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Abstract. We prove approximate Lipschitz stability for non-overdetermined inverse
scattering at fixed energy with incomplete data in dimension d ≥ 2. Our estimates are
given in uniform norm for coefficient difference and related stability precision efficiently
increases with increasing energy and coefficient difference regularity. In addition, our
estimates are rather optimal even in the Born approximation.

1. Introduction
We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (1.1)

where
v is real− valued, v ∈ L∞σ (R

d) for some σ > d, (1.2)

where
L∞σ (R

d) = {u ∈ L∞(Rd) : kukσ < +∞},
kukσ = ess sup

x∈Rd

(1 + |x|)σ|u(x)|, σ ≥ 0. (1.3)

For equation (1.1) we consider the scattering amplitude f onME ,

ME = {k ∈ Rd, l ∈ Rd : k2 = l2 = E}, E > 0. (1.4)

For definitions of the scattering amplitude, see formula (1.5) below and, for example,
reviews given in [F2], [FM]. The scattering amplitude f arises, in particular, as a coefficient
with scattered spherical wave ei|k||x|/|x|(d−1)/2 in the asymptotics of the wave solutions
ψ+(x, k) describing scattering of incident plan wave eikx for equation (1.1):

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2 f(k, |k|
x

|x|) + o
¡ 1

|x|(d−1)/2
¢
as |x|→∞, (1.5)

where x ∈ Rd, k ∈ Rd, k2 = E, c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2.
Given v, to determine f one can use, in particular, the Lippmann-Schwinger integral

equation

ψ+(x, k) = eikx +

Z
Rd

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −
µ
1

2π

¶d Z
Rd

eiξxdξ

ξ2 − k2 − i0
,

(1.6)
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and the formula

f(k, l) =

µ
1

2π

¶d Z
Rd

e−ilyv(y)ψ+(y, k)dy, (1.7)

where x, k, l ∈ Rd, k2 = l2 = E; see, for example, [BS], [F2].
In the present work, in addition to f onME, we consider f

¯̄
ΓE
and f

¯̄
Γτ
E

, where

ΓE = {k =
p

2
+ ηE(p), l = −

p

2
+ ηE(p) : p ∈ B2√E},

ΓτE = {k =
p

2
+ ηE(p), l = −

p

2
+ ηE(p) : p ∈ B2τ√E},

(1.8)

Br = {p ∈ Rd : |p| ≤ r}, r > 0, (1.9)

where E > 0, τ ∈]0, 1], ηE is a piecewise continuous vector-function of p ∈ B2√E such that

ηE(p)p = 0,
p2

4
+ (ηE(p))

2 = E, p ∈ B2√E . (1.10)

Note that
ΓτE ⊆ ΓE ⊂ME ,

dimME = 2d− 2, dimΓτE = dimΓE = d,
(1.11)

where E > 0, τ ∈]0, 1], d ≥ 2.
We consider the following inverse scattering problems for equation (1.1) under as-

sumptions (1.2):

Problem 1.1. Given f onME at fixed E > 0, find v on Rd (at least approximately).

Problem 1.2. Given f on ΓτE at fixed E > 0, τ ∈]0, 1], find v on Rd (at least
approximately).

Using (1.11) one can see that Problem 1.1 is overdetermined for d ≥ 3, whereas
Problem 1.2 is non-overdetermined.

There are many important results on Problem 1.1, see [ABR], [B], [BAR], [E], [ER2],
[F1], [G], [HH], [HN], [I], [IN2], [N1]-[N5], [S1], [VW], [W], [WY] and references therein.
On the other hand, to our knowledge, Problem 1.2 was not yet considered explicitly in the
literature. Concerning known results for some other non-overdetermined multi-dimensional
coefficient inverse problems, see [BK], [ER1], [HN], [K], [N6], [S2] and references therein.

Problems 1.1, 1.2 can be also considered as examples of ill-posed problems; see [BK],
[LRS] for an introduction to this theory.

In the present work we obtain approximate Lipschitz stability estimates for
Problem 1.2 (with τ = τ(E) = εE(1−d)/(2d) for E ≥ 1) in dimension d ≥ 2, see Theorem 2.1
of Section 2. Our estimates are given in uniform norm for coefficient difference and related
stability precision efficiently increases with increasing energy and coefficient difference
regularity. In addition, at the end of Section 2, we show that our estimates of Theorem
2.1 are rather optimal even for the case of the Born approximation (that is in the linear
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approximation near zero potential). Our new estimates are much different but coherent
with respect to results of [N4], [N5] for Problem 1.1.

2. Stability estimates
Let

Wn,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ n},
kukn,1 = max

|J|≤n
k∂Juk

L1(Rd
)
,

(2.1)

where

J ∈ (N ∪ 0)d, |J | =
dX
i=1

Ji, ∂
Ju(x) =

∂|J|u(x)

∂xJ11 . . . ∂x
Jd
d

, n ∈ (N ∪ 0).

Let C(ME) denote continuous functions on ME and C(ΓE), C(Γ
τ
E) denote the re-

strictions of C(ME) on ΓE and Γ
τ
E . Let

kfkC(Γτ
E
) = kfkC(Γτ

E
),0,

kfkC(Γτ
E
),σ = sup

(k,l)∈Γτ
E

(1 + |k − l|)σ|f(k, l)|, (2.2)

where E > 0, 0 < τ ≤ 1, σ ≥ 0.
Let

s0 =
n− d

n
, s1 =

n− d

d
, s2 = n− d. (2.3)

Theorem 2.1. Let v1, v2 ∈ L∞σ (R
d) for some σ > d, v1 − v2 ∈ Wn,1(Rd) for some

n > d, supp (v1 − v2) ⊂ D, where D is an open bounded domain in Rd, d ≥ 2. Let
kvjkσ ≤ N1, kv1 − v2kn,1 ≤ N2, where k · kσ, k · kn,1 are defined in (1.3), (2.1). Let f1, f2
denote the scattering amplitudes for v1, v2, respectively. Then:

kv1 − v2kL∞(D) ≤ C1
√
Ekf1 − f2kC(Γτ(E)

E
)
+ C2(

√
E)−s1 , (2.4)

kv1 − v2kL∞(D) ≤ C̃1kf1 − f2kC(Γτ(E)
E

),n0
+ C2(

√
E)−s1 , d < n0 ≤ n, (2.5)

where k · kC(Γτ
E
), k · kC(Γτ

E
),n0 are defined by (2.2), τ(E) = ε(

√
E)(1−d)/d, ε = ε(N1,D, σ),

C1 = C1(N1,D, σ), C2 = C2(N1,N2,D, σ, n), C̃1 = C̃1(N1,D, σ, n0), s1 is defined in (2.3),
E ≥ 1.

In Theorem 2.1, ε, C1, C2, C̃1 denote appropriate positive constants (independent of
E). In addition, in particular, 0 < ε ≤ 1.

Theorem 2.1 is proved in Section 4. There is a considerable similarity between this
proof and the proof of recent stability estimates of [IN1].

Note that the old approach to inverse scattering at high energies based on formula
(3.3) of Section 3 yields estimates like (2.4), (2.5) with s0 only instead of s1 in the error
term. In addition, due to (2.3), we have that

s0 ≤ 1 even for n→ +∞, whereas s1 → +∞ for n→ +∞.
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In Theorem 2.1, we have that τ(E)→ 0 as E → +∞. Therefore, Γτ(E)E is a very small
part of Γτ1E for any fixed τ1 ∈]0, 1] for sufficiently high energy E. Therefore, estimates
(2.4), (2.5) of Theorem 2.1 can be considered as a stability result for Problem 1.2 with
incomplete data.

Let
Mτ

E = {(k, l) ∈ME : k − l ∈ B2τ√E}, E > 0, τ ∈]0, 1]. (2.6)

Let
kfkC(Mτ

E
) = kfkC(Mτ

E
),0,

kfkC(Mτ
E
),σ = sup

(k,l)∈Mτ
E

(1 + |k − l|)σ|f(k, l)|, (2.7)

where E > 0, 0 < τ ≤ 1, σ ≥ 0.
To our knowledge, estimates (2.4), (2.5) are completely new even with

kf1 − f2kC(Mτ(E)
E

)
, kf1 − f2kC(Mτ(E)

E
),n0

in place of kf1 − f2kC(Γτ(E)
E

)
, kf1 − f2kC(Γτ(E)

E
),n0

(respectively).
On the other hand, for the case of Problem 1.1 with complete data, estimates (2.4),

(2.5) with kf1 − f2kC(M1
E
), kf1 − f2kC(M1

E
),n0 in place of

kf1− f2kC(Γτ(E)
E

)
, kf1− f2kC(Γτ(E)

E
),n0

(respectively) are less precise than related results of

[N4], [N5] with the error term estimated as O(E−s2/2), E → +∞, where s2 is defined in
(2.3).

In addition, for Problem 1.2 with the scattering amplitude f given on Γ
τ(E)
E only,

estimates (2.4), (2.5) are rather optimal even for the case of the Born approximation
(that is in the linear approximation near zero potential). We recall that, in the Born
approximation,

f(k, l) ≈ v̂(k − l), (k, l) ∈ME , (2.8)

where

v̂(p) =

µ
1

2π

¶d Z
Rd

eipxv(x)dx, p ∈ Rd. (2.9)

Let
kv̂kC(Br) = kv̂kC(Br),0,
kv̂kC(Br),σ = sup

p∈Br
(1 + |p|)σ|v̂(p)| r > 0, σ ≥ 0. (2.10)

Born approximation analogs of (2.4), (2.5) can be written as

kv1 − v2kL∞(D) ≤ c1(d)ε
d
√
Ekv̂1 − v̂2kC(B

2ε(
√
E)1/d

)+

c2(d, n)N2ε
−(n−d)(

√
E)−s1 ,

(2.11)

kv1 − v2kL∞(D) ≤ c̃1(d, n0)kv̂1 − v̂2kC(B
2ε(
√
E)1/d

),n0+

c2(d, n)N2ε
−(n−d)(

√
E)−s1 ,

(2.12)

where s1, n, n0, d, N2 are the same that in (2.3)-(2.5), 0 < ε < 1, E ≥ 1.
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3. Some results of direct scattering
We recall that, under assumptions (1.2), the Lippmann-Schwinger integral equation

(1.6) is uniquely solvable for ψ+(·, k) ∈ L∞(Rd) for fixed k ∈ Rd\{0}; see [BS], [F2] and
references therein.

We recall that the following estimate holds:

kΛ−sG+(k)Λ−sk
L2(Rd

)→L2(Rd
)
= O(|k|−1),

as |k|→∞, k ∈ Rd, for s > 1/2,
(3.1)

where G+(k) denotes the integral operator with the Schwartz kernel G+(x−y, k) of (1.6), Λ
denotes the multiplication operator by the function (1+ |x|2)1/2; see [E], [J] and references
therein.

As a corollary of (1.6), (3.1), under assumptions (1.2), we have that

kΛ−σ/2ψ+(·, k)− Λ−σ/2ψ+0 (·, k)kL2(Rd
)
≤ a1(d, σ)kvkσ|k|−1 (3.2)

for |k| ≥ ρ1(d, σ)kvkσ, k ∈ Rd, where ψ+0 (x, k) = eikx.
As a corollary of (1.7), (3.2), under assumptions (1.2), we have that

|f(k, l)− v̂(k − l)| ≤ a2(d, σ)(kvkσ)2|k|−1 (3.3)

for k, l ∈ Rd, |k| = |l| ≥ ρ1(d, σ)kvkσ, where v̂ is defined by (2.9).
We recall also that, under assumptions (1.2) for v = vj , j = 1, 2, the following formula

holds:

f2(k, l)− f1(k, l) =µ
1

2π

¶d Z
Rd

ψ+1 (x,−l)(v2(x)− v1(x))ψ
+
2 (x, k)dx, k, l ∈ Rd, k2 = l2 > 0, (3.4)

where fj , ψ
+
j denote f and ψ+ for v = vj , j = 1, 2; see [S2].

In addition, in the proof of Theorem 2.1 we use, in particular, the following lemma:
Lemma 3.1. Let v = vj satisfy (1.2), kvjkσ ≤ N , where j = 1, 2. Let

supp (v1 − v2) ⊂ D, where D is an open bounded domain in Rd. Then the following
estimate holds:

|(f2(k, l)− f1(k, l))− (v̂2(k − l)− v̂1(k − l))| ≤
a3(D,σ)Nkv2 − v1kL∞(D)|k|−1

(3.5)

for k, l ∈ Rd, |k| = |l| ≥ ρ1(d, σ)N .
Lemma 3.1 follows from formula (3.4), estimate (3.2) and the property that

inf
x⊂D

(1 + |x|2)−σ/4 > 0.
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4. Proof of Theorem 2.1
We have that

kv2 − v1kL∞(D) ≤ sup
x∈D

|
Z
Rd

e−ipx(v̂2(p)− v̂1(p))dp| ≤

I1(κ) + I2(κ) for any κ > 0,

(4.1)

where

I1(κ) =

Z
|p|≤κ

|v̂2(p)− v̂1(p)|dp,

I2(κ) =

Z
|p|≥κ

|v̂2(p)− v̂1(p)|dp.
(4.2)

Due to Lemma 3.1, we have that

|v̂2(p)− v̂1(p)| ≤ |f2(kE(p), lE(p))− f1(kE(p), lE(p))|+
a3(D,σ)N1kv2 − v1kL∞(D)(

√
E)−1

(4.3)

for p ∈ B2√E ,
√
E ≥ ρ1(d, σ)N1, where

kE(p) =
p

2
+ ηE(p), lE(p) = −

p

2
+ ηE(p), (4.4)

where ηE is the function of (1.8), (1.10).
Using (4.2), (4.3), (2.2), we obtain that

I1(2τ
√
E) ≤ |B1|(2τ

√
E)d

¡
kf2 − f1kC(Γτ

E
) +

a3(D,σ)N1kv2 − v1kL∞(D)√
E

¢
, (4.5)

I1(2τ
√
E) ≤ |Sd−1|

n0 − d
kf2 − f1kC(Γτ

E
),n0 + |B1|a3(D,σ)N1

(2τ
√
E)d√
E

kv2 − v1kL∞(D) (4.6)

for
√
E ≥ ρ1(d, σ)N1, τ ∈]0, 1], where |B1| and |Sd−1| denote standard Euclidean volumes

of B1 and Sd−1 (respectively), n0 is the number of (2.5).
The assumptions that v1 − v2 ∈ Wn,1(Rd), kv1 − v2kn,1 ≤ N2 for some n > d, imply

that
|v̂2(p)− v̂1(p)| ≤ a4(n, d)N2(1 + |p|)−n, p ∈ Rd. (4.7)

Using (4.2), (4.7) we obtain that

I2(2τ
√
E) ≤ |S

d−1|a4(n, d)N2

n− d

1

(2τ
√
E)n−d

, (4.8)

√
E > 0, τ ∈]0, 1].
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Let
τ(E) = ε(

√
E)(1−d)/d,

ε = min

µ
1

2

µ
1

2|B1|a3(D,σ)N1

¶1/d
, 1

¶
.

(4.9)

Due to (4.9), we have, in particular, that

|B1|a3(D,σ)N1(2τ(E)
√
E)d(

√
E)−1 ≤ 1

2
,

τ(E) ≤ 1, E ≥ 1.
(4.10)

Using (4.1), (4.5), (4.6), (4.8), (4.10), we obtain that

kv2 − v1kL∞(D) ≤
√
E

a3(D,σ)N1
kf2 − f1kC(Γτ(E)

E
)
+

1

2
kv2 − v1kL∞(D) +

|Sd−1|a4(n, d)N2

(n− d)(2ε)n−d
1

(
√
E)(n−d)/d

,

(4.11)

kv2 − v1kL∞(D) ≤
|Sd−1|
n0 − d

kf2 − f1kC(Γτ(E)
E

),n0
+

1

2
kv2 − v1kL∞(D) +

|Sd−1|a4(n, d)N2

(n− d)(2ε)n−d
1

(
√
E)(n−d)/d

(4.12)

for
√
E ≥ max (ρ1(d, σ)N1, 1).
Estimates (2.4), (2.5) with

C1 =
2

a3(D,σ)N1
, C2 =

2|Sd−1|a4(n, d)N2

(n− d)(2ε)n−d
, C̃1 =

2|Sd−1|
n0 − d

, (4.13)

for
√
E ≥ max (ρ1(d, σ)N1, 1), follow from (4.11), (4.12).
Using also that kv2 − v1kL∞(D) ≤ 2N1 we obtain estimates (2.4), (2.5) with

C1 =
2

a3(D,σ)N1
, C̃1 =

2|Sd−1|
n0 − d

,

C2 = max

µ
2|Sd−1|a4(n, d)N2

(n− d)(2ε)n−d
, 2N1(max (ρ1(d, σ)N1, 1))

(n−d)/d
¶ (4.14)

for E ≥ 1.
This completes the proof of Theorem 2.1.
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