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Abstract

Habitat loss and climate change are responsible for abrupt changes in selection patterns
and connectivity in natural landscapes with direct consequences on biodiversity, but
their joint e�ect on both population demography and evolution has received limited
attention so far. We propose a new theoretical framework, combining demography and
genetics, to study how abrupt changes in connectivity or habitat heterogeneity among
local populations of a given species may a�ect patterns of local adaptation and favor
specialist or generalist strategies. In a two-patch, iteroparous microscopic model, using
adaptive dynamics, we demonstrate that when migration does not depend on the trait
under selection, a single specialist or generalist strategy is favored by evolution, and we
provide an explicit trait value for the equilibria, depending on migration and selection
parameters. We also prove that, with non-zero migration, there is no pure specialist stable
equilibrium. In addition, in some stable monomorphic equilibria commonly interpreted
as generalist strategies, individuals are actually specialized on one of the patches due
to demographic asymmetries. Finally, our analysis indicates that minor environmental
changes in connectivity or environmental variance may drastically change adaptation
patterns without causing discontinuities in equilibrium population sizes.



1 Introduction

Among the factors shaping adaptation patterns, spatial and temporal variations in the
environment have received much theoretical attention (e.g. Johst et al. 2002, Ravigné
et al. 2009 and references therein, Débarre and Gandon 2010). Spatial variation implies
that one or several environmental parameters are heterogeneous in space, leading to
spatial variation in �tness for a given genotype.

Classical work has shown that patterns of heterogeneity in space drive resource use
along a specialist-generalist dichotomy (Futuyma and Moreno 1988, Wilson and Yoshimura
1994). Ecological specialization usually describes the niche width of a species, i.e. the
range of environmental conditions it can tolerate or the variety of resources it can use. If
there are only two resources, a specialist species is generally de�ned as one that maximize
its e�ciency on one type of resource, regardless on how poorly it performs on the other
while a complete generalist species performs equally well on both resources. Theoretical
work suggests that (1) as spatial environmental heterogeneity increases (i.e. selective
trade-o�s among locations become stronger), specialist strategies are favored; (2) in the
absence of habitat choice, high and constant dispersal rates favor generalist strategies
(Brown and Pavlovic 1992); (3) habitat choice as well as dispersal rates and patterns
can be under selection, which greatly a�ects the evolution of specialization (Morris 2003,
Ronce 2007, Rue�er et al. 2007, Ravigné et al. 2009, Nurmi and Parvinen 2011).

In addition to spatial variation, the evolution of specialization is also driven by tem-
poral environmental variation, with stochastic and deterministic components. Stochastic
temporal variations of the environment are known to favor generalist strategies (see Wil-
son and Yoshimura 1994), while deterministic changes, re�ecting directional changes in
environmental conditions, have received much less attention. Global changes associated
with human activities are considered a major source of abrupt environmental change (see
e.g. Sanderson et al. 2002). With respect to ecological specialization, one may distinguish
among (1) changes that are expected to modify (increase or decrease) the environmental
distances between habitat patches, such as climate change, land use changes or pollution
(Adler et al. 2001; Seixas 2000); and (2) changes that are expected to a�ect both connec-
tivity and environmental distance such as habitat destruction and fragmentation, which
result in longer average geographic distances between patches of habitat (e.g., Adren
and Delin 1994, Fahrig 2003). At the scale of populations or metapopulations (several
discrete, usually interconnected subpopulations, Hanski and Simberlo� 1997), climate
and land use changes may therefore lead to abrupt changes in the quality, quantity and
connectivity of habitats, which in turn may a�ect selective trade-o�s, dispersal and the
evolution of ecological specialization in fragmented landscapes. Despite numerous works
on the evolution of metapopulations facing spatially heterogeneous conditions (see e.g.
Parvinen and Egas 2004, Nurmi and Parvinen 2008), there is still no general framework
to forecast the e�ect of abrupt changes in connectivity between habitat patches (but see
Ronce and Kirkpatrick 2001; Gyllenberg et al. 2002) and changes in selective trade-o�s
among habitat types (e.g., Beltman and Metz 2005) on adaptation patterns. Yet gen-
eral tools are urgently needed in the frame of scenarios of biodiversity response to global
changes (Pereira et al. 2010; Morris et al. 2011). Here we use a two-patch model to
examine the evolution of an iteroparous species in a heterogeneous environment, while
accounting for varying population size, dispersal and intra-patch competition. We present
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a new approach to study how abrupt changes in connectivity or environmental di�erences
among subpopulations of a given species may a�ect patterns of local adaptation and favor
specialist vs. generalist strategies. This model allows us to track ecological and demo-
graphic changes simultaneously while providing a �exible framework that can be adapted
to more realistic ecological scenarios.

2 Methods

The model is derived in three steps. First, we build a microscopic stochastic model
describing the demographic parameters of individuals characterized by a heritable trait
controlling their �tness. Second, we rescale this microscopic model to obtain a stochastic
trait process describing population evolution. Finally, we approximate the stochastic
process by a deterministic process, which we ultimately study.

2.1 The microscopic stochastic model

We �rst consider a two-patch, stochastic (individual-based) continuous-time birth and
death process. This microscopic model allows us to examine patterns of adaptation in
an iteroparous population with overlapping generations, while accounting for varying
population size, dispersal and intra-patch competition.

Using an adaptive dynamics framework, we consider a single trait that can take an
unrestricted number of quantitative values. We assume clonal inheritance of parental
trait values, with possible mutation at each generation in each new zygote on the basis of
a random Markovian mutation process (see details below). We assume that the fecundity
of each individual depends on the interaction between its trait value x (representing an
"optimal" environment for reproduction) and the local environment. The environment in
each patch is characterized by a quantitative parameter that can capture one or several
features of the patch (temperature, height, acidity, moisture...). Patch 1 has value E1 ∈ R
and patch 2 has value E2 > E1. For simplicity of notation, we assimilate the value of
the optimal phenotypic trait to the value of the environment, e.g. in environment 1,
the optimal phenotypic trait is of value E1. Individuals with trait value x closer to the
environmental value of the patch they live in have higher fecundity, so that the fecundity
of an individual with trait value x on patch i is

bi(x) = K

((
x− Ei

σ

)2
)

, (1)

where K is a smooth positive decreasing function. Here we use K(X) = exp(−X) and
K(X) = 4−X but any other smooth positive decreasing function is suitable. The shape
of bi is chosen so that fecundity decays symmetrically away from Ei, yielding a bell shaped
curve. Hence, the fecundity of an individual is maximum at bi(Ei) = K(0), and decreases
when the trait value gets further from the optimal environmental value, at a rate given by
1
σ
, i.e. the strength of environmental selection on the population (cf �g. A.1 in Appendix

A). Consequently, σ also characterizes the fertility trade-o� between the two patches.
In a generic landscape, E1 and E2 need not be the most di�erent environments, i.e.

we do not expect E2 to be the worst possible trait value for individuals living in patch 1.
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Hence, to ensure we are not in such a degenerate case, we assume that:

min
x∈R

b1(x) < b1(E2) and so by symmetry min
x∈R

b2(x) < b2(E1) (2)

This condition implies that the cost of reproducing in a non-optimal patch increases
with the di�erence between the optimal environment of an individual and the patch
environment, so that individuals with di�erent suboptimal trait values cannot reproduce
� equally badly � in a given patch.

We de�ne

A =
(E1 − E2)

2

σ2

as the phenotypic distance between the two patches, i.e. the reduction in fertility of
individuals with trait value E1 that reproduce in patch 2. A is large whenever the two
patches exhibit contrasting environments (i.e. E1−E2 is large) or when the environment
is highly selective (σ is small).

2.2 Model dynamics

The microscopic model is a continuous-time birth and death process with migration and
competition: an individual with trait value x on patch i gives birth to a new individual
on patch i with rate bi(x). The o�spring retains the parental trait value with probability
(1− p) or mutates with probability p. In the latter case, the new trait value is randomly
drawn from a distribution centered on x with unit variance.

At any time during its life, every individual can switch habitat at a constant rate m
which does not depend on its location nor on its trait value for now (this assumption is
relaxed in Section 3.5.2).

We assume intraspeci�c competition for limited resources within each patch (space,
light, food, water, shelter...), which is modeled via a density-dependent death rate: if
there are N individuals in a patch, each individual in this patch dies at rate αN . This
allows a regulation of population size and captures the e�ect of selection without imposing
a maximum population size or other extrinsic mechanisms. With these assumptions, we
obtain a logistic growth in which the carrying capacity of each patch is the ratio of the
maximal fertility rate on the compound death rate, K(0)

α
.

Alternatively, it is possible to distinguish intrinsic mortality (at rate d) from competition-
induced mortality, so that individuals in a patch with total population N would die at rate
d + α(N − 1). However, as long as all sources of mortality are independent of genotypes,
selection patterns are not a�ected by such change in the mortality parameters.

2.3 Rescaling of the model

2.3.1 The trait substitution sequence

Starting from an initially dimorphic population (see below), we investigate which trait
values are found in the population after a long time. The microscopic model described
above allows coexistence of numerous trait values in the population at a given time, so
that we cannot track adaptation without further assumptions. Following the adaptive
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dynamics approach (Metz et al. 1992; Dieckmann and Law 1996) we assume large popu-
lation size and rare mutations, which is required to derive a deterministic approximation
of the adaptation process. Large populations are modelled by changing the compound
death rate α to αS = α

S
and the carrying capacity to S K(0)

α
, so that subpopulations in

each patch become large when S tends to in�nity. The large population assumption is
required to prevent extinction by random events and to ensure that genetic drift is neg-
ligible compared to selection. Rare mutations are modeled by rescaling the frequency of
mutation events from p to pS with pS → 0 when S → ∞ so that mutations appear in
the population one at a time. Between mutation events, the resident population is at
equilibrium, meaning that if the population is dimorphic with trait values x and y the
population sizes on each patch satisfy:


[b1(x)− α(n1,x(x, y) + n1,y(x, y))] n1,x(x, y) + m(n2,x(x, y)− n1,x(x, y)) = 0 (3a)

[b2(x)− α(n2,x(x, y) + n2,y(x, y))] n2,x(x, y) + m(n1,x(x, y)− n2,x(x, y)) = 0 (3b)

[b1(y)− α(n1,x(x, y) + n1,y(x, y))] n1,y(x, y) + m(n2,y(x, y)− n1,y(x, y)) = 0 (3c)

[b2(y)− α(n2,x(x, y) + n2,y(x, y))] n2,y(x, y) + m(n1,y(x, y)− n2,y(x, y)) = 0 (3d)

where ni,x(x, y) is the number of individuals with trait value x in patch i when the two
resident trait values in the population are (x, y).

In each line of Equation (3), the leftmost term compares the fertility of individuals
with a given trait value in a given patch (trait value x in patch 1 for (3a) for example)
to the strength of competition in this patch. The rightmost term measures the di�erence
in the �ows of migrants entering and leaving the patch. Each resident size is therefore
deduced from a balance between growth rates and migration �ows.

With this rescaling of the microscopic process, combined with an appropriate rescaling
of time, one can prove with the same arguments as in Champagnat (2006) that the
dynamics of the trait values in the population are described accurately by a Markov
jump process called the trait substitution sequence (Metz et al. 1992, Metz et al. 1996,
Champagnat 2006).

The trait substitution sequence was �rst introduced by Metz et al. (1996) and studied
mathematically in a single patch monomorphic population by Champagnat (2006).

The dynamics of the trait substitution sequence are driven by the probability of a
mutant to invade and go to �xation in the population, gi(z; x, y) where i = 1, 2 is the
patch the mutant was born in, z is the mutant trait value and x, y are the resident trait
values (see Appendix A.2 for a more mathematically accurate de�nition).

Here, we examine whether there is a privileged direction for evolution and whether
the evolutionary dynamics can reach an equilibrium.

2.3.2 Small mutations

The in-depth study of the trait substitution sequence in a two-patch model is not of
our immediate concern; instead, we are interested in identifying privileged directions
for evolution and possible evolutionarily stable equilibria. To this end, we approximate
the stochastic process by a deterministic process, which requires a third assumption of
small-e�ect mutations.
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This is achieved again by rescaling mutation e�ects with a small parameter ε. We
then choose a new mutation kernel such that all mutation e�ects are multiplied by ε,
close to zero, and are therefore of much smaller amplitude.

Finally, we accelerate time to �t the new mutation scale (cf Champagnat et al. 2011).
With these assumptions, the dynamics of (x(t), y(t)), the vector describing the two trait
values in the population at time t are given by the following ordinary di�erential equation,
a two-dimensional variant of the canonical equation of adaptive dynamics(Dieckmann and
Law 1996): {

ẋ = p[b1(x)n1,x(x, y)∂1g1(x; x, y) + b2(x)n2,x(x, y)∂1g2(x; x, y)]

ẏ = p[b1(y)n1,y(x, y)∂1g1(y; x, y) + b2(y)n2,y(x, y)∂1g2(y; x, y)]
(4)

Equation (4) can be understood as follows: a mutation event introduces a new trait
value z in a population with resident values x and y. For i = 1, 2, gi(z; x, y) is the
probability that a trait value originally appearing in patch i invades in the population
(see Appendix A.2).

Individuals with mutant trait values born from parents with trait value x are produced
at rate pbi(x)ni,x(x, y) in patch i. The gradient of the survival probability ∂igi(x; x, y)
captures the direction and strength of evolutionary forces on x for patch i. Hence the
variation imposed to trait value x by individuals in patch i is pbi(x)ni,x(x, y)∂igi(x; x, y).
The total change in x is the sum of such forces over both patches. Note that although
the migration rate m does not explicitly appear in Equation (4), all population sizes ni,.

as well as survival probabilities depend on m and are obtained by solving Equation (3)
We further show in Appendix A.2 that Equation (4) can eventually be simpli�ed to:{

ẋ = h1(x, y) = b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2

ẏ = h2(x, y) = b′1(y)(n1,y(x, y))2 + b′2(y)(n2,y(x, y))2
. (5)

We begin by considering a dimorphic population with trait values (x0, y0), such that
the two subpopulations are initially at equilibrium. We identify all possible equilibria
and examine their stability.

2.4 Test of the generality of the model

After a thorough mathematical analysis of the basic model, we examined whether our
results were robust to a variety of alternative assumptions. In most cases, the alternative
models were not analytically tractable and were explored with numerical tools. We
speci�cally addressed three assumptions with potentially signi�cant impact on the results:
(a) Life-cycle of the modeled species : we demonstrate (see Appendix B.1) that our results
are qualitatively the same for a semelparous life cycle, which will not be discussed further.
(b) Patch symmetry : apart from their environmental characteristic, the two patches are
identical in all respects. We broke this symmetry by considering that the two patches
had di�erent carrying capacities or di�erent strength of selection. In the former case, we
introduced a new parameter rκ ≥ 1 so that the two carrying capacities satisfy: K(0)

α2
=

rκ
K(0)
α1

. (c)Variable migration rate: Our framework allows us to track how adding or
modifying microscopic mechanisms a�ects adaptation patterns. Because the movements
of individuals can be triggered by the quality of the environment or their reproductive
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(A) σ = 0.3, m = 0.1 (B) σ = 0.1, m = 0.015

Figure 1: Vector �eld of Equation (5) for two contrasting pairs of values of migration
rate and strength of selection (m, σ). Starting from any couple of trait values in [E1, E2],
evolution follows the �eld lines of (5), i.e. the direction of arrows. The background color
represents total population size, red indicating the more abundant populations. Other
parameter values are E1 = 0.5, E2 = 0.6, α = 0.01, K(X) = exp(−X).

success in a patch (e.g. Ravigné et al. 2009), we examined a model in which the trait x
under selection also modi�ed the migration rate, which became m(x). This changed the
form of the canonical (4) and simpli�ed equations (5) (see Equation (13) in Section 3.5.2).
The full analysis of this new model is more complicated because the favored strategy can
depend on the shape of the migration rate function. Nevertheless, we provide insights
into how evolution is modi�ed by a selection-dependent migration.

3 Results

We show that the model yields two extreme types of equilibria (Fig.1), the stability of
which depends on the migration rate and on the between-patch phenotypic distance.
With large migration rates and/or a small phenotypic distance, evolution leads to a
monomorphic population, with a single trait value that is the mean of the two optimal
trait values x∗ = E1+E2

2
(Fig.1A). In addition, the �gure shows that any pair (x, x∗)

or (x∗, x) is attracting, because at these points the population is in fact monomorphic
with trait value x∗. Alternatively, with little migration or a large phenotypic distance, the
population eventually converges towards an equilibrium close to (E1, E2) (Fig.1B). In this
case, the pair (x∗, x∗) is an unstable equilibrium. In both cases, there is a single stable
equilibrium towards which the population converges from almost any point of the trait
value space. We demonstrate below that this is always the case under weak assumptions,
and we examine further how demographic and selection parameters favor monomorphic
vs. dimorphic equilibria. It should be noted that there cannot be any equilibrium outside
[E1, E2]

2 (cf Appendix A.3).
These two types of stable equilibria can be interpreted in terms of the specialist/generalist

concept; hereafter, we use the following ad hoc de�nitions (which will be discussed further
in Section 3.5.1):

A "generalist" equilibrium is a monomorphic stable equilibrium (x∗, x∗) (where x∗ = E1+E2

2
),

in which all individuals have similar �tness in both habitats. A "pure specialist" equi-
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librium is a dimorphic stable equilibrium (E1, E2), in which individuals are perfectly
adapted to patch 1 or patch 2. A "partial specialist" equilibrium is any dimorphic stable
equilibrium not satisfying the condition above

3.1 Explicit solution in the linear case

Choosing K : x 7→ λ−x for the shape of the fertility rate (with λ large enough for b1(E2)
to be strictly positive) allows us to describe the equilibria explicitly. The symmetry of
our system leads us to consider equilibria of the form (x, x̄) where x̄ = E1 +E2−x is the
symmetric of x with respect to x∗, such that an individual with trait value x in patch 1
is as �t as an individual of trait value x̄ in patch 2 i.e.

b1(x) = b2(x̄) and b2(x) = b1(x̄). (6)

We show in Appendix A.7 that (x, x̄) is an equilibrium of (5) if and only if

w(x) = b1(x)− b2(x) + m

(√
−b′1(x)

b′2(x)
−

√
−b′2(x)

b′1(x)

)
= 0 (7)

Using the explicit form of bi yields a second degree polynomial equation (see Appendix
A.8). Solving this equation shows that if A < 2m, w(x) = 0 has no solution on [E1, x

∗[,
and (x∗, x∗) is the only stable equilibrium of (5) ; if A > 2m then (x∗, x∗) is an unstable
equilibrium and the unique stable equilibrium is obtained by solving w(x) = 0:

x = x∗ − (E2 − E1)

2

√
1− 4m2

A2

x̄ = x∗ +
(E2 − E1)

2

√
1− 4m2

A2
.

(8)

The equilibria are driven to generalism when 2m
A

gets closer to 1, i.e when the migration
rate increases or the phenotypic distance decreases. If 2m

A
goes to 0, the equilibria are

close to full specialization, with �rst order estimates being

x = E1 +
(E2 − E1)m

2

A2
= E1 +

σ4m2

(E2 − E1)3

x̄ = E2 −
(E2 − E1)m

2

A2
= E2 −

σ4m2

(E2 − E1)3

. (9)

For intermediate values of 2m
A
, the equilibrium lies between specialization and generalism.

We will now show that these results are fairly general and can be extended to a wide
class of functions K

3.2 Condition for a generalist equilibrium

We show that (x∗, x∗) is always an equilibrium of (5) for every m, σ and K: at this
point b′1(x

∗) = −b′2(x
∗) and n1,x∗(x∗, x∗) = n2,x∗(x∗, x∗) (cf Appendix A.4 for the latter).

However, this generalist equilibrium is a stable equilibrium of (5) if and only if

b′′2(x
∗) +

(b′2(x
∗)2)

m
< 0. (10)
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which yields

A

(
K ′2(A/4)

m
+ K ′′(A/4)

)
+ 2K ′(A/4) < 0 (11)

An intuitive explanation is that individuals with trait value x∗ have a moderate fer-
tility in each patch, but do not su�er from fertility decay when they change habitat.
When A is small (i.e. both patches have similar environments or selection is weak),

A
(

K′2(A/4)
m

+ K ′′(A/4)
)

+2K ′(A/4) ≈ 2K ′(A/4) < 0 because K is decreasing. Similarly,

A
(

K′2(A/4)
m

+ K ′′(A/4)
)

+ 2K ′(A/4) is decreasing with m ensuring that Condition (11)

is more likely to be satis�ed when m is large.

3.3 There is no pure specialist equilibrium

We show that with migration (m 6= 0), (E1, E2) is not an equilibrium of (5). The proof
is based on a capital feature of our model: with migration, a given trait value always
occurs in both patches (for example, if m 6= 0, taking n1,x(x, y) = 0 in the �rst equation
from (3) implies that n2,x(x, y) = 0 and conversely).

Thus, at (E1, E2), the derivatives with respect to time of the two trait values are

ẋ = b′2(E1)[n2,E1(E1, E2)]
2

and
ẏ = b′1(E2)[n1,E2(E1, E2)]

2.

It is easy to check that b′2(E1) = −b′1(E2). Both are di�erent from 0 by hypothesis. Hence
if (E1, E2) is an equilibrium (ẋ = ẏ = 0), we have

n2,E1(E1, E2) = n1,E2(E1, E2) = 0

which then implies
n1,E1(E1, E2) = n2,E2(E1, E2) = 0

But the resident population cannot be zero. Hence (ẋ, ẏ)(E1, E2) 6= (0, 0) and (E1, E2) is
not an equilibrium.

It should be noted that this result remains true even when relaxing the assumptions
of symmetrical demography in the two patches (i.e., identical competition parameters)
and iteroparity (cf. 3.5). However, � pure specialist � stable equilibria can be obtained
with covariance of fertility and migration rates (see 3.5.2).

3.4 Existence of a symmetrical equilibrium

In situations where the generalist equilibrium is unstable we investigate other equilibria
of the form (x, x̄) (see Section 3.1).

To identify the condition of existence of such an equilibrium, one can check that if

b′′2(x
∗) +

b′2(x
∗)2

m
> 0 (12)
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(A) σ = 0.12

(B) σ = 0.18

Figure 2: E�ect of migration rate m on equilibrium trait values and associated population
sizes for two values of the inverse strength of selection σ and two shapes of the fertility
function. On Panel B, the arrows labelled D indicate a speci�c dimorphic equilibrium :
see Discussion for details. Other parameters: E1 = 0.5, E2 = 0.6, α = 0.001.
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(A) m = 0.1

(B) m = 0.05

Figure 3: E�ect of inverse selection strength σ on equilibrium trait values and associated
population sizes for two di�erent values of the migration rate m and two shapes of the
fertility function. Other parameters: E1 = 0.5, E2 = 0.6, α = 0.001.
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then there exists x ∈ [E1, E2] so that (x, x̄) is a stable equilibrium (cf Appendices A.5
and A.6). This dimorphic equilibrium is unique and depends on m and σ only (see Fig.
2)

Note that when Condition (10) for the existence of a stable generalist equilibrium is
not met, i.e. when the phenotypic distance A is large enough or the migration rate m
small enough then Condition (12) is true: when the generalist equilibrium is unstable,
another stable equilibrium always exists. Moreover, we show that with mild additional as-
sumptions on the function K, there is always exactly one stable equilibrium (cf Appendix
A.7).

Figure 2 and 3 summarize the e�ect of migration rate m and selection strength σ
on equilibrium trait values and total population sizes. When m or σ are low enough,
the population is characterized by a partial specialist strategy, with two distinct trait
values. As m or σ increase, these values converge up to the point where they eventually
collapse into the generalist strategy. Hence in all panels, there is a continuum of equilibria
ranging from (E1, E2) to (x∗, x∗). The range of migration rates (respectively strengths
of selection) allowing a stable dimorphic equilibrium decreases when σ increases (Figure
2) (respectively when m increases- see Figure 3). The critical point where symmetric and

generalist equilibria merge is characterized by b′′2(x
∗)+

b′2(x∗)2

m
= 0. At this point, we show

that the derivative with respect to m is in�nite (see (8) in Section 3.1 for a particular K),
so that even a small variation of m around this point can have dramatic consequences in
terms of the maintenance of a stable specialist strategy.

3.5 Robustness of the model

We now introduce slight changes in our model in order to analyze its robustness, mostly
with numerical tools.
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3.5.1 Asymmetry between the two patches

(A) K(0)
α1

= 100, rκ = 1.25

(B) K(0)
α1

= 100,K(0)
α2

= rκ
K(0)
α1

Figure 4: In�uence of an asymmetry in the carrying capacities of patches on specializa-
tion. Panel A shows how the pattern of equilibrium trait values is modi�ed by asymmetry
while Panel B shows how the value of the monomorphic equilibrium varies with asym-
metry. On Panel A, M indicates a speci�c monomorphic equilibrium : see Discussion for
details. Other parameters: α1 = 0.01, σ = 0.1, K(X) = exp(−X)

When the two patches have di�erent carrying capacities, we still observe a unique di-
morphic strategy that eventually collapses into a monomorphic equilibrium under large
migration rates (Fig. 4A) or weak selection. Note that the lower curve exhibit a nearly
vertical slope close to the critical value of m. In contrast to the symmetrical case, how-
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ever, the trait value of the monomorphic strategy is biased toward the patch with the
largest carrying capacity. Hence, from an ecological perspective, this equilibrium is no
longer generalist in the strict sense. This bias increases with smaller migration rate m,
stronger selection (smaller σ) or larger asymmetry of the two carrying capacities (cf. Fig.
4B). Similarly, when the strength of selection di�ers between the two patches, the general
properties of our model are preserved and the monomorphic strategy is biased towards
the trait value that is favored in the most selective patch, with a pattern very similar to
�g 4. See Appendix B.2 for more details.

3.5.2 Covariance of fecundity and migration rate

(A) K(X) = exp(−X) (B) K(X) = 4−X.

Figure 5: E�ect of the maximum migration rate on evolutionarily stable trait values
when migration covaries with the trait under selection. Here, migration is a sigmoid-like
function that is symmetrical with respect to x∗ so that m(x) = m(x̄). Panels A and B
show coexistence of stable strategies, depending on the shape of the fertility function.
Other parameters E1 = 0.5, E2 = 0.6, σ = 0.1, α = 0.001

Accounting for �tness-dependent migration yields more substantial changes to the out-
comes of our model. Computing the derivative of the new survival probabilities as in
Appendix A.2 yielded the new simpli�ed equation :{

ẋ = b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2 + m′(x)[n2,x(x, y)− n1,x(x, y)]2

ẏ = b′1(y)(n1,y(x, y))2 + b′2(y)(n2,y(x, y))2 + m′(y)[n2,y(x, y)− n1,y(x, y)]2.
(13)

First, "pure specialist" equilibria (E1, E2) are now observed under the following con-
dition:

m′(E1) = − b′2(E1)[n2,E1(E1, E2)]
2

[n2,E1(E1, E2)− n1,E1(E1, E2)]2
. (14)

This constrains the derivative of the migration rate at E1 to be negative (m
′(E1)<0), so

that a "pure specialist" equilibrium can only emerge when the migration rate is larger at
E1 than for trait values x > E1 but close to E1. The generalist equilibrium (x∗, x∗) still
exists (the new term of the equation depending on m cancels out at this point, because
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n1,x∗(x∗, x∗) = n2,x∗(x∗, x∗)) and its stability depends on m(x∗) only, not on the shape of
m(x) (cf Appendix A.9).

In addition to pure specialist and generalist equilibria, other equilibria are found which
are expected to depend greatly on the shape of the function m. If we consider e.g. a
migration function m that is symmetrical with respect to x∗, we can search equilibria of
the form (x, x̄) which are the roots of the following real function (see Appendix A.7 for
the proof of this claim when m is constant):

w̃(x) = b′1(x)(n1,x(x, x̄))2 + b′2(x)(n2,x(x, x̄))2 + m′(x)[n2,x(x, x̄)− n1,x(x, x̄)]2. (15)

When the last term is large enough to modify the patterns of adaptation as compared to
constant m, i.e m′(x) = 0, several dimorphic equilibria can be observed simultaneously.
As an illustration, both panels of Figure 5 exhibit coexistence of stables strategies. In
panel 5A where K(X) = exp(−X), we observe two dimorphic strategies; in panel 5B
where K(X) = 4−X , we observe either two dimorphic strategies or one monomorphic
and one dimorphic strategy . More generally, when m is not symmetrical with respect to
x∗, equilibria do not remain of the form (x, x̄) and new monomorphic equilibria can be
observed (see Fig.B.3 in Appendix B).

4 Discussion

Our theoretical approach provides a new framework to address the evolution of ecological
specialization when deterministic temporal changes in the environment modify habitat
connectivity or spatial heterogeneity among habitats (measured here as the phenotypic
distance among the two patches). Our modelling framework allows in particular a variety
of life history strategies and ecological processes to be considered, including varying pop-
ulation sizes, local competition and iteroparity with both natal and breeding dispersal.
Note that, as in numerous previous theoretical works, we assume that decreased connec-
tivity leads to decreased dispersal rates, i.e. a smaller probability of departure from a
patch. In contrast, in natural populations departure rates might not be a�ected at an
ecological timescale, but the cost of dispersal can be greatly increased. Both mechanisms
cause decreased e�ective migration rates, but have contrasting impacts on demography.

4.1 Changes in connectivity and the evolution of specialization

Our results indicate that with constant migration rates a single strategy (specialist or
generalist) is favored at equilibrium. As expected, the stable equilibrium depends on the
opposing forces of migration (high migration rates favor the generalist strategy, Brown
and Pavlovic 1992; Meszéna et al. 1997; Day 2000) and selection heterogeneity (Meszéna
et al. 1997). The latter depends on the intrinsic selection parameter σ and on the environ-
mental distance between habitat patches (which de�ne together the phenotypic distance,
see Hereford 2009). In the simplest cases we provide an explicit value for the equilibria,
depending on migration and selection parameters. The strength of the selective trade-o�
among patches was deemed critical elsewhere in the evolution of specialization (see Ravi-
gné et al. 2009, Nurmi and Parvinen 2011): here we demonstrate that characterizing this
parameter by the convexity of the relationship b2 = f(b1) is not necessarily relevant, as (i)
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the evolutionary endpoints depend solely on the selection parameter; (ii) one can prove
that for any model with a bell-shaped fecundity, the trade-o� is always locally concave
close to the points b1(E1) and b2(E2). Importantly, the sensitivity of the equilibrium
trait value to migration or selection parameters is high around transition areas between
monomorphic and dimorphic populations. In these areas, a small increase in migration
or a slightly softer selection can cause a collapse of a polymorphism in habitat use (Day
2000). In contrast, a small reduction in connectivity (i.e. of migration) or a small in-
crease of environmental distance (which can both result from habitat destruction) may
drastically change the evolutionary equilibrium from a generalist to a specialist regime
(Fig. 2 and 3). Recent evidence indicates that geographic isolation in a heterogeneous
environment may promote adaptive divergence within species (see e.g. Konuma et al.
2011, for an example of adaptive divergence of external morphology in carabid beetles).
Although our results suggest that environmental changes of small magnitude may lead to
abrupt evolutionary changes, we cannot assess the actual speed of these changes within
our framework. Nevertheless, evolution is known to happen on short time scales such as
ecological time scales (Stockwell et al. 2003)and rapid evolutionary responses to global
change are already known to occur, as well exempli�ed by the evolution of resistance to
pesticides in mosquitoes (e.g. Berticat et al. 2008), local adaptation to acidity in moor
frogs (Räsänen et al. 2003) and adaptation to climate change in fruit �ies (review in
Merilä 2012).

4.2 The importance of the demography-genetics interaction

Using a two-patch � toy-model �, Meszéna et al. (1997) obtained similar qualitative e�ects
of migration rates and environmental distance on adaptive patterns (and subsequent work
allowed to generalize these results to spatially continuous environments, see Débarre
and Gandon 2010). However, Meszéna et al. (1997) could not assess the demographic
costs associated with various strategies (soft selection model). With the present model,
reducing connectivity or increasing environmental distance both shift a stable generalist
equilibrium to a specialist equilibrium but these two mechanisms have contrasted e�ects
on population sizes. Reducing connectivity increases average population size (i.e. a
decrease of maladaptation, Fig. 2), while increasing environmental distance decreases
population size (i.e. an increase of maladaptation). This implies that, although migration
and selection seem to play symmetrical roles in adaptive patterns, they are associated
with di�erent costs, which is di�cult to assess under pure soft selection models (i.e.,
when maladaptation has no consequences on population sizes). Under our assumption
of rare mutations (Metz et al. 1996), abrupt shifts in stable equilibrium with change
in migration rate are paradoxically associated with smooth and continuous changes in
equilibrium population sizes (see Figs 2 and 3). Relaxing the assumption of rare mutations
may lead to more complex evolutionary patterns due to irreversible interacting e�ects of
demography and genetics, as illustrated by the migrational meltdown process, in which
increasing migration may lead maladaptation and shrinking population size to mutually
reinforce. Such processes may lead not only to abrupt shifts in evolutionary equilibrium
along a migration gradient (as in our case) but also to abrupt and hysteretic decrease in
population size at some migration threshold value (Ronce and Kirkpatrick 2001).
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4.3 On the ecological and evolutionary concepts of specialization

Although it can be considered across ecological levels (from populations to communities),
ecological specialization is primarily de�ned at the individual level, as the process by
which individual genotypes become adapted to an increasingly narrow subset of their
possible environments and persists in an increasingly narrow range of habitats (Futuyma
and Moreno 1988; Poisot et al. 2011). In most theoretical population level studies on
the evolution of specialization in heterogeneous environments, monomorphic strategies
are considered as generalist strategies and polymorphic (dimorphic in our case) strate-
gies, in which di�erent genotypes are adapted to di�erent environments, are considered
as specialist strategies. This de�nition is consistent with the statement of Bolnick et al.
(2003) suggesting that many apparently generalist species are in fact composed of a range
of ecologically variable, individual specialists (see also Poisot et al. 2011). Some of our
results however raise concerns on considering monomorphic (resp. polymorphic) equi-
libria as generalist (resp. specialist) strategies. Our results illustrate in particular that
in most realistic situations (i.e., with non-zero migration rates and asymmetrical patch
sizes), monomorphic equilibria cannot be considered as generalist strategies and poly-
morphic (dimorphic) equilibria generally do not correspond to pure specialist strategies.
First, our analysis suggests that including some asymmetry in patch carrying capacities
or in selection parameters does not a�ect the qualitative e�ects of selection and migration
on monomorphic and dimorphic stable equilibria. However, asymmetry biases adapta-
tion toward the largest/most selective patch (see Holt 1996), resulting in monomorphic
equilibria in which individuals are in fact "specialized" on one of the patches (compare
e.g., populations D and M , indicated by arrows on Figs 2B and 4A respectively: al-
though D corresponds to a dimorphic equilibrium, individuals from the D population are
less "specialized" on one of the two habitats than individuals from the M, monomor-
phic population). Second, in contrast with previous theoretical studies (in particular
resource-consumption models, Nurmi and Parvinen 2008), we demonstrate that there is
no pure specialist stable equilibrium (i.e. a dimorphic stable equilibrium in which indi-
viduals are perfectly adapted to either patch) as long as the migration rate is non-zero.
Hence, in heterogeneous patchy environments, only completely isolated subpopulations
are perfectly locally adapted. We further showed that (1) although theory predicts that
specialist genotypes are more likely to coexist when they experience a single environment
throughout their life cycle (Levins 1968), the absence of pure specialists is not a conse-
quence of iteroparity and holds in case of semelparity as well; (2) if the migration rate
covaries with the fertility rate, some pure specialist equilibrium can be obtained, but only
under restrictive conditions.

4.4 Limitations

Future works on operational biodiversity scenarios (Pereira et al. 2010) will require con-
sideration of transitory evolutionary states (not only equilibrium states). This entails es-
timating transitory costs of adaptation from an equilibrium state to another and assessing
the speed of adaptation (as well as its associated extinction risk), which is generally not
achieved in theoretical works on adaptation. With the present model, such quantitative
approach on adaptation cannot be performed without adding complexity, e.g. in terms of
the genetic architecture or the ecological processes modeled. From a quantitative genetics
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point of view, this includes considerations of large numbers of loci, realistic distributions
of mutational additive e�ects, genetic linkage and epistatic interactions (Hill 2010), as
well as constraints that can slow down or prevent evolutionary processes, such as the lack
of genetic variation or the non-independence of traits (genetic correlations). While lack of
genetic variation represents an absolute constraint that prevents adaptation, genetic cor-
relations can reduce the rate of adaptation (e.g. Davis et al. 2005, Teplitsky et al. 2011;
Morrissey et al. 2012). Future models should then consider several traits under selection,
along with pleiotropic e�ects, and genetic correlations that can a�ect the pace but also
the direction of the response to selection (in this context, we plan to develop further the
model to examine cases in which fecundity and migration are controlled by separate loci).
From an ecological point of view, consideration of (directional and stochastic) temporal
environmental variation is of primary importance to the study of operational scenarios
on adaptation, as (i) environmental noise strongly a�ects adaptive patterns in spatially
heterogeneous environment (Wilson and Yoshimura 1994); (ii) biodiversity scenarios are
in essence based on scenarios of environmental changes over time. Although our model
is fairly simpli�ed, the microscopic model can easily be improved to incorporate new
mechanisms without arti�cially adding any term to Equation (3), but rather computing
how the new feature changes it. This plasticity makes our model an e�cient framework
to study evolutionary dynamics in two-patch models, although extending the model to a
more general context (more patches, disruptive selection, sexual reproduction, and most
importantly, incorporation of temporal environmental variation) would require extension
of the mathematical theorems on which this approach relies.

A Online Appendix: Mathematical proofs

For the proofs here it is assumed that α = 1. We can revert to any α by taking m ↔ m
α

and bi(x) ↔ bi(x)
α

.
We write

N1(x, y) = n1,x(x, y) + n1,y(x, y) and N2(x, y) = n2,x(x, y) + n2,y(x, y) (16)

the total population sizes on patches 1 and 2 when the resident population has trait
values x and y.
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A.1 Growth rate

Figure A.1: Fertility rate for two di�erent functions K depending on the trait value of
the individual. σ = 0.3 for the black line and σ = 0.5 for the gray line. Environment
value of the patch is 25.

A.2 On �tness and survival

The exact meaning of �tness for structured and evolving population can be a di�cult
question (cf. Metz et al. 1992). However, here, given that there are only two populations
and a relatively low number of parameters, we use the following heuristics: when a mutant
appears in the population, since the resident population is large, at the �rst order, the
dynamics of the mutant population are close to linear. If we write the di�erential equation
regarding the size of the mutant population z in a resident population (x, y), we can
approximate it by the solution of

ṅz
1 = (b1(z)−N1(x, y))nz

1 + m(nz
2 − nz

1)

ṅz
2 = (b2(z)−N2(x, y))nz

2 + m(nz
1 − nz

2)
(17)

i.e
ṅz = Ξ(z; x, y)nz, (18)

where Ξ(z; x, y) is a 2× 2 square matrix. There are solutions of Equation (17) that stay
in R+ − {0, 0} if and only if the greatest eigenvalue of Ξ is positive. This is what we call
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�tness and we can compute it explicitly

f(z; x, y) =
1

2

(
b1(z) + b2(z)− [N1(x, y) + N2(x, y)]− 2m

+
√

4m2 + (b1(z)− b2(z)−N1(x, y) + N2(x, y))2)
) (19)

Because of the large population size, the competition between mutants is negligible
in front of the competition pressure induced by the resident population. Then the birth
and death process that the mutant population undergoes when it appears in the resident
population can also be approximated by a linear birth and death process (i.e a two type
branching process). Therefore we are now interested on the survival probabilities for a
two-patch birth-death-migration linear process.

Lets (Z1
t , Z

2
t )t≥0 be such a process with per capita rates on patch i being respectively

bi, di and m. Write gi(n) the probability of survival of the process starting with a popu-
lation of n individuals on patch i (i.e Zi

0 = n, Z3−i
0 = 0). Note that because the process

is linear, and therefore branching, we have:

gi(n) = gi(1)n. (20)

Starting from one individual on patch 1, the total jump rate of the process is b1 +d1 +m.
Then the probability of survival of the process starting from one individual on patch 1
is, conditioning on the �rst jump:

g1(1) = P(The �rst jump is a birth)g1(2) + P(The �rst jump is a migration)g2(1)

g1(1) =
b1

b1 + d1 + m
(g1(1))2 +

m

b1 + d1 + m
g2(1) i.e.

b1g1(1)
2 − (b1 + d1 + m)g1(1) + mg2(1) = 0

(21)

Similar computation for a population starting from one individual on patch 2 allows us
to conclude that (g1(1), g2(1)) is a solution in [0, 1]2 of the system{

b1g1(1)2 − (b1 + d1 + m)g1(1) + mg2(1) = 0

b2g2(1)2 − (b2 + d2 + m)g2(1) + mg1(1) = 0.
(22)

Now, we de�ne gi(z; x, y) as the survival probability of a mutant with trait value z
arising in patch i with resident population of trait values x and y. Resident population
sizes are computed according to (3). Taking bi = bi(z) and di = ni,x(x, y) + ni,y(x, y), we
have gi(1) = gi(z; x, y). With some algebric work on Equation (22), one can show that it
implies that g1(z; x, y) is a root in [0, 1] of the following polynomial

P (X) = a3X
3 + a2X

2 + a1X + a0 (23)

with

a3 = b1(z)2b2(z)

a2 = 2b1(z)b2(z)(m + N1(x, y)− b1(z))

a1 = b2(z)(b1(z)−N1(x, y))2 + m[b1(m + N2(x, y)− b2(z))]

+ mb2[(m + N1(x, y)− b1(z)) + (N1(x, y)− b1(z))]

a0 = [(b1(z)−N1(x, y))(b2(z)−N2(x, y))−m(b1(z) + b2(z)−N1(x, y)−N2(x, y))] m.

(24)
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g2(z; x, y) is a solution of a similar equation with the roles of x and y exchanged. Deriva-
tives of these probabilities for Equation (4) can be computed explicitly using the fact
that gi(x; x, y) = gi(y; x, y) = 0. Indeed, writing for the following lines n1,x(x, y) = n1

and n2,x(x, y) = n2

d

dz
P (g1(z; x, y))|(x,x,y) = 0 ⇐⇒ g1(x; x, y)

[
d

dz
a3g1(x; x, y)2 +

d

dz
a2g1(x; x, y) +

d

dz
a1

]
+

[
3a3

d

dz
g1(x; x, y)g1(x; x, y) + 2a2

d

dz
g1(x; x, y)

]
g1(x; x, y)

+
d

dz
(a0)|(x,x,y) + a1(x; x, y)

d

dz
g1(x; x, y) = 0

⇐⇒ d

dz
(a0)|(x,x,y) + a1(x; x, y)

d

dz
g1(x; x, y) = 0

⇐⇒ d

dz
g1(x; x, y) = − 1

a1(x; x, y)

d

dz
(a0)|(x,x,y).

(25)

But

a1(x; x, y) = b2(x)m2(1− n2

n1

)2 + m2b1(x)(
n1

n2

) + m2b2(x)(2
n2

n1

− 1)

= m2

[
b2(x)(

n2

n1

)2 + b1(x)
n1

n2

]
= m2

[
b1(x)(n1)

3 + b2(x)(n2)
3

(n1)2n2

] (26)

and

d

dz
a0|(x;x,y) = m

[
b′1(x)m(1− n1

n2

) + b′2(x)m(1− n2

n1

)−m(b′1(x) + b′2(x))

]
= −m2

[
b′1(x)(n1)

2 + b′2(x)(n2)
2

n1n2

]
.

(27)

So
d

dz
g1(x; x, y) = ∂1g1(x; x, y) = n1

b′1(x)(n1)
2 + b′2(x)(n2)

2

b1(x)(n1)3 + b2(x)(n2)3
. (28)

And so the �rst component of (4) yields

ẋ =
b1(x)(n1,x(x, y))2 + b2(x)(n2,x(x, y))2

b1(x)(n1,x(x, y))3 + b2(x)(n2,x(x, y))3
p[b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2] (29)

and by symmetry

ẏ =
b1(y)(n1,y(x, y))2 + b2(y)(n2,y(x, y))2

b1(y)(n1,y(x, y))3 + b2(y)(n2,y(x, y))3
p[b′1(y)(n1,y(x, y))2 + b′2(y)(n2,y(x, y))2] (30)

Now note that b1(x)(n1,x(x,y))2+b2(x)(n2,x(x,y))2

b1(x)(n1,x(x,y))3+b2(x)(n2,x(x,y))3
is strictly positive, provided the resident pop-

ulation are non-zero. Hence

b1(x)(n1,x(x, y))2 + b2(x)(n2,x(x, y))2

b1(x)(n1,x(x, y))3 + b2(x)(n2,x(x, y))3
p[b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2] = 0

⇔ b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2 = 0

(31)
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In order to �nd equilibria of Equation (4), we can therefore �nd those of the simpli�ed
canonical equation (5):{

ẋ = h1(x, y) = b′1(x)(n1,x(x, y))2 + b′2(x)(n2,x(x, y))2

ẏ = h2(x, y) = b′1(y)(n1,y(x, y))2 + b′2(y)(n2,y(x, y))2
(5)

Regarding the stability of equilibria of both equations, they are equivalent if

b1(x)(n1,x(x, y))2 + b2(x)(n2,x(x, y))2

b1(x)(n1,x(x, y))3 + b2(x)(n2,x(x, y))3
=

b1(y)(n1,y(x, y))2 + b2(y)(n2,y(x, y))2

b1(y)(n1,y(x, y))3 + b2(y)(n2,y(x, y))3
. (32)

But this condition is always satis�ed when y = x̄ (see Appendix A.4). Therefore, for the
purpose of our study, we can study the simpli�ed equation (5).

A.3 There is no equilibria outside [E1, E2]
2

Indeed, if say x < E1 then

b′1(x) =
2

σ2
(x− E1)K

′

[(
(x− E1)

σ

)2
]

. (33)

Since K is decreasing, K ′(z) < 0 for all z and therefore b′1(x) > 0. For similar reasons
(x < E1 < E2), b′2(x) > 0. Thus b′1(x)n2

1,x(x, y) + b′2(x)n2
2,x(x, y) > 0.

A.4 Population sizes

When both trait values in the population are equal to x∗, Equation (3) becomes much
simpler. In that case b1(x

∗) = b2(x
∗) := b and thus summing (3a) and (3c) together as

well as summing (3b) and (3d) together yields{
bN1(x

∗, x∗)−N1(x
∗, x∗)2 + m(N2(x

∗, x∗)−N1(x
∗, x∗)) = 0

bN2(x
∗, x∗)−N2(x

∗, x∗)2 + m(N1(x
∗, x∗)−N2(x

∗, x∗)) = 0.
(34)

Hence N1(x
∗, x∗) = N2(x

∗, x∗) = b. Reinjecting this in (3) yields

m(n1(x
∗, x∗)− n2(x

∗, x∗)) = 0

and therefore n1(x
∗, x∗) = n2(x

∗, x∗).
If x 6= x∗ and the resident population has trait values x and x̄, we can explicitly

compute the population sizes, which will be useful next.
We look for a solution to (3) so that n1,x(x, x̄) = n2,x̄(x, x̄) and n2,x(x, x̄) = n1,x̄(x, x̄)

because of (6). Hence N1(x, x̄) = N2(x, x̄) = N . We de�ne X as n1,x

N
= n2,x̄

N
. Summing

(3a) and (3b) yields:

(b1(x)−N)XN + (b2(x)−N)(1−X)N + m(N2 −N1) = 0

⇐⇒ X =
N − b2(x)

b1(x)− b2(x)
.

(35)
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Remember that N1 = N2 = N , using this in (3a) and dividing by N yields:

(b1(x)−N)
N − b2(x)

b1(x)− b2(x)
+ m(

N − b1(x)

b2(x)− b1(x)
− N − b2(x)

b1(x)− b2(x)
) = 0

⇐⇒ 1

b1 − b2

[
N2 − (b1 + b2 − 2m)N + b1b2 −m(b1 + b2)

]
= 0

⇐⇒ N =
1

2

[
b1(x) + b1(x̄)− 2m +

√
4m2 + (b1(x)− b1(x̄))2

] (36)

and

n1,x = n2,x̄ =
1

2

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b1 − b2

)
N

n2,x = n1,x̄ =
1

2

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b2 − b1

)
N.

(37)

A.5 Proof of existence of a symmetrical equilibrium if Condition

(12) is satis�ed

It is a simple argument of continuity. Note that because of (6),

ẋ(x, x̄) = 0 ⇐⇒ ẏ(x, x̄) = 0.

Recall the functions h1(x, y) and h2(x, y) from Equation (5). The previous equations
enable us to study only the roots of, say, x 7→ h1(x, x̄).

At x = E1, h1(E1, E2) = b′2(E1)(n2,E1(E1, E2))
2 > 0.

Now, if
d

dx
[h1(x, x̄)]|(x∗,x∗) > 0

since h1(x
∗, x∗) = 0 (see Section 3.2) then for x su�ciently close to x∗, a simple argument

of continuity for real functions ensures that h1(x, x̄) < 0.
Therefore, there exists an x ∈]E1, x

∗[ such that h1(x, x̄) = 0 . At the point (x∗, x∗),
we deduce from (1), (36) and (37) that

b1(x
∗) = b2(x

∗), N(x∗, x∗) = b1(x
∗), ni,x∗ =

1

2
b1(x

∗) and

b′1(x
∗) = −b′2(x

∗) and b′′1(x
∗) = b′′2(x

∗).
(38)

Moreover

d

dx
h1(x, x̄) = b′′1(x)(n1(x, x̄))2 + b′′2(x)(n2(x, x̄))2

+ 2

[
b′1(x)n1(x, x̄)

d

dx
n1(x, x̄) + b′2(x)n2(x, x̄)

d

dx
n2(x, x̄)

]
.

(39)
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(36) and (37) yield

d

dx
n1(x, x̄) = (

d

dx
N(x, x̄))

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b1 − b2

)

+ N(x, x̄)
d

dx

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b1 − b2

)
.

But if x = x∗,

d

dx
N(x, x̄) =

1

2

(
b′1(x) + b′2(x) +

(b′1(x)− b′2(x))(b1(x)− b2(x))√
4m2 + (b1(x)− b2(x))2

)
= 0.

Then:

d

dx

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b1(x)− b2(x)

)
=

(b′1(x)− b′2(x))√
4m2 + (b1(x)− b2(x))2

−
(
√

4m2 + (b1(x)− b2(x))2 − 2m)(b′1(x)− b′2(x))

(b1(x)− b2(x))2
.

By expanding around x∗ the second term of the right hand side, we �nd that

d

dx

(
1 +

√
4m2 + (b1(x)− b2(x))2 − 2m

b1(x)− b2(x)

)
(x∗,x∗)

= (b′1(x
∗)− b′2(x

∗))(
1

2m
− 1

4m
)

= −b′2(x
∗)

2m

(40)

Finally, noting that N(x∗) = b2(x
∗), and incorporating (40) in Equation (39) yields

d

dx
h1(x, x̄) =

1

2
b′′2(x

∗)(b2(x
∗, x∗))2

+ 2

(
b′1(x

∗)
b1(x

∗)

2
(−b′2(x

∗)

2m
) + b′2(x

∗)
b2(x

∗)

2
(−b′1(x

∗)

2m
)

)
=

1

2
(b2(x

∗, x∗))2

[
b′′2(x

∗) +
(b′2(x

∗)2)

m

]
.

(41)

A.6 On stability

NB: For readability purposes, we will denote by (n1(x, y), n2(x, y), n3(x, y), n4(x, y)) the

vector (n1,x(x, y), n2,x(x, y), n1,y(x, y), n2,y(x, y)). Moreover when no confusion is possible,

we will simply write ni for ni(x, y).
First, let us show that:
If (x, x̄) is an equilibrium then it is stable if and only if d

dx
[h1(x, x̄)] < 0

We have to calculate the derivatives of the populations sizes: for all (x, y), di�erenti-
ating (3) with respect to the �rst variable, we �nd

C(x, y)


∂1n1(x, y)
∂1n2(x, y)
∂1n3(x, y)
∂1n4(x, y)

 =


−b′1(x)n1(x, y)
−b′2(x)n2(x, y)

0
0

 (42)
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with

C(x, y) =
b1(x)− n1,x −N1 −m m −n1,x 0

m b2(x)− n2,x −N2 −m 0 −n2,x

−n1,y 0 b1(y)−N1 − n1,y −m m
0 −n2,y m b2(y)−N2 − n2,y −m


(43)

C(x, y) is invertible because it is the Jacobian of System (3) at the point
(n1,x, n2,x(x, y), n1,y(x, y), n2,y(x, y)), which is a stable equilibrium of the system (and
its eigenvalues all have a negative real part). It is well known that the matrix C−1 =
(cij)i,j∈{1,2,3,4} can be computed using the comatrix of C. Hence the reader can easily
convince himself that C−1 keeps some �symmetry properties� of C(x, x̄) such as c11 = c44

or c13 = c42

This, (6) and (42) allow us to assert that
∂1n1(x, x̄) = −∂2n4(x, x̄)

∂1n2(x, x̄) = −∂2n3(x, x̄)

∂1n3(x, x̄) = −∂2n2(x, x̄)

∂1n4(x, x̄) = −∂2n1(x, x̄)

(44)

Now taking the expression of hi(x, y) from (5), di�erentiating it with respect to the
right variable, and then using (44) and di�erentiating (6) yields:

∂1h1(x, x̄) = ∂2h2(x, x̄) and

∂2h1(x, x̄) = ∂1h2(x, x̄)
(45)

And since we have

B(x) = DF(x,x̄) =

(
∂1h1(x, x̄) ∂1h2(x, x̄)
∂2h1(x, x̄) ∂2h2(x, x̄)

)
, (46)

we can deduce that B is a symmetrical matrix, therefore its eigenvalues are real. Having
two negative eigenvalues is hence equivalent to

[
tr(B(x)) < 0 and det(B(x)) > 0

]
. We

now prove our claim:

Necessary condition: If d
dx

[h1(x, x̄)] > 0 i.e.

∂1h1(x, x̄)− ∂2h1(x, x̄) > 0, (47)

then either
∂1h1(x, x̄) + ∂2h1(x, x̄) > 0 (48)

and in this case, tr(B(x)) > 0 so (x, x̄) is unstable (since at least one eigenvalue is
nonnegative), or

∂1h1(x, x̄) + ∂2h1(x, x̄) < 0 (49)

and then det(B(x)) < 0 so both eigenvalues have opposite signs.
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Su�cient condition: It su�ces to show that

if (x, x̄) is an equilibrium, then ∂2h1(x, x̄) = 0 (50)

Indeed our hypothesis would then yield ∂1h1(x, x̄) < 0 which would allow us to
conclude. Let us then prove (50). Di�erentiating h1 with respect to the second
variable yields:

1

2
∂2h1(x, x̄) = b′1(x)n1(x, x̄)∂2n1(x, x̄) + b′2(x)n2(x, x̄)∂2n2(x, x̄). (51)

By(42):

∂2n1(x, x̄) = −b′1(x̄)n3c13 − b′2(x̄)n4c14

∂2n2(x, x̄) = −b′1(x̄)n3c23 − b′2(x̄)n4c24.
(52)

We compute

c13 =
1

det(C)

∣∣∣∣∣∣
m −n1 0

b2 − 2n2 − n1 −m 0 −n2
−n1 m b1 − 2n1 − n2 −m

∣∣∣∣∣∣
=

1

det(C)
[m2n2 + n1(b1 − 2n1 − n2)(b2 − 2n2 − n1)− n2

1n2]

(53)

where (n1, n2, n3, n4) = ((n1,x(x, x̄), n2,x(x, x̄), n1,x̄(x, x̄), n2,x̄(x, x̄)) satisfy (3), so
�nally

c13 =
1

det(C)
(m2n2 + n1(m

n2

n1

+ n1)(m
n1

n2

+ n2)− n2
1n2)

=
1

det(C)

(
m2n2 + n1

[
m(

n2
2

n1

+
n2

1

n2

) + m2

]) (54)

For the same reasons:

c24 =
1

det(C)

∣∣∣∣∣∣
b1 − 2n1 − n2 −m −n1 0

m 0 −n2
−n2 b2 − 2n2 − n1 −m m

∣∣∣∣∣∣
=

1

det(C)
(m2n1 + n2(m

n2

n1

+ n1)(m
n1

n2

+ n2)− n1n
2
2)

=
1

det(C)

(
m2n1 + n2

[
m(

n2
2

n1

+
n2

1

n2

) + m2

])
(55)

and

c14 = m(n1 + n2)

(
m

n1

n2

+ n2

)
c23 = m(n1 + n2)

(
m

n2

n1

+ n1

)
.

(56)
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Using (6),(54), (55), (56) we obtain:

det(C)

2
∂2h1(x, x̄) = b′1(x)b′2(x)n1n2

(
2m2(n1 + n2) + m(n1 + n2)

[
n2

2

n1

+
n2

1

n2

])
+ (b′1(x))2n2

1

(
m

n1

n2

+ n2

)
+ (b′2(x))2n2

2

(
m

n2

n1

+ n1

)
.

(57)

But (x, x̄) is an equilibrium, and so

b′21 n2
1 + b′22 n2

2 = 0.

Hence

b′1b
′
2n1n2 = −(b′2)

2n3
2

n1

= −(b′1)
2n3

1

n2

(58)

Incorporating this result in (57) yields

∂2h1(x, x̄) = 0. (59)

A.7 Uniqueness of the equilibrium

To prove the uniqueness of the equilibrium, we need to make an assumption on the form
of the fertility rate. We want it to be regular enough for us to determine the sign of some
quantities. If x 7→ K(X) satis�es one of the following conditions:

1. ∃λ, µ ∈ R,∀x ∈ [E1, E2], K(X) = λ exp(−µX), or

2. x 7→ b′1(x)b′2(x) and x 7→ b′1(x)

b′2(x)
are respectively non-increasing and convex on the

interval ]E1, x
∗[,

then if there is an x ∈]E1, x
∗[ so that (x, x̄) is a stable equilibrium of (5), it is unique and

Condition (12) is satis�ed (cf Appendix A.7).
The general condition of point 2, although fairly technical, contains for example every

function K so that ∃λ, µ ∈ R, k ∈ N∗, ∀x ∈ [E1, E2], K(X) = λ− µXk. Hence we have
already a large class of functions at our disposal, but we exclude functions with too fast
or non-monotonous decay away from 0.

Now, note that if x 6= E2 then

h1(x, x̄) = 0 ⇐⇒ n2 =

√
−b′1(x)

b′2(x)
n1,x(x, x̄).

Putting this in (3) yields

h1(x, x̄) = 0 ⇐⇒

n1,x(x, x̄)
(
b1(x) + m

√
−b′1(x)

b′2(x)

)
= n1,x(x, x̄)

(
n1,x(x, x̄) + n1,x̄(x, x̄) + m

)
n2,x(x, x̄)

(
b2(x) + m

√
−b′2(x)

b′1(x)

)
= n2,x(x, x̄)

(
n2,x(x, x̄) + n2,x̄(x, x̄) + m

) .

(60)
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But as for our proof of Section 3.3, n1,x(x, x̄) and n2,x(x, x̄) are both di�erent from
0. Moreover by a symmetry argument, we know that(see Appendix A.4) n1,x(x, x̄) =
n2,x̄(x, x̄) and n2,x(x, x̄) = n1,x̄(x, x̄). Hence, simplifying then summing in (60) implies
that h1(x, x̄) = 0 ⇒ w(x) = 0 where

w(x) = b1(x)− b2(x) + m

(√
−b′1(x)

b′2(x)
−

√
−b′2(x)

b′1(x)

)
. (61)

Finding equilibria of (5) is now a matter of �nding the roots of this function. We show
that when Condition (12) is violated, w(x) = 0 has only one solution (for x = x∗) and so
(5) has only one equilibrium, (x∗, x∗), which is stable. When Condition (12) is satis�ed,
w has 3 solutions being x∗, some x0 < x∗ and x̄0 and so (5) has two equilibria, with only
(x0, x̄0) being stable.

It su�ces to show that w(x) has at most one solution on the interval ]E1, x
∗[ when

Condition (12) is satis�ed and none otherwise. Since

w(x) −−−→
x→E1

−∞

and w(x∗) = 0, if there is x0 ∈]E1, x
∗[ so that w(x0) = 0, there is by Rolle theorem, a

x1 ∈]x0, x
∗[ such as w′(0) = 0.

But

w′(x) = (b′1(x)− b′2(x))

(
1− m

2

(b′1(x)b′′2(x)− b′′1(x)b′2(x))

b′1(x)b′2(x)
√
−b′1(x)b′2(x))

)
(62)

i.e since x 6= x∗

w′(x) = 0 ⇐⇒ (−b′1(x)b′2(x))3/2 − m

2
(b′1(x)b′′2(x)− b′′1(x)b′2(x)) = 0 (63)

which can be rewritten, in the purpose of using Hypothesis 2 of the proposition, as:

w′(x) = 0 ⇐⇒ (−b′1b
′
2)

(
(−b′1b

′
2)

1/2 − m

2
(
b′′1
b′1
− b′′2

b′2
)

)
= 0

⇐⇒ w̃(x) := (−b′1b
′
2)

1/2 − m

2

[
log

(
−b′1
b′2

)]′
= 0.

(64)

The function w̃ is non-decreasing thanks to Hypothesis 2. Indeed, for every function f ,
if f is concave then log(f) is concave.

Moreover, w̃ tends to −∞ on E1. So w̃(x) = 0 has no solution if w̃(x∗) < 0 and a
unique solution in ]E1, x

∗[ if w̃(x∗) > 0. But w̃(x∗) > 0 is equivalent to Condition (12),
yielding the desired result.

The case where K(X) is an exponential function is straightforward computation.

A.8 Explicit solution in the linear case

As explained above, �nding the equilibrias of (5) requires us to �nd the roots of

w(x) = b1(x)− b2(x) + m

(√
−b′1(x)

b′2(x)
−

√
−b′2(x)

b′1(x)

)
. (65)
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Using the explicit form of bi yields:

w(x) =
1

σ2
[(x− E2)

2 − (x− E1)
2] + m

(√
x− E1

E2 − x
−
√

E2 − x

x− E1

)

= (E1 + E2 − 2x)

[
E2 − E1

σ2
− m√

(x− E1)(E2 − x)

] (66)

i.e if x < x∗,

w(x) = 0 ⇐⇒ (E2 − E1)
2

σ4

[
(x− E1)(E2 − x)− m2σ4

(E1 − E2)2

]
= 0

⇐⇒ (E2 − E1)
2

σ4

[
− x2 + (E2 + E1)x− E1E2 −

m2σ4

(E1 − E2)2

]
= 0.

(67)

The second degree equation of the last line has the discriminant

∆ = (E1 − E2)
2

[
1−

(
2m

A

)2
]

. (68)

It is positive when A > 2m. Then the roots of (67) are{
xl = E1+E2

2
−
√

∆

xr = E1+E2

2
+
√

∆
(69)

i.e:

xl = x∗ − (E2 − E1)

2

√
1− 4m2

A2

xr = x̄l = x∗ +
(E2 − E1)

2

√
1− 4m2

A2
.

(70)

If A < 2m, (67) has no roots, and if A = 2m, xl = xr = x∗

A.9 Stability of the generalist equilibrium when the migration

rate is not constant

As shown in Sections A.6 and A.7, the stability of the generalist equilibrium when m is
a constant function depends only on the sign of the derivative of the function w(x) =
h1(x, x̄) at the point x∗. For similar reasons, this is still the case when m varies, i.e.
(x∗, x∗) is a stable equilibrium if and only if the function

w̃(x) = b′1(x)(n1,x(x, x̄))2 + b′2(x)(n2,x(x, x̄))2 + m′(x)(n2,x(x, x̄)− n1,x(x, x̄))2 (71)

has a negative derivative at the point x∗. Computing this derivative yields

w̃′(x) =b′′1(x)(n1,x(x, x̄))2 + b′′2(x)(n2,x(x, x̄))2 + m′′(x)(n2,x(x, x̄)− n1,x(x, x̄))2

2

[
b′1(x)n1,x(x, x̄)

d

dx
(n1,x(x, x̄)) + b′2(x)n2,x(x, x̄)

d

dx
(n2,x(x, x̄))

]
+ 2m′(x) [n2,x(x, x̄)− n1,x(x, x̄)]× d

dx
[n2,x(x, x̄)− n1,x(x, x̄)] .

(72)
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But at the point (x∗, x∗), we know that (cf Appendix A.4) n1,x∗(x∗, x∗) = n2,x∗(x∗, x∗).
Hence w̃′(x∗) only depends on m(x∗) (and on function K of course), showing that the
stability of the monomorphic equilibria does not depend on the shape of m(X). In
particular, it does not depend on m(X) being constant.

B Online Appendix: Additional numerical analysis

B.1 Semelparous lifecycles

Figure B.1: Stable equilibria versus migration probability for a population with semel-
parous lifecycle. Other parameters K(X) = 4−X, σ = 0.1, α = 0.01

We changed the microscopic model to �t a semelparous life cycle, by assuming that
individuals migrate only at birth with probability m (other mechanisms unchanged).

In a similar way as in Appendix A.2, we derive the new simpli�ed canonical equation
ẋ = b′1(x)b1(x)(1−m)n2

1,x(x, y) + b′2(x)b2(x)(1−m)n2
2,x(x, y)

+mn1,x(x, y)n2,x(x, y)(b′1(x)b2(x) + b′2(x)b1(x))

ẏ = b′1(y)b1(y)(1−m)n2
1,y(x, y) + b′2(y)b2(y)(1−m)n2

2,y(x, y)

+mn1,y(x, y)n2,y(x, y)(b′1(y)b2(y) + b′2(y)b1(y))

(73)

Computing the stable equilibria of (73) yields the same patterns as for iteroparous
life cycles (numerical application presented on Fig. B.1). Computing the �rst coordinate
of vector �eld at (E1, E2) yields

b′2(E1)n2,E1(E1, E2) [b2(E2)(1−m)n2,E1(E1, E2) + mb1(E1)n1,x(x, y)]

which is strictly positive for the same reason as in Section A.3. Hence, even for population
with semelparous lifecycles, there is no pure specialist equilibrium (unless m = 0).
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B.2 Asymmetry of the selection parameter

Patch one has now selection parameter σ1 and patch two, σ2. Computing the strategies
for this population yields the same patterns as for asymmetrical carrying capacities (see
Figure B.2 (A)). As in Fig. 4, the strategies show a bias towards the more selective patch.
Panel (B) shows how the bias of the monomorphic strategy increases with asymmetry rs.

(A) σ1 = 0.18, σ2 = 0.1 (B) σ2 = 0.06, σ1 = rsσ2

Figure B.2: In�uence of an asymmetry in the selection parameters on specialization.
Panel A shows how the pattern of equilibrium trait values is modi�ed by asymmetry while
Panel B shows how the value of the monomorphic equilibrium varies with asymmetry.
Other parameters: α1 = 0.01, K(X) = 4−X
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B.3 Variable migration rate: The non-symmetrical case

Figure B.3: Stable equilibria versus maximum migration rate. Black circles are monomor-
phic equilibria, gray diamonds are dimorphic equilibria. Other parameters K(X) =
exp(−X), m(x) = m exp(−50 ∗ (x− 4E1+E2

3
)), σ = 0.1, α = 0.01, E1 = 0.5, E2 = 0.6
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