segment P1 for f̂ǫ = 112 MW/m3.

Figure 16: Di�erent solutions along P1 for f̂ǫ = 0 MW/m3.obtain a numerial speed of onvergene as the small parameter ǫ goes to 0, wedisplay in Figure 18 the relative errors (61) on the temperature, as funtions36



Figure 17: Di�erent solutions along P1 for f̂ǫ = 16000 MW/m3.of ǫ on a log-log sale. In pratie, the limit as ǫ goes to 0 is obtained byinreasing the number of ells and we obtain the following sequene of values:
ǫ = 1/4, 1/8, 1/12, 1/16, 1/20, 1/24, 1/28, 1/32, 1/36.We ompare the obtained errors (61) with the slopes of ǫ, ǫ2 and ǫ3.






ERR(T )0 =

∥∥∥T̂ǫ(y) − (T̂0(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

ERR(T )1 =

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

ERR(T )2 =

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y) + T̂2(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

,

(61)
One again we reall that our reonstrutions (T̂0 + T̂1) and (T̂0 + T̂1 + T̂2) donot feature any boundary layers nor non-osillating orretor terms.The error ERR(T )0 behaves like ǫ as we an expet. Although, we ould notprove rigorously anything about ERR(T )1 and ERR(T )2, we hek on Figure18 that they both behave as ǫ2. This impliitly implies that the �rst orderboundary layer is indeed negligible. Although ERR(T )2 has the same slope as
ERR(T )1 on Figure 18, it is muh smaller.37



Figure 18: Relative temperature errors as a funtion of ǫ.As a onlusion of our numerial analysis, we laim that, even if the seondorder orretor T2 does not improve the onvergene order of the homogeniza-tion proess, for a �xed value of ǫ it improves the qualitative behavior of thereonstruted solution and it dereases the relative error all the more when thesoure term is loally varying with a large amplitude. In industrial pratie, ǫ isnever going to zero, so these two ahievements are more than enough to justifythe use of the seond order orretor in the numerial homogenization of theheat transfer problem (8). Reall that omputing a �rst-order, or even seond-order, reonstruted homogenized solution is muh heaper than omputing adiret solution of the original problem sine the latter one requires a very �nemesh of size smaller than ǫ.Referenes[1℄ G. Allaire. Homogenization and two-sale onvergene. SIAM J. Math.Anal., 23(6):1482�1518, 1992. 38
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