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Abstract

We present explicit formulas for the Faddeev eigenfunctions and related gen-
eralized scattering data for multipoint potentials in two and three dimensions.
For single point potentials in 3D such formulas were obtained in an old unpub-
lished work of L.D. Faddeev. For single point potentials in 2D such formulas
were given recently in [10].

1 Introduction

Consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d = 2, 3, (1.1)

where v(x) is a real-valued sufficiently regular function on Rd with sufficient decay at
infinity.
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Mathématiques Appliquées of École Polytechnique in October 2012. The work was also partially
supported by the Russian Federation Government grant No 2010-220-01-077. The first author was
also partially supported by Russian Foundation for Basic Research grant 11-01-12067-ofi-m-2011, and
by the program “Fundamental problems of nonlinear dynamics” of the Presidium of RAS. The second
author was also partially supported by FCP Kadry No. 14.A18.21.0866.

†Landau Institute of Theoretical Physics, Kosygin street 2, 117940 Moscow, Russia; Moscow
State University, Moscow, Russia; Moscow Physical-Technical Institute, Dolgoprudny, Russia; e-mail:
pgg@landau.ac.ru
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Let us recall that the classical scattering eigenfunctions ψ+ for (1.1) are specified
by the following asymptotics as |x| → ∞:

ψ+ = eikx − iπ
√
2πe−

iπ
4 f

(
k, |k| x

|x|

)
ei|k||x|√
|k||x|

+ o

(
1√
|x|

)
, d = 2, (1.2)

ψ+ = eikx − 2π2f

(
k, |k| x

|x|

)
ei|k||x|

|x|
+ o

(
1

|x|

)
, d = 3, (1.3)

x ∈ Rd, k ∈ Rd, k2 = E > 0, where a priori unknown function f(k, l), k, l ∈ Rd,
k2 = l2 = E, arising in (1.2), (1.3), is the classical scattering amplitude for (1.1). In
addition, we consider the Faddeev eigenfunctions ψ for (1.1) specified by

ψ = eikx (1 + o(1)) as |x| → ∞, (1.4)

x ∈ Rd, k ∈ Cd, Im k 6= 0, k2 = k21 + . . . + k2d = E; see [5], [13], [8]. The generalized
scattering data arise in more precise version of the expansion (1.4) (see also formulas
(2.3)-(2.8)). The Faddeev eigenfunctions have very rich analytical properties and are
quite important for inverse scattering (see, for example, [6], [12], [8]).

In the present article we consider equation (1.1), where v(x) is a finite sum of point
potentials in two or three dimensions (see [4], [1] and references therein). We will write
these potentials as:

v(x) =
n∑

j=1

εjδ(x− zj), (1.5)

but the precise sense of these potentials will be specified below (see Section 3) and,
strictly speaking, δ(x) is not the standard Dirac delta-function (in the physical litera-
ture the term renormalized δ-function is used).

It is known that for these multipoint potentials the classical scattering eigenfunc-
tions ψ+ and the related scattering amplitude f can be naturally defined and can be
given by explicit formulas (see [1] and references therein). In addition, for single point
potentials explicit formulas for the Faddeev eigenfunctions ψ and related generalized
scattering amplitude h were obtained in an old unpublished work by L.D. Faddeev for
d = 3 and in [10] for d = 2.

In the present article we give explicit formulas for the Faddeev functions ψ and h for
multipoint potentials in the general case for real energies in two and three dimensions
(see Theorem 3.1 from the Section 3). Let us point out that our formulas for ψ and h
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involve the values of the Faddeev Green function G for the Helmholtz equation, where

G(x, k) = − 1

(2π)d
eikx

∫
Rd

eiξx

ξ2 + 2kξ
dξ, (1.6)

(∆ + k2)G(x, k) = δ(x), x ∈ Rd, k ∈ Cd, Im k 6= 0. (1.7)

In the present article we consider G(x, k) as some known special function.
In addition, basic formulas and equations of monochromatic inverse scattering, de-

rived for sufficiently regular potentials v, remain valid for the Faddeev functions ψ
and h of Theorem 3.1. Thus, basic formulas and equations of monochromatic inverse
scattering are illustrated by explicit examples related to multipoint potentials. We
think that the results of the present work can be used, in particular, for testing differ-
ent monochromatic inverse scattering algorithms based on properties of the Faddeev
functions ψ and h (see [2] as a work in this direction).

It it interesting to note also that explicit formulas for ψ and h for multipoint poten-
tials show new qualitative effects in comparison with the one-point case. In particular,
the Faddeev eigenfunctions for 2-point potentials in 3D may have singularities for real
momenta k, in contrast with the one-point potentials in 3D (see Statement 3.1).

Besides, functions ψ and h of Theorem 3.1 for d = 2 illustrate a very rich family
of 2D potentials with spectral singularities in the complex domain. Let us recall that
monochromatic 2D inverse scattering is well-developed only under the assumption that
such singularities are absent at fixed energy (see [11]and [10] for additional discussion
in this connection). We hope that the aforementioned examples and quite different
examples from [7], [16] will help to find correct analytic formulation of monochromatic
inverse scattering in two dimensions in the presence of spectral singularities.

2 Some preliminaries

It is convenient to write
ψ = eikxµ, (2.1)

where ψ solves (1.1), (1.4) and µ solves

−∆µ− 2ik∇µ+ v(x)µ = 0, k ∈ Cd, k2 = E. (2.2)

In addition, to relate eigenfunctions and scattering data it is convenient to use the
following presentations, used, for example, in [15] for regular potentials:
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µ+(x, k) = 1−
∫
Rd

eiξxF (k,−ξ)
ξ2 + 2(k + i0k)ξ

dξ, k ∈ Rd\0, (2.3)

µγ(x, k) = 1−
∫
Rd

eiξxHγ(k,−ξ)
ξ2 + 2(k + i0γ)ξ

dξ, k ∈ Rd\0, γ ∈ Sd−1, (2.4)

µ(x, k) = 1−
∫
Rd

eiξxH(k,−ξ)
ξ2 + 2kξ

dξ, k ∈ Cd, Im k 6= 0, (2.5)

where ψ+ = eikxµ+ are the eigenfunctions specified by (1.2), (1.3), ψ = eikxµ are the
eigenfunctions specified by (1.4), µγ(x, k) = µ(x, k + i0γ), k ∈ Rd\0.

The following formulas hold:

f(k, l) = F (k, k − l), k, l ∈ Rd, k2 = l2 = E > 0, (2.6)

hγ(k, l) = Hγ(k, k − l), k, l ∈ Rd, k2 = l2 = E > 0, γ ∈ Sd−1, (2.7)

h(k, l) = H(k, k − l), k, l ∈ Cd, Im k = Im l 6= 0, k2 = l2 = E, (2.8)

where f is the classical scattering amplitude of (1.2), (1.3), hγ, h are the Faddeev
generalized scattering data of [6].

We recall also that for regular real-valued potentials the following formulas hold (at
least outside of the singularities of the Faddeev functions in spectral parameter k):

∂

∂k̄j
ψ(x, k) = −2π

∫
Rd

ξjH(k,−ξ)ψ(x, k + ξ)δ(ξ2 + 2kξ)dξ, (2.9)

∂

∂k̄j
H(k, p) = −2π

∫
Rd

ξjH(k,−ξ)H(k + ξ, p+ ξ)δ(ξ2 + 2kξ)dξ, (2.10)

j = 1, . . . , d, k ∈ Cd\Rd, x, p ∈ Rd,

ψγ(x, k) = ψ+(x, k) + 2πi

∫
Rd

hγ(k, ξ)θ((ξ − k)γ)δ(ξ2 − k2)ψ+(x, ξ)dξ, (2.11)

hγ(k, l) = f(k, l) + 2πi

∫
Rd

hγ(k, ξ)θ((ξ − k)γ)δ(ξ2 − k2)f(ξ, l)dξ, (2.12)
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γ ∈ Sd−1, x, k, l ∈ Rd, k2 = l2,
where δ(t) is the Dirac δ-function, θ(t) is the Heaviside step function;

µ(x, k) → 1 for |k| → ∞, x ∈ Rd, (2.13)

H(k, p) → 1

(2π)d

∫
Rd

v(x)eipxdx for |k| → ∞, p ∈ Rd, (2.14)

|k| =
√

|Re k|2 + | Im k|2,

see [6], [3], [12] and references therein.
Let us define the following varieties:

ΣE = {k ∈ Cd : k2 = E}, (2.15)

ΩE,p = {k ∈ ΣE : 2kp = p2},
{
p = 0 for d = 2,
p ∈ R3 for d = 3,

(2.16)

ΩE = {k ∈ ΣE, p ∈ Rd : 2kp = p2}, (2.17)

ΘE = {k, l ∈ Cd : Im k = Im l, k2 = l2 = E}. (2.18)

Note that in the present article we consider the Faddeev functions ψ, H, h and ψγ,
Hγ, hγ for multipoint potentials for fixed real energies E only, for simplicity. In this
connection we consider

ψ on Rd × (ΣE\ReΣE), H on ΩE\ReΩE, h on ΘE\ReΘE,

ψγ(x, k), Hγ(k, p), hγ(k, l) for

γ ∈ Sd−1, x, k, p, l ∈ Rd, p2 = 2kp, k2 = l2 = E, kγ = 0.

In addition, we also consider the forms

∂̄kψ =
d∑

j=1

∂

∂k̄j
ψ(x, k)dk̄j, ∂̄kH =

d∑
j=1

∂

∂k̄j
H(k, p)dk̄j,

on the varieties ΣE, ΩE,p, respectively, where the ∂/∂k̄j derivatives of µ, H are given
by (2.9), (2.10).

In addition, we recall that formulas (2.9)-(2.14) give a basis for monochromatic
inverse scattering for regular potentials in two and three dimensions, see [3], [8], [9],
[11], [12], [13], [14], [15].
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3 Main results

By analogy with [4] we understand the multipoint potentials v(x) from (1.5) as a limit
for N → +∞ of non-local potentials

VN(x, x
′) =

n∑
j=1

εj(N)uj,N(x)uj,N(x
′), (3.1)

where

(VN ◦ µ)(x) =
n∑

j=1

εj(N)

∫
Rd

uj,N(x)uj,N(x
′)µ(x′)dx′, (3.2)

uj,N(x) =
1

(2π)d

∫
Rd

ûj,N(ξ)e
iξxdξ, ûj,N(ξ) =

{
e−iξzj |ξ| ≤ N,

0 |ξ| > N,
(3.3)

x, x′, zj ∈ Rd, zm 6= zj for m 6= j, εj(N) are normalizing constant specified by (3.15)
for d = 3 and (3.16) for d = 2. It is clear that

uj,N(x) = u0,N(x− zj), where û0,N(ξ) =

{
1 |ξ| ≤ N,

0 |ξ| > N.

For v = VN equation (2.2) has the following explicit Faddeev solutions:

µN(x, k) = 1 +
1

(2π)d

∫
Rd

µ̃N(ξ, k)e
iξxdξ, (3.4)

µ̃N(ξ, k) = −

n∑
j=1

cj,N(k)ûj,N(ξ)

ξ2 + 2kξ
, (3.5)

x ∈ Rd, ξ ∈ Rd, k ∈ Cd, Im k 6= 0, where cN(k) = (c1,N(k), . . . , cn,N(k)) is the solution
of the following linear equation:

AN(k)cN(k) = bN , (3.6)

where AN(k) is the n× n matrix and bN is the n-component vector with the following
elements:

Am,j,N(k) = δm,j + εm(N)
1

(2π)d

∫
Rd

ûm,N(−ξ)ûj,N(ξ)
ξ2 + 2kξ

dξ, (3.7)
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bm,N = εm(N). (3.8)

In addition, equation (2.2) has the following classical scattering solutions:

µ+
N(x, k) = µN(x, k + i0k), x ∈ Rd, k ∈ Rd\0, (3.9)

arising from
µ̃+
N(ξ, k) = µ̃N(ξ, k + i0k), ξ ∈ Rd, k ∈ Rd\0. (3.10)

Let us consider the following Green functions for the operator ∆ + 2ik∇:

g(x, k) = − 1

(2π)d

∫
Rd

eiξx

ξ2 + 2kξ
dξ, x ∈ Rd k ∈ Cd, Im k 6= 0, (3.11)

gγ(x, k) = − 1

(2π)d

∫
Rd

eiξx

ξ2 + 2(k + i0γ)ξ
dξ, x ∈ Rd k ∈ Rd\0, γ ∈ Sd−1, (3.12)

g+(x, k) = − 1

(2π)d

∫
Rd

eiξx

ξ2 + 2(k + i0k)ξ
dξ, x ∈ Rd k ∈ Rd\0. (3.13)

One can see that G(x, k) = eikxg(x, k), where G(x, k) was defined by (1.6). Note also
that for d = 3 the Green function g+(x, k) can be calculated explicitly:

g+(x, k) = − 1

4π

e−ikxei|k||x|

|x|
. (3.14)

Theorem 3.1 Let d=2, 3,

εj(N) = αj

(
1− αjN

2π2

)−1

, αj ∈ R, j = 1, . . . , n, for d = 3, (3.15)

εj(N) = αj

(
1− αj

2π
ln(N)

)−1

, αj ∈ R, j = 1, . . . , n, for d = 2, (3.16)

Then:

1. The limiting eigenfunctions

ψ(x, k) = eikx lim
N→+∞

µN(x, k), x ∈ Rd, k ∈ Cd\Rd, k2 = E ∈ R, (3.17)

are well-defined (at least outside the spectral singularities).
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2. The following formulas hold:

ψ(x, k) = eikx

[
1 +

n∑
j=1

cj(k)g(x− zj, k)

]
, k ∈ Cd\Rd, k2 = E ∈ R, (3.18)

where c(k) = (c1(k), . . . , cn(k)) is the solution of the following linear equation:

Ã(k)c(k) = b̃(k), (3.19)

where Ã(k) is the n×n matrix, b̃(k) is the n-component vector with the following
elements for d = 3:

Ãm,j(k) =

{
1, m = j

−αm

(
1− αm

4π
| Im k|

)−1
g(zm − zj, k), m 6= j,

(3.20)

b̃m(k) = αm

(
1− αm

4π
| Im k|

)−1

; (3.21)

and with the following elements for d = 2:

Ãm,j(k) =

{
1, m = j

−αm

(
1− αm

2π
(ln(|Re k|+ | Im k|)

)−1
g(zm − zj, k), m 6= j,

(3.22)

b̃m(k) = αm

(
1− αm

2π
(ln(|Re k|+ | Im k|)

)−1

. (3.23)

In addition, for limiting values of ψ the following formulas hold:

ψγ(x, k) = ψ(x, k + i0γ) = eikx

[
1 +

n∑
j=1

cγ,j(k)gγ(x− zj, k)

]
, (3.24)

x ∈ Rd, k ∈ Rd\0, γ ∈ Sd−1, kγ = 0,

where cγ(k) = (cγ,1(k), . . . , cγ,n(k)) is the solution of the following linear equation:

Ãγ(k)cγ(k) = b̃γ(k), (3.25)

where
Ãγ(k) = Ã(k + i0γ), b̃γ(k) = b̃(k + i0γ). (3.26)
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3. The Faddeev generalized scattering data for the limiting potential v = lim
N→+∞

VN ,

associated with the limiting eigenfunctions ψ, ψγ, are given by:

h(k, l) =
1

(2π)d

n∑
j=1

cj(k)e
i(k−l)zj , (3.27)

k, l ∈ C3, Im k = Im l 6= 0, k2 = l2 = E ∈ R,

where cj(k) are the same as in (3.18), (3.19);

hγ(k, l) =
1

(2π)d

n∑
j=1

cγ,j(k)e
i(k−l)zj , (3.28)

k, l ∈ Rd\0, k2 = l2 = E, γ ∈ Sd−1, kγ = 0,

where cγ,j(k) are the same as in (3.24), (3.25).

Note that if ‖b̃(k)‖ = ∞ then we understand (3.18)-(3.26) as (4.9), (4.11)-(4.13),
(4.23), (4.25)-(4.27).

Remark 3.1 Let the assumptions of Theorem 3.1 be fulfilled. Then:

1. For the classical scattering eigenfunctions ψ+ the following formulas hold:

ψ+(x, k) = eikx

[
1 +

n∑
j=1

c+j (k)g
+(x− zj, k)

]
, (3.29)

where c+(k) = (c+1 (k), . . . , c
+
n (k)) is the solution of the following linear equation:

Ã+(k)c+(k) = b̃+(k), (3.30)

where Ã+(k) is the n × n matrix, and b̃+(k) is the n-component vector with the
following elements for d = 3:

Ã+
m,j(k) =

{
1 m = j

−αm

(
1 + iαm

4π
|k|
)−1

g+(zm − zj, k), m 6= j,
(3.31)

b̃+m(k) = αm

(
1 +

iαm

4π
|k|
)−1

; (3.32)
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and with the following elements for d = 2:

Ã+
m,j(k) =

{
1 m = j

−αm

(
1 + αm

4π
(πi− 2 ln |k|)

)−1
g+(zm − zj, k), m 6= j,

(3.33)

b̃+m(k) = αm

(
1 +

αm

4π
(πi− 2 ln |k|)

)−1

; (3.34)

2. For the classical scattering amplitude f the following formula holds:

f(k, l) =
1

(2π)d

n∑
j=1

c+j (k)e
i(k−l)zj , (3.35)

k, l ∈ Rd, k2 = l2 = E ∈ R,

where c+j (k) are the same as in (3.29), (3.30). In a slightly different form for-
mulas (3.29) - (3.35) are contained in Section II.1.5 and Chapter II.4 of [1]. In
addition, the classical scattering functions ψ+ and f for d = 3 are expressed in
terms of elementary functions via (3.29)- (3.35).

Proposition 3.1 Formulas (2.9),(2.10) in terms of ∂̄kµ, ∂̄kH, on ΣE, ΩE,p, formulas
(2.11), (2.12) with kγ = 0 and formula (2.13) for | Im k| → ∞ are fulfilled for functions
ψ = eikxµ, ψγ, ψ

+, h, hγ of Theorem 3.1, at least for x 6= zj, j = 1, . . . , n.

Statement 3.1 Let d = 3, n = 2, E = Efix > 0. Then for appropriate α1, α2 ∈ R\0,
z1, z2 ∈ R3 there are real spectral singularities k = k′ + i0γ′ with γ′ ∈ S2, k′ ∈ R3,
(k′)2 = Efix, k

′γ′ = 0, of the Faddeev functions ψ, h of Theorem 3.1.

Remark 3.2 In connection with Statement 3.1, note that for the case d = 3, n = 1,
studied in the old unpublished work of Faddeev, there are no real spectral singularities
of the Faddeev functions ψ, h. In addition, in [10] it was shown that for the case d = 2,
n = 1, α ∈ R\0 the Faddeev functions always have some real spectral singularities (see
Statement 3.1 of [10] for details).

Let us recall that dimCΣE = 1, dimR ΣE = 2 for d = 2. In addition, it is known
that for a fixed real energy E = Efix the spectral singularities of ψ and H on ΣE\ReΣE

are zeroes of a real-valued determinant function (for real potentials). Thus, one can
expect that these spectral singularities on ΣEfix

for generic real potentials are either
empty or form a family of curves Γj, j = ±1,±2, . . . ± J . The problem of studying
the geometry of these spectral singularities on ΣEfix

was formulated already in [11].
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In addition, it was expected in [11] that the most natural configuration of curves is a
“nest”

[Γ−J ⊂ Γ−J+1 ⊂ . . . ⊂ Γ−1 ⊂ S1 ⊂ Γ1 ⊂ . . . ⊂ ΓJ ], (3.36)

see [11] for details.
Figures Fig. 1–Fig. 4 show these spectral singularities for 2-point potentials for

some interesting cases. These figures show that the geometry of the singular curves Γj

may be different from the “nest”.

Fig. 1
E = 4, z2 − z1 = (0.5 , 0),

α1 = 5, α2 = 6

Fig. 2
E = 6, z2 − z1 = (0.5 , 0),

α1 = 5, α2 = 6

Fig. 3
E = 5, z2 − z1 = (10 , 0),

α1 = 6, α2 = 6

Fig. 4
E = 5, z2 − z1 = (10 , 0),

α1 = 6, α2 = 6.8

In Figures 1-4 the surface ΣE is shown as C\0 with the coordinate λ, where the
parametrization of ΣE is given by the formulas:

k1 =

(
1

λ
+ λ

) √
E

2
, k2 =

(
1

λ
− λ

)
i
√
E

2
, λ ∈ C\0. (3.37)
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The coordinate axes Imλ = 0, Reλ = 0 and the unit circle |λ| = 1 in C are shown
in bold. This unit circle corresponds to ΣE ∩ R2, i.e. to real (physical) momenta
k = (k1, k2). The other black sets inside the rectangles in Figures 1-4 show singular
curves Γj.

4 Sketch of proofs

To prove Theorem 3.1 we proceed from formulas (3.3)-(3.8). We rewrite (3.6) as(
I + Λ−1

N (k)BN(k)
)
cN(k) = Λ−1

N (k) bN , (4.1)

where ΛN(k) and BN(k) are the diagonal and off-diagonal parts of AN(k), respectively.
One can see that

(Λ−1
N (k) bN)m =

εm(N)

1 + εm(N) 1
(2π)d

∫
Rd

ûm,N (−ξ)ûm,N (ξ)

ξ2+2kξ
dξ
, (4.2)

(Λ−1
N (k)BN(k))m,j = (1− δm,j)

εm(N) 1
(2π)d

∫
Rd

ûm,N (−ξ)ûj,N (ξ)

ξ2+2kξ
dξ

1 + εm(N) 1
(2π)d

∫
Rd

ûm,N (−ξ)ûm,N (ξ)

ξ2+2kξ
dξ
. (4.3)

In addition, for N → +∞:

1

(2π)d

∫
Rd

ûm,N(−ξ)ûj,N(ξ)
ξ2 + 2kξ

dξ → −g(zm − zj, k), j 6= m, for d = 2, 3, (4.4)

εm(N)
1

(2π)d

∫
Rd

ûm,N(−ξ)ûm,N(ξ)

ξ2 + 2kξ
dξ → αm

1− αm

4π
| Im k|

for d = 3, (4.5)

εm(N)
1

(2π)d

∫
Rd

ûm,N(−ξ)ûm,N(ξ)

ξ2 + 2kξ
dξ → αm

1− αm

2π
(ln(|Re k|+ | Im k|)

for d = 2, (4.6)

k ∈ Cd\Rd, k2 = E ∈ R.
One can see that (4.4) follows from (3.11) and the definition of ûj,N in (3.3). In

turn, formulas (4.5), (4.6) follow from (3.15), (3.16), the definition of ûj,N and the
following asymptotic formulas for N → +∞:∫

ξ∈Rd, |ξ|≤N

eiξx

ξ2 + 2kξ
dξ = 4πN − 2π2| Im k|+O(N−1) for d = 3, (4.7)
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∫
ξ∈Rd, |ξ|≤N

eiξx

ξ2 + 2kξ
dξ = 2π lnN − 2π ln(|Re k|+ | Im k|) +O(N−1) for d = 2, (4.8)

where k ∈ Cd\Rd, k2 = E ∈ R.
Formulas (3.17)-(3.23) follow from (3.3)-(3.5), (4.1)-(4.6).
Formulas (3.24)-(3.26) follow from (3.18)-(3.23).
Formulas (3.27)-(3.28) follow from the relations ψ = eikxµ, ψγ = eikxµγ, and for-

mulas (2.4), (2.5), (2.7), (2.8), (3.11),(3.12), (3.18), (3.24).
This completes the sketch of proof of Theorem 3.1.
To prove Proposition 3.1 we rewrite (3.18)-(3.23), (3.27) in the following form:

ψ(x, k) = eikx +
n∑

j=1

Cj(k)G(x− zj, k), (4.9)

H(k, p) =
1

(2π)d

n∑
j=1

Cj(k)e−ikzjeipzj , (4.10)

AC = B, (4.11)

Am,m(k) = α−1
m − (4π)−1| Im k|, d = 3,

Am,m(k) = α−1
m − (2π)−1 ln(|Re k|+ | Im k|), d = 2, (4.12)

Am,j(k) = −G(zm − zj, k), m 6= j,

Bm(k) = eikzm , (4.13)

where k ∈ Cd\Rd, k2 = E ∈ R, p ∈ Rd, p2 = 2kp, G is defined by (1.6).
Here

Cj(k) = eikzjcj(k).

We recall the formulas (see [12])

∂

∂k̄j
G(x, k) = − 1

(2π)d−1

∫
Rd

ξje
i(k+ξ)xδ(ξ2 + 2kξ)dξ, j = 1, . . . , d. (4.14)

G(x, k + ξ) = G(x, k), for ξ ∈ Rd, ξ2 + 2kξ = 0, (4.15)

where k ∈ Cd\Rd.
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We will use also the following formula:

∂̄kAm,m(k) =
1

(2π)d−1

∫
Rd

(
d∑

j=1

ξjdk̄j

)
δ(ξ2 + 2kξ) dξ on ΣE\ReΣE, E ∈ R. (4.16)

The proof of the ∂̄-equation (2.9) for ∂̄kψ(x, k) on ΣE\ReΣE can be sketched as
formulas (4.17)-(4.22) on ΣE\ReΣE as follows.

We have

∂̄kψ(x, k) =
n∑

j=1

Cj(k)(∂̄kG(x− zj, k)) +
n∑

j=1

(∂̄kCj(k))G(x− zj, k). (4.17)

Using (4.10), (4.14) one can see that:

n∑
j=1

Cj(k)(∂̄kG(x−zj, k)) = −2π

∫
Rd

(
d∑

s=1

ξsdk̄s

)
H(k,−ξ)ei(k+ξ)xδ(ξ2+2kξ)dξ. (4.18)

Taking into account (4.9), (4.10), (4.17), (4.18) one can see that to prove equation (2.9)
it is sufficient to verify the following ∂̄ equation:

∂̄kCm(k) = −(2π)d−1

∫
Rd

(
d∑

s=1

ξsdk̄s

)[
n∑

j=1

Cj(k)e−i(k+ξ)zjCj(k + ξ)

]
δ(ξ2 + 2kξ)dξ.

(4.19)
In turn, (4.19) follows form the following formulas:

(∂̄kC)A+ C (∂̄kA) = 0, (4.20)

∂̄kAm,j(k) =
1

(2π)d−1

∫
Rd

(
d∑

s=1

ξsdk̄s

)
ei(k+ξ)zme−i(k+ξ)zjδ(ξ2 + 2kξ)dξ, (4.21)

(A−1∂̄kA)m,j(k) =
1

(2π)d−1

∫
Rd

(
d∑

s=1

ξsdk̄s

)
Cm(k + ξ)e−i(k+ξ)zjδ(ξ2 + 2kξ)dξ. (4.22)

The ∂̄-equation (2.10) for ∂̄kH on ΣE\ReΣE follows from formula (2.5) and the
∂̄-equation (2.9) for ∂̄kψ on ΣE\ReΣE.

To verify (2.11) with kγ = 0 we rewrite (3.24)-(3.26), (3.28) and (3.29)-(3.35) in a
similar way with (4.9)-(4.13):
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ψγ(x, k) = eikx +
n∑

j=1

Cγ,j(k)Gγ(x− zj, k), (4.23)

hγ(k, l) =
1

(2π)d

n∑
j=1

Cγ,j(k)e−ilzj , (4.24)

Aγ Cγ = Bγ, (4.25)

Aγ,m,m(k) = α−1
m , d = 3,

Aγ,m,m(k) = α−1
m − (2π)−1 ln(|k|), d = 2, (4.26)

Aγ,m,j(k) = −Gγ(zm − zj, k), m 6= j,

Bγ,m(k) = eikzm , (4.27)

where γ ∈ Sd−1, k, l ∈ Rd\0, kγ = 0, Gγ(x, k) = G(x, k + i0γ);

ψ+(x, k) = eikx +
n∑

j=1

C+
j (k)G

+(x− zj, k), (4.28)

f(k, l) =
1

(2π)d

n∑
j=1

C+
j (k)e

−ilzj , (4.29)

A+ C+ = B+, (4.30)

A+
m,m(k) = α−1

m + i(4π)−1|k|, d = 3,

A+
m,m(k) = α−1

m + (4π)−1(πi− 2 ln(|k|)), d = 2, (4.31)

A+
m,j(k) = −G+(zm − zj, k), m 6= j,

B+
m(k) = eikzm , (4.32)

where k, l ∈ Rd\0.
We recall the formula (see [6], [12]):

Gγ(x, k) = G+(x, k) +
2πi

(2π)d

∫
ξ∈Rd

eiξxδ(ξ2 − k2)θ((ξ − k)γ)dξ, (4.33)

where γ ∈ Sd−1, k ∈ Rd\0.
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We will use also the following formula:

Aγ,m,m(k) = A+
m,m(k)−

2πi

(2π)d

∫
ξ∈Rd

δ(ξ2 − k2)θ(ξγ)dξ, (4.34)

where γ ∈ Sd−1, k ∈ Rd\0, kγ = 0.
One can see that for ψγ, ψ

+ of (4.23), (4.28) relation (2.11) with kγ = 0 is reduced
to the following two relations:

n∑
j=1

Cγ,j(k)
(
Gγ(x− zj, k)−G+(x− zj, k)

)
= (4.35)

= 2πi

∫
Rd

hγ(k, ξ)e
iξxδ(ξ2 − k2)θ(ξγ)dξ,

Cγ,j(k) = C+
j (k) + 2πi

∫
Rd

hγ(k, ξ)δ(ξ
2 − k2)θ(ξγ)C+

j (ξ)dξ, (4.36)

where γ ∈ Sd−1, k ∈ Rd\0, kγ = 0.
Relation (4.35) follows from (4.33) and (4.24). Relation (4.36) follows from the

following relations
(I + (A+)−1(Aγ −A+))Cγ = C+, (4.37)

(Aγ(k)−A+(k))m,j = − 2πi

(2π)d

∫
ξ∈Rd

eiξ(zm−zj)δ(ξ2 − k2)θ(ξγ)dξ, (4.38)

[(A+(k))−1(Aγ(k)−A+(k))]m,j = − 2πi

(2π)d

∫
ξ∈Rd

C+
m(ξ)e

−iξzjδ(ξ2 − k2)θ(ξγ)dξ, (4.39)

and formula (4.24) for hγ.
This completes the sketch of proof of the relation (2.11).
Relation (2.12) can be obtained using (2.3), (2.4), (2.6), (2.7), (2.11).
Formula (2.13) for | Im k| → ∞ can be obtained using (3.18)-(3.23).
Sketch of proof of Proposition 3.1 is completed.
To prove Statement 3.1 we point out that spectral singularities of ψ, h on ΣE,

E ∈ R, coincide with the zeroes of detA(k), where A(k) is defined by (4.12) (we can
always assume that all αm 6= 0). For d = 3, n = 2 we have that

detA(k) =

[
1

α1

− | Im k|
4π

]
·
[
1

α2

− | Im k|
4π

]
−G(z1 − z2, k) ·G(z2 − z1, k). (4.40)
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We recall that G(x, k) is real-valued (see [12]) or, more precisely,

G(x, k) = G(x, k), k ∈ ΣE\ReΣE, E ∈ R. (4.41)

For k = k′ + i0γ′ of Statement 3.1 formulas (4.40), (4.41) take the form:

detA(k′ + i0γ′) =
1

α1α2

−Gγ′(z1 − z2, k
′) ·Gγ′(z2 − z1, k

′). (4.42)

Gγ′(x, k′) = Gγ′(x, k′). (4.43)

Therefore, for z1, z2 such that Gγ′(z1 − z2, k
′) · Gγ′(z2 − z1, k

′) 6= 0 one can always
choose α1, α2 ∈ R such that detA(k′ + i0γ′) = 0.

Statement 3.1 is proved.
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