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2CMAP–CNRS, École Polytechnique, 91128 Palaiseau cedex, FRANCE

Abstract

We investigate a kinetic model for H − H2 mixtures in a regime where translational/rotational
and vibrational-resonant energy exchanges are fast whereas vibrational energy variations are slow.
In a relaxation regime, the effective volume viscosity is found to involve contributions from the
rotational volume viscosity, the vibrational volume viscosity, the relaxation pressure and the per-
turbed source term. In the thermodynamic equilibrium limit, the sum of these four terms converges
toward the one-temperature two-mode volume viscosity. The theoretical results are applied to the
calculation of the volume viscosities of molecular hydrogen on the basis of a complete set of state-
selected cross sections for the H + H2(v, j) system.

1 Introduction

Modeling thermodynamic nonequilibrium and coupled rotational-vibrational energy relaxation is an
important issue in reentry problems, laboratory and atmospheric plasmas, as well as discharges [1, 2,
3, 4, 5, 6, 7, 8]. The most general thermodynamic nonequilibrium model is the state to state model
where each internal state of a molecule is independent and considered as a separate species [4, 5, 6, 7].
When there are partial equilibria between some of these states, species internal energy temperatures
can be defined and the complexity of the model is correspondingly reduced [1, 2, 3, 4, 5, 6, 7, 8].
The next reduction step then consists in equating some of the species internal temperatures [7] and it
yields the two temperature models investigated in this paper. Relaxation of internal temperatures then
leads to volume viscosity coefficients [8, 9, 10, 11, 12, 13, 14, 15, 16] and theoretical models as well as
experimental measurements have confirmed that this coefficient is of the order of the shear viscosity for
polyatomic gases [21, 22, 18, 19, 17, 20]. The impact of volume viscosity in fluid mechanics—especially
for fast flows—has also been established [28, 29, 30, 31, 32].

We investigate in this paper a kinetic model for H − H2 nonequilibrium mixtures where transla-
tional/rotational and vibrational-resonant collisions are fast whereas collisions with vibrational energy
variations are slow, reactive aspects between H and H2 lying beyond the scope of the present study. The
relaxation of the translational-rotational temperature T and of the vibrational temperature T v as well
as the concept of volume viscosity are investigated in a kinetic theory framework where the rotational
and vibrational energies are assumed to be coupled. We also use Galerkin variational approximation
spaces introduced in References [33, 34] emphasizing exchanges of energy and both the zeroth order as
well as the first order asymptotic models are considered.

We establish that, in a relaxation regime, there are four contributions to the volume viscosity,
namely the rotational volume viscosity, the vibrational mode volume viscosity, the relaxation pressure
and the perturbed source term. In the thermodynamic equilibrium limit, the sum of these four terms
converges toward the one-temperature two-mode volume viscosity. These results extend previous work
concerning single gas and independent energy modes [8].

Theoretical results are then applied to the calculation of volume viscosities and relaxation times
in molecular hydrogen. The required collision integrals are evaluated from a complete set of state-to-
state cross sections for the H + H2(v, j) collisional system. The latter have been obtained using an
implementation of the quasiclassical method [35, 36, 37, 38, 39], on the accurate BKMP2 potential
energy surface (PES) [40].

Comparisons between one-temperature and two-temperature model predictions are performed and
conclusions are drawn on the domain of validity of each regime.
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2 A Nonequilibrium Kinetic Model for Gas Mixtures

We investigate in this section a kinetic model for a gas mixture with two internal energy modes.

2.1 A multi-temperature kinetic framework

We consider a kinetic framework for a mixture of gases with the species Boltzmann equation written
in the form

∂tfi + ci ·∇fi =
1

ε
J rap
i + J sl

i , i ∈ S, (1)

where t denotes time, i the species index, S the species indexing set, ∂t the time derivative operator, x
the spatial coordinate, ∇ the space derivative operator, ci the velocity of the particle of the ith species,
fi(t,x, ci, i) the distribution function for the ith species, i the index of the quantum energy state for
the particles of the ith species, J rap

i the rapid collision operator for the ith species, J sl
i the slow

collision operator for the ith species, and ε the formal parameter associated with the Chapman-Enskog
procedure. We will frequently assume that the mixture of gases is arbitrary with S = {1, . . . ,ns}
where ns is the number of species and then specialize to the particular case S = {H,H2} only at a
later stage. We assume for the sake of simplicity that the particles are not influenced by an external
force field and reactive aspects lie beyond the scope of the present study.

The complete collision operator for the ith species Ji = J rap
i + J sl

i is in the form

Ji(f) =
∑
j∈S

∑
j,i′,j′

∫(
fi(c

′
i, i

′)fj(c̃
′
j , j

′)
aiiajj
aii′ajj′

− fi(ci, i)fj(c̃j , j)
)
gijσ

iji′j′

ij dc̃j de′ij , (2)

where (in a direct collision) j denotes the species index of the colliding partner, i and j denote the
indices of the quantum energy states before collision, i′ and j′ the corresponding numbers after collision,
c̃j the velocity of the colliding partner, c′i and c̃′j the velocities after collision, aii the degeneracy of the

ith quantum energy state of the ith species, σiji′j′

ij the collision cross section for the species pair (i, j),
gij the absolute value of the relative velocity ci− c̃j of the incoming particles and e′ij the unit vector in

the direction of the relative velocity c′i − c̃′j after collision. Only binary collisions are considered since
the system is dilute and the cross sections satisfy the reciprocity relations [10, 16]

aiiajjgijσ
iji′j′

ij dci dc̃j de′ij = aii′ajj′g
′
ijσ

i′j′ij
ij dc′idc̃

′
jdeij . (3)

Denoting by W iji′j′

ij the transition probability for collisions, we also have the identity gijσ
iji′j′

ij de′ij =

W iji′j′

ij dc′idc̃
′
j so that the collision terms may equivalently be written in terms of transition probabilities

[33, 16].
The internal energy of the ith species in the ith quantum state is decomposed into

Eii = Er
ii + Ev

ii, (4)

where i denotes the index of the quantum energy state, Er
ii the rotational internal energy, Ev

ii the
vibrational internal energy, and we write ∆Ev

ij = Ev
ii′ +Ev

jj′−Ev
ii−Ev

jj for the vibrational energy jump.
The fast collision operator J rap

i for the ith species includes all collisions satisfying ∆Ev
ij = 0, either

involving only the translational-rotational energies or resonant with respect to the vibrational energy,
and the slow collision operator J sl

i describes the collisions for which ∆Ev
ij 6= 0. Assuming that there are

sufficiently resonant collisions between the species, the collisional invariants of the fast collision operator
are associated with the species particle numbers ψk = (δki)i∈S, k ∈ S, momentum ψns+l = (micil)i∈S,
l ∈ {1, 2, 3}, the energy associated with translational and rotational degrees of freedom ψns+4 = ψt +ψr

and the vibrational energy mode ψns+5 = ψv, where ψt =
(

1
2mi(ci − v)·(ci − v

))
i∈S

, ψr = (Er
ii)i∈S,

and ψv = (Ev
ii)i∈S. Tensorial quantities that have one component for each species are denoted for

convenience in the form ξ = (ξi)i∈S.

The Enskog expansion reads fi = f
(0)
i

(
1 + εφi +O(ε2)

)
where f

(0)
i is the Maxwellian distribution

for the ith species and we denote f = (fi)i∈S, f (0) = (f
(0)
i )i∈S, and φ = (φi)i∈S. The Maxwellian

distributions are found in the form

f
(0)
i =

( mi

2πkBT

) 3
2 niaii
Zi

exp
(
−mi(ci − v)·(ci − v)

2kBT
− Er

ii

kBT
− Ev

ii

kBT v

)
, i ∈ S, (5)
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with

Zi =
∑
i

aii exp
(
− Er

ii

kBT
− Ev

ii

kBT v

)
, (6)

where T is the partial equilibrium temperature between the translational and rotational degrees of
freedom, T v the temperature associated with the vibrational degrees of freedom, and Zi the partition
function for internal energy of the ith species. Since the rotational and vibrational energies are not
assumed to be independent, the internal energy partition function Zi cannot be factorized.

2.2 Fluid equations

The equations for the conservation of mass, momentum and internal energies are obtained by taking
the scalar product of the Boltzmann equation (1) with the collisional invariants of the fast collision
operator. The scalar product 〈〈ξ, ζ〉〉 between two tensorial quantities ξ = (ξi)i∈S and ζ = (ζi)i∈S with
components ξi(t,x, ci, i) and ζi(t,x, ci, i) is defined by

〈〈ξ, ζ〉〉 =
∑
i∈S

∑
i

∫
ξi�ζi dci,

where ξi�ζi is the contracted product. The fluid variables are the particle number densities nk =
〈〈ψk, f〉〉 = 〈〈ψk, f (0)〉〉 or equivalently the mass densities ρk = mknk for k ∈ S, the mass averaged veloc-
ity v such that ρvl = 〈〈ψns+l, f〉〉 = 〈〈ψns+l, f (0)〉〉 for l ∈ {1, 2, 3}, the partial equilibrium temperature
between the translational and rotational degrees of freedom T and the vibrational temperature T v. The
latter are defined by the coupled system of equations Et+r(T , T v) = 〈〈f, ψt + ψr〉〉 = 〈〈f (0), ψt + ψr〉〉
and Ev(T , T v) = 〈〈f, ψv〉〉 = 〈〈f (0), ψv〉〉, the dependence on the species number densities ni, i ∈ S,
being left implicit to simplify notation.

Following the Chapman-Enskog procedure, the conservation equations for mass, momentum and
internal energies are found in the form [7]

∂tρk + ∇·(ρkv) + ∇·(ρkV k) = 0, k ∈ S, (7)

∂t(ρv) + ∇·(ρv⊗v + pI) + ∇·Π = 0, (8)

∂tEt+r + ∇·(vEt+r) + ∇·Qt+r = −p∇·v −Π :∇v − ωv
1 , (9)

∂tEv + ∇·(vEv) + ∇·Qv = ωv
1 , (10)

where Et+r = Et + Er, Et = 〈〈f (0), ψt〉〉 denotes the internal energy per unit volume of translational
origin, Er = 〈〈f (0), ψr〉〉 the internal energy per unit volume of rotational origin, Ev the internal energy
per unit volume of vibrational origin, Qt+r and Qv the corresponding heat fluxes, and ωv

1 the exchange
term in the Navier-Stokes regime. The transport fluxes are defined by

V i =
∑
i

∫
(ci − v)f

(0)
i φi dci, i ∈ S, (11)

Π =
∑
i∈S

∑
i

∫
(ci − v)⊗(ci − v)f

(0)
i φi dci, (12)

Qt+r =
∑
i∈S

∑
i

∫ (
1
2mi(ci − v)2 + Er

ii

)
(ci − v)f

(0)
i φi dci, (13)

Qv =
∑
i∈S

∑
i

∫
Ev
ii(ci − v)f

(0)
i φi dci. (14)

In the next sections, we investigate the thermodynamic properties p, Et, Er, and Ev, the source term
ωv

1 , as well as the transport fluxes V i, i ∈ S, Π , Qt+r, and Qv.

2.3 Thermodynamics

The state law and the internal energies are in the form

p = nkBT , Et = n 3
2kBT Er =

∑
i∈S

niE
r
i, Ev =

∑
i∈S

niE
v
i , (15)
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where n =
∑
i∈S ni and Er

i and Ev
i denote the average rotational and vibrational internal energy per

particle of the ith species. The internal energies are not supposed to be independent in this work,
that is, the composed index i can be written i = (ir, iv) where ir and iv denote the rotational and
vibrational quantum numbers of the state, respectively, but the energies Er

ii and Ev
ii depend a priori

on both indices ir and iv. In order to define the average energies as well as the specific heats, it is
convenient to introduce the averaging operator for the ith species〈

ξii
〉
i

=
∑
i

aiiξii
Zi

exp
(
− Er

ii

kBT
− Ev

ii

kBT v

)
. (16)

The average rotational and vibrational internal energy per particle of the ith species Er
i and Ev

i are
then given by

Er
i =

〈
Er
ii

〉
i
, Ev

i =
〈
Ev
ii

〉
i
, (17)

and depend a priori on both T and T v. We next introduce the corresponding specific heats

crri = ∂
T
Er
i = 1

kBT 2

(〈
Er 2
ii

〉
i
− Er 2

i

)
= 1

kBT 2

〈
(Er

ii − Er
i)

2
〉

(18)

crvi = ∂T vEr
i = 1

kBT v2

(〈
Er
iiE

v
ii

〉
i
− Er

iE
v
i

)
= 1

kBT v2

〈
(Er

ii − Er
i)(E

v
ii − Ev

i )
〉
i
, (19)

cvr
i = ∂

T
Ev
i = 1

kBT 2

(〈
Er
iiE

v
ii

〉
i
− Er

iE
v
i

)
= 1

kBT 2

〈
(Er

ii − Er
i)(E

v
ii − Ev

i )
〉
i
, (20)

and
cvv
i = ∂T vEv

i = 1
kBT v2

(〈
Ev2
ii

〉
i
− Ev2

i

)
= 1

kBT v2

〈
(Ev

ii − Ev
i )

2
〉
i
. (21)

Note that we have crvi T
v2 = cvr

i T
2 in such a way that at equilibrium (T v = T ) we have crvi = cvr

i . In the
simpler situation where the rotational and vibrational energies are independent, then the cross specific
heats crvi and cvr

i vanish. We also define the translational specific heat ct as well as the combined
specific heats cri, c

v
i , and cvl i by

ct = 3
2kB, cri = crri + crvi , cvi = cvr

i + cvv
i , (22)

cvl i = ct + crri + crvi + cvr
i + cvv

i . (23)

We introduce the corresponding mixture heats crr, crv, cvr, cvv, cr, cv, and cvl given by

ncrr =
∑
i

nic
rr
i , ncrv =

∑
i

nic
rv
i , ncvr =

∑
i

nic
vr
i , ncvv =

∑
i

nic
vv
i ,

ncr =
∑
i

nic
r
i, ncv =

∑
i

nic
v
i , ncvl =

∑
i

nicvl i.

For future use, we also introduce the modified specific heats

cr̃r̃i = crri −
crv

cvv
cvr
i = crri −

cvr

cvv
crvi , cr̃r̃ = crr − crv

cvv
cvr,

which are associated with the derivative of Er
i and Er when Ev is kept constant, respectively, as well

as the shifted rotational energies

E r̃
ii = Er

ii −
crv

cvv
Ev
ii, E r̃

i =
〈
E r̃
ii

〉
i

= Er
i −

crv

cvv
Ev
i ,

and it is easily checked that

ncr̃r̃ =
∑
i

ni
1

kBT 2

〈
(E r̃

ii − E r̃
i)

2
〉
i
,

∑
i

ni
〈
(E r̃

ii − E r̃
i)(E

v
ii − Ev

i )
〉
i

= 0.

The basis functions built from the shifted energies will notably be orthogonal to the vibrational colli-
sional invariant ψv of the fast collision operator.
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2.4 Source terms

The full source term ωv may be written ωv = 〈〈ψv,J sl〉〉 = 〈〈ψv,J 〉〉 since 〈〈ψv,J rap〉〉 = 0 and may be
expanded into ωv = ωv

0 + εδωv
1 +O(ε2). The source term ωv

1 is then given by

ωv
1 = ωv

0 + εδωv
1 , (24)

where ωv
0 denotes the source term evaluated from the Maxwellian distribution f (0) and δωv

1 the correc-
tion associated with the Navier-Stokes perturbation f (0)φ.

We introduce the averaging operator [[ ]]ij for the species pair i, j

[[αij ]]ij =
1

8ninj

∑
i,j,i′,j′

∫
αiji′j′

ij f
(0)
i f̃

(0)
j gijσ

iji′j′

ij dci dc̃j de′ij , (25)

as well as the complete averaging operator

[[α]] =
∑
ij

ninj
n2

[[αij ]]ij =
1

8n2

∑
ij

∑
i,j,i′,j′

∫
αiji′j′

ij f
(0)
i f̃

(0)
j gijσ

iji′j′

ij dci dc̃j de′ij . (26)

Several important properties of this averaging operator are summarized in Appendix A.
A direct evaluation of the source term ωv

0 yields that

ωv
0 = −2n2

[[
(∆Ev)

(
exp
(∆Ev

kBT
− ∆Ev

kBT v

)
− 1
)]]
, (27)

where ∆Ev
ij = Ev

ii′ + Ev
jj′ − Ev

ii − Ev
jj and defining the nonequilibrium correction factor ζv by

ζv
ij =

∫ 1

0

exp
((∆Ev

ij

kBT
− ∆Ev

ij

kBT v

)
s
)
ds,

the source term ωv
0 is recast in the convenient form

ωv
0 = 2n2 [[(∆Ev)2ζv]]

kBTT v
(T − T v). (28)

Defining the nonequilibrium relaxation time by τv = cvkBTT
v/(2n[[(∆Ev)2ζv]]), where cv = cvr + cvv,

we obtain that

ωv
0 =

ncv

τv
(T − T v). (29)

On the other hand, the perturbed source term δωv
1 is given by

δωv
1 =

∑
ij∈S

∑
i,j,i′,j′

Ev
ii

∫(
f

(0)′

i f̃
(0)′

j

aiiajj
aii′ajj′

(φ′i + φ̃′j)− f
(0)
i f̃

(0)
j (φi + φ̃j)

)
gijσ

iji′j′

ij dci dc̃j de′ij , (30)

and upon defining Wv = (Wv
i )i∈S by

Wv
i =

∑
j∈S

∑
j,i′,j′

(∆Ev
ij)

∫
f̃

(0)
j gijσ

iji′j′

ij dc̃j de′ij ,

it is checked that
δωv

1 = 〈〈f (0)φ,Wv〉〉. (31)

2.5 Transport coefficients

We denote by Irap
i the linearized fast collision operator for the ith species and Irap = (Irap

i )i∈S the
mixture operator. The perturbed distribution function φ = (φi)i∈S is such that Irap(φ) = ψ where
ψ = (ψi)i∈S has the components

ψi = −∂(0)
t log f

(0)
i − ci ·∇ log f

(0)
i + J sl,(0)

i /f
0)
i , i ∈ S.
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The perturbed distribution function φ = (φi)i∈S is also such that 〈〈f (0)φ, ψj〉〉 = 0 for 1 6 j 6 ns + 5,
where ψj , 1 6 j 6 ns+5, are the collisional invariants of the fast collision operator. The ith component
of ψ may be evaluated following the Chapman-Enskog procedure in the form

ψi = −ψηi :∇v − ψλ
t+r

i ·∇
( 1

kBT

)
− ψλ

v

i ·∇
( 1

kBT v

)
−
∑
j∈S

ψ
Dj

i ·∇pj − 1
3ψ

κ
i ∇·v + ψωi ω

v
0 ,

where ψηi is a symmetric traceless tensor, ψλ
t+r

i , ψλ
v

i , and ψ
Dj

i , j ∈ S, are vectors, and ψκi and ψωi are
scalars given by

ψηi =
mi

kBT

(
(ci − v)⊗(ci − v)− 1

3 (ci − v)·(ci − v)I
)
, (32)

ψλ
t+r

i =
(

5
2kBT −

1
2mi(ci − v)·(ci − v) + Er

i − Er
ii

)
(ci − v), (33)

ψλ
v

i = (Ev
i − Ev

ii

)
(ci − v), (34)

ψ
Dj

i =
1

pi

(
δij − Yi

)
(ci − v), j ∈ S, (35)

ψκi = − 2cr̃r̃

ct + cr̃r̃

(
3
2 −

mi(ci − v)·(ci − v)

2kBT

)
+

2ct

ct + cr̃r̃

(
Er
i − Er

ii

)
kBT

− crv

cvv

2ct

ct + cr̃r̃

(
Ev
i − Ev

ii

)
kBT

, (36)

ψωi =
J̃ sl,(0)
i

f
(0)
i

−
3
2kBT −

1
2mi(ci − v)·(ci − v)

nkB(ct + cr̃r̃)T 2

cvv + crv

cvv
− Er

i − Er
ii

nkB(ct + cr̃r̃)T 2

cvv + crv

cvv
(37)

+
Ev
i − Ev

ii

nkBcvvT v 2

ct + crr + cvr

ct + cr̃r̃
. (38)

The source term J sl,(0) = (J sl,(0))i∈S has been written J sl,(0)
i = ωv

0 J̃
sl,(0)
i where

J̃ sl,(0)
i = − 1

2n2[[(∆Ev)2ζv]]

∑
j∈S

∑
j,i′,j′

∫
f

(0)
i f̃

(0)
j (∆Ev

ij)ζ
v
ijgijσ

iji′j′

ij dc̃j de′ij . (39)

and we have 〈〈ψv, J̃ sl,(0)〉〉 = 1, 〈〈ψt + ψr, J̃ sl,(0)〉〉 = −1, 〈〈ψH2 , J̃ sl,(0)〉〉 = 0, 〈〈ψH, J̃ sl,(0)〉〉 = 0 in such a
way that ψω is orthogonal to the collisional invariants of the fast collision operator. Thanks to linearity
φ = (φi)i∈S may be expanded in the form

φi = −φηi :∇v − φλ
t+r

i ·∇
( 1

kBT

)
− φλ

v

i ·∇
( 1

kBT v

)
−
∑
j∈S

φ
Dj

i ·∇pj − 1
3φ

κ
i ∇·v + φωi ω

v
0 , (40)

where φηi is a symmetric traceless tensor, φλ
t+r

i φλ
v

i , and φ
Dj

i , j ∈ S are vectors, φκi and φωi are scalars.
These coefficients φµ = (φµi )i∈S, µ ∈ {η, λt+r, λv, (Dj , j ∈ S), κ, ω}, satisfy the linearized Boltzmann
equations

Irap(φµ) = ψµ, (41)

i.e., Irap
i (φµ) = ψµi for i ∈ S, with the constraints

〈〈f (0)φµ, ψj〉〉 = 0, 1 6 j 6 ns + 5. (42)

These integral equations (41)(42) are well posed and only involve fast collisions.
On the other hand, it may be checked that the fluxes can be written

V i = kBT 〈〈ψDi , f (0)φ〉〉, i ∈ S, (43)

Π = kBT 〈〈ψη, f (0)φ〉〉+ 1
3kBT 〈〈ψ

κ, f (0)φ〉〉I, (44)

Qt+r = −〈〈ψλ
t+r

, f (0)φ〉〉+
∑
i∈S

( 5
2kBT + Er

i)niV i, (45)

Qv = −〈〈ψλ
v

, f (0)φ〉〉+
∑
i∈S

Ev
i niV i. (46)
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Substituting the expansion (40) of the perturbed distribution function φ into the above relations, and
using the isotropy of the collision operator Irap, we obtain the following expressions for the transport
fluxes

V i = −
∑
j∈S

Dijdj − θt+r
i ∇ log T − θv

i∇ log T v, (47)

Π = prel − κr∇·vI − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (48)

Qt+r = −λt+r,t+r∇T − λt+r,v∇T v − p
∑
i∈S

θt+r
i di +

∑
i∈S

( 5
2kBT + Er

i)niV i, (49)

Qv = −λv,t+r∇T − λv,v∇T v − pT
v

T

∑
i∈S

θv
i di +

∑
i∈S

Ev
i niV i, (50)

where

di =
∇pi
p
, i ∈ S,

are the diffusion driving forces and where Dij are the multicomponent diffusion coefficients, θt+r
i

the translational and rotational thermal diffusion coefficients, θv
i the vibrational thermal diffusion

coefficients, prel the relaxation pressure, κr the rotational volume viscosity, η the shear viscosity, and
λt+r,t+r, λt+r,v, λv,t+r, and λv,v the thermal conductivities.

In order to express the corresponding transport coefficients we define the bracket operator associated
with the fast linearized collision operator by

[ξ, ζ] = 〈〈f (0)Irap(ξ), ζ〉〉 = 〈〈f (0)ξ, Irap(ζ)〉〉 = [ζ, ξ].

This bracket is symmetric positive semi-definite and its nullspace is spanned by the collisional invariants,
i.e., [ξ, ξ] = 0 if and only if ξ is a linear combination of collisional invariants of the fast collision operator
Irap.

The transport coefficients are then given by

Dij =
pkBT

3
[φDi , φDj ], i, j ∈ S, (51)

θt+r
i = −1

3
[φDi , φλ

t+r

], θv
i = −1

3

T

T v
[φDi , φλ

v

], i ∈ S, (52)

η = 1
10kBT [φη, φη], κ = 1

9kBT [φκ, φκ], (53)

λt+r,t+r =
1

3kBT 2
[φλ

t+r

, φλ
t+r

], λt+r,v =
1

3kBT v 2
[φλ

t+r

, φλ
v

], (54)

λv,t+r =
1

3kBT 2
[φλ

v

, φλ
t+r

], λv,v =
1

3kBT v 2
[φλ

v

, φλ
v

]. (55)

In addition, the relaxation pressure prel and the reduced relaxation pressure p̃rel are given by

prel = p̃relωv
0 , p̃rel = 1

3kBT 〈〈f
(0)φω, ψκ〉〉 = 1

3kBT 〈〈f
(0)φκ, ψω〉〉. (56)

Using now the Curie principle, we may also write

δωv
1 = − 1

3 〈〈f
(0)φκ,Wv〉〉∇·v + 〈〈f (0)φω,Wv〉〉ωv

0 ,

so that defining
wκ1 = − 1

3 〈〈f
(0)φκ,Wv〉〉, wv

1 = 〈〈f (0)φω,Wv〉〉, (57)

we have
δωv

1 = wκ1 ∇·v + wv
1 ω

v
0 . (58)

Finally, defining the pressure tensor as P = pI + Π , we have

P = (nkBT + prel − κr∇·v)I − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (59)

with a pressure term nkBTI, a volume viscosity contribution associated with rotation κr∇·vI, and a
relaxation pressure term prelI.
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2.6 The traditional rotational volume viscosity

We introduce the orthogonal polynomials

φ0010k =
(

1
kBT

(
3
2kBT −

1
2mi(ci − v)·(ci − v)

)
δki

)
i∈S

, k ∈ S,

φ000rk =
(

1
kBT

(
Er
i − Er

ii

)
δki

)
i∈S

, k ∈ P,

and
φ000vk =

(
1

kBT v

(
Ev
i − Ev

ii

)
δki

)
i∈S

, k ∈ P,

where P denotes the set of polyatomic species and np the number of polyatomic species. We also
denote by

ψ̂t+r =
∑
l∈S

φ0010l +
∑
l∈P

φ000rl, ψ̂v =
∑
l∈P

φ000vl,

the collisional invariant of the fast collision operator and by ψ̂t+r+v = ψ̂t+r + T v

T
ψ̂v the total energy

collisional invariant.
The basis functions φ000rk, k ∈ P, however, are not adapted to the fast collision operator since

they are not guaranteed to be orthogonal to the collisional invariant ψ̂v. In order to obtain such basis
functions, it is natural to use the shifted energies

φ000r̃k = φ000rk − crv

cvv

T v

T
φ000vk =

(
1
kBT

(
E r̃
i − E r̃

ii

)
δki

)
i∈S

, k ∈ P,

as well as the shifted collisional invariant

ψ̂t+r̃ = ψ̂t+r − crv

cvv

T v

T
ψ̂v =

∑
l∈S

φ0010l +
∑
l∈P

φ000r̃l,

that are automatically orthogonal to ψ̂v. The natural generalization of the standard linear system
associated with the evaluation of the rotational volume viscosity is then obtained with the Galerkin
variational approximation space spanned by the orthogonal polynomials φ0010k, k ∈ S, and φ000r̃k

k ∈ P. The matrix coefficients of the corresponding transport linear system of size ns +np are similar
to that of the independent energy situation since fast collisions are such that ∆Ev = ∆Ẽv but the
right hand side vectors differ.

In the special situation where S = {H2,H}, we have P = {H2}, ns = 2, np = 1, ψ̂t+r = φ0010H2 +

φ0010H + φ000rH2 , and ψ̂v = φ000vH2 . The variational space is spanned by φ0010H2 , φ0010H, and φ000r̃H2

and the transport linear system is of size ns + np = 3. Expanding φκ in the form

φκ = −3

p

(
α10κ

H2
φ0010H2 + α10κ

H φ0010H + α0r̃κ
H2
φ000r̃H2

)
,

we obtain
Kακ = βκ, (60)

and the constraint
< K, ακ >= 0, (61)

and the linear system (60)(61) is well posed. The right member βκ is given by

β10κ
H2

=
cr̃r̃

ct + cr̃r̃
XH2 , β10κ

H =
cr̃r̃

ct + cr̃r̃
XH, β0r̃κ

H2
= −

cr̃r̃H2

ct + cr̃r̃
XH2 ,

where cr̃r̃ =
∑
i∈SXic

r̃r̃
i = XH2

cr̃r̃H2
. The constraint vector K ensures the orthogonality with the

collisional invariant ψ̂t+r̃ and is given by

K10
H2

= ctXH2 , K10
H = ctXH, K0r̃

H2
= cr̃r̃H2

XH2 .

The coefficients of the matrix K, taking into account that H is not polyatomic, are given by [33, 34]

K1010
H2H2

=
4XHXH2

kBT

( 4mHmH2

(mH +mH2)2
Ω

(1,1)
HH2

+
m2

H

(mH +mH2)2

[[(∆Er)2]]
r
HH2

(kBT )2

)
+

2X2
H2

kBT

[[(∆Er)2]]
r
H2H2

(kBT )2
,

8



K1010
HH2

= K1010
H2H =

4XHXH2

kBT

mHmH2

(mH +mH2)2

(
−4Ω

(1,1)
HH2

+
[[(∆Er)2]]

r
HH2

(kBT )2

)
,

K1010
HH =

4XHXH2

kBT

( 4mHmH2

(mH +mH2
)2

Ω
(1,1)
HH2

+
m2

H2

(mH +mH2
)2

[[(∆Er)2]]
r
HH2

(kBT )2

)
,

K100r̃
H2H2

= K0r̃10
H2H2

= −4XHXH2

kBT

mH

mH +mH2

[[(∆Er)2]]
r
HH2

(kBT )2
−

2X2
H2

kBT

[[(∆Er)2]]
r
H2H2

(kBT )2
,

K100r̃
HH2

= K0r̃10
H2H = −4XHXH2

kBT

mH2

mH +mH2

[[(∆Er)2]]
r
HH2

(kBT )2
,

K0r̃0r̃
H2H2

=
4XHXH2

kBT

[[(∆Er)2]]
r
HH2

(kBT )2
+

2X2
H2

kBT

[[(∆Er)2]]
r
H2H2

(kBT )2
.

keeping in mind that ∆E r̃ = ∆Er − crv

cvv ∆Ev = ∆Er for rapid collisions. Note that the averaging
operator [[ ]]

r
only involve fast collisions and has been denoted by adding the superscript r. More

details on the transport linear systems associated with the calculation of volume viscosities are given
in References [33, 34]. The special systems associated with the mixture S = {H2,H} admit simplified
notation for the averaged brackets since there is only one polyatomic species and only one monatomic
species.

2.7 The reduced rotational volume viscosity

The traditional variational approximation space used to evaluate the rotational volume viscosity may
conveniently be replaced by the reduced Galerkin variational approximation space spanned by the
functions

φ̂000r̃k = φ000r̃k − Xkc
r̃r̃
k

ct + cr̃r̃
ψ̂t+r̃, k ∈ P,

leading to a transport linear system of size np. The term proportional to the collisional invariant ψ̂t+r̃

guarantees that φ̂000r̃k, k ∈ P, are orthogonal to ψ̂t+r̃, and since they are also automatically orthogonal
to ψ̂v by construction, they are thus orthogonal to both collisional invariants ψ̂t+r and ψ̂v of the fast
collision operator. The idea behind this basis function is that the most important part of the dynamics
is associated with internal energy exchanges and not with the kinetic energy [33, 34]. The influence of
the later is simply taken into account with a global energy conservation constraint. The corresponding
volume viscosity has been shown to be accurate in various situations with at most a few percent errors
[33, 34].

Proceeding as for one-temperature systems [33], the corresponding matrix and right member are
shown to be the 0r̃0r̃ components of the more traditional approximation discussed in the previous
section and there is no constraint [33, 34]. Under this approximation, for the S = {H2,H} system,

there remains a single basis function φ̂000r̃H2 and we expand φκ in the form

φκ = −3

p
α0r̃κ

H2
φ̂000r̃H2 ,

with
K[0r̃]α

κ
[0r̃] = βκ[0r̃]. (62)

The right member β0r̃κ is given by

β0r̃κ
H2

= −
cr̃r̃H2

XH2

ct + cr̃r̃
= − cr̃r̃

ct + cr̃r̃
,

and the coefficient of K[0r̃] is given by

K0r̃0r̃
H2H2

=
4XHXH2

kBT

[[(∆Er)2]]
r
HH2

(kBT )2
+

2X2
H2

kBT

[[(∆Er)2]]
r
H2H2

(kBT )2
=

2[[(∆Er)2]]
r

(kBT )3
.

From these relations, it is directly obtained that

φκ =
3

p

( cr̃r̃

ct + cr̃r̃

) (kBT )3

2[[(∆Er)2]]
r φ̂

000r̃H2 , (63)
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and

κr =
( cr̃r̃

ct + cr̃r̃

)2 (kBT )3

2[[(∆Er)2]]
r . (64)

Note that the bracket [[(∆Er)2]]
r

is distinct from [[(∆Er)2]] since only rapid collisions are involved.

3 Relaxation and Volume Viscosities

3.1 The thermodynamic equilibrium temperature

We define the equilibrium temperature as the unique scalar T such that

Et(T ) + Er(T, T ) + Ev(T, T ) = Et(T ) + Er(T , T v) + Ev(T , T v), (65)

keeping in mind that Et(T )+Er(T, T )+Ev(T, T ) is an increasing function of T and where the dependence
on the species number densities ni, i ∈ S, is left implicit to simplify notation. Since for any smooth
function ϕ(T , T v) we have the identity

ϕ(T , T v)− ϕ(T, T ) =

∫ T

T

∂
T
ϕ(θ, T v)dθ +

∫ T v

T

∂T vϕ(T, θ)dθ,

we define for each species

crri =

∫ 1

0

crri
(
T + s(T − T ), T v

)
ds, cvr

i =

∫ 1

0

cvr
i

(
T + s(T − T ), T v

)
ds, i ∈ S,

crvi =

∫ 1

0

crvi
(
T, T + s(T v − T )

)
ds, cvv

i =

∫ 1

0

cvv
i

(
T, T + s(T v − T )

)
ds, i ∈ S,

as well as
cri = crri + cvr

i , cvi = crvi + cvv
i , cvl i = ct + crri + crvi + cvr

i + cvv
i .

We also introduce the corresponding mixture properties

ncrr =
∑
i∈S

nic
rr
i , ncrv =

∑
i∈S

nic
rv
i , ncvr =

∑
i∈S

nic
vr
i . ncvv =

∑
i∈S

nic
vv
i .

ncr =
∑
i∈S

nic
r
i. ncv =

∑
i∈S

nic
v
i , ncvl =

∑
i∈S

nicvl i.

Note the difference in the definitions of cr = crr +crv and cr = crr +cvr as well as between cv = cvr +cvv

and cv = crv + cvv. We then have the identities

Et(T )− Et(T ) = nct(T − T ),

Er(T , T v)− Er(T, T ) = ncrr(T − T ) + ncrv(T v − T ),

Ev(T , T v)− Ev(T, T ) = ncvr(T − T ) + ncvv(T v − T ),

The relation Et+r(T , T v)− Et+r(T, T ) = Ev(T, T )− Ev(T , T v) may then be recast in the form

(ct + cr)(T − T ) = cv(T − T v), (66)

and also implies that
cvl(T − T ) = cv(T − T v). (67)
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3.2 The vibrational volume viscosity

From the equations governing the internal energies we deduce at the zeroth order the system n(ct + crr)(∂tT + v·∇T ) + ncrv(∂tT
v + v·∇T v) = −p∇·v − ωv

0 ,

ncvr(∂tT + v·∇T ) + ncvv(∂tT
v + v·∇T v) = ωv

0 .
(68)

Using the identity ctcvv + crrcvv− crvcvr = (ct + cr̃r̃)cvv the governing equations for T and T v are found
in the form 

∂tT + v·∇T = −c
vvp∇·v + (cvv + crv)ωv

0

n(ct + cr̃r̃)cvv
,

∂tT
v + v·∇T v =

cvrp∇·v + (ct + crr + cvr)ωv
0

n(ct + cr̃r̃)cvv
.

(69)

The resulting equation for T − T v is then

∂t(T − T v) + v·∇(T − T v) = −c
vp∇·v + cvlω

v
0

n(ct + cr̃r̃)cvv
,

and from the expression (29) we obtain

∂t(T − T v) + v·∇(T − T v) = − cvp∇·v
n(ct + cr̃r̃)cvv

− cvl c
v

(ct + cr)cvv

T − T v

τv
. (70)

This is a typical relaxation equation and the corresponding relaxation approximation yields at the
zeroth order

T − T v = − τv

ncvl
p∇·v, ωv

0 = − c
v

cvl
p∇·v. (71)

This approximation neither require τv to be small nor T and T v to be close and is indeed valid when
the flow characteristic time is greater than τv. We now define the vibrational nonequilibrium volume
viscosity by κv = pkBc

vτv/(cvlcvl), where cv = crv + cvv and cvl = ct + crr + crv + cvr + cvv and κv may
then be written

κv =
cvcv

cvl cvl

kB
3T 2T v

2[[(∆Ev)2ζv]]
. (72)

Thanks to the relation (67) we further obtain—after some algebra—that at zeroth order

nkBT = nkBT − κv∇·v, (73)

which generalizes a similar relation established in the single species case [8]. Note incidentally that the
coefficient κv differs in many aspects from its thermodynamic equilibrium limit since both T and T v

play a role as well as the nonequilibrium factor ζv and the averaged coefficients cv and cvl.

3.3 First order corrections

Since we need to add the vibrational volume viscosity κv, which is O(τv), to the rotational volume
viscosity κr in the Navier-Stokes regime, which is O(ε), we need to take into account first order
corrections to the temperature difference T − T v. From the governing equations we deduce in the
Navier-Stokes regime the conservation equations

n(ct + crr)(∂tT + v·∇T ) + ncrv(∂tT
v + v·∇T v) = −p∇·v

−∇·Qt+r −Π :∇v − ωv
0 − δωv

1 ,

ncvr(∂tT + v·∇T ) + ncvv(∂tT
v + v·∇T v) = −∇·Qv + ωv

0 + δωv
1 ,

(74)

and we have to investigate the perturbed first order source term δωv
1 = ωv

1 − ωv
0 . Furthermore, in

the relaxation approximation, and in the Navier-Stokes regime, we may replace ωv
0 by its zeroth order

approximation ωv
0 ≈ −cvp∇·v/cvl in the first order term δωv

1 . The resulting effective first order
correction in the relaxation regime is therefore

δωv
1 =

(
wκ1 −

pcv

cvl
wv

1

)
∇·v. (75)

11



After some algebra, the first order relaxation approximation then yields that

nkBT − nkBT = −κv ∇·v
(

1 +
cvl

cvp
wκ1 − wv

1

)
− κv

p

(
Π :∇v + ∇·Qt+r − ct + cr

cv
∇·Qv

)
. (76)

The new terms in (76) involve either the product of κv by another transport coefficient or the perturbed
source terms wκ1 and wv

1 . Near equilibrium only the term −κv ∇·v
(
1 + cvlw

κ
1/pc

v − wv
1

)
plays a role

since all terms involving the product of two transport coefficients are associated with the Burnett
regime.

Combining these results with the expression of the viscous tensor, and keeping in mind that in the
relaxation approximation the source term ωv

0 is proportional to ∇·v, we conclude that the effective
first order volume viscosity is given by

κeff = κr +
cvp

cvl
p̃rel + κv

(
1 +

cvl

cvp
wκ1 − wv

1

)
, (77)

so that we need to evaluate the relaxation pressure as well as the perturbed source terms.

3.4 Translational and rapid mode temperatures

The partial equilibrium temperature T between the translational and rotational degrees of freedom
and the vibrational temperatures T v are defined from the system of equations Et(T ) + Er(T , T v) =
〈〈f (0), ψt + ψr〉〉 = 〈〈f, ψt + ψr〉〉 and Ev(T , T v) = 〈〈f (0), ψv〉〉 = 〈〈f, ψv〉〉 and are macroscopic quantities
since ψt + ψr and ψv are collisional invariants of the fast collision operator. The translational T t and
the rotational temperature T r are now defined from

Et(T t) = 〈〈f, ψt〉〉 Er(T r, T v) = 〈〈f, ψr〉〉, (78)

where the dependence on the species number densities is left implicit to simplify notation. Note that
both T and T v are treated as constants in these definitions—since they are defined from collisional
invariants—and we have in particular Et(T t) + Er(T r, T v) = Et(T ) + Er(T , T v). Since neither ψt nor
ψr is a collision invariant of the fast collision operator, these temperatures cannot solely be expressed
in terms of zeroth order quantities and have to be expanded in the form

T t = T t
0 + ε δT t

1 +O(ε2), T r = T r
0 + ε δT r

1 +O(ε2), (79)

where T t
0 and T r

0 are the zeroth order terms and δT t
1 and δT r

1 the first order corrections associated with
the Navier-Stokes regime.

From the definition (78) and the expansions (79) we deduce that at the zeroth order we have
Et(T t

0) = 〈〈f (0), ψt〉〉 and Er(T r
0 , T

v) = 〈〈f (0), ψr〉〉, so that Et(T t
0) = Et(T ), and Er(T r

0 , T
v) = Er(T , T v)

in such a way that at the zeroth order
T t

0 = T r
0 = T , (80)

in agreement with the fast mode assumption.
We introduce for convenience the notation

T t
1 = T t

0 + ε δT t
1 , T r

1 = T r
0 + ε δT r

1 , (81)

in such a way that T t = T t
1 + O(ε2) and T r = T r

1 + O(ε2). In other words T t and T t
1 coincide in the

Navier-Stokes regime as well as T r and T r
1 . From the general relations

Et(T t)− Et(T ) = 〈〈f − f (0), ψt〉〉, Er(T r, T v)− Er(T , T v) = 〈〈f − f (0), ψr〉〉,

we next obtain the linearized expressions

nct(T t
1 − T ) = 〈〈f (0)φ, ψt〉〉, ncrr(T r

1 − T ) = 〈〈f (0)φ, ψr〉〉. (82)

It is important to note that only crr plays a role since T v is fixed, being defined from collisional
invariants. In addition, crr may be evaluated at (T , T v) since T r is a deviation from T in the Navier-
Stokes regime. We also know that ψt + ψr is a collisional invariant so that 〈〈f (0)φ, ψt + ψr〉〉 = 0
and

(ct + crr)T = ctT t
1 + crrT r

1 . (83)
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We next need to evaluate the first order perturbations T t
1 − T and T r

1 − T in terms of the divergence
of the velocity field and the relaxation pressure.

Since ψt and ψr are scalars, from the Curie principle, only the scalar part of φ yields nonzero
contribution in the products 〈〈f (0)φ, ψt〉〉 and 〈〈f (0)φ, ψr〉〉, in such a way that

nct(T t
1 − T ) = − 1

3 〈〈f
(0)φκ, ψt〉〉∇·v + 〈〈f (0)φω, ψt〉〉ωv

0 , (84)

ncrr(T r
1 − T ) = − 1

3 〈〈f
(0)φκ, ψr〉〉∇·v + 〈〈f (0)φω, ψr〉〉ωv

0 . (85)

Since ψt +ψr is a collisional invariant, the scalar products 〈〈f (0)φκ, ψt〉〉 and 〈〈f (0)φκ, ψr〉〉 are such that
〈〈f (0)φκ, ψt〉〉+ 〈〈f (0)φκ, ψr〉〉 = 0. On the other hand, we have the relation

κr = 1
9kBT 〈〈f

(0)φκ, ψκ〉〉 = 1
9kBT [φκ, φκ].

Noting that ψκ − 2cr̃r̃

(ct+cr̃r̃)kBT
ψt + 2ct

(ct+cr̃r̃)kBT
ψr is a fast collisional invariant, we obtain upon taking

the scalar product with f (0)φκ a second relation between 〈〈f (0)φκ, ψt〉〉 and 〈〈f (0)φκ, ψr〉〉. Combining
these relations yields after some algebra the identity 〈〈f (0)φκ, ψt〉〉 = 9

2κ
r. Similarly, the scalar products

〈〈f (0)φω, ψt〉〉 and 〈〈f (0)φω, ψr〉〉 are such that 〈〈f (0)φω, ψt〉〉+ 〈〈f (0)φω, ψr〉〉 = 0 and we know that

p̃rel = 1
3kBT 〈〈f

(0)φω, ψκ〉〉.

Upon expressing ψκ in terms of ψt, ψr and a fast collisional invariant, taking the scalar product
with f (0)φω, we obtain a second relation between 〈〈f (0)φω, ψt〉〉 and 〈〈f (0)φω, ψr〉〉 and finally get that
〈〈f (0)φω, ψt〉〉 = 3

2 p̃
rel. Combining these results we obtain that

nkBT
t
1 = nkBT − κr∇·v + p̃relωv

0 , (86)

nkBT
r
1 = nkBT +

ct

crr
(
κr∇·v − p̃relωv

0

)
. (87)

We notably deduce that the expression nkBT − κr∇·v + prel appearing in the pressure tensor may be
written nkBT

t
1 in the Navier-Stokes regime. The volume viscosity term −κr∇·v and the relaxation

pressure prel = p̃relωv
0 modify the partial equilibrium temperature pressure term nkBT into a—first

order accurate—translational temperature pressure term nkBT
t
1 .

3.5 The relaxation pressure

In order to evaluate the reduced relaxation pressure p̃rel we use the expression

p̃rel = 1
3kBT 〈〈f

(0)φκ, ψω〉〉 = 1
3kBT 〈〈φ

κ, J̃ sl,(0)〉〉,

and we have already evaluated φκ in (63)

φκ =
3

p

( cr̃r̃

ct + cr̃r̃

) (kBT )3

2[[(∆Er)2]]
r φ̂

000r̃H2 .

Since we also have

φ̂000r̃H2 = φ000r̃H2 − cr̃r̃

ct + cr̃r̃
ψ̂t+r̃,

as well as φ000r̃H2 = φ000rH2 − crv

cvv
T v

T
φ000vH2 , ψ̂t+r̃ = ψ̂t+r − crv

cvv
T v

T
ψ̂v, and φ000vH2 = ψ̂v, we only have

to evaluate the scalar products

〈〈φ000rH2 , J̃ sl,(0)〉〉, 〈〈ψ̂t+r, J̃ sl,(0)〉〉, 〈〈ψ̂v, J̃ sl,(0)〉〉. (88)

After some algebra, it is found that

〈〈φ000rH2 , J̃ sl,(0)〉〉 = − [[(∆Er)(∆Ev)ζv]]

[[(∆Ev)2ζv]]kBT
, (89)

〈〈ψ̂t+r, J̃ sl,(0)〉〉 =
[[(∆Ev)2ζv]]

[[(∆Ev)2ζv]]kBT
=

1

kBT
, (90)

T v

T
〈〈ψ̂v, J̃ sl,(0)〉〉 = − [[(∆Ev)2ζv]]

[[(∆Ev)2ζv]]kBT
= − 1

kBT
. (91)
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As a consequence, we obtain that

〈〈φ000r̃H2 , J̃ sl,(0)〉〉 = − 1

kBT

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

(ct + cr̃r̃)[[(∆Ev)2ζv]]
. (92)

The resulting rescaled relaxation pressure p̃rel is then given by

p̃rel = − (kBT )3cr̃r̃

p(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

. (93)

3.6 The perturbed source term

We further have to evaluate the perturbed source term δωv
1 or equivalently the scalar products

wκ1 = − 1
3 〈〈f

(0)φκ,Wv〉〉, wv
1 = 〈〈f (0)φω,Wv〉〉,

since we may next form δωv
1 = wκ1 ∇·v + wv

1 ω
v
0 . We first investigate the product wκ1 and then the

product wv
1 .

The perturbed distribution function φκ has been evaluated in terms of φ000r̃H2 = φ000rH2 −
crv

cvv
T v

T
φ000vH2 and ψ̂t+r̃ = ψ̂t+r− crv

cvv
T v

T
ψ̂v, and we also have φ000vH2 = ψ̂v, so that we are left with the

calculation of the products 〈〈f (0)φ000rH2 ,Wv〉〉, 〈〈f (0)ψ̂t+r,Wv〉〉 and 〈〈f (0)ψ̂v,Wv〉〉 in order to evaluate
wκ1 . From the calculations presented in Appendix A, these scalar products may be expressed in the
form

〈〈f (0)φ000rH2 ,Wv〉〉 =
2n2

kBT

(
[[(∆Ev)(∆Er)]] + 2[[(∆Ev)2φ000rH2ζv]]

T − T v

T v

)
, (94)

〈〈f (0)ψ̂t+r,Wv〉〉 =− 2n2

kBT

(
[[(∆Ev)2]]− 2[[(∆Ev)2ψ̂t+rζv]]

T − T v

T v

)
. (95)

T v

T
〈〈f (0)ψ̂v,Wv〉〉 =

2n2

kBT

(
[[(∆Ev)2]] + 2[[(∆Ev)2ψ̂vζv]]

T − T v

T

)
. (96)

As discussed in Appendix A, we may also evaluate the difference between [[(∆Ev)(∆Er)]] and [[(∆Ev)(∆Er)ζv]]
and the difference between [[(∆Ev)2]] and [[(∆Ev)2ζv]] in the form

[[(∆Ev)(∆Er)]] = [[(∆Ev)(∆Er)ζv]] + [[(∆Ev)2(∆Er)ζ̂v]]
T − T v

kBTT v
,

[[(∆Ev)2]] = [[(∆Ev)2ζv]] + [[(∆Ev)3ζ̂v]]
T − T v

kBTT v

where

ζ̂v =

∫ 1

0

∫ s

0

exp
((∆Ev

kBT
− ∆Ev

kBT v

)
r
)

dr ds. (97)

In the relaxation approximation and in the Navier-Stokes regime, we have to discard gradients terms
squared associated with the Burnett regime, and we are left with the approximations

〈〈f (0)φ000rH2 ,Wv〉〉 ≈ 2n2

kBT
[[(∆Ev)(∆Er)ζv]], (98)

〈〈f (0)ψ̂t+r,Wv〉〉 ≈ − 2n2

kBT
[[(∆Ev)2ζv]], (99)

T v

T
〈〈f (0)ψ̂v,Wv〉〉 ≈ 2n2

kBT
[[(∆Ev)2ζv]]. (100)

The resulting perturbed source term is then in the form

wκ1 = − p cr̃r̃

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

[[(∆Er)2]]
r . (101)
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On the other hand, in order to evaluate the perturbed distribution function φω, we use the same
Galerkin variational approximation space as for φκ. Upon expanding φω in the form

φω = −3

p
α0r̃ω

H2
φ̂000r̃H2 , (102)

we obtain a linear system K[0r̃]α
ω
[0r̃] = βω[0r̃] where K[0r̃] is is presented in Section 2.7, and the right

hand side βω is evaluated from

β0r̃ω
H2

= − 1

3n
〈〈f (0)φ̂000r̃H2 , ψω〉〉.

However, since 〈〈f (0)φ̂000r̃H2 , ψω〉〉 = 〈〈φ̂000r̃H2 , J̃ sl,(0)〉〉, this scalar product has already been evaluated
in Section 3.5. After some algebra, we obtain that

β0r̃ω
H2

=
1

3p

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

(ct + cr̃r̃)[[(∆Ev)2ζv]]
,

and

φω = − (kBT )3

p2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2(ct + cr̃r̃)[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

φ̂000r̃H2 . (103)

Using (98) and (99), the perturbed source term wv
1 is obtained in the form

wv
1 = − 1

(ct + cr̃r̃)2

(
(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

)2
[[(∆Er)2]]

r
[[(∆Ev)2ζv]]

. (104)

3.7 The effective volume viscosity

The general expression of the effective volume viscosity in the Navier-Stokes regime and in the relaxation
approximation is in the form

κeff = κr +
cvp

cvl
p̃rel + κv + κv cvl

cvp
wκ1 − κvwv

1 . (105)

Collecting from the previous sections we have

κr =
( cr̃r̃

ct + cr̃r̃

)2 (kBT )3

2[[(∆Er)2]]
r ,

cv

cvl
p p̃rel = − c

v

cvl

cr̃r̃(kBT )3

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

,

κv =
cvcv

cvl cvl

kB
3T 2T v

2[[(∆Ev)2ζv]]
,

κv cvlw
κ
1

cvp
= − c

v

cvl

cr̃r̃kB
3T 2T v

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

,

−κvwv
1 =

cv cv

cvl cvl

kB
3T 2T v

(ct + cr̃r̃)2

(
(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

)2
2[[(∆Er)2]]

r
[[(∆Ev)2ζv]]

2 .

Finally, the nonequilibrium effective volume viscosity in the relaxation approximation is found in the
form

κeff =
( cr̃r̃

ct + cr̃r̃

)2 (kBT )3

2[[(∆Er)2]]
r

− cv

cvl

cr̃r̃(kBT )3

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

+
cvcv

cvl cvl

kB
3T 2T v

2[[(∆Ev)2ζv]]

− cv

cvl

cr̃r̃kB
3T 2T v

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

2[[(∆Er)2]]
r
[[(∆Ev)2ζv]]

+
cv cv

cvl cvl

kB
3T 2T v

(ct + cr̃r̃)2

(
(ct + cr̃r̃)[[(∆Er)(∆Ev)ζv]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2ζv]]

)2
2[[(∆Er)2]]

r
[[(∆Ev)2ζv]]

2 . (106)
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4 The Equilibrium Limit

4.1 The one-temperature two-mode volume viscosity

We investigate in this section the volume viscosity associated with a one-temperature T = T = T v

two-mode gas mixture of H and H2. The ‘internal energy’ approach linear system associated with the
evaluation of the two-mode volume viscosity is obtained with the Galerkin variational approximation
space spanned by

φ̂000rH2 = φ000rH2 − cr

cvl
ψ̂t+r+v,

φ̂000vH2 = φ000vH2 − cv

cvl
ψ̂t+r+v,

where φ000rH2 = (Er
H2
− Er

H2i
)/kBT , φ000vH2 = (Ev

H2
− Ev

H2i
)/kBT , cr = crr + crv and cv = cvr + cvv.

Note incidentally that cvr = crv since we have T = T = T v. The terms proportional to ψ̂t+r+v are here
to ensure that φ̂000rk and φ̂000vk are orthogonal to the collisional invariant ψ̂t+r+v of the full collision
operator

ψ̂t+r+v =
∑
l∈S

φ0010l +
∑
l∈P

φ000rl +
∑
l∈P

φ000vl.

The idea behind this basis function is that the most important part of the dynamics is the one associated
with energy exchanges and not with the kinetic energy. The influence of the latter is simply taken into
account with a global energy conservation constraint [33, 34].

A second important observation is that the usual expressions derived for the transport linear sys-
tems may readily be used with nonorthogonal basis functions like φ̂000rH2 and φ̂000vH2 . The transport
linear system associated with the volume viscosity comes indeed from a variational formulation of the
corresponding integral equation and its derivation does not require orthogonality properties (the right
hand side member β being covariant and the unknown vector contravariant). This also applies to the
final expression of the volume viscosity.

The general solution of the transport linear systems associated with the volume viscosities as well
as their mathematical structure have been already investigated [33, 34].

The corresponding linear system of size 2 is in the form

K[01]α[01] = β[01], (107)

where K[01] denotes the system matrix, α[01] = (α0rκ
H2
, α0vκ

H2
)t the unknown vector, β[01] = (β0rκ

H2
, β0vκ

H2
)t

the right hand side vector. The volume viscosity is κeq = α0rκ
H2
β0rκ

H2
+ α0vκ

H2
β0vκ

H2
. The matrix K[01] is

positive definite and the right hand side vector is given by β = (−cr,−cv)t/cvl where cr = crr + crv,
cv = cvr + cvv, cvl = ct + cr + cv, noting that at equilibrium (T = T v) we also have crv = cvr.

After some algebra, using the reduced linear system (107) of size 2, it is obtained that

κeq =
1

c2vl

(cr)2Kv,v − 2crcvKr,v + (cv)2Kr,r

Kr,rKv,v −Kr,vKr,v
. (108)

We also have the relations Kr,r = 2[[(∆Er)2]]/(kBT )3, Kr,v = 2[[(∆Er)(∆Ev)]]/(kBT )3, and Kv,v =
2[[(∆Ev)2]]/(kBT )3. We investigate in the next section how to identify the rotational integral [[(∆Er)2]]

r

associated with the fast collision operator within the variational framework.

4.2 Variational approximation of [[(∆Er)2]]
r

We have to derive an approximation [[(∆Er)2]]
r′

of the bracket [[(∆Er)2]]
r

associated with the fast

collision operator within the variational approximation space spanned by φ̂000rH2 and φ̂000vH2 and
using the collision integrals associated with the full collision operator.

Since we investigate the equilibrium limit in a regime where one mode is fast and the other is slow,
and since J = J rap +J sl, a first idea is to write that J ' J rap so that [[(∆Er)2]]

r′ ' [[(∆Er)2]]. In this
situation, the coefficient Kr,r is large and the cross terms Kr,v = Kv,r are small. A good approximation
in the regime under consideration is thus to write that [[(∆Er)2]]

r′ ' [[(∆Er)2]] and to neglect the square
term Kv,rKr,v in the expression of the equilibrium volume viscosity as already done in Reference [8].
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However, a better approximation is obtained by noting that φ̂000vH2 is in the nullspace of J rap in
such a way that J (φ̂000vH2) = J sl(φ̂000vH2). We may thus approximate J sl by its orthogonal projection

onto span{ φ̂000vH2 } and so approximate J rap in the form

J rap(ψ) ' J (ψ)− 〈〈f (0)J (φ̂000vH2), ψ〉〉
〈〈f (0)J (φ̂000vH2), φ̂000vH2〉〉

J (φ̂000vH2).

Letting ψ = φ̂000rH2 and taking the scalar product with φ̂000rH2 we obtain now the more accurate
approximation

[[(∆Er)2]]
r′

= [[(∆Er)2]]− [[(∆Er)(∆Ev)]]
2

[[(∆Ev)2]]
. (109)

Combining this approximation (109) with the expression (108) we have established that the equilibrium
viscosity may be written

κeq =
( cr
cvl

)2 (kBT )3

2[[(∆Er)2]]
r′ −

crcv

c2vl

(kBT )3[[(∆Er)(∆Ev)]]

[[(∆Er)2]]
r′

[[(∆Ev)2]]

+
( cv
cvl

)2 (kBT )3

2[[(∆Ev)2]]
+
( cv
cvl

)2 (kBT )3[[(∆Er)(∆Ev)]]
2

2[[(∆Er)2]]
r′

[[(∆Ev)2]]
2 , (110)

where the last term arises from the Kr,r term at the numerator of (108) and from (109).
An elementary estimate also confirm the estimate (109). Indeed, we may roughly write that during

slow collisions, we have average energy jumps ∆E
r

and ∆E
v

and that there are Nv such collisions.
Then we may evaluate the bracket ratio in the form

[[(∆Er)(∆Ev)]]
2

[[(∆Ev)2]]
' (Nv∆E

r
∆E

v
)2

Nv(∆E
v
)2

= Nv(∆E
r
)2,

so that [[(∆Er)2]]− [[(∆Er)(∆Ev)]]2

[[(∆Ev)2]] ' N r(∆E
r
)2 ' [[(∆Er)2]]

r
.

4.3 Identification of the equilibrium limit

The equilibrium limit of the effective volume viscosity κeff,eq is directly deduced from (106) by letting
T = T v, ζv = 1, cv = cv, and cvl = cvl. Note in particular that, at equilibrium, cv and cv coincide
since then crv = cvr and crr = crr, crv = crv, cvr = cvr, and cvv = cvv. The resulting limit is in the form

κeff,eq =
( cr̃r̃

ct + cr̃r̃

)2 (kBT )3

2[[(∆Er)2]]
r

− cv

cvl

cr̃r̃(kBT )3

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2]]

2[[(∆Er)2]]
r
[[(∆Ev)2]]

+
(cv)2

(cvl)2

(kBT )3

2[[(∆Ev)2]]

− cv

cvl

cr̃r̃(kBT )3

(ct + cr̃r̃)2

(ct + cr̃r̃)[[(∆Er)(∆Ev)]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2]]

2[[(∆Er)2]]
r
[[(∆Ev)2]]

+
(cv)2

(cvl)2

(kBT )3

(ct + cr̃r̃)2

(
(ct + cr̃r̃)[[(∆Er)(∆Ev)]] + (cr̃r̃ − crv

cvv c
t)[[(∆Ev)2]]

)2
2[[(∆Er)2]]

r
[[(∆Ev)2]]

2 . (111)

We will now show that this expression coincides with the one-temperature volume viscosity (110),

evaluated independently in Section 4.2, provided the approximation [[(∆Er)2]]
r′

is used in place of the
fast collision operator collision integral, [[(∆Er)2]]

r
.

We first consider the terms in (111) proportional to (kBT )3/
(
2[[(∆Er)2]]

r)
.

Adding the contributions arising from the first, the second, the fourth and the fifth terms of (111),
we get ( cr̃r̃

ct + cr̃r̃

)2
(

1− cv

cvl

(
1− ct

cr̃r̃
crv

cvv

))2

.
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Making use of the identity cvl − cv
(
1− ct

cr̃r̃
crv

cvv

)
= cr

cr̃r̃ (ct + cr̃r̃), derived in Appendix B, we arrive at

( cr̃r̃

ct + cr̃r̃

)2
(

1− cv

cvl

(
1− ct

cr̃r̃
crv

cvv

))2

=
( cr
cvl

)2

,

so that the sum of all contributions proportional to (kBT )3/
(
2[[(∆Er)2]]

r)
in (111) exactly yields the

first term of (110).
Contributions proportional to (kBT )3[[(∆Er)(∆Ev)]]/

(
2[[(∆Er)2]]

r
[[(∆Ev)2]]

)
come from the second,

the fourth and the fifth terms of (111)

−2
( cv
cvl

)( cr̃r̃

ct + cr̃r̃

)(
1− cv

cvl

(
1− ct

cr̃r̃
crv

cvv

))
.

Again, the identity derived in Appendix B can be used to conclude that

−2
( cv
cvl

)( cr̃r̃

ct + cr̃r̃

)(
1− cv

cvl

(
1− ct

cr̃r̃
crv

cvv

))
= −2

crcv

(cvl)2
,

so that the sum of all contributions proportional to (kBT )3[[(∆Er)(∆Ev)]]/(2[[(∆Er)2]]
r
[[(∆Ev)2]]) in

(111) exactly yields the second term of (110).
The third term in (111) exactly coincides with the third term of (110).

Similarly, the single term proportional to (kBT )3[[(∆Er)(∆Ev)]]
2
/
(
2[[(∆Er)2]]

r
[[(∆Ev)2]]

2)
, arising

from the fifth term in (111), exactly coincides with the fourth term of (110).
We have thus established that the equilibrium limit of the effective volume viscosity in the relax-

ation regime coincides with the one-temperature two-mode volume viscosity evaluated independently,
provided the approximation [[(∆Er)2]]

r′
is substituted in place of the fast collision operator collision

integral [[(∆Er)2]]
r
.

5 Application to the H−H2 system

The kinetic model discussed in the previous sections is here applied to the calculation of the volume
viscosities of H−H2 mixtures in the trace limit. To this end we start by introducing the cross section
data that will be used to describe the H2 roto-vibrational energy relaxation.

5.1 Internal energy spectrum and energy exchange collisions

The calculation of volume viscosities and other quantities needed for the description of the relaxation
of the internal (rotational and vibrational) degrees of freedom of H2 requires the evaluation of several
collision integrals. To this end, information on the cross sections for internal energy exchange collisions
is needed. The set of roto-vibrationally detailed cross sections used in this work has been calculated by
the quasiclassical method, with an in-house developed code, that has been tested repeatedly against
accurate results from the literature [35, 36, 37, 38, 39]. The set is complete, since all the H2 rovibrational
states of the electronic ground state have been considered as initial and final states. Quasibound states
and dissociation processes have also been considered in the trajectory calculations, even though they
have not been used in the present study.

Cross sections for the processes H + H2(v, j) → H2(w, k) + H with v/w initial/final vibrational
states, j/k initial/final rotational states, have been calculated including both reactive (i.e. exchange)
and non-reactive processes. Collision kinetic energy in the center-of-mass frame ranges from 0.001 to 9
eV allowing for accurate calculation of rate constants and collision integrals in the temperature range
from 1000 K to 10000 K.

The embarrassingly parallel nature of quasiclassical calculations allowed the enormous amount
of required trajectories to be calculated exploiting large distributed computational resources. The
integration time step used is dynamically adapted [37, 38] in order to achieve an optimal compromise
between accuracy and computational load. The Potential Energy Surface (PES) adopted is the well
known BKMP2 [40], that is believed to have better accuracy both in the high energy range and for
rotational transitions in the low temperature regime, with respect to the LSTH PES [41], used, for
example, in the work of Martin and Mandy [42]. Results from the latter work compare well with the
present calculations, differences being limited to high lying roto-vibrational states, as expected [39].
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The full set of rate coefficients, as obtained from the calculated cross sections, is available upon request,
and will also be available in the database of the European Project Phys4Entry [43]. Further details,
results and comparisons with the literature can be found in References [35, 36, 39, 44, 45].

The potential energy surface used [40] supports 301 bound rovibrational states for the isolated
H2 molecule, distributed over 15 vibrational levels, each with a varying number of rotational states.
The energy spectrum is depicted in fig. 1 and the internal specific heats crrH2

, crvH2
, and cvv

H2
at thermal

equilibrium (T v = T = T ) are depicted in fig. 2 as a function of temperature. It is apparent that the
coupling between the rotational and the vibrational energies cannot be neglected.

Figure 1: H2 internal energy levels.

Figure 2: H2 adimensional internal specific heats as a function of temperature; solid line: crrH2
; dashed

line: crvH2
; dotted line: cvv

H2
.

Finally, elastic collision integrals for the H − H2 interaction have been taken from the work of
Stallcop and coauthors [46].
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5.2 Results

The theoretical results of the previous sections are here specialised to the H− H2 mixture in thermal
equilibrium conditions.

We have evaluated numerically the various contributions in (106) as a function of temperature.
Since a complete set of inelastic cross sections is available for the atom-diatom collisional system only,
all properties are calculated in the trace limit (xH → 1, xH2

→ 0). Altough this is a strong limitation
and is hardly justifiable on physical grounds, it still allows the estimation of the theoretical kinetic
model for a realistic system. In addition, relevant information on the H2 internal energy relaxation by
atom impact can be obtained, as we shall see in the following. For quantities a that vanish with the
hydrogen mole fraction, xH2

, we have evaluated the limit ratio â = limxH2→0(a/xH2
).

First we discuss the choice of the variational approximation space used for the derivation of transport
linear systems from the linearized Boltzmann equations (41). The use of a reduced Galerkin varia-
tional approximation space, as described in Section 2.7, is justified for the calculation of κr since this
approximation only brings differences limited to 2% as already observed in different situations [34, 33].

However, the assumptions underlying the choice of a reduced approximation space, namely that
kinetic energy is not relevant for the characterization of the collision dynamics, may be improved when
calculating the relaxation pressure and the perturbed source term. In these cases the relevant collision
integrals include contributions from slow collisions where the energy exchanges between kinetic and
internal energy modes can be large.

Figure 3 shows the reduced relaxation pressure p̃rel evaluated with the traditional basis functions
φ0010H, φ0010H2 , and φ000r̃H2 and the reduced basis φ̂000r̃H2 . The former is about 40% smaller in the
whole temperature range.

Figure 3: Comparison of p̃rel as obtained with the traditional (solid line) and reduced (dashed line)
Galerkin variational approximation spaces.

The same is true for the perturbed source terms as depicted in figs. 4, 5.
As a result, the traditional basis functions are preferred for the calculations presented in this

paper; they involve the solution of appropriate transport linear systems whose structure is analyzed in
References [47, 48, 49].

Note also that larger variational approximation spaces may be required to reach convergent results.
This point has been raised e.g. in Reference [22] for the case of Nitrogen. These calculations, however,
would require the knowledge of higher moments of the differential scattering cross sections.

We next turn to the evaluation of the different contributions in (77). Figure 6 shows the temperature

dependance of the limiting quantities κ̂r, ĉvp
cvl
p̃rel, and κ̂v. The shear viscosity ηHH2 = 5kBT/8Ω

(2,2)
HH2

is
also plotted for comparison. All volume viscosities are comparable to or larger than the shear viscosity.

The first order source terms cvl
cvpw

κ
1 and −wv

1 which are the Navier-Stokes perturbations of the

20



Figure 4: Comparison of cvl
cvpw

κ
1 as obtained with the traditional (solid line) and reduced (dashed line)

Galerkin variational approximation spaces.

zeroth order relaxation term ωv
0 are depicted in fig. 7. Since these terms are to be compared to 1, this

plot shows that their contribution is by no means negligible.
Finally, a comparison of κ̂eff,eq and κ̂eq is presented in fig. 8. This plot shows that the one-

temperature kinetic model described in Section 4.1 works well in the low temperature region only. In-
deed, as the temperature rises, the approximation [[(∆Er)2]]

r ≈ [[(∆Er)2]]
r′ ≡ [[(∆Er)2]]−[[(∆Er)(∆Ev)]]

2
/[[(∆Ev)2]]

progressively degrades as depicted in fig. 9. In this conditions, the assumption of the one-temperature
kinetic model, i.e. that all collisions are fast, breaks down and the model is not a valid description.
The fast volume viscosity, κ̂r, is also plotted for comparison: this is the limiting value of κ̂eff as the slow
collisions are inhibited. We then conclude that, when slow collisions start playing a role a nonequilib-
rium description of the internal energy relaxation is required even in conditions of thermal equilibrium.
Quantitative estimations of the limits are also obtained, as shown in fig. 9.

6 Conclusions

The theory developed in [8] has been extended to gas mixtures and to gases with two coupled degrees
of freedom. This has allowed to test it with the real physical system H−H2 for which a complete set of
inelastic cross sections is now available. Although the model has been investigated in the limit where H2

is in trace amount in a gas of H atoms, a physically unrealistic situation, it gives interesting indications
on the behavior of a real diatomic molecule, for which the rotational and vibrational modes cannot be
decoupled, colliding with an atomic species, as in the classical ultrasound absorption measurements
discussed in References [21, 22].

It has been shown that a kinetic model that decomposes the inelastic collisions in two separate sets
of slow and rapid collisions produces a nonequilibrium description of the gas where both a bulk viscosity
and relaxation pressure appear. The former, κr, depends on the average energy exchanged during rapid
collisions; the latter, prel carries information on the slow collisions. Under the appropriate relaxation
approximation, i.e., when the flow characteristic times are larger than the slow mode characteristic
time, the slow mode relaxation also gives rise to a nonequilibrium bulk viscosity κv and to perturbed
source terms. A complete expression has been derived that describes the volume viscosity effect for a
gas mixture in thermal equilibrium in the frame of the two-temperature kinetic model. The theory also
shows that the nonequilibrium description reduces to the equilibrium-two modes kinetic model under
the appropriate relaxation assumptions, as it should be.

Calculations performed on the H−H2 mixture, however, have shown that the κeff,eq = κeq equality
has a limited range of applicability. Discrepancies arise when slow collisions start playing a role in the
volume viscosity effect since they are not accounted for correctly in the one-temperature model. This
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Figure 5: Comparison of −wv
1 as obtained with the traditional (solid line) and reduced (dashed line)

Galerkin variational approximation spaces.

is to be expected, since the equilibrium kinetic model predicts a linear dependance of the bulk viscosity
coefficient on the internal mode relaxation time, as in (64), a result that cannot hold when the energy
exchanges become slow and the relaxation time tends to diverge. This result, already shown in Ref. [8]
for a model system, is here obtained for the molecular hydrogen internal energy relaxation by atom
impact, together with the limits of validity of the one-temperature formulation.

For the very same reasons, the question arises on the limits of validity of the nonequilibrium model
discussed here. The model is based on the assumption that there is a rapid rotational mode and
a slow vibrational mode, an extension of the classical two temperature approach to coupled modes.
Preliminary calculations on the relaxation kinetics (not presented here) show, however, that this model
is not adequate to describe a system where the rate coefficients for inelastic processes seem to be ordered
according to the value of the energy jump, as opposed to its nature (rotational or vibrational).

It is also worth mentioning that rotational relaxation in molecular hydrogen is known to be slow [24,
23, 27, 25] and that it is coupled to vibrational relaxation [26], so that these conclusions may not be
readily extended to other diatomic molecules.

A quantitative estimation of the limits of the two-temperature model can only be obtained by the
comparison to a full state-to-state model. Results of the latter could then be validated with Monte
Carlo kinetic simulations as in Ref. [8].

It is also useful here to recall that any kinetic model will require the knowledge of diatom-diatom
inelastic cross sections in order to be amenable to experimental verification.

More generally, the acknowledgement that reduced kinetic models have a limited domain of validity
calls for the development of more accurate reduced descriptions of the molecular internal kinetics.
These models have a wider scope than the determination of the bulk viscosity and are the subject of
current active discussions. Since detailed state-selected energy exchange cross sections are becoming
available, and the kinetic description on a state-to-state basis is complex and computationally too
expensive, except in few simple cases, the development of accurate reduced models is an important
task.
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Figure 6: Different terms as they appear in (77) as a function of temperature. Solid line: κ̂r; dashed

line: ĉvp
cvl
p̃rel; dotted line: κ̂v; dash-dotted line: ηHH2 .

A Properties of the averaging operator

The averaging operator [[ ]] has interesting properties which are useful to simplify analytic expressions.
Letting

aij =
∆Ev

ij

kBT
− ∆Ev

ij

kBT v , (112)

we have

ζv
ij =

∫ 1

0

exp(aijs) ds, exp(aij)− 1 = aijζ
v
ij ,

and manipulating the collision integrals, it may be checked that

[[αij ]]ij = [[α′
ij exp(aij)]]ij , (113)

where the prime indicates the inverse collisions, and this, in turn, implies that

[[α]] = [[α′ exp(a)]]. (114)

Applying this to α = ∆Ev
ij we obtain that

[[∆Ev]] = −[[∆Ev exp(a)]] = − 1
2 [[∆Ev

(
exp(a)− 1

)
]] = − 1

2 [[∆Evaζv]],

and using (112) the zeroth order source term may be written

ωv
0 = 4n2[[∆Ev]] = −2n2[[(∆Ev)2ζv]]

(
1
kBT
− 1

kBT v

)
.

In addition, the factor ζv is very practical for nonequilibrium mixtures in order to use inverse
collisions. We have for instance

[[αaζv]] = [[α
(
exp(a)− 1

)
]] = [[α′(exp(−a)− 1

)
exp(a)]] = −[[α′(exp(a)− 1

)
]] = −[[α′aζv]],

so that in particular
[[α∆Evζv]] = −[[α′∆Evζv]].

For example, for α = β(∆Ev), we get [[β(∆Ev)2ζv]] = [[β′(∆Ev)2ζv]].
The difference between [[α∆Evζv]] and [[α∆Ev]] may be estimated by using

[[α(∆Ev)]] = [[α(∆Ev)ζv]] + [[α(∆Ev)2ζ̂v]]
T − T v

kBTT v
,
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Figure 7: Comparison of first order source terms as a function of temperature. Solid line: cvl
cvpw

κ
1 ;

dashed line: −wv
1 .

where

ζ̂v =

∫ 1

0

∫ s

0

exp
((∆Ev

kBT
− ∆Ev

kBT v

)
r
)

dr ds. (115)

This is indeed a direct consequence of the identity exp(aij) = 1 + aij + a2
ij ζ̂

v which is established
in much the same way as the identity exp(aij) = 1 + aij ζ

v.
These relations are convenient in order to evaluate some kinetic expressions. For instance, the

products 〈〈f (0)α,Wv〉〉 may be written

〈〈f (0)α,Wv〉〉 = 8n2[[α∆Ev]] = −8n2[[α(∆Ev) exp(a)]] = 4n2[[(α− exp(a)α′)∆Ev]],

and next
〈〈f (0)α,Wv〉〉 = 4n2

(
[[(α− α′)∆Ev]] + [[α′(1− exp(a)

)
∆Ev]]

)
,

〈〈f (0)α,Wv〉〉 = −2n2
(

[[∆α∆Ev]] + 2[[α
(
exp(a)− 1

)
∆Ev]]

)
,

so that finally

〈〈f (0)α,Wv〉〉 = −2n2[[∆α∆Ev]] +
4n2

kBT
[[α(∆Ev)2ζv]]

T − T v

T v
.

B Relation among the specific heats

We derive in this section the formula

cvl − cv
(

1− ct

cr̃r̃
crv

cvv

)
=

cr

cr̃r̃
(ct + cr̃r̃).

We start by developing the product and by using cv = cvr + cvv and cvl = ct + crr + crv + cvr + cvv to
get

v = cvl − cv +
cvct

cr̃r̃
crv

cvv
= ct + crr + crv +

cvct

cr̃r̃
crv

cvv
.

Regrouping the ct contributions and using cr̃r̃ = crr − crvcvr/cvv we obtain after some algebra

v = ct
(

1 +
cv

cr̃r̃
crv

cvv

)
+ crr + crv =

ct

cr̃r̃cvv

(
crrcvv − cvrcrv + (cvr + cvv)crv

)
+ crr + crv = ...

... =
ct

cr̃r̃cvv

(
crrcvv + cvvcrv

)
+ crr + crv = (crr + crv)

( ct

cr̃r̃cvv
cvv + 1

)
=

cr

cr̃r̃
(ct + cr̃r̃),

and this completes the proof.
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Figure 8: Comparison of volume viscosities. Solid line: κ̂eff; dashed line: κ̂eq; dotted line: κ̂r.

C Erratum for Reference [8]

This appendix collects some typographic errors overlooked by the authors in Reference [8]. First,
equations (19), (20), (22), and (23) should be

S int = nkB

( E

kBT int
− log

1

Z int

)
. (19)

Gtr = kBT
tr log

n

Ztr
, Gint = kBT

int log
1

Z int
, (20)

dS =
nctr

T tr
dT tr +

ncint

T int
dT int +

(3

2
kB +

E

T int
− kB log

n

ZtrZ int

)
dn, (22)

∂tS + ∇·(vS) + ∇·
(Qtr

T tr
+

Qint

T int

)
= −Qtr·∇T tr

T tr2 − Qint·∇T int

T int2 − Π :∇v

T tr
+
ωint

1 (T tr − T int)

T trT int
. (23)

Equations (41), (76), (77), and (81) should be

J̃ sl,(0) = − 1

2n2[[(∆E)2ζ]]

∑
j,i′,j′

∫
f (0)f̃ (0)(∆E)ζgσiji′j′dc̃ de′, (41)

ψη =
m

kBT

(
(c− v)⊗(c− v)− 1

3 (c− v)·(c− v)I
)
, (76)

ψλ
tr+rap

=
(

5
2kBT −

1
2m(c− v)·(c− v) + E

rap − Erap
i

)
(c− v), (77)

J̃ sl,(0) = − 1

2n2[[(∆Esl)2ζsl]]

∑
j,i′,j′

∫
f (0)f̃ (0)(∆Esl)ζslgσiji′j′dc̃de′, (81)

Equation (104), (106), (107), (108), (110), (111), and (117) should be

p̃rel = − (kBT )3crap

p(ctr + crap)2

crap[[(∆Esl)2ζsl]] + (ctr + crap)[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
. (104)

p̂rel =
(kBT )3cslcrap

(ctr + crap)2cvl

crap[[(∆Esl)2ζsl]] + (ctr + crap)[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
, (106)

〈〈f (0)φ0010,Wsl〉〉 = − 2n2

kBT

(
[[(∆Esl)(∆Esl + ∆Erap)]]− 2[[(∆Esl)2φ0010ζsl]]

T − T sl

T sl

)
, (107)
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Figure 9: Average rotational energy exchange as a function of temperature. Solid line: [[(
∆Er

kBT
)2]]

r
;

dashed line: [[(
∆Er

kBT
)2]]

r′
.

〈〈f (0)φ0001rap,Wsl〉〉 =
2n2

kBT

(
[[(∆Esl)(∆Erap)]] + 2[[(∆Esl)2φ0001rapζsl]]

T − T sl

T sl

)
. (108)

〈〈f (0)φ0010,Wsl〉〉 ≈ − 2n2

kBT
[[(∆Esl)(∆Esl + ∆Erap)ζsl]], (110)

〈〈f (0)φ0001rap,Wsl〉〉 ≈ 2n2

kBT
[[(∆Esl)(∆Erap)ζsl]]. (111)

φω =
1

p2

1

ctr + crap

(kBT )3

2[[(∆Erap)2]]

( [[(∆Esl)(∆Erap)ζsl]]

[[(∆Esl)2ζsl]]
+

crap

ctr + crap

)
(crap φ0010 − ctr φ0001rap). (117)

Finally, the second line of Equation (121) should be

− c
sl

cvl

( crap

ctr + crap

)2 (kBT )3

2[[(∆Erap)2]]
− crapcsl

(ctr + crap)cvl

(kBT )3[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
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http://cmap.polytechnique.fr/˜giovangi

[17] L. Tisza, Supersonic absorption and Stokes viscosity relation, Physical Review, 61, (1941), pp
531–536.

[18] G.J. Prangsma, L.J.M. Borsboom, H.F.P. Knaap, C.J.N. Van den Meijdenberg, and J.J.M.
Beenakker, Rotational relaxation in ortho Hydrogen between 170 and 300 K, Physica, 61, (1972),
pp 527–538.

[19] G.J. Prangsma, A.H. Alberga, and J.J.M. Beenakker, Ultrasonic determination of the volume
viscosity of N2, CO, CH4, and CD4 between 77 and 300K, Physica, 64, (1973), pp 278–288.

[20] A.F. Turfa, H.F.P. Knaap, B.J. Thijsse, and J.J.M. Beenakker, A classical dynamics study of
rotational relaxation in nitrogen gases, Physical A, 112, (1982), pp 19–28.

[21] P.W. Hermans, L.F.J. Hermans, and J.J.M. Beenakker, A survey of experimental data related
to the non-spherical interaction for the hydrogen isotopes and their mixture with noble gases,
Physica A, 122, (1983), pp 173–211.

[22] H. Van Houten, L. J. F. Hermans, J. J. M. Beenakker, A survey of experimental data related to
the non-spherical interaction for simple classical linear molecules and their mixture with noble
gases, Physica A, 131, (1985), pp 64–103.

[23] R. J. Gallagher, J. B. Fenn, Rotational relaxation of molecular hydrogen, J. Chem. Phys., 60,
(1974), pp 3492–3499.

[24] C. A. Boitnott, R. C. Warder, Shock-Tube measurements of Rotational Relaxation in hydrogen,
Phys. Fluids, 14, (1971), pp 2312–2316.

[25] J. E. Pollard, D. J. Trevor, Y. T. Lee, D. A. Shirley, Rotational relaxation in supersonic beam of
hydrogen by high resolution photoelectron spectroscopy, J. Chem. Phys., 77, (1982), pp 4818–4825.

[26] J. E. Dove, D. G. Jones, H. Teitelbaum, Studies of the relaxation of internal energy of molecular
hydrogen, Symposium on Combustion, 14, (1973), pp 177–188.

[27] H. Rabitz, S. H. Lam, Rotational energy relaxation in molecular hydrogen, J. Chem. Phys., 63,
(1975), pp 3532–3542.

27



[28] S.M. Karim and L. Rosenhead, The second coefficient of viscosity of Liquids and gases, Reviews
of Modern Physics, 24, (1952), pp 108–116.

[29] G. Emanuel, Bulk viscosity of a dilute polyatomic gas, Phys. Fluids, A, 2, (1990), pp 2252–2254.

[30] G. Emanuel, Effect of bulk viscosity on a hypersonic boundary layer Phys. Fluids, A, 4, (1992),
pp 491–495.

[31] R. E. Graves and B. Argrow, Bulk viscosity : past to present, Journal of Thermophysics and Heat
Transfer, 13, (1999), pp 337–342.

[32] G. Billet, V. Giovangigli, and G. de Gassowski, Impact of Volume Viscosity on a Shock/Hydrogen
Bubble Interaction, Comb. Theory Mod., 12, (2008), pp. 221–248.

[33] A. Ern and V. Giovangigli, Multicomponent transport algorithms, Lectures Notes in Physics Mono-
graphs M24, Berlin: Springer Verlag, 1994.

[34] A. Ern and V. Giovangigli, Volume viscosity of dilute polyatomic gas mixtures, Eur. J. Mech. B:
Fluids 14, 653–669 (1995).

[35] F. Esposito, C. Gorse and M. Capitelli, Quasi-classical dynamics calculations and state-selected
rate coefficients for H + H2(v, j)→ 3H processes: application to the global dissociation rate under
thermal conditions, Chem. Phys. Lett. 303, 636–640 (1999).

[36] F. Esposito and M. Capitelli, Dynamical calculations of state-to-state and dissociation cross sec-
tions for atom-molecule collision processes in hydrogen, At. Plasma-Mater. Interact. Data Fusion
9, 65–73 (2001).

[37] F. Esposito and M. Capitelli, Quasiclassical trajectory calculations of vibrationally specific dis-
sociation cross-sections and rate constants for the reaction O + O2(v) → 3O, Chem. Phys. Lett.
364, 180–187 (2002).

[38] F. Esposito and M. Capitelli, QCT calculations for the process N2(v) + N → N2(v′) + N in the
whole vibrational range, Chem. Phys. Lett. 418, 581–585 (2006).

[39] F. Esposito and M. Capitelli, Selective Vibrational Pumping of Molecular Hydrogen via Gas Phase
Atomic Recombination, J. Phys. Chem. A 113, 15307–15314 (2009).

[40] A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, A refined H3 potential energy
surface, J. Chem. Phys. 104, 7139–7152 (1996).

[41] D. G. Truhlar and C. J. Horowitz, Functional representation of Liu and Siegbahn’s accurate ab
initio potential energy calculations for H + H2, J. Chem. Phys. 68, 2466–2476 (1978).

[42] P. G. Martin, D. H. Schwarz and M. E. Mandy, Master Equation Studies of the Collisional Exci-
tation and Dissociation of H2 Molecules by H Atoms, Astrophys. J. 461, 265–281 (1996).

[43] http://users.ba.cnr.it/imip/cscpal38/phys4entry/index.html.

[44] M. Capitelli, M. Cacciatore, R. Celiberto, O. De Pascale, P. Diomede, F. Esposito, A. Gicquel, C.
Gorse, K. Hassouni, A. Laricchiuta, S. Longo, D. Pagano, and M. Rutigliano, Vibrational kinetics,
electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production:
modelling aspects, Nucl. Fusion 46, S260–S274 (2006).

[45] A. Laricchiuta, R. Celiberto, F. Esposito and M. Capitelli, State-to-state cross sections for H2

and its isotopic variants, Plasma Sources Sci. Tech. 15, S62–S66 (2006).

[46] J. R. Stallcop, H. Partridge, H. Levin, H−H2 collision integrals and transport coefficients, Chem.
Phys. Lett. 254, 25–31 (1996).

[47] A. Ern and V. Giovangigli, The structure of transport linear systems in dilute isotropic gas mix-
tures, Phys. Rev. E 53, 485–492 (1996).

[48] A. Ern and V. Giovangigli, Fast and Accurate Multicomponent Property Evaluations, J. Comp.
Physics 120, 105–116 (1995).

28



[49] A. Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent
transport, Lin. Alg. Appl. 250, 289–315 (1997).

29


