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Abstract

We investigate the structure of mathematical entropies for dissipative multicomponent fluid
models derived from the kinetic theory of gases. The corresponding governing equations notably
involve nonideal thermochemistry as well as diffusion fluxes driven by chemical potential gradients
and temperature gradients. We obtain the general form of mathematical entropies compatible with
the hyperbolic structure of the system of partial differential equations assuming a natural nonde-
generacy condition. We next establish that entropies compatible with the hyperbolic-parabolic
structure are unique up to an affine transform when they are independent on mass and heat diffu-
sion parameters.

1 Introduction

Multicomponent fluids arise in many laboratory experiments and engineering applications such as reen-
try into earth atmosphere, chemical reactors, flames or atmospheric pollution [22]. On the other hand,
mathematical entropies are an important tool for analyzing hyperbolic-parabolic systems of partial
differential equations modeling fluids [33, 20, 55, 37, 49, 39, 9, 27, 22, 18, 28, 6, 52]. Mathematical
entropies lead to symmetrized forms useful for existence theorems [55, 37, 54, 27, 28] as well as finite
element formulations [35] and may also be used to derive a priori estimates. These are strong moti-
vations for investigating the structure and properties of mathematical entropies for systems of partial
differential equations modeling dissipative multicomponent fluids, higher order entropies [17, 23, 24, 25]
laying beyond the scope of the present work.

The system of partial differential equations modeling dissipative multicomponent fluids derived from
the kinetic theory of gases is first presented. We discuss conservation equations, thermodynamics, chem-
ical production rates and transport fluxes. The mathematical structure of nonideal thermodynamics
has recently been investigated [29] and the nonideal chemical production rates are directly expressed
in terms of chemical potentials [44, 41, 31, 29]. These rates are compatible with the symmetric form
of rates of progress derived from the kinetic theory of dilute reactive gases [16, 22]. The mass and
heat diffusion fluxes, deduced from the kinetic theory of dilute or dense gases as well as from various
macroscopic theories, are driven by chemical potential gradients and temperature gradients and vis-
cous effects are also taken into account [45, 47, 10, 41, 3, 4, 43]. The resulting nonideal fluid model is
shown to satisfy the second principle of thermodynamics, that is, physical entropy production due to
transport fluxes and chemistry are both shown to be nonnegative.

The definition of an entropy function is adapted from Godunov [33] and Friedrichs and Lax [20] for
the hyperbolic part, from Kawashima and Shizuta [37, 54, 38, 39] for the dissipative part, and from
the structure of chemical sources [22, 28], Chen, Levermore and Liu [8] and Kawashima and Yong
[40] for the source term. Mathematical entropies of the corresponding system of partial differential
equations have thus to be compatible with the convective terms, the dissipative terms, and the chemical
sources terms. The natural choice for such a mathematical entropy is ¢ = —S/R where S denotes
the physical entropy per unit volume and where the division by the gas constant R is introduced for
convenience. For such nonideal fluids, however, the open sets where thermodynamics is admissible—in
particular where the physical entropy Hessian is definite—are bounded by thermodynamically unstable
states. As a consequence, even though the natural mathematical entropy ¢ and the corresponding
symmetrizing variable v = (9,0)" are defined for all admissible states of the conservative variable
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u, the map u — v is not globally one to one—unlike for ideal fluids—because of thermodynamic
instabilities. The symmetrizing change of variable u — v is only locally invertible for such nonideal
thermodynamics but still lead to global existence theorems around equilibrium states and asymptotic
stability [30]. The corresponding natural local symmetrized form may also be evaluated in terms of
the inverse of the Gibbs functions derivatives apjgi, 1,7 € 6, where G; is the Gibbs function of the ith
species per unit mass, p; the partial density of the jth species, & = {1,...,n} the species indexing set,
and n the number of species [30]. This natural symmetrized form involves in particular the dissipation
matrices Eij relating the dissipative flux in the ith direction F&ss = — 3~ jec Eijajv to the gradient of
the natural symmetrizing variable d;v in the jth direction, where C' = {1,...,d} denotes the spatial
direction indexing set and d the spatial dimension.

We first investigate the structure of mathematical entropies in the absence of dissipation, i.e., for
the multicomponent Euler equations, under a natural nondegeneracy assumption on the fluid thermo-
dynamics. The nondegeneracy condition states that the volume per unit mass v = v(p,y1,- .., Yn, S),
written as a function of pressure p, species mass fractions y1,...,y, and entropy per unit mass s,
is such that 6251/ # 0. Under this assumption, mathematical entropies for multicomponent flows o
compatible with the hyperbolic structure are found in the general form

G =01, s P S) + 0y - pv + (€ + 2p|v]?) + (1.1)

where p = >, ., pi denotes the total mass per unit volume, v the flow velocity, £ the energy per unit

volume, ¢ a 1-homogeneous function of p1, . .., pn,S and where a,, € R, ag, g € R are constants. The
nontrivial term ¢(p1, ..., pn,S) may equivalently be written p@(y1,...,yn,s) thanks to the relations
pi = py; and S = ps. When there is only one species n = 1, we recover that nontrivial entropies are in
the form p@(s) [51, 56] and the multicomponent case is new to the authors’s knowledge.

We then study the compatibility conditions with second order derivatives, which may be written
as commutation type relations in the form B;; v = (9,V)"B;j, i,j € C, between the dissipation
matrices Eij of the natural symmetrized form and the mathematical entropy derivative 9,v where
v = (9,0)". We establish that when a mathematical entropy o is compatible with the hyperbolic
structure of the governing equations, that is, with the multicomponent Euler equations, then & is
automatically compatible with the dissipation matrices arising from viscous effects. Compatibility with
dissipative effects is then reduced to the compatibility with a single mass and heat diffusion matrix
BL o,v = (9,v)! BL and this generalizes previous work by Hughes et al. [35] devoted to single component
gases. We also address the compatibility with chemical source terms at chemical equilibrium points
and establish that, for entropies o independent of chemical kinetic constants, the extended chemical
reaction vectors are left eigenvectors of J,v.

In order to investigate the compatibility relations with diffusion matrices we first have to study
in more details the mathematical structure of mass and heat diffusion fluxes derived from the kinetic
theory of gases [57, 7, 19, 11, 15, 43]. We discuss diffusion velocities arising from Stefan-Maxwell
type equations as well as quasi-diagonal diffusion matrix approximations. We also consider thermal
diffusion cross effects generally termed Soret and Dufour effects. The resulting mass and heat diffusion
matrices are then full matrices with intricate analytic expressions and their spectral properties cannot
be determined, precluding the obtention of more information on mathematical entropy derivatives 9, v
from the corresponding commutation type relations. As a consequence, in order to obtain more infor-
mation from the compatibility relations with the mass and heat diffusion matrix BL 9,v = (9,v)! BL,
we investigate the subfamily of mathematical entropies ¢ that are independent of the natural mass
and heat diffusion parameters. In this natural situation, we establish that mathematical entropies &
compatible with the hyperbolic-parabolic structure are in the form

5:(1384—2(11&-+av-pv+a5(5+%p|v|2)+a0, (1.2)
€S
where ag, a4, @ € 6, a,, ag, and aq are constants so that o coincide with the natural entropy o up
to an affine transform, discarding trivial entropies proportional to conserved quantities. This contrasts
with the multicomponent Euler system which admits many entropies (1.1) and these results generalize
previous work by Hughes et al. [35] devoted to single component gases.

The system of partial differential equations modeling dissipative fluids is presented in Section 2.
Mathematical entropies and symmetrized forms are investigated in Section 3. The hyperbolic situation
is investigated in Section 4 as well as compatibility relations with dissipation matrices. Mass and heat
diffusion fluxes are considered in more details in Section 5 and uniqueness of entropy up to an affine
transform is discussed Section 6.



2 Nonideal mixtures of dissipative fluids

We present in this section the system of equations modeling dissipative multicomponent reactive fluids.

2.1 Governing equations

We denote by & = {1,...,n} the species indexing set, n the number of species, p; the mass density of
the ith species, and m; the molar mass of the ith species. The mass conservation equation for the ith
species may be written

O:pi + V-(piv) + V- F;, = mw;, 1 €6, (2.1)
where v denotes the velocity of the mixture, F; the mass diffusion flux and w; the molar production
rate of the ith species. Bold symbols are used for vector or tensor quantities in the space R? where d

is the dimension of the physical model under consideration so that for instance v = (v1,...,v4)" and
V = (01,...,04)". The momentum conservation equation can be written in the form
O(pv) + V-(pv@v + ply) + V-IT =0, (2.2)

where p = 3, & p; is the mass density of the mixture, p the pressure, I4 the unit tensor in R?, and IT
the viscous tensor. Finally, the energy conservation equation reads

(& + Fpvv) + V-((E+ Lpvv +p)v) + V(F. + ITv) =0, (2.3)

where &£ is the internal energy per unit volume and F. the heat flux. These equations have to be
completed by relations expressing the thermodynamic properties like £ and p, the chemical production
rates w;, i € ©, and the transport fluxes F;, i € &, IT and F..

The equations governing fluid mixtures may generally be derived from the kinetic theory of di-
lute gases [7, 19, 22|, the kinetic theory of dense gases [3, 4, 43], the thermodynamics of irreversible
processes [45, 47, 10], from statistical mechanics [36, 2, 46] as well as statistical thermodynamics [41].

2.2 Thermodynamics

We denote by S the entropy per unit volume, T the absolute temperature, and by z = (p1,...,pn, T),
u=(p1,...,pn,E)t, and 0 = (p1,...,pn)", the usual thermodynamic variables. We denote by & the
derivation operator with respect to the variable z and the integer » € N, s > 3, denotes the regularity
class of thermodynamic functions.

Definition 2.1. Let €, p, and S be C* functions of the variable z = (p1,...,pn,T)" defined on a
simply connected open set O, C (0,00)" 1. These functions are said to define a thermodynamics when
Properties (T1)-(T3) hold.

(T1) The map z — u is a C* diffeomorphism from the set O, onto an open set O,.

(T2) Forany z € O, defining G; = 5;)16 — TgpiS, i € 6, we have the volumetric Gibbs’ relation
TdS = =) ,cs Gidps +dE and the constraint ), piGi =€ +p—TS.

(T3) For any z € O, the Hessian matriz 02,8 is negative definite.

Property (71) is associated with the natural change of variables encountered in thermodynamics
and temperature and species densities are assumed to be positive with O, C (0,+00)"T!. Property
(T2) is Gibbs’ relation with a natural constraint since the variables are volumetric [29]. Property (73)
is the thermodynamic stability condition and the open set O, may have a complex shape because
of thermodynamic instabilities [29]. Nonideal fluid thermodynamics are often built from equations of
states and such a construction has been investigated mathematically [29]. Thermodynamic stability
may not hold at high pressure and low temperature for nonideal fluids and may be characterized in
terms of the derivatives of the species Gibbs functions G;, i € & [29].

Proposition 2.2. Assume that (T1)-(T2) are satisfied and denote by I' the matriz of size n with coef-
ficients I}, = pd,, G/T = PO, Gr/T. Then, for any z € O, the following statements are equivalent :

(i) 02,8 is negative definite.
(44) 5T5 > 0 and I' is positive definite.

Remark 2.3. An interesting extra property of thermodynamics is the compatibility with perfect gases
which will not be required in this work [29].



2.3 Chemical production rates

We consider an arbitrary complex reaction mechanism with n' reactions involving n species which may
be written
SvpMi= > uiMi,  jER, (2.4)

i€ €S

where Z/Z-fj and 1/% denote the forward and backward stoichiometric coefficients of the ith species in
the jth reaction, M; the symbol of the molecule of the ith species, and ;& = {1,...,n*} the reaction

indexing set. The forward and backward reaction vectors l/]f- and 1/? of the jth reaction are defined

by vf = (Ui, ..., vk, and v = (vp;,...,vE;)" and the global reaction vector by v; = v? — vf. The
species of the mixture are assumed to be constituted by atoms and we denote by a; the number
of Ith atom in the ith species, A = {1,...,n®} the set of atom indices, and n® > 1 the number of
atoms—or elements—in the mixture. The [th atomic vector is given by a; = (ay,...,a,)" and the

vector spaces spanned by reaction and atomic vectors are denoted by R = span{ v;, i € R } and
A = span{ a;, | € 2 } respectively. The unit vector is defined by T = (1,...,1)" and the reduced
chemical potentials vector by p = (u1,. .., un)" where p; = m;G;/RT, i € &. The Euclidean scalar
product between x,y € R™ is denoted by (x,y) and the orthogonal complement of a linear subspace
E C R" is denoted by E+. The production vector w is defined by w = (w1, ...,w,)" and may be

written
w = Z TjVj, (2.5)
JjER
where 7; denotes the rate of progress of the jth reaction. The proper form for the rate of progress of
the jth reaction 7; is deduced from statistical physics [44, 41]

7j = &5 (exp{u, vj) — exp(p, 7)), (2.6)

where £7 is the symmetric reaction constant of the jth reaction. These nonideal rates of progress have
first been derived by Marcelin from chemical and statistical physics considerations [44] and rederived
by Keizer in the framework of a nonequilibrium statistical thermodynamics [41]. These rates are
compatible with traditional nonidealities used to estimate equilibrium constants [34] as well as with the
symmetric forms of rates of progress derived from the kinetic theory of dilute reactive gases [22, 16, 31].
The mathematical assumptions associated with the chemical production rates are the following.

(C1)  The stoichiometric coefficients ij and 1/%, 1 € 6, j € R, and the atomic coefficients a;;, 1 € S,
I € A, are nonnegative integers. The atomic vectors a;, I € 2, and the reaction vectors v;,

7 € R, satisfy the atom conservation relations <l/}), a;) — <1/jf-, a;) = (v;, ;) = 0.

(C2) The atom masses my, | € A, are positive constants, and the species molar masses m;, i € &,
are given by m; = ) o My G4

3 e symmetric rate constants K7, J € 2R, are posttive Jjunciions o, > 0.
C3) Th tric rate constants k5, j € R, are C positi ti T>0

For realistic complex chemistry networks, the number of chemical reactions is always much larger
than the number of chemical species and one usually has R = A*. From atom conservation and the
definition of species masses, we now deduce the mass conservation property.

Lemma 2.4. Denote by M the diagonal matric M = diag(my, ..., my). Then the vector of chemical
production rates w is such that w € R and Mw € MR. Moreover, the unity vector satisfies T € (MR)*
so that we have the total mass conservation relation (I, Mw) =3, s mypwi = 0.

Proof. We deduce from (C;)-(C3) that T = 37, o M ~'a; so that T € (MR)* since A+ C RL.
Moreover, w € R since w =, 775 and thus Mw € MR and finally (Mw, T) = 0. O

The mathematical structure of chemical kinetics has been investigated—generally for homogeneous
systems and kinetics of mass action type—by Aris [1], Wei [58], Shapiro and Shapley [50], Pousin [48],
Krambeck [42], Giovangigli and Massot [22, 27, 28], and that of nonideal chemical production rates
has been investigated by the authors [29].



2.4 Transport fluxes

The viscous tensor is in the form
II = —k(V-0)lg — (Vv + (Vv)' — 2(V-)l), (2.7)

where x denotes the effective volume viscosity, 17 the shear viscosity, and I; the identity matrix in d
dimensions. Actually, the coefficient 2/d in the viscous tensor (2.7) should be 2/3 = 2/d’ where d' =3
is the dimension of the velocity phase space of the associated kinetic model. However, we may consider
the equations in R? with d < d’ = 3 and the full size viscous tensor IT’ is then a matrix of order
d' = 3, with a coefficient 2/3. If we denote then by IT the upper left block of size d of IT', that is, the
useful part of IT', we may rewrite IT in the form (2.7) with x = x/ + (% — %)7} where ' is the physical
volume viscosity [25]. Note incidentally that the volume viscosity of polyatomic gases is positive and
its impact on fast flows has been established in [5].

The mass and heat diffusion fluxes derived from the kinetic theory of dilute or the kinetic theory
of dense gases may be written in the form [22, 31, 30]

Fi = =Y pyiDij(dj+x;VInT), i€, (2.8)
JjESG
- RT X3
F = Z H_jy-'J — VT + Z hiFi, (2.9)
JES €S

where D = (D;;);jes denotes the matrix of multicomponent diffusion coefficients, y; the mass fraction
of the jth species, x; the thermal diffusion ratio of the jth species, and A the thermal conductivity.
Denoting by (Vu;)y the gradient at constant temperature of the reduced chemical potential p; =
m;G;/RT, the generalized diffusion driving force of the jth species is given by d; = z;(Vy;)r. The
diffusion coefficients D;;, i,j € & are symmetric and have been introduced by Waldman for dilute
gases [57, 7] and Kurochkin [43] for dense gases. The diffusion coefficients and the thermal diffusion
ratios satisfy the mass conservation constraints Dy = 0 and (I, x) = 0 where y = (y1,...,yn)" and
X = (X1,---,Xn)t. Various extra mathematical properties of the transport coefficients are discussed
in [21, 15, 27, 22]. Evaluating the transport coefficients generally requires solving transport linear
systems derived from the kinetic theory of gases [11, 43, 53]. These coefficients may conveniently
be evaluated from convergent series arising from iterative solution of the transport linear systems
[11, 12, 13, 14, 15, 26, 31].

In order to express the heat and mass diffusion fluxes it is convenient to introduce the matrices £

and L defined by
y BTy yp, D 0
L= (0 m X ! . L=pm'( ey | L (2.10)

pm

where Y = diag(y1,...,Yn), he = (h1,...,hy)t, as well as the variable v = (G1,...,G,, —1)!/RT so
that we have
F,=- Z LijV’Z}j, xS GU{G}. (2.11)
1,jEGU{e}
The mathematical properties of the multicomponent transport matrix L are directly related to those
of the diffusion matrix D, the thermal diffusion vector x and the thermal conductivity A [30].

Proposition 2.5. Assume that Properties (T1)-(T3) hold, let D € R™™, x € R™, and A, and assume
that L is given by (2.10). Then the following statements are equivalent

(i) The matriz L is positive semi-definite with nullspace N(L) = R (1, 0)*.
(it) The matriz D is symmetric positive semi-definite with nullspace N(D) = Ry and A > 0,

The mathematical properties of the matrix L and of the viscosities x and 7 that we will need are
now the following.

(Tr1)  The matriz L and the coefficients n and k are C* functions of z € O;.

(Tr2)  The matriz L is symmetric positive semi-definite and has nullspace N(L) = R (1,0)!, where
TeR” and 1= (1, e ,1)t. The coefficient n is positive, the coefficient k is nonnegative and
is positive when d = 1.



The following proposition shows that the physical entropy production due to macroscopic variable
gradients and to chemical reactions are both nonnegative [16, 22, 30].

Lemma 2.6. The physical entropy governing equation may be written in the form

0S4+ V-(Sv) + V~(— %}1 + %) =by +,, (2.12)

€S
where the entropy production due to macroscopic gradients by and chemistry v, are given by

_ K 2 n t_ 2 2
oy = > RL;Vv;Vov,+ (V)P + ﬁ\wwvu — 2Vl
i,jEGU{e}

v, = —R{p,w) =Y Re5({p,vh) — (1,1})) (explp,vi) — exp(p,v?)).
JER

3 Mathematical entropies and symmetrization

We rewrite the system of partial differential equations modeling dissipative fluid in a quasilinear form
and we investigate local symmetrization properties.

3.1 Vector notation

The conservative variable is defined by u = (pl, e Py pU E + % pv-v)t and the natural variable by

z = (p1, ey Py 0, T)t. The velocity components of vectors in Rt = R” x R? x R are written
as vectors of R? for convenience. Since the thermodynamic part of uis u = (p1,...,pn, )" and the
thermodynamic part of zis z = (p1,..., pn,T)t it is easily seen that u is defined over the open set

2 2
w2+t uZ Nt
0, = { u e R+l (ul,...,un,un+d+1 - % nt nt ) €0, }, (3.1)
21§i§n ui

and z is defined over the open set
Oz = { z¢e Rn+d+1 (Zla <5 Zn, Zn+d+1)t € Oz } (32)

Neither O, nor O, are likely to be convex in general due to the presence of thermodynamically unstable
states [30] in contrast with ideal gas mixtures [27, 22]. In order to express the natural variable z in
terms of the conservative variable u, we note the following property of the map z — u [30].

Proposition 3.1. Assuming that (T1)-(T3) hold, the map z — u is a C* diffeomorphism from the
open set O, onto the open set O,.

The equations modeling nonideal multicomponent reactive fluids may be written into the compact
form atu+ziec OiFi+>° icC &'F?iss = () where 0; is the time derivative operator, 0; the space derivative
operator in the ith direction, F; the convective flux in the ith direction, F!% the dissipative flux in
the ith direction, Q the source term, and C = {1,...,d} the indexing set of spatial dimensions. The
convective flux F; in the ¢th direction is given by

Fi = (p1vis -, pnvi, pov; +pe', (E+p+ %pv-v)vi)t, (3.3)

where €', i € C, are the basis vectors of R%. The dissipative flux F&iss is given by

. t
F?ISS: (‘Fliv"'vfnia Hoi; ‘Fez;+znz]’0]) ’ (34)

jeC
where the spatial components of the transport fluxes have been written IT = (II;;)i jec, Ile; =

(I, ... Hg)t Fr = (Friy- - Fra)t, and Fp = (Fe1, - - -, Fea)t. Finally, the source term is given by

Q= (mlwl,...,mnwn,(),())t, (3.5)



where 0 = (0,...,0)" € R%. From the expressions of IT and Fy, k € & U {e}, the dissipative fluxes

may be written in the form F{iss = —Yjec z]( z)0;z, i € C, where B” is the dissipative matrix
relating the flux F?iss in the 7th direction with the gradient of the natural variable in the jth direction
djz. Thanks to Proposition 3.1, we may then write that F{iss = = jec Bij(u)d;u, i € C, where

the dissipation matrices B;; are defined as B;; = @ijauz, i,7 € C. Further introducing the Jacobian
matrices A; = 9,F;, i € C, the governing equations are finally rewritten into the compact form

atu+ng u)d;u = an dju) + Q(u). (3.6)

In the next section, we discuss the properties of mathematical entropies for such a quasilinear system.

3.2 Mathematical entropy and symmetrization

The following definition of an entropy function [30] has been adapted from Godunov [33] and Friedrichs
and Lax [20] for the hyperbolic part, from Kawashima and Shizuta [37, 54, 38, 39] for the dissipative
part, and from the structure of chemical sources [22, 28], Chen, Levermore and Liu [8] and Kawashima
and Yong [40] for the source term.

Definition 3.2. Consider a C* function o(u) defined over the open domain O, assumed to be simply
connected. The function o is said to be an entropy function for the system (3.6) if the following
properties hold.

(E1)  The Hessian matriz 920 (u) is positive definite over O,,.

(E2)  There exists real-valued C* functions q; = q;(u) such that 0,0(u)A;(u) = 0,q:(u) for any
ue O, andi € C.

(Es)  We have (920(u)) ™" (Bi;(u))' = Byi(u) (820(u)) ™" for any u € O, andi,j € C.

(Es)  The matriz B(u,w) = > ijec Bij(u) (020 (u ))_1 wiw; 18 symmetric positive semi-definite for
any u € O, and w € 471,

(Es) There exists a vector space E C R" T4+ independent of u such that for any u € O,, we have
Qu) € E*L, and Q(u) = 0 if and only if (6ua(u))t € E and if and only if O,0(u) Q(u) = 0.

(Ee)  For anyu € O, if Q(u) = 0, then 9,(u) (830(u))71 = (830(u))71(8uﬂ(u))t and moreover
N (8,2 (20(u)) ") = E.

(E7)  For any u € O, we have d,0(u) Q(u) < 0.

An important difficulty with nonideal fluids is the presence of thermodynamically unstable states
associated with the loss of definiteness for entropy Hessian matrices. A consequence is the existence of
distinct states which correspond to the same symmetrizing variable so that only local symmetrization
may be obtained [30].

Definition 3.3. Consider a C*~! map u — v from C O, onto an open domain O,. Assume that for
any u € O, there exists subdomains 0, C O, and 0, C O, such that u — v is a C*~ ! diffeomorphism
from 0, onto 0,. Consider then the system in the v variable

o)A + Y AW = Y 95(Bi; (v)av) + Q(v), (3.7)

eC i,jeC
where KO = o,u, A = A o,u = O,F;, B” = By;0,u, and Q=9Q. The system 1is said of the local
symmetric form [30] if Properties (S1)-(S7) hold where E C R™" 4+ denotes a vector space independent
ofue O, andv e O,.
(S1)  The matriz Ag(v) is symmetric positive definite for v € 0, .

(S2)  The matrices Ai(v), i € C, are symmetric for v € 0O, .



(S3)  We have E‘;J(v) = Bji(v) fori,jeC, andv € 0,.

(S4)  The matriz B(v,w) = 3 B, i(V)w,w; is symmetric positive semi-definite, for v € 0, and

i,j€C ZU
w € L1 where X971 is the unit sphere in d dimensions.

(Ss)  There exists a vector space E C R"4*1 such that for any v € 0,, we have Q(v) € EL.
Moreover, we have Q(v) = 0 if and only if v € ‘E and if and only if <v, Q(v)> =0.
(S¢)  For anyv € o, if Q(v) = 0, then d,Q(v) = (8,2(v))" and N(8,0(v)) = E .

(S7)  For any v € 0,, we have (v,(v)) < 0.

The equivalence between symmetrization and entropy for hyperbolic systems of conservation laws,
that is, the equivalence between (S1)-(S7) and (E;)-(E7), is obtained with v = (9,0)*.

Theorem 3.4. Assume that the system (3.6) admits an C* entropy function o defined over O,.
Then, the system can be locally symmetrized around any point u of O, with the symmetrizing variable
v = (9,0)t. Conversely, assume that the system can be locally symmetrized with the C*~! map u — v
in the neighborhood of any point u of the simply connected open set O,. Then there exists a globally
defined entropy over the open set O, such that v = (9,0)".

Proof. We first directly establish the equivalence of (S1)-(S2) and (E;)-(Ez) with v = (9,0)*. Indeed, if
(S1)-(S2) holds, then Ag = d,u is symmetric positive definite and so is d,v. From Poincaré Lemma, the
symmetry of d,v, and the simple connectedness of O,, there exists o with v = (9,0)" and 9,v = 920
is positive definite and we have established (E;). Consider next the vector p = (&,o 0, Fi)t which has
its [th component given by p; = Z1gjgﬁ Ou;00y,F; ;j where n. = n + d + 1. The differential identity

QuPt = D 1<j<n 83],%0 OuFij + 2 1<j<n 0u0 Ouu Fij is then easily established. Since A; = A;d,u =

d,F; is symmetric from (S,), we note that (9,v)A;(9,v) = (,v)A; = 820 A; = 920 O,F; is symmetric
and this implies that d,,p; = 0y, pr. By Poincaré Lemma and since O,, is simply connected there exits
qg; such that d,,q9; = p; and we have established (Ey).

Conversely, if (E1)-(E2) holds, then d,v = 920 is symmetric positive definite and so is Ay =
and (Sy) is established. Moreover, the identity Qu,u,di = Y 1< j<p Oyue 00w Fiyj + 2 1< j<n Ou;00u,u
yields that (8,v)A; is symmetric and so is A; = (8,u)(8,vA;)(d,u) and (Sy) is established.

Finally, it is next seen that each (S;) is a reformulation of (E;) for 3 < ¢ <7 and conversely thanks
to the relation v = (9,0)". O

o,u
LFiJ

3.3 Natural symmetric form

We evaluate in this section the natural symmetric form of the system of partial differential equations
modeling nonideal fluids (2.1)—(2.3) using the essential mathematical entropy 0 = —S/R where the
1/R factor is introduced for convenience. It is reminded that the velocity components of all quantities
in R4+ are denoted as vectors of R? for the sake of notational simplicity and the corresponding
partitionning is also used for matrices.

Theorem 3.5. Assume that (71)-(73), (C1)-(C3), and (Tr1)-(Tr2) hold. Then the function 0 = —S/R

is a mathematical entropy for the system (2.1)—(2.3) and the corresponding entropic variable is

1 t
v =(8ho) = ﬁ(g1 — Yol G0 — L2, 71) . (3.8)

For any u € O, there exists open subdomains 0, C O, and 0, C O, such that the map u — v is a local
C*=1 diffeomorphism from 0, onto Oy. The system written in term of the entropic variable v is

Aoc()dv + 3 Ai(v)dv = Y 9:(Bi; (v),v) + Q(v), (3.9)

icC i,j€C

with Ko =0y, A; = A;0u, éij = B;;00u, and Q= Q, and is of the local symmetric form. The matrix

Ag is given by
A Sym
Ao = | v@AT (AL T)vev + pRT1, , (3.10)
Ag (Ag,Mv' + pRTv*  AJT
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where A = pRI'™Y, ' is the inverse of the matriz I, = pgpk_gl/T = pgplgk/T, gi =G — Tngi +
tl|? = 5pi5 + 1v[?, i € 6, and KOT’T = (Ag,g) + pRT|v|* + RT25T5. Since Ao is symmetric,
we only give its left lower triangular part and write “Sym” in the upper triangular part. Denoting by
£€=(&,...,¢)" an arbitrary vector of R and letting A =", &iA;, we have

0 Sym
A=v&A)+RT| &0 p(€v 4+ vRE) . (3.11)
vEo vEp + (E+p+3plP)E 20£(E+p+ Splv?)

Moreover, we have the decomposition

Bij = B"0i; + kRT B}; + nRT B, (3.12)
where
~ - Sym
Bl = | 04n 044 , (3.13)

Leo Ol,d Le,e

and denoting by € = (&1,...,&4)" and ¢ = (C1,...,Ca)t arbitrary vectors of R, the matrices Efj and
B”

ijs 4,7 € C, are given by

- On,n On,d On,l
S GGBY = | 0un  €2¢ v(E |, (3.14)
ijeC On v-€C vEv(
On,n On,d On,l
Y GGBL = | Oan  EClatCRE-FEDC  ECv+vEC—FuCE | (3.15)
miee O £C0"+0¢E — Jue¢" ECvv+(1-FHvevd

Finally, the equilibrium manifold is given by
E =(MR): x R? x R, (3.16)
where R = spanf{ v;, i € R} C R™ is spanned by the reaction vectors and M = diag(my, ..., my).

For ideal fluids, the symmetrizing change of variable u — v is one to one and is thus a global change
of variable [27, 22]. On the contrary, for nonideal fluid, even though the entropy o is globally defined,
a typical situation is that of distinct points u and u” such that vf = v*. Indeed, we see from (3.8) that
the equality v# = v* corresponds to the chemical equilibrium between the two stable phases uf and u’
with identical pressure, temperature and Gibbs functions, that may notably be observed for nonideal
fluids [29].

4 Properties of mathematical entropies

We first discuss in this section the structure of mathematical entropies satisfying solely (Ez) that is,
entropies for the multicomponent Euler equations, under a natural nondegeneracy condition. We next
discuss commutation relations (Ez) between Jacobian matrices and dissipation matrices. We establish
that such relations are automatically satisfied for dissipation matrices arising from viscous effects
whenever the mathematical entropy is compatible with the hyperbolic structure. Compatibility with
dissipation effects is then reduced to the compatibility with the mass and heat diffusion matrix L.

4.1 The hyperbolic case

We discuss functions of the conservative variable u that solely satisfy (Ez). In other words, we investi-
gate the structure of mathematical entropies in the absence of dissipation and source terms, that is, for
the nonreactive multicomponent Euler equations. We assume that the thermodynamic structure is that
of Properties (71)-(73) and an extra nondegeneracy assumption is required. This nondegeneracy condi-
tion is more easily written with the mass based variable (p,y1, .. .,Yn,s)" where p denotes the pressure,



s the entropy per unit mass and y; the mass fraction of the ith species. This variable may equally be
used as a thermodynamic variable instead of the natural mass based variable (v,y1,...,yn, T)" where
v = 1/p denotes the volume per unit mass discussed in Appendix A. The natural non-degeneracy
condition concerning thermodynamics is the following [51, 56].

(N)  The volume per unit mass v = v(p,yi,...,Yn,s) as a function of the variable (p,y1, ..., Yn,S)
is such that 8381/ #0.

This non-degeneracy condition also means that p?c? is not a function of p, y1, . .., ¥, Where c denotes the
speed of sound [51, 56]. The structure of mathematical entropies for multicomponent flows satisfying
(E2) is given in the following theorem.

Theorem 4.1. Assume that (T1)-(T3) and (N) hold and let & be a C* function defined on the open
set Oy and satisfying (E2). Then o is in the form

=1, P, S) F - pU + g (€ + %p|'v|2) + ap, (4.1)
where ¢ is a 1-homogeneous C* function of p1,. .., pn,S and where o, € R, ag, o € R are constants.

The fact that ¢ is 1-homogeneous means that ¢(p1,...,pn,S) = pf(y1,...,Yn,s) for some C*
function. When there is only one species in the mixture n = 1, such a structure is established in the
book of Denis Serre [51] in Lagrangian coordinates for the one dimensional case d = 1 and is also
investigated by Vulkov in Eulerian coordinates for the two dimensional case d = 2 taking into account
an eventual dependence on time [56]. To the authors’s knowledge, the multicomponent case has not
been previously investigated in the literature.

Proof. We establish that & is in the form & = pf(yz2, ..., Yn,s) + o, -pv + agple + 3|v|?) + oy where
Q,, ag ag are constants. The decomposition (4.1) is then obtained upon letting ¢(p1,...,pn,S) =
Pf(Y2, - -+ s Yn, s) where y, = p/pfork € &, s =S/p,and p = ), . pr. We will use for convenience the
variables 2/ = (p,y2, ..., yn, v, T)  and s = (p,y2, - .., Yn, v, s)t, denote by & the corresponding species
indexing set &' = {2,...,n}, and it is easily established that z — 2’ and z — s are C* diffeomorphisms.
We denote by d' the derivation operator with respect to the variable 2/ = (p,y2,...,Yn, v, T)t, by 0
the derivation operator with respect to the variable s = (p,y2, ..., ¥yn,v,s)! and is it checked that the
nondegeneracy condition reads 512751/ # 0.

The existence of fluxes q;(u), ¢ € C, such that 9,6 A; = 9,4;, © € C, is equivalent to the existence of
fluxes §;(z'), i € C, such that 8,0 0, F; = 9,,q;, © € C, since A; = 9,F;, and this property is equivalent
to the compatibility relations 8’ (8 00, F;) = 0’ (8 00, F)k, for any 1 < k,l < n+d+ 1 since Oy

is simply connected. Upon wrltmg the mathematlcal entropy ¢ in the form o = pB(p, Y2, - - ., Yn, v, S),
the function @ is C* over the open set Os since o is C* over O, and a lengthy calculation yields
the vector p; = 0,60, F;. Denoting its components in the form p; = (p;,, Piyps -+ Piy,s Pin> p,r)t with

Piv = (Dipys - -+ > Piy,)" it is found that
Pip = 0 + pui0, P 0,p + puid, P 0,5 + 0, P 0,p, (4
Piy, = pvﬁp@a;kp + pv;0, P 5;ks + pvﬁyka +0,7 5;k_p, ke, (4
Piv, = vi0,, B, jeC, j#i, (4.
Piv, = PP + p*?0, % + pvid, P, (4
Pir = 0, B07p + pvi0, B Opp + pvid B ps. (4
We have denoted here by

C2:

1 5 T (9pp)?
app P 6Te
the square of the sound speed, and have also used the compatibility relations derived from Gibb’s
law TOs = Ofe, pQG;Je = p— T, p20,’33 = —0rp, and one can establish that d,p > 0 from
thermodynamic stability [29].

The compatibility relation 5;;(P¢T) = 5’T(pi ,) then yields—after lengthy algebra—the relations

ai-s@ = 0 making use of 5}55;]775%]75;5 # 0. Similarly, the compatibility relations 5,’3(]3%) s L (Pip)

)
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for j # i yield that giwj¢ = 0 for i # j, and the compatibility relations 5;)(131%) = 8’ . (P;,) then
yields—after lengthy algebra—the relations 33 u? =0, k € &, making use of 331_590 =0 and 8,’Jp > 0.
From these relations 6 P =0,i¢eC, 9 ©=0ke &, iecC, and 53%@ =0 for i,5 € C,

i # j, defining p, by

VilYk
V1 Va_

By=[ 0,%dvi+-+ [ 0,,Fdva, (4.7)
0 0

we deduce that © may be written in the form

azas(pvy%-'-aynas)+¢v(pav)' (48)

It is then easily checked that both B, and P, are at least C*~! over O from the explicit expression of
%, and the relation % = @, + 3,, and we also have 0,7 = 0,, Py for any i € C.

The compatibility relations &/,(p;, ) = &, (p;,), O(ps,,) = 0, (p;7), and 9, (p;,) = 35 (p;,, ), then
yields—after lengthy algebra—that for ¢ € Cand ke &

—2 _ ~ =
9,90, = 9,(p*c*0,p), (4.9)
—2 o ~ =
8,9 0rp = 97 (p°c*9,), (4.10)
0.0, p=10, (p°9,p). (4.11)
On the other hand, it is easily established that
_ 1 — T O D
0,p=— Dyp = —— =— 4.12
pp C2 Y sp C2 aTe) ( )
_ T 0 _ Td
5= L 00 Gy Lo (4.13)
pc 8Te ¢ Ope

and since 0, = (55/))5,3 + (EST)gT we obtain that 0 (p2025p¢) = 0. Since Epp = % we also obtain
that Epu = _p2—152 so that from the nondegeneracy condition (N) we deduce that 9,(p?c?) # 0. From
the decomposition (4.8), ds(p?c*8,%) = 0, and Js(p*c?) # 0 we now obtain that

2 292 —

N — a — p c a ScpS

-0 =0 4 ——psTs
p@v p@s as (pQCQ)

This implies that 8p<pv is independent of v and thus 2 =0 for any i € C. We now may use

pU; (pv
00, P, = O, P from (4.7) to obtain that 8pv © = 0. Since we already know that aw =0, a =0,

ykvz

ke &', and 81}]%_50 =0, j € C for i # j, we conclude that 8vigp only depends on v; and from (4.7) we
obtain that ©,, only depends on v. _ _

This now implies that 0, = 0,9, and is thus independent of v, and 9., (p2028p¢) = 0. Since we
also have 9, (p?c?0,%) = 0, we may write that p?c*9,% = ¥(p, Y2, ..., yn) Where ¢ is C*~!. Next we
use again the differential relation (4.9) to deduce that 53 Eé’ p = o' (p2025p¢) = 5,,1/15;]) and since
' ,p > 0 thank to thermodynamic stability, we deduce that Op(Dy Y2, -1 Yn) = 512%@(1;) so that these
funct1ons are indeed a single constant independent of ¢ € C. From the differential relation (4.11) we
also get that 9y, ¢ + 9,y 5;kp = giﬁ 5;kp so that d,, ¢ =0, k € &', and v only depends on pressure.
Since 3p1/1 = 531_@, i € C, is a single constant a¢, we may thus write that there exists another constant
ag such that ¥(p) = —ay + agp and we have established p202§p¢ =—apt+agp.

From the relations (4.12) and (4.13) is is established that 9,(1/p) = —pZ—lcz and dpe = —F so that

- a — ‘
ap(gos—jo—age):Q avi(Pv:CYg, i€ C.

By direct integration we finally obtain

pPs = pf(y% sy Yny S) + ag + agpe, PP, = O‘E%p|v|2 + Oév'(p’U),

where f only depends on ya,...,yn,s and is C* since ¢ is C* and since the remaining terms are C'°
and the proof is complete. [l
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From Theorem 4.1, discarding trivial entropies associated with momentum and total energy con-
servation, we may only consider the situation of entropies in the form o = ¢(p1, ..., pn,S) where ¢ is
1-homogeneous in its argument. This now constraints d,v to have the following structure.

Lemma 4.2. Let 6 = ¢(p1,...,pn,S) be defined on O, where ¢ is 1-homogeneous. Letting Vv = 0,0,
we then have the identity

0N = —RIspd,v — Rv®d,(ds¢) + 0,V, (4.14)

where .
Y= (apltp,...,apn(p,o,()) . (4.15)
Proof. The identity (4.14) is easily established after some algebra by deriving with respect to z the
relation (4.1) and by using the Euler relation ) ;o pi0,, ¢ + S05¢ = 0. O

Corollary 4.3. Let d be a C* function defined over O, and satisfying (E1)(Ez2). Then, discarding
trivial entropies linearly proportional to the conserved quantities, & is in the form & = @(p1,..., pn,S)
where ¢ is 1-homogeneous and where —RO¢pd,v—Rv®0,(0g¢) (0,u)~1+08,V (0,u) ! is positive definite.

4.2 Compatibility with viscous dissipation matrices

We now consider the situation with nonzero dissipation matrices B;;, ¢, 7 € C, and investigate commu-
tation type relations associated with the compatibility condition (E3). Denoting by & a mathematical
entropy, the compatibility relations in (E3) are in the form

-1 -1 .

(820) "B, =By (920) , i,jeC, (4.16)
and may be written (9,v)"'Bt; = B;;(9.v) ', i,j € C, where V = (9,5)". It is then more convenient
to express the commutation relations (4.16) in terms of the matrices §ij = By;0,u i,j € C. After
some algebra we deduce that (9,v)" B;; = B;; 8,v, i,j € C, so that the compatibility relations may be
rewritten _ _

Bij O,V = (O,V)" Bij, i,j €C. (4.17)
These relations show that richer dissipative processes yield more constraints on mathematical entropies.
We may also combine these identities in order to obtain the following properties.

Proposition 4.4. Let be & be a C* function defined on the open set O, satisfying (E3) and such that
025G is invertible. Then letting Vv = (0,5), we have the commutation relations

('Kalgij) avv = avv (Ealéij)a i,j € C, (418)
(A;'A) 8,7 =05 (AJ'A), ieC. (4.19)
Proof. From the symmetry of 926 = 9,v = 9,V ,v, keeping in mind that Ka L' = 9,v, we first deduce
that Ay' (O,v)" = 9,v Ay'. Moreover, using 9,v A; = AL9,V, and A; = A; J,v, and proceeding as for
the dissipation matrices, it is easily checked that A; d,v = (9,V)' A; for i € C.
We may now write that
(Ag'Byy) 0,9 = Ay (09) Bij= 0,5 (A;'Byy),  ,j €C,

and similarly that

(ASA) O = AL OV Ai,= 0N (AJ'A), i€,
and this completes the proof of (4.18) and (4.19). O

On the other hand, from Theorem 3.5, the matrices gij may be split in the form

Bi; = BX 6;; + RT®BY; + RT7B,

177

and the corresponding relations (4.17) associated with BL dijs B~., and EZ may be investigated sepa-

i
rately. We discuss in this section the relations Bf; O,V = (9,v)'Bf; and B}, d,v = (O,V)'B]; which may
be written in the compact form
B* 8,V = (O,v)'B", (4.20)
B"d,v = (4,V)'B", (4.21)
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Where £,C (S Rd, £ = (€1a e ,fd)t, C = (Cl, .. .,Cd)t, Bf = Zi,jGC €lCJBZ and B" = Zi,jGC €lCJBZ7 It
turns out that the relations (4.20) and (4.21) associated with viscous effects are automatically satisfied
for entropies compatible with the hyperbolic structure.

Proposition 4.5. Let M be a square matriz of size n +d + 1. Then Properties (i), (it) and (iit) are
equivalent for d > 2 whereas Properties (i) and (iii) are equivalent and B" =0 for d = 1.

(i) For any &,¢ € R? we have g“(&,C)M = Mté“(é,C),
(ii) For any &,¢ € RY we have §’7(£,C)M = Mtgn(ﬁ,C),

(iii) Writing R*H4+1 = R" x R4 and decomposing correspondingly M in the form

Mee  pfow
M = ,
Mwe M ww

there exist « € R, b € R and b’ € R™ such that

v

M = allgy1 + [ 1

o e[ ]

Proof. We first note that

. On,n On,d On,l On,n On,d On,l On,n On,d On,l
B*(&,¢)=| O0an Ig 0q:1 Odn &€®C 041 Odn Iy v ,

01,, o' 0 01, 014 O 01,», 014 O
and
. On,n On,d On,l On,n On,d On,l On,n On,d On,l
B"(&,¢) = Oamn Ig 0Og4:1 Odn &¢I+ ¢RE— 260¢ 04 Odpn Ia v |,
01,, o' 0 01, 01,4 0 01n 014 O

so that we have
B7(£,¢) = &¢(B (e e) + -+ + B (e, e”)) + B (¢,€) — 2B"(£,¢).
and (4) implies (i7). Moreover, it is straightforward to check that when d > 2
B™(¢,€) — 3B"(€,¢) = B"(£,Q) — &-C amritary (B7(e',€!) + -+ + B(e”, "))

and the relation )
¢®€ = g ((C®€ — 36@0) + F(€0¢ — 3¢wE)),
yields

B(¢.8) = 255 (B"(6,€) - 2B°(6,0)) + 8% (Br(¢.¢) - 2B"(¢,9)).

This implies that B*(¢, £) is a linear combination of various particular values of B" and (ii) implies (i)

so that (7) and (i7) are equivalent when d > 2. In the situation d = 1, it is also seen that B"(&¢,¢{) =0
for any &, ¢ € R%. B
Decomposing next B (&, ¢) in the form

(4.22)

Eﬁww

~ On n On
B (€,¢) = [ ’ o ]

0d+1,n
where

R I LRt

01,4 01,4

it is directly established that () holds if and only if we have the relations

EI{’LU’LUM’LU’LU — (Mww)ténww EI{’LU’LUM’UJQ — 0 (423)
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Since only the vector (v, —1)* lies in the nullspace of all possible Brww | for varying & and ¢, we obtain
from B*wwM[we = () that M™¢ is in the form M¥e = (v, —1)!®b" with ¥’ € R™. Conversely, when M¥?
is in this form, then we trivially have Brww pfwe = ( for arbitrary &, ¢ € RZ.

On the other hand, we may decompose M™" in the form

o |: MY M’UT :|
MY = ,

MT’U MTT
and the relation BwA[ww = (Mww)tBrww ig then equivalent to the three identities
E(M™)'¢ +0-CER(MT)" = (M™")'€a( +v-& (MT7) @,
CMTE+vC Mg =0 ¢ (M™) € +vEv¢ (M),
v-€CMYT fvtv e MTT = v e MY 4 vEv ¢ MTT.

The last relation first yields that v-&€ ¢-M¥T = v-¢ & M7 for any &, ¢ € R? so that M*T is proportional
to v. Letting M7 = quv, after some algebra, it is obtained that all the remaining relations are

equivalent to
(M¥*)'€ + v.€ (M) = g,

and a + MTT = «, and we have established that (i) implies (iii) with b= (—MT?, a)t Conversely, it
is easily checked that (éi7) implies (7) and the proof is complete. O

Corollary 4.6. Assume that o is a mathematical entropy compatible with the hyperbolic structure of
the system of partial differential equations so that (Ey) holds, 825 is invertible and let v = (9,0)".
Then the commutation relations (4.20) and (4.21) automatically hold.

Proof. Letting J = ,V we obtain from Lemma 4.2 that J = —ROs¢l,t+4+1 — Rv®0,(0g¢p) (0,v) ™ +
9,V (0,v)~ 1. Using now the partitionning introduced in (iii) of Proposition 4.5, we obtain from the
definition of v and V that v = (v,—1)!/RT and V¥ = 0, so that (9,V)*¢ = 0 and (9,V)"* = 0.
Decomposing now 7 in the form

j:

Jee gew
ng jww ’
and thanks to the special structure of v and ¥V we directly obtain J“* = —R0Og¢la+1 — Rv¥®b and

JWe = —Rv¥®b’ for some vectors b and b', so Property (ii7) of Proposition 4.5 holds and (4.20)(4.21)
also hold from the same Proposition. [l

This corollary extend to the multicomponent case a previous result from Hughes, Franca and Mallet
[35] about the compatibility with viscous dissipation matrices in single species mixtures.

4.3 Compatibility with diffusion dissipation matrices

We denote by ¢ a mathematical entropy compatible with the hyperbolic structure and by v = (9,5)*
the corresponding symmetrizing variable. We also denote by J = 0,V the jacobian matrix and by
= the permutation that regroup the temperature with the species densities, that is, such that Zz =

(pl, ceespn, T, v)t. From the structure of the matrix BL we have the block decomposition
- L Opg |
=BLE! = 4 (4.24)
O04n O4,a |
We also decompose ZJZ! in the form
g gEv T
ETE =| . (4.25)
J J |

Proposition 4.7. Keeping the assumptions of Corollary 4.6, the following properties are equivalent

(1) The entropy is compatible with the dissipative structure

Bi; OV =(09)'By, i,jeC.
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(i1) The entropy is compatible with the diffusion dissipation matriz BL
BLa,v = (8,9)' B-.
(i4i) The partial jacobians J*° and J*Y are compatible with the mass and heat diffusion matriz L

LJ% = (J**)'L, LJ* =0. (4.26)

Proof. The equivalence between () and (i7) is a direct consequence of Corollary 4.6 and of the structure
Bi; = BLd;; + RTKBY; + RTnB]; of dissipation matrices. Thanks to the structure of B, it is then

casily checked, after some block manipulations, that BX 9,v = (8,v)! B is equivalent to (4.26) so that
(#4) and (7i7) are then equivalent. O

On the other hand, the relations gij oV = (ON) §ij and (KO_IEZ-]-) N = OV (Kalgij), i,j € C
generally show that the compatibility with dissipation matrices yield constraints on the jacobian matrix
O,V depending on their spectral properties. This is illustrated by the following abstract particular
example.

Proposition 4.8. Let | > 1 and consider the abstract system of partial differential equations in R¢
Ou — D Au =0, (4.27)

where u = (ug,...,u)t, Au= (Auy,...,Aw)t, and D = diag(dy,...,8), with §; > 0, for 1 <i <.
Letting o = %(u, u), we have u = v, Ay = I, A; = A; = 0,ie€C, and B;; = gij =0;;D,4,j € C. Then
any strictly convex function o of u satisfies (E1)(Ez) and (S1)(Sz2) and the compatibility relations with
the second order terms reduces to D O = ON D .

Proof. Tt is easily checked that u = v, KO =1, A, = ,&l =0, for¢ e C, and B;; = gij = 6;;D, for
i,7 € C. The compatibility condition with first order terms is thus trivial and any C* function of u
such that 92c is positive definite satisfies (E1)(E2). The compatibility relations with the second order

terms (4.17) then reduces to D 9,v = (O,v)" D but since u = v, the matrix d,v = 9,V is symmetric and
we obtain D 9,v=0,vD. O

The structure of mathematical entropies compatible with the hyperbolic-parabolic structure of
(4.27) then depends on the spectral properties of D.

Proposition 4.9. Keeping the assumptions of Proposition 4.8, the following properties hold.

(i) When all the eigenvalues coincide 61 = --- = §; then any strictly convex function & of u is com-
patible with the hyperbolic-parabolic structure of the system of partial differential equations (4.27).

(i1) When 6; # & for i # 1, mathematical entropies & are constrained to be in the form & =
o(ur, ..., ui—1) + @i(uy) where p and @; are C* strictly convex function of their argument.

(t4i) When all the eigenvalues are different §; # 6; for i # j, mathematical entropies ¢ are constrained
to be in the form o =", _, ., pi(u;) where @; is a strictly convex function of u;.

Proof. The compatibility relations D 9,v = 9,v D are easily evaluated to be (§; — d;)0y,V; = 0. When
0; # & for i # 1, we thus obtain 9,,v; = 0 if i # [ in such a way that the mathematical entropies are
constrained to be in the form & = @(uy,...,u;i—1) + ¢;(u;). The partial Hessian matrices associated
with ¢ and ¢; are then both positive definite since 925 is positive definite. On the other hand when all
the eigenvalues 01, ..., d; are different, i.e., §; # §; for ¢ # j, it is easily obtained that J,,v; = 0if i # j
in such a way that the mathematical entropies are constrained to be in the form o = 3, .., ¢i(u;)
and ¢; is a strictly convex function of u; from the definiteness of 925. O

In the absence of information of the spectra of D, we may still obtain information on the structure
of an entropy o if it is assumed that o is independent on some of the coefficients of the matrix D.

Proposition 4.10. Keep the assumptions of Proposition 4.8 and assume that & is independent of §;.
Then the mathematical entropies are constrained to be in the form & = (u1,...,ui—1) + i (u;) where
@ and @y are strictly convex functions of their argument.
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Proof. If we assume that o is independent of ¢;, we may then differentiate D 9,v = d,v D with respect
to & and obtain that e'®e! 9,v = 9,V e!®e! thanks to J5,D0 = e'®e!. The base vector €' is thus an
eigenvector of 9,v = (9,V)" and we recover the relations 9,,v; = 0 if i # [ so that the mathematical
entropies are again constrained to be in the form ¢ = o(u,...,u—1) + @i(up). O

Turning back to the situation of multicomponent fluids, the independence of mathematical entropies
o with respect to some of the mass and heat diffusion parameters may thus be seen as a practical
method to constraint the mathematical entropies in the absence of information on the spectrum of
the dissipation matrix BY. As a consequence, in the following we will make the assumption that
mathematical entropies are independent on some of the mass and heat diffusion parameters. More
specifically, we will write relations in the form

0,LT** = (J**)"0,L, (4.28)

where p are some relevant parameters associated with mass and heat diffusion phenomena.

4.4 Compatibility with source terms

We briefly address in this section the compatibility of mathematical entropies with source terms. In
the following proposition, we obtain an analog of the commutation properties (4.18) (4.19) of Propo-

sition 4.4. Note that the linearized source terms L = —9,€Q or L = —9,02 should not be confused with
the mass and heat diffusion matrix L.

Proposition 4.11. Let 5 be a C* function defined on the open set O, satisfying (E¢) and such that
025 is invertible and let L = —9,Q(v) and Vv = (0,0)¢. Then, whenever v is such that Q(v) = 0, the
matriz LONV is symmetric positive semi-definite

Loy = (0,9)" L, (4.29)
and we have the commutation relation
(A;'L) 8,9 = a,v (A;'L). (4.30)
Moreover, we have
(OV)E C E. (4.31)

Proof. We first deduce from (Sg) that at chemical equilibrium the matrix 9y = -L 0,v so that E@vv =
(0.v)! L and multiplying of the right by 9,V and on the left by (9,V)" yields (4.29). On the other hand,
we have established in the proof of Proposition 4.4 that Aj* (9,v)! = d,vA;'. We may then write that

(Ag'D) 0,V = A1 (09)" L=0, (Aj'D),

and this is the commutation relation (4.30).
The fact that the image of E is included in ‘£ is then a consequence of (4.29) and of N(L) = £ at
chemical equilibrium deduced from (Se). O

Remark 4.12. Property (E7) also constraints the derivative of the entropy V = (0,5)" to be in the
negative orthan defined by the vector €.

The jacobian matrix of the source term 8,0 at chemical equilibrium has been evaluated in [30].
Keeping in mind that v; is the reaction vector of the jth reaction and letting

(M l/j)* = (M l/j7 07 O)t,
it has been established [27, 22] that at an equilibrium point v¢, that is when Q(v¢) = 0, we have

L(v*) = K exp((Muh)*,v*) (My))* @ (M;)*. (4.32)
JER

We may now combine (4.29) and (4.32) in the following Corollary.
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Corollary 4.13. Keep the assumptions of Proposition 4.11 and assume that the mathematical entropy
is independent of the chemistry kinetic constants 75, j € R. Then all extended reaction vectors (Mv,)*,
j € R, are left eigenvectors of O,V.

Proof. We only have to differentiate the commutation relation with respect to the chemical reaction
kinetic parameter #% in order to get that (M zj)* ®@ (My;)* OV = (0, V)" (My;)* ® (Mr;)* and this
implies that (Mv,)*, is a left eigenvector of 9,v. O

Since £+ = span{(Mwv;)*,j € R}, Corollary 4.13 may imply that the block J2¢ coincides with a
scalar matrix over £ depending on the richness of the set of reaction vectors.

5 Mass and heat diffusion matrices

We present in this section the mathematical structure of typical multicomponent diffusion matrices
derived from the kinetic theory of gases [15, 22]. In Section 5.1 we consider Stefan-Maxwell type
equations whereas in Section 5.2 we study quasi-diagonal approximations. We then investigate the
derivatives of the mass and heat diffusion matrix L with respect to the corresponding relevant transport
parameters.

5.1 Stefan-Maxwell relations

We introduce the matrix A defined by

XX
A=Y D’Cbii, kee,
e Kl
Ik (5.1)
N ——— kleS, k4,

" bin’
Dy,

where DPIM is the binary diffusion coefficient for the species pair (k, 1) and zy the mole fraction of the
kth species. The kinetic theory of gases shows that, at first-order, the coefficients DZ}“ only depends
on pressure and temperature DZ}“ = DE}“(T,p). More generally, for more accurate multicomponent
diffusion coefficients, the quantities DPI*, k,l € &, are Schur complements arising from transport linear
systems of size larger than n, and are then functions of all state variables but have analogous properties
[11, 26]. Similarly, with the kinetic theory of dense gases [43, 53], the binary diffusion coefficients are
functions of the state variables (p1,...,pn,T)!. In the following we denote by y = (y1,...,yn)" the
vector of species mass fractions, by T = (1,...,1)! the vector with unity components, and we naturally
assume that y; > 0 for i € &, and (y, I) = 1. The species mole fractions are defined by x; = my;/m;
where m = (3, ce ¥i)/ (X cq ¥i/™i) is the molar mass of the mixture. The following properties of the
matrix A are easily established [21, 22].

Proposition 5.1. Assume that the coefficients DY, k,l € &, k # 1, are positive and symmetric, and
that the species mass fractions are positive. Then A is symmetric positive semi-definite, N(A) =R 1,
R(A) = T, A is irreducible and is a singular M -matri.

The multicomponent diffusion matrix D can then be defined as a generalized inverse of A [21, 22].

Proposition 5.2. Keeping the assumptions of Proposition 5.1 there exists a unique generalized inverse
D of A with prescribed range y and nullspace Ry, that is, a unique matriz D such that DAD = D,
ADA = A, R(D) = y*, and N(D) = Ry. This matriz D is positive semi-definite, we have AD =
I-y®1, DA =1—1®y, and D = (A + ay®y)~! — bIRT for any a,b positive with ab = 1. The
coefficients of D are smooth functions of z € (0,00)"*! provided that the binary diffusion coefficients
are smooth functions of z € (0,00)"*1.

Remark 5.3. The Stefan-Maxwell relations for the diffusion matrix D may be written AD = 1T,, —
y®1 and completed by the mass constraint Dy = 0. Denoting by V the vector of diffusion velocities
Vi,...,Vn where F; = p;V; fori € &, andd = (dy, .. .,d,) the vector of diffusion driving forces, we
also have Y = —Dd and the traditional Stefan-Mazwell relations AY = —(d—y(1,d)) for the diffusion
velocities are easily derived.

The natural diffusion parameters at our disposal when the matrix D is evaluated form Stefan-
Maxwell type equations are thus the binary diffusion coefficients DE;“ for 1 < k <1 < n, completed by
the thermal conductivity A and eventually the thermal diffusion ratios y; for 1 <i <n — 1.
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5.2 Quasi-diagonal approximation

We address in this section the situation of simplified diffusion models that are typically introduced in
order to avoid the inversion of the Stefan Maxwell equations. We still assume that y; > 0 for i € S,
and (y, T) = 1. In the following theorem, the diffusion matrix D defined in Proposition 5.2 and solution
of the Stefan-Maxwell relations is expressed as a convergent matrix series. Upon truncating this series,
approximated diffusion models are readily obtained [21, 12] and this procedure may be generalized to
all transport coeflicients [11, 13, 14, 15, 26].

Theorem 5.4. Consider the Stefan-Mazwell matriz (5.1) and assume that the binary diffusion co-
efficients D,E’}“, k,l € 6, k # 1, are positive and symmetric. Let M be a diagonal matriz such that
My > Agk, k € 6 and denote by P the projector P = 1—1®y. Consider the splitting A = M —W and
denote by T the iteration matriz T = M~ W. Then the spectral radius of the product PT is strictly
lower than unity and the solution of the Stefan-Mazwell relations D may be expended in the form

D =) (PTYPM'P, (5.2)
0<y

and each partial sum ZOSJ-SZ-(PT)jPM_lPt is symmetric, positive semi-definite with nullspace Ry.

It is interesting to note that the traditional series ) - j T7 associated with the splitting A = M —W
is divergent since 7 has the eigenvalue 1 associated with the singularity of A with 71 = 1. The
projector matrices used in Theorem 5.4 are required in order to obtain convergent series [21, 11, 15].
We consider in the following the often used one term approximation deduced from (5.2) and rewritten
in the form

D ~ PD™P?, (5.3)

where the matrix D™ = M ~! is a diagonal matrix
D™ = diag(D7, ..., D). (5.4)

This approximation of D may naturally be termed a quasi-diagonal approximation. We will not require
a precise form for the coefficients Dj" in the following and will only assume that they are positive.

The natural diffusion parameters that are at our disposal are then the coefficients of the matrix D;?
for 1 < k < n, completed by the thermal conductivity A and eventually the thermal diffusion ratios y;
for1<i<mn-—1.

Remark 5.5. The positive coefficient x; D", i € & represent a diffusion coefficient of the ith species
in the mizture where x; is the mole fraction of the ith species. A wvery good approzimation for such

coefficients [21, 22] is the Hirschfelder-Curtiss approzimation Di* = (1 — y;)/Ay;.

5.3 Assumptions on the diffusion coefficients

We introduce the strengthened assumptions concerning multicomponent transport (Try). These as-
sumptions are required in order to investigate the uniqueness of entropy compatible with the hyperbolic-
parabolic structure of the system of partial differential equations modeling multicomponent fluids.

(Try) (i) The matriz L is given by the expression (2.10).

(ii) The matriz D is either obtained by solving Stefan-Mazwell type equations or from a quasi-
diagonal approrimation.
In the first situation, the multicomponent diffusion matrix is given as in Proposition 5.2
with the Stefan-Mazwell matriz given by (5.1). The binary diffusion coefficients ’leji“,
i,j € 6,1 +# j, are positive smooth functions of (p1,...,pn,T).
In the second situation, the multicomponent diffusion matrix is given by the quasi-diagonal
approzimation (5.3) with diagonal coefficients D™. The diagonal diffusion coefficients D},
k € &, are positive smooth functions of (p1,...,pn,T).

(i4i) The thermal diffusion ratios x:, i € &, are smooth functions of (p1,...,pn,T) and satisfy
the mass constraint (I, x) = 0.

(iv) The thermal conductivity X, the shear viscosity 1, the volume viscosity k are smooth func-
tions of (p1,-..,pn,T). These coefficients are such that A > 0,71 >0, Kk >0, and kK > 0
when d = 1.
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(v) The coefficients Dzbji“, i,j € 6,1# j, or D, k € &, (as depending on the transport
model) the thermal conductivity \, and the thermal diffusion ratios x;, @ € {1,...,n— 1},

are independent and are independent of thermochemistry properties.

Property (i) simply corresponds to a convenient expression of L and Property (ii) introduce two
typical expressions often used in the literature for the multicomponent matrix D. The Properties (ii4)
and (#v) are natural assumptions concerning the thermal diffusion ratios, the thermal conductivity,
the shear viscosity and the bulk viscosity. The smoothness assumptions are typical consequences of
the smoothness of collision integrals appearing in transport linear systems [11]. The independence
of transport coefficients between them is a natural consequence of the independence of interaction
potentials between pairs of molecules and of different moments. These coefficients are also assumed
to be independent of thermodynamic properties which generally depend on the molecular structure of
the molecule via partition functions.

5.4 Derivatives of the mass and heat diffusion matrix

We now investigate the derivatives of the matrix L with respect to the transport parameters. We first
consider the situation where the multicomponent matrix is obtained from the Stefan-Maxwell relations.
In this situation, the parameters that may be used in the differential commutation formula (4.28) are
the binary diffusion coefficients DE’;“, 1 < i < j < n, the thermal conductivity A\, and eventually the
thermal diffusion ratios x;, 1 < ¢ < n — 1, if they are not assumed to identically vanish. We have to
take into account the constraint (I, x) = 0 between the thermal diffusion ratios and there are only n—1
independent coefficients that are chosen to be the first n — 1 coefficients x1, ..., xn—1. The derivatives
of L with respect to these parameters are given in the following lemma.

Lemma 5.6. Keeping the assumptions of the Proposition 5.2, defining the matriz

~ D+ 1Ix1 0
pm
and denoting by f', ... "1 the canonical basis vectors of R™"!, we have
LiXj 5t (rei_¢j i _f3y) 7 L
Opyin L = pm—nid _F ((f —f)a(f ffj)) L, 1<i<j<n (5.6)
* (Dy™)?
p*m ~ , . ~
oL =20 ((fl — fr)RfH 4 g (fi — f")) L, 1<i<n-—1, (5.7)
pPm? +lgen+l

O\L = RT2)\2£ " of L, (5.8)
Proof. These identities result from lengthy and tedious calculations. O

It is interesting to observe than when the thermal diffusion ratios are taken into account, then the
space spanned by the tangent matrices 9, L for 1 € {DE’}“, 1<i<j<niU{x, 1<i<n-—1}U{A}
has its maximal dimension n(n+1)/2. In this situation, it coincides with the set of symmetric matrices
with nullspace containing (1, 0)!. On the other hand, when the matrix D is given by a quasi-diagonal
approximation, the parameters that may be used in the differential commutation formula (4.28) are the
diagonal coefficients D}", 1 < i < n, the thermal conductivity A, and eventually the thermal diffusion
ratios x;, 1 <1 < n—1, if they are not assumed to identically vanish. The derivatives of L with respect

to these parameters are given in the following lemma.

Lemma 5.7. Keeping the assumptions and notation of Theorem 5.4, denoting e',...,e™ the basis
vectors of R, f1. ... f*T1 and the basis vectors of R"1, we have

dpm L = mpy; f'®f", 1<i<j<n. (5.9)

Oy L= pRT (F1af" 1 4 fHef),  1<i<n-1, (5.10)

O\L = RT? frHigfrtt (5.11)
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where

) el —
f/z:{h_h+?§lﬁ], 1<i<n. (5.12)
g m Y

YD(e! —em)

fni _ [ (D(e ~ ™). V. 1 RTX) } ., 1<i<n—L (5.13)

Proof. These identities result from lengthy and tedious calculations. [l

6 Uniqueness of entropy

We investigate uniqueness of mathematical entropies compatible with the hyperbolic-parabolic struc-
ture under the assumption that they are independent of the mass and heat transport parameters.
These entropies are found to coincide up to an affine transform and are then compatible with source
terms.

6.1 Constraints from diffusion matrices

We denote by & a mathematical entropy, v = (9,0)! the corresponding symmetrizing variable, J the
matrix J = 90,v and by Z the permutation that regroup the temperature with the species densities,
that is, such that Zz = (pl, cees Py 1 v)t. We have already investigated the properties of the permuted

matrices ZBLE! and = J=! in Section 4.3. The dissipative compatibility relations for entropies already
compatible with the hyperbolic structure have been shown to reduce to the relation (4.26). When the
mathematical entropy is independent of transport parameters we may also use the differential relations
(4.28) so that we have

LT* =(J*)'L, LJ*" =0,  0,LJ% =(J**)'0,L, (6.1)

where p denotes any relevant transport parameter. The structure of J7?? and J?? is now investigated
in the following propositions. We first consider the situation without thermal diffusion coefficients,
that is, where x; = 0, ¢ € &, and where we do not use any derivatives with respect to x;, 1 <7 <n—1,

Proposition 6.1. Assume that & satisfies (E3) and such that OV is invertible. Assume also that &
is independent of the mass and heat diffusion parameters. Then, in the absence of thermal diffusive
effects, the matrices J?% and J*?° are in the form

jzz — aHnJrl 4 (0470/) |: ﬁo :|®fn+1 + |:

1 H} ®a, J¥ = {H} ®d, (6.2)

0 0

where a € R"1 and o’ € R are vectors.

Proof. Since N(L) = (1,0)* we first obtain that J2" is in the form J%* = (1,0)!®a’ for some vector
a’ € R In order to investigate the structure of J?? we then have to distinguish the two different
possibilities for the multicomponent diffusion matrix.

Assume first that the diffusion matrix is obtained by solving the Stefan-Maxwell equations. It is
then more convenient to work with the matrix M = £ J%? £~ where £ has been defined in Lemma 5.6.
From the relations, 8,LJ%* = (J%%)',L where 1 is one of the parameters leji“, 1,7 € 6,1 <7, and
A, we obtain that ZM = M*Z for any Z in the form f*" 1 @f"*! or (f' — f)@(f' — /), 1 <i < j <n.
This implies in particular that there exist a;; with M*(f* — f7) = a;;(f* — f7) for 1 < i < j < n and
by forming the difference between two such relations, it is obtained that all the scalars o;; are equal.
Denoting by a this common value, we have M*f’ — af’ = a where a is a vector independent of i € &.
In addition, writing that ZM = M'Z for Z = f*1@f"*! yields that M*"+! = o/f**1 and M is in

the form
[ aHn On,l
M =

01771 (6%

+ ®a
0 ’
Therefore, j iS gi\/en by

T = L7 (ol + (o — a)f TIefH 4 { g } ®a) L,
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and this yields that J%% is in the form (6.2).

In the situation where the multicomponent transport is given by a quasi-diagonal approximation,
we may directly manipulate the matrix M = J2%. Since ZM = M'Z for any Z in the form f**!1@f?+!
or Z = f"®f" for 1 < i < n, we deduce that f**! and f”* for 1 < i < n are eigenvectors of M*. We have
in particular M*f" = a,;f", for 1 <7 < n, and we also have the constraint 3, ¢ ;f” = 0. This implies
that »,cq aiysf” = 0 and thus from (5.12) 3, s qiyi(e’ —y) = 0 so that y;o; = y; D~ jce Y50 and
that all the «; are equal and we also have M*"+! = o/f"+! for some o’. From the structure of f’* for
i € G, we next obtain that M — af’ — (o — o/)h;f" ™! is a vector independent of i € &. Proceeding
as previously, we again deduce that J4% is in the form (6.2). O

We now consider the situation where thermal diffusion effects are included in the model. This
constraint more tightly the partial jacobian since the derivations with respect to the thermal diffusion
coefficients may now be used.

Proposition 6.2. Keeping the assumptions of Proposition 6.1 and further assuming that the thermal
diffusion coefficients are taken into account, the matrices J** and J*V are then in the form

1 1
T = ol + { }@a, VAR {

0 0 } ®ad, (6.3)

where a € R"1 and o’ € R are vectors.

Proof. Assume first that the diffusion velocities are given by Stefan-Maxwell type equations. We may
then consider again the transformed matrix M = £ J%° £~! and from the beginning of the proof of

Proposition 6.1 we obtain that M is in the form

I
M = al, i1 + (o — ) Hef 4 [ 0 } ®a,

However, using now that 9, LJ%* = (J%%)'0,L where p is one x;, for i € &, i # n, we obtain that
ZM = M'Z for any Z in the form f"*1@(f! — ") + (f/ — f*)@f"+1 1 <i <n—1. After some algebra,
noting that both f¢ — f* and f"*! are orthogonal to (1, 0)%, it is obtained that

(o =) (F e (f — ) = (F = f)ef+) =0,

so that & = o’ and (6.3) is established.
When the quasi-diagonal approximation is used, the beginning of the proof is entirely similar to
that of Proposition 6.1 and it is obtained that

b I
J# =alyy1 + (=) [1]®f"+1+ [0]®a,

where b € R™ has components b; = h; + %%, i € G, keeping in mind that the thermal diffusion
factors in £ now do not vanish. Using the derivation with respect to the thermal diffusion ratios, we
now obtain after some algebra that

(O/ _ a) (f"""l@f”i _ f//i®fn+1) — 0’

and where we have used that both f””* and f**! are orthogonal to (1,0)! and that f” is orthogonal to
(b, —1)t. We thus conclude again that o’ = o and the proof is complete. O

6.2 Uniqueness up to affine transforms

We investigate uniqueness up to affine transforms of mathematical entropies in the presence of thermal
diffusion effects. It is assumed that Properies (71)-(73), (N) and (Tr1)(Try) hold.

Theorem 6.3. Let o be a C* function defined on the open set O satisfying (E2)(Es) and such that
025 is invertible and define V = (9,5)t. Assume that & is independent of the mass and heat diffusion
parameters. Then o is in the form

5:aSS+Zaipi+avpv+ag(5+%p|v|2). (6.4)
€S

21



Proof. Let = be the permutation matrix that regroups the temperature with the species densities, that
is, such that Zz = (py,...,pn, T, v)t. We may partition Z7=! and Z(9,V)=¢ in the form

1]

e JE  gev (5t — ( ( ZV)ZU
[ Jve  gJov ] ) H(az )H - [ (az’\‘/’)'uz (a ’\‘/’)'UU ‘| :

We also deduce from Proposition 6.2 that
7% = (O =l + |

From the matrix relation 0,v = 0,v 9,v we now obtain that
(0,9)%% = (B V)*(F,v)*F + (9,9)°"(9,v)".

From the structure of J = 0,v obtained in Proposition 6.2, we further deduce that

(0.9)% = ol (B9)% + [ ﬂ o (6.6)

for some vector a” € R**1,
On the other hand, from Theorem 4.1 we obtain that & has the structure (4.1) and from Lemma 4.2
we deduce that the matrix d,v is in the form

0N = —ROgpd,v — Rv®0d,(dsp) + 0,V. (6.7)

Identifying both forms obtained for (9,v)??, we deduce that 5/% (Ogp) = 0 for k € 6. A direct
calculation shows that 9, (9s¢) = 9540, S + 07, s and we thus have

0200, S+ 02 sp=0, ke6. (6.8)

Multiplying this identity by pr and summing over k € & yields

(Z 0, S — S)@gtp —0,
keS

since ¢ is 1-homogeneous and ), _ pkaiksgo = —80%¢p. Using the identity

> Pk0,, S =8 =~0p,
keS

we deduce that 9%¢ = 0 provided 5Tp is nonzero. However, 5Tp cannot vanish on any open set since
otherwise we would obtain from (4.12) that d,p = 0 and thus d,v = 0 contradicting the nondegeneracy
condition (N). We thus conclude that 93¢ = 0 and from (6.8) we obtain that 02, s = 0 for any k € &
so that dg¢ is a constant. This implies the relation 9,(0s¢) = 0 and the matrix identity

—ROSp(0,0)% + (0,9)% = als (9,v)° + { ﬂ @a”. (6.9)

0

Since d%¢ = 0 and aiksgo = 0 for any k € & we also have 5/% Op, 0 = Op,p,p in such a way that

Opip® -+ Opipap O

(0,V)% = ' : (6.10)
Opupr® -+ Oppap 0
0 . 0 0

Identifying the coefficient of the right lower corner in the relation (6.9), it is obtained that

7R8$Q0 = «,
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so that finally

By symmetry
zz 1] |
@v= =] )= |-

for some v € R, and since ¢ is 1-homogeneous and aﬁk s =0 for k € &, we also have

(9,V)%* [ el =0

0 -

This now implies that yp = 0 so that v = 0 and (9,)?* = 0. Therefore, ¢ is an affine function of
P1y- -, Pn,S and the proof is complete. O

A direct consequence of this theorem is that after elimination of the trivial entropies o;p;, i € G,
a,-pv, and ag(€ + %p|v|2) proportional to the components of u, it only remains the classical entropy
o up to an affine transform. This strengthen the representation of Theorem for normal forms of
multicomponent flows established in [30] since it then encompass all possible normal forms constructed
from entropies satisfying the assumptions of Theorem 6.3.

Remark 6.4. A typical example where the nondegeneracy condition (N) is not satisfied is that of
barotropic fluids. In this situation the pressure is a function of p and it is easily established that

31275(1/p) = 0. One may then check that there exists nontrivial families of mathematical entropies
compatible with the hyperbolic-parabolic structure of the fluid system. This is notably the case for
viscous sheets above fluid substrates as float glasses [32].

6.3 Uniqueness without thermal diffusive effects

We investigate in this section uniqueness of mathematical entropies when x; = 0, i € &, that is, without
thermal diffusive effects also termed the Soret and Dufour effects. The corresponding theorems apply
in particular to the usual quasi-diagonal approximation for diffusion matrices. It is assumed that
Properies (71)-(73), (V) and (Tr1)(Try) hold. The following extra assumption is also required and
essentially means that the species molar masses are not identical as established by investigating the
the perfect gas limit.

(M)  The vectors 591) and T are linearly independent.

Under this extra assumption, it is possible to extend the uniqueness theorem in the absence of
thermal diffusion effects.

Theorem 6.5. Let o be a C* function defined on the open set O, satisfying (E2)(E3) and such that
025 is invertible and define V= (0,5)'. Assume that the mathematical entropy & is independent of the
transport parameters. Then & is in the form (6.4).

Proof. From Theorem 4.1 ¢ is in the form (4.1) and from Lemma 4.2 the matrix d,v is in the form
0N = —ROgp0,v — Rv®0,(0sp) + 0,V. (6.11)
On the other hand, we deduce from Proposition 6.1 that

I
0

jzz — aHnJrl 4 (a . O/) |: ho :| ®fn+1 + [ g

o [gfon o]

} ®d’. (6.12)

We also note that

2z __ 1 F/p |v|2]1_ﬂ zZv __ i I
(an) - RT2 |: 0 1 ) (an) - 7RT 0 ®Uv

1
’U®fn+1, (aZV)UU = ﬁﬂd

(0.0 =

 RTZ2
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Upon multiplying by J and 0,v by blocs we obtain that

!

(0,v)?% = all,4+1(0,v)** + aR_T(; [ ﬁ‘l } ®f T 4 { H ®a", (6.13)

and where we have used that ((8Zv)""”)t1”“rl = f7+1/RT2. We thus deduce again that (0sp) =0
for k € &, and as already established in the proof of Theorem 6.3 this implies that ds¢ = 0 and
3§k3<,0 =0 for any k € & and 95y is a constant.

We now identify the lower right coefficient of both identities (4.14) and (6.13) and after some algebra
it yields that o/ = —ROgp. We then proceed to identify the left upper blocs of (4.14) and (6.13) and

after some algebra, and thanks to the symmetry of 9,9 from (6.10) it yields the matrix relation
(a4 RIsp)T + pRT?0,V = plx1,

for some scalar y. Multiplying on the right by the mass fraction vector y = (y1,...,y,)" we obtain
that
(o + ROgp) 'y = puTI,

since 9,V y = 0 by homogeneity. However, we also have [30]
P
I'y = 50,p,

and since J,p and 1 are not proportional from (M) we conclude that (o + ROgp) = 0. This now
implies that o = o and the end of the proof is similar to that of Theorem 6.3. (|

7 Conclusion

We have investigated the mathematical structure of entropies for nonideal multicomponent flows in-
volving nonideal thermochemistry as well as multicomponent diffusion driven by chemical potential
gradients.

The general structure of entropies compatible with the hyperbolic structure has been obtained under
a natural nondeneracy condition and such entropies are automatically compatible with dissipation
matrices associated with viscous effects.

Uniqueness of the mathematical entropy compatible with the hyperbolic-parabolic structure of
the resulting system of partial differential equations has been obtained for the subfamily of entropies
independent of the natural mass and heat diffusion parameters.

A The mass fraction variables

Thermodynamic functions in terms of the variables (p1, ..., pn, T)t or (p,y2,...,yn, T)* do not have
homogeneity properties. In order to have homogeneous functionals, it is necessary to use of the
variable (v,y1,...,yn,T)" where v = 1/p is the volume per unit mass, p = Y, e pi, and y; =

pi/p is the mass fraction of the ith species. Assuming that the mass fractions are independent
[29] and defining e(v,y1,...,yn,T) = 1/5(%1, cee %,T), p(v, Y1,y Yn, T) = p(%, cee %,T), and

sWoyty ooy yn, T) = 1/8(%1, s T), then s and e are indeed 1-homogeneous and p is 0-homogeneous

with respect to v,y1,...,yn [29]. The mathematical structure of the corresponding mass based ther-
modynamic properties e, p, and s is fully described in [29] as well as the equivalence with (71)-(73).

References

[1] R. Aris, Prolegomena to the Rational Analysis of Systems of Chemical Reactions, Archiv. Rat.
Mech. Anal., 10 (1965), pp. 81-99.

[2] R.J. Bearman and J. G. Kirkwood, The statistical mechanics of transport processes. XI. Equations
of transport in multicomponent systems, J. Chem. Phys., 28 (1958), pp. 136-145.

[3] H. Van Beijeren and M. H. Ernst, The Modified Enskog Equations, Phys. A, 68 (1973), pp. 437-456.

24



[4] H. Van Beijeren and M. H. Ernst, The Modified Enskog Equations for Miztures, Phys. A, 70 (1973),
pp. 225-242.

[5] G. Billet, V. Giovangigli, and G. de Gassowski, Impact of Volume Viscosity on a Shock/Hydrogen
Bubble Interaction, Comb. Theory Mod., 12 (2008), pp. 221-248.

[6] D. Bresch and B. Desjardins, On the Existence of Global Weak Solutions to the Navier-Stokes
Equations for Viscous Compressible and Heat Conducting Fluids, J. Math. Pure Appl., 87 (2007),
pp- 57-90.

[7] S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases Cambridge Univer-
sity Press, Cambridge, 1970.

[8] G. Q. Chen, C. D. Levermore, and T. P. Liu, Hyperbolic conservation laws with stiff relazation
terms and entropy, Comm. Pure Appl. Math., 47 (1994), pp. 787-830.

[9] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Heidelberg, (2000).

[10] S.R. de Groot and P. Mazur, Non-equilibrium thermodynamics Dover publications, Inc. New York,
1984.

[11] A. Ern and V. Giovangigli, Multicomponent transport algorithms Lecture Notes in Physics, Mono-
graph m24, Springer-Verlag, Heidelberg, (1994).

[12] A. Ern and V. Giovangigli, Thermal conduction and thermal diffusion in dilute polyatomic gas
mixtures, Physica-A, 214 (1995), pp. 526-546.

[13] A. Ern and V. Giovangigli, The structure of transport linear systems in dilute isotropic gas miz-
tures, Phys. Rev. E, 53, (1996), pp. 485-492.

[14] A. Ern and V. Giovangigli, Optimized transport algorithms for flame codes, Comb. Sci. Tech., 118
(1996), pp. 387-395.

[15] A.Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent trans-
port, Linear Algebra Appl., 250 (1997), pp. 289-315.

[16] A. Ern and V. Giovangigli, The Kinetic equilibrium regime, Physica-A, 260 (1998), pp. 49-72.

[17] L. C. Evans, A Survey of Entropy Methods for Partial Differential Equations, Bulletin of the AMS,
41 (2004), pp. 409-438.

[18] E. Feireisl, Dynamics of viscous compressible fluids. Oxford, (2004).

[19] J. H. Ferziger and H. G. Kaper, Mathematical theory of transport processes in gases North-Holland
Publishing Company, Amsterdam, (1972).

[20] K. O. Friedrichs and P. D. Lax, Systems of Conservation laws with a Convex Extension, Proc.
Nat. Acad. Sci. USA 68 (1971) pp. 1686-1688.

[21] V. Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci.
Eng., 3 (1991), pp. 244-276.

[22] V. Giovangigli, Multicomponent flow modeling, Birkhaiiser, Boston, (1999).

[23] V. Giovangigli, Persistence of Boltzmann Entropy in Fluid Models, Disc. Cont. Dyn. Syst., 24
(2009), pp. 95-114.

[24] V. Giovangigli, Higher Order Entropies, Arch. Rat. Mech. Anal., 187 (2008), pp. 221-285.

[25] V. Giovangigli, Higher Order Entropies for Compressible Fluid Models, Math. Mod. Meth. Appl.
Sci., 19 (2009), pp. 67-125.

[26] V. Giovangigli, Multicomponent transport algorithms for partially ionized plasmas, J. Comp. Phys.,
229 (2010), pp. 4117-4142.

25



[27] V. Giovangigli and M. Massot, Asymptotic Stability of Equilibrium States for Multicomponent
Reactive Flows. Math. Mod. Meth. App. Sci., 8 (1998), pp. 251-297.

[28] V. Giovangigli and M. Massot, Entropic Structure of Multicomponent Reactive Flows with Partial
Equilibrium Reduced Chemistry, Math. Meth. Appl. Sci., 27 (2004), pp. 739-768.

[29] V. Giovangigli and L. Matuszewski, Supercritical Fluid Thermodynamics from Equations of State,
Phys. D, 241 (2012) pp. 649-670.

[30] V. Giovangigli and L. Matuszewski, Mathematical modeling of supercritical multicomponent reac-
tive fluids, M3AS, (2012) (submitted).

[31] V. Giovangigli, L. Matuszewski, and F. Dupoirieux, Detailed modeling of planar transcritical Ha-
O2-Ns flames, Combustion Theory and Modelling, 15, (2011), pp. 141-182.

[32] V. Giovangigli and B. Tran, Mathematical Analysis of a Saint-Venant Model with Variable Tem-
perature, Math. Mod. Meth. Appl. Sci., 20 (2010), pp. 1—47.

[33] S. Godunov, An interesting class of quasilinear systems, Sov. Math. Dokl, 2 (1961), pp. 947-949.
[34] E. A. Guggenheim, Thermodynamics, North Holland, Amsterdam, (1962).

[35] T.J. R. Hughes, L. P. Franca, and M. Mallet, A new finite element formulation for computational
fluid dynamics: 1. Symmetric forms of the compressible Fuler and Navier-Stokes equations and the
second law of thermodynamics, Comp. Meth. Appl. Mech. Eng., 54 (1986), pp. 223-234.

[36] J. H. Irving and J. G. Kirkwood, The statistical mechanics of transport processes. IV. The equations
of hydrodynamics, J. Chem. Phys., 18 (1950), pp. 817-829.

[37] S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with applications to the equa-
tions of Magnetohydrodynamics Doctoral Thesis, Kyoto University (1984).

[38] S. Kawashima, Large-time Behavior of Solutions to Hyperbolic-Parabolic Systems of Conservations
Laws and Applications. Proc. Roy. Soc. Edinburgh, 106A, 169-1944 (1987).

[39] S. Kawashima and Y. Shizuta, On the Normal Form of the Symmetric Hyperbolic—Parabolic Sys-
tems Associated with the Conservation Laws. Téhoku Math. J, 40, (1988), pp. 449-464.

[40] S. Kawashima and W. A. Yong, Dissipative structure and entropy for hyperbolic systems of con-
servation laws. Arch. Rat. Mech. Anal., 174 (2004), pp. 345-364.

[41] J. Keizer Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, New York,
1987.

[42] F. J. Krambeck, The Mathematical Structure of Chemical Kinetics, Arch. Rational Mech. Anal.,
38 (1970), pp. 317-347.

[43] V. I. Kurochkin, S. F. Makarenko, and G. A. Tirskii, Transport coefficients and the Onsager
relations in the kinetic theroy of dense gas mixztures, J. Appl. Mech. Tech. Phys., 25 (1984), pp.
218-225.

[44] M. R. Marcelin, Sur la Mécanique des Phénoménes Irréversibles, Comptes Rendus de I’Académie
des Sciences de Paris, Séance du 5 décembre 1910, (1910), pp. 1052-1055.

[45] J. Meixner, Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch reagierenden,
dissoziierenden und anregbaren Komponenten, Ann. der Phys., 43 (1943), pp. 244-270.

[46] H. Mori, Statistical-mechanical theory of transport in fluids, Phys. Rev., 112 (1958), pp. 1829-1842.
[47] 1. Prigogine, Etude thermodynamique des phénomeénes irréversibles, Dunod, Paris, (1947).

[48] J. Pousin, Modélisation et Analyse Numérique de Couches Limites Réactives d’Air, Doctorat es
Sciences, Ecole Polytechnique Fédérale de Lausanne, 1112, (1993).

[49] T. Ruggeri, Thermodynamics and Symmetric Hyperbolic Systems, Rend. Sem. Mat. Univ. Torino,
Fascicolo Speciale Hyperbolic Equations, (1987), pp. 167-183.

26



[50] N. Z. Shapiro and L. S. Shapley, Mass Action Law and the Gibbs Free Energy Function, STAM J.
Appl. Math., 13 (1965), pp. 353-375.

[61] D. Serre, Systémes de Lois de Conservation I et II, Diderot Editeur, Art et Science, Paris, 1996.

[52] D. Serre, The Structure of Dissipative Viscous System of Conservation laws, Physica D, 239 (2010),
pp. 1381-1386.

[563] R. Taylor and R. Krishna, Multicomponent mass transfer, John Wiley, New York, (1993).

[54] T. Umeda, S. Kawashima, and Y. Shizuta, On the Decay of Solutions to the Linearized Equations
of Electro-Magneto-Fluid Dynamics, Japan J. AppL Math., 1 (1984), pp. 435-457.

[55] A.I Vol'pert and S.I. Hudjaev, On the Cauchy Problem for Composite Systems of Nonlinear
Differential Equations, Math USSR Sbornik, 16 (1972) pp. 517-544.

[56] L. G. Vulkov, On the Conservation Laws of the Compressible Euler Equations, Applicable Analysis,
64 (1997), pp. 255-271.

[57] L. Waldmann, Transporterscheinungen in Gasen von mittlerem Druck, Handbuch der Physik, 12
(1958), pp. 295-514.

[58] J. Wei, An Aziomatic Treatment of Chemical Reaction Systems, J. Chem. Phys., 36 (1962) pp.
1578-1584.

27



