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1 Introdu
tionOriginally proposed at the dawn of the XXth 
entury by Gouy and Chapman [10, 5℄, the Poisson-Boltzmann(PB) equation is still the 
orner stone of most of the theoreti
al des
riptions of ele
trokineti
 phenomena. Manyworks emphasized the limitation of su
h a model in the last de
ades, though. The ions are only represented bytheir 
harge, they do not have any volume, the 
orrelations are negle
ted. The mole
ular nature of the solventand further spe
i�
 for
es (su
h as the London dispersion) are 
ompletely ignored [4, 11℄. Thus the domain ofvalidity appears to be relatively narrow, typi
ally in the regime of dilute simple (most of the time monovalent)ele
trolytes. Nevertheless, be
ause of its simpli
ity, most of the theories of equilibrium and transport in 
hargeddiphasi
 media are still dire
t generalizations of the PB approa
h. For example, geologi
al media (su
h as 
lays)[17, 22℄, ele
tro
hemistry [3, 12℄, and 
olloidal physi
s [15℄ are still based on the original 
on
epts des
ribed bythe Poisson-Boltzmann equation.The su

ess of su
h an approa
h is due to several aspe
ts. It justi�es the popular Derjaguin, Landau, Verweyand Overbeek (DLVO) theory [24℄ that explains the stability of 
harged suspensions. In the 
ase of 
hargedporous media, the Poisson-Boltzmann approa
h is also parti
ularly signi�
ant be
ause it yields the equilibriumele
trostati
 properties of the materials and it 
an be easily 
oupled to further equations in order to providea global model of the system. Indeed, for the transport properties, the Poisson-Boltzmann equation 
an beextended in order to give the Poisson-Nernst-Plan
k (PNP) formalism whi
h des
ribes non-equilibrium pro
essesin 
omplex systems [26℄. For example, in the 
ase of 
lays, the des
ription of ele
trokineti
 pro
esses in the largepores (meso and ma
roporosities) 
an be performed thanks to the PB equation [19℄. The mole
ular nature of thesystem is found to be important only for mi
ropores (typi
ally for distan
es less than 2 nm) [16℄.In porous media, the PB model exhibits two di�erent regimes, depending on the values of the salt 
on
entrationand of the pore size.
• If the pore size L is mu
h larger than the Debye length λD of the ele
trolyte, the solid 
harge is s
reenedby the mi
ros
opi
 ions. Thus, the lo
al 
harge density is globally zero, away from the interfa
e. Be
auseof the relatively small value λD, this 
ase 
orresponds to numerous appli
ations. The solid interfa
es areun
oupled so that the DLVO approa
h is valid. Far away from the interfa
e, the 
oulombi
 for
es 
an bemodelled by e�e
tive parameters, su
h as the e�e
tive 
harge [23℄ or the zeta potential.
• Conversely, if the pore size L is mu
h smaller than λD, the 
harge of the solid surfa
e is not s
reened. Itmeans that the resulting ele
trostati
 for
e is important anywhere in the material. Ions for whi
h the 
hargeis the same as the one of the solid phase are expelled from the material (Donnan e�e
t) [11℄. The ele
tro-osmoti
 �ux be
omes espe
ially important. This 
ase is signi�
ant be
ause it 
orresponds to nanoporositiesat low salt 
on
entration.The two asymptoti
 limits 
an be taken into a

ount thanks to the 
oupling parameter β = (L/λD)2. The largepore size domain (large β) 
orresponds to most of the porous systems. Nevertheless, many porous materialsexhibit mi
ros
opi
 pores for whi
h the opposite limit (small β) is relevant. For example, montmorillonite 
layshave di�erent porosities, and the smallest ones, whi
h are obtained at very low hydration, are even of the orderof mole
ular distan
es.The goal of the present paper is to give a rigorous mathemati
al analysis of these two opposite asymptoti
limits. The paper is organized as follows. Se
tion 2 introdu
es the model and de�nes the relevant redu
edunits. Se
tion 3 des
ribes pre
isely the geometry of the porous 
ell and dis
usses the issue of the existen
e anduniqueness of the solution to PB equation. Se
tion 4 studies the limit 
ase of very small pores, i.e., when β goesto zero. Se
tion 5 is 
on
erned with the opposite situation of very large pores, when β goes to in�nity. EventuallySe
tion 6 investigates the 
ase of Diri
hlet boundary 
onditions (namely for imposed surfa
e potential) instead ofNeumann boundary 
ondition (namely imposed surfa
e 
harge). A brief des
ription of our main results is givenin the next se
tion after introdu
ing the ne
essary notations.2 The model and our main resultsWe 
onsider the Poisson-Boltzmann system whi
h des
ribes the ele
trostati
 distribution of N 
hemi
al spe
iesdiluted in a liquid at rest, o

upying a porous medium with 
harged solid boundaries. The ele
trostati
 potential2



Ψ∗ is 
al
ulated from the Poisson equation
E∆Ψ∗ = −e

N
∑

j=1

zjn
∗
j in the bulk, (1)where E = E0Er is the diele
tri
 
onstant of the solvent, e is the ele
tron 
harge and n∗j , 1 ≤ j ≤ N , are thespe
ies 
on
entrations. Sin
e the pore walls are 
harged, the 
orresponding boundary 
ondition is of Neumanntype

E∇Ψ∗ · n = −σ∗ on the surfa
e, (2)where σ∗ is a given surfa
e 
harge and n is the unit exterior normal. Following the literature we in
lude a minussign in (2) whi
h means that σ∗ is positive for a negatively 
harged surfa
e.At equilibrium the spe
ies 
on
entrations n∗j are given by the Boltzmann distribution whi
h 
orresponds to abalan
e between the 
hemi
al potential and the ele
tri
al �eld
∇(kBT lnn∗j) = −∇(zjeΨ

∗). (3)where zj is the valen
e of the j-th spe
ies, kB the Boltzmann 
onstant and T the temperature. It follows from(3) that there exist positive 
onstants n∗j(∞) (
alled in�nite dilution 
on
entrations) su
h that
n∗j = n∗j(∞) exp

{

−zjeΨ
∗

kBT

}

. (4)The Poisson-Boltzmann system is the 
ombination of (1) and (4), together with the boundary 
ondition (2).In order to make an asymptoti
 analysis of the Poisson-Boltzmann system, we �rst adimensionalize equations(1), (2), (4). We denote by L the 
hara
teristi
 pore size and by nc the 
hara
teristi
 
on
entration. We introdu
ethe Debye length de�ned by
λD =

√

EkBT
e2nc

,and de�ne a parameter
β = (

L

λD
)2. (5)The parameter β is the fundamental physi
al 
hara
teristi
 whi
h drives the transport properties of an ele
trolytesolution in a porous media. For large β the ele
tri
al potential is 
on
entrated in a di�use layer next to theliquid/solid interfa
e. Co-ions, for whi
h the 
harge is the same as the one of the solid phase are able to goeverywhere in the pores be
ause the repelling ele
trostati
 for
e of the solid phase is s
reened by the 
ounterions.The ele
trostati
 phenomena are mainly surfa
i
, and the interfa
es are globally independent. For small β, 
o-ionsdo not have a

ess to the very small pores (Donnan e�e
t). The lo
al ele
troneutrality 
ondition is not validanymore and the ele
tri
 �elds of the solid interfa
es are 
oupled.Furthermore, we de�ne a 
hara
teristi
 surfa
e 
harge density σc by

σc =
EkBT
eL

,and adimensionalized quantities
σ =

σ∗

σc
, Ψ =

eΨ∗

kBT
, nj =

n∗j
nc
, n0

j(∞) =
n∗j(∞)

nc
.Res
aling the spa
e variable y = x/L, this yields the adimensionalized Poisson-Boltzmann system

∆yΨ = −β
N
∑

j=1

zjnj(Ψ) with nj(Ψ) = n0
j(∞)e−zjΨ in the bulk, (6)3



and
∇yΨ · n = −σ on the surfa
e. (7)The goal of the present paper is to study the limit of equations (6) and (7) when the parameter β is either verysmall or very large. Se
tion 3.2 gives a pre
ise mathemati
al framework for the Poisson-Boltzmann system. Todis
uss our results we sort the valen
es by in
reasing order and we assume that there are both anions and 
ations

z1 < z2 < ... < zN and z1 < 0 < zN .Se
tion 4 is devoted to the asymptoti
 analysis of (6)-(7) when β goes to zero. This 
ase 
orresponds to verysmall pores, L << λD. In view of the de�nition of the Debye length λD, a small value of β 
orresponds also to asmall 
hara
teristi
 
on
entration nc. The asymptoti
 regime depends on the sign of the averaged 
harge ∫S σ dS.If it is negative (whi
h means that the surfa
e is positively 
harged), then Theorem 11 states that only the anionwith the most negative valen
e (z1) is important and that the potential behaves as
Ψ ≈ log β

z1
+ ϕ0,where ϕ0 is the solution of the redu
ed system, involving only the spe
ies 1,

{

∆ϕ0 = −z1n0
1(∞)e−z1ϕ0 in the bulk,

∇ϕ0 · n = −σ on the surfa
e.Note that the 
onstant log β/z1 is going to +∞ sin
e z1 < 0: it is a manifestation of the singularly perturbed
hara
ter of the asymptoti
 analysis. As a 
onsequen
e, the 
ation 
on
entrations go to zero while the ion
on
entrations blow up as nj = O(β−zj/z1) and n1 >> nj for j 6= 1. Of 
ourse, a symmetri
 behavior (involvingonly the spe
ies with most positive valen
e zN ) holds true when the averaged 
harge is positive. On the otherhand, when the averaged 
harge is zero, then the limit problem is mu
h simpler (there is no singular perturbation)and it is given by Theorem 14. Our analysis is reminis
ent of another asymptoti
 limit studied in [8℄, [20℄ wherethe solid surfa
e is a small sphere, the radius of whi
h is going to zero.Se
tion 5 is 
on
erned with the opposite situation when β goes to in�nity. This 
ase 
orresponds to very largepores, L >> λD or to large values of the 
hara
teristi
 
on
entration nc. Su
h a situation is well understood inthe physi
al and mathemati
al literature: it gives rise to a boundary layer (the so-
alled Debye's layer) 
lose tothe surfa
e. For example, it has been analyzed in [2℄, [18℄ but the analysis is restri
ted to 1-d or similar simpli�edgeometry. Our main 
ontribution, Theorem 21, derives this boundary layer in a general geometri
 setting andgives a rigorous error estimate. To simplify the following formulas we 
hoose the 
hara
teristi
 
on
entration
nc =

∑N
k=1 z

2
kn

∗
k(∞), whi
h implies that ∑N

k=1 z
2
kn

0
k(∞) = 1. Lo
ally, 
lose to the surfa
e, the potential behavesas

Ψ(y) ≈ −σ√
β

exp
{

−d(y)
√

β
}

,where d(y) is the distan
e between the point y and the surfa
e. Away from the surfa
e, the 
on
entrations nj are
onstant and satisfy the so-
alled bulk ele
troneutrality 
ondition. Some numeri
al simulations for varying β 
anbe found in our other work [1℄.In the literature, one may �nd instead of the Neumann boundary 
ondition (2) a Diri
hlet one
Ψ = ζ on the surfa
e, (8)where ζ is an imposed potential. Eventually Se
tion 6 investigates the 
ase when the Neumann boundary 
ondition(2) is repla
ed with the Diri
hlet boundary 
ondition (8). Lemma 23 gives the asymptoti
 behavior for small β:the analysis is quite obvious sin
e there is no more singular perturbation. The potential now behaves as

Ψ ≈ ζ + βΨ1,where Ψ1 is the solution of the 
orre
tor problem










∆Ψ1 = −
N
∑

j=1

zjn
0
j(∞)e−zjζ in the bulk,

Ψ1 = 0 on the surfa
e.4



Theorem 29 gives the asymptoti
 behavior for large β. It is again a boundary layer but with a totally di�erentpro�le. More pre
isely we establish
Ψ(y) ≈ Ψ0,ζ

(

√

βd(y)
)where d(y) is the distan
e between the point y and the surfa
e and Ψ0,ζ is the solution of the nonlinear ordinarydi�erential equation (114), solution whi
h, starting from the boundary value ζ on the surfa
e, is exponentiallyde
aying at in�nity.3 Geometry and existen
e theory for the Poisson-Boltzmann equationIn this se
tion we de�ne the geometry and re
all a 
lassi
al result on the existen
e and uniqueness of a solutionof the Poisson-Boltzmann equation. Furthermore we establish L∞-bounds for the solution.3.1 Geometry of the porous 
ellTo simplify the presentation we 
onsider a sample of a porous medium whi
h o

upies the periodi
 unit 
ell

Y = (0, 1)d (identi�ed with the unit torus T
d). The spa
e dimension is typi
ally d = 2, 3. The pore spa
e YF ,
ontaining the ele
trolyte, is a 1-periodi
 smooth 
onne
ted open subset of Y . More pre
isely, we 
onsider asmooth partition Y = YS ∪ YF where YS is the solid part and YF is the �uid part. The liquid/solid interfa
e is

S = ∂YS \∂Y . It is known that for a general YF with non-empty boundary S, the distan
e fun
tion d, de�ned by
d(y) = dist (y, S), y ∈ YF , is uniformly Lips
hitz 
ontinuous. Let Y µ

F = {y ∈ YF : d(y) < µ}. If we assume S tobe smooth of 
lass C3, then, for su�
iently small µ, the distan
e fun
tion has the same regularity, d ∈ C3(Y µ
F ).Furthermore, by the Collar Neighborhood Theorem (see e.g. [21℄), there exists a tubular neighborhoods U , S ⊂ U ,isomorphi
 to S × I, for I ⊂ R an open interval.For y0 ∈ S, let n(y0) and T(y0) denote respe
tively the unit normal to S at y0 (exterior to YF ) and the tangenthyperplane to S at y0. Without loosing generality, we 
an suppose that in some neighborhood N = N (y0) of y0,

S is then given by yd = γ(y′), where y′ = (y1, . . . , yd−1), γ ∈ C3(T(y0) ∩N ) and ∇y′γ(y
′
0) = 0. The unit normalon S, at the point y = (y′, γ(y′)) is

n(y) =
(∇y′γ(y

′),−1)
√

1 + |∇y′γ(y′)|2
.Here YS 
orresponds to yd > γ(y′).Following [9℄, page 355, for ea
h point y ∈ Y µ

F , there exists a unique point z = z(y) ∈ S su
h that |y−z| = d(y).The points y and its 
losest point z ∈ S are related by
y = z − n(z)d. (9)By the Inverse Mapping Theorem applied in a neighborhood of y0 ∈ S (S 
an be 
overed with a �nite numberof su
h neighbourhoods), (9) de�nes uniquely a prin
ipal 
oordinate system (q′, qd) with q′ = z′ and qd = d(y)whi
h are C2 fun
tions of y. The �rst 
oordinates q′ are the tangential 
oordinates to S while the last 
oordinate

qd is the signed distan
e to S taken with the sign + in the interior of YF and with − in its exterior. We denoteby qd = 0 the lo
al representation of the boundary S in the neighborhood of y0. Of 
ourse, the distan
e fun
tion
d ∈ C3 satis�es ∇d(y) = −n(q′(y)) and |∇d(y)| = 1. Furthermore, the tangential 
oordinates q′ = (q1, . . . , qd−1)
an be 
hosen in su
h a way that the Hessian matrix [D2γ(q′(y0))] is diagonal at y0. For more details we refer to[9℄, pages 354-356.3.2 Mathemati
al framework for the Poisson-Boltzmann equationWe start from the adimensionalized Poisson-Boltzmann system (6) and (7) (where we drop the index y for thespatial derivatives) that we 
omplement with periodi
 boundary 
onditions on the outer boundary of the unit 
ell
Y . More pre
isely, the potential Ψ is a solution of the Poisson-Boltzmann equation







−∆Ψ + βΦ(Ψ) = 0 in YF ,
∇Ψ · n = −σ on S,
Ψ is 1 − periodi
, (10)5



where σ(y) is the adimensionalized 
harge distribution on the pore surfa
e, β > 0 is a parameter de�ned by (5) asthe square of the ratio of the pore size and the Debye length, and Φ(Ψ) is the bulk density of 
harges, a nonlinearfun
tion de�ned by
Φ(Ψ) = −

N
∑

j=1

zjnj(Ψ) (11)where nj is the 
on
entration of spe
ies j given, at equilibrium, as a fun
tion of the potential
nj(Ψ) = n0

j(∞)e−zjΨ (12)with a 
onstant n0
j(∞) > 0. We assume that all valen
ies zj are di�erent. If not, we lump together di�erent ionswith the same valen
e. Of 
ourse, for physi
al reasons, all valen
ies zj are integers. We rank them by in
reasingorder,

z1 < z2 < ... < zN ,and we denote by j+ and j− the sets of positive and negative valen
es. We also assume that there are both anionsand 
ations, namely positive and negative valen
es, i.e.,
z1 < 0 < zN . (13)The fun
tion Φ is monotone sin
e it is the derivative of a 
onvex fun
tion

Φ(Ψ) = C′(Ψ) with C(Ψ) =

N
∑

j=1

n0
j(∞)e−zjΨ. (14)The boundary value problem (10) is equivalent to the following minimization problem:

inf
ϕ∈H1

#
(YF )

{

J(ϕ) =
1

2

∫

YF

|∇ϕ|2 dy + β

∫

YF

C(φ) dy +

∫

S
σϕdS

}

, (15)with H1
#(YF ) = {ϕ ∈ H1(YF ), ϕ is 1 − periodi
}. Note that the fun
tional J may take in�nite values for somefun
tions ϕ ∈ H1

#(YF ) sin
eH1
#(YF ) is not embedded in L∞

# (YF ), ex
ept in spa
e dimension d = 1. The fun
tional
J is stri
tly 
onvex, whi
h gives the uniqueness of the minimizer. Nevertheless, for arbitrary non-negative β, ncj ,
J may be not 
oer
ive on H1

#(YF ) if all zj's have the same sign. Therefore, we must put a 
ondition on the
zj 's so that the minimization problem (15) admits a solution. Following the literature, we impose the bulkele
troneutrality 
ondition

−Φ(0) =

N
∑

j=1

zjn
0
j(∞) = 0, (16)whi
h guarantees that for σ = 0, the unique solution of (10) is Ψ = 0. Under assumption (16) it is easy to seethat J is 
oer
ive on H1

#(YF ).Remark 1. The bulk ele
troneutrality 
ondition (16) is not a restri
tion. A
tually all our results hold under theweaker assumption (13) that all valen
es zj do not have the same sign. Indeed, if (16) is not satis�ed, we 
anmake a 
hange of variables in the Poisson-Boltzmann equation (10), de�ning a new potential Ψ̃ = Ψ + Ψ0 where
Ψ0 is a 
onstant referen
e potential. Sin
e the fun
tion Φ(Ψ0) is 
ontinuous and admits the following limits atin�nity

lim
Ψ0→±∞

Φ(Ψ0) = ±∞,there exists at least one value Ψ0 su
h that Φ(Ψ0) = 0. This 
hange of variables for the potential leaves (10)invariant if we 
hange the 
onstants n0
j(∞) in new 
onstants ñ0

j(∞) = n0
j(∞)e−zjΨ

0 . These new 
onstants satisfythe bulk ele
troneutrality 
ondition (16).In the sequel we assume that the 
harge density is a 
ontinuous periodi
 fun
tion
σ(y) ∈ C#(S). (17)The well-posedness of the boundary value problem (10) is a 
lassi
al result.6



Lemma 2 ([14℄). Assume (17) and that the ele
troneutrality 
ondition (16) holds true. Then problem (10), orequivalently (15), has a unique solution Ψ ∈ H1
#(YF ) su
h that

N
∑

j=1

zje
−zjΨ and Ψ

N
∑

j=1

zje
−zjΨare absolutely integrable.In truth, the paper [14℄ proves the existen
e and uniqueness of a solution of the boundary value problem (10)and not of the minimization problem (15) (the method of proof relies on monotone operators and a trun
ationargument). However, it is not di�
ult to 
he
k the equivalen
e between (10) and (15), as already exploited inmany works in
luding [6℄, [8℄. The interest of (15), 
ompared to (10), is that the existen
e and uniqueness proofis simpler, although the regularity properties of the solution 
ome from (10).A
tually, the issue of the solution boundedness was not 
orre
tly addressed in [14℄, where it was merely provedthat Ψ ∈ Lp(YF ) for every �nite p. By using elementary 
omparison arguments we will prove a L∞-estimate inProposition 3 (a similar result is also proved in [7℄). To this end we introdu
e the following auxiliary Neumannproblem















−∆U =
1

|YF |

∫

S
σ dS in YF ,

∇U · n = −σ on S,
U is 1 − periodi
, ∫

YF
U(y) dy = 0.

(18)Remark that (18) admits a solution U ∈ H1
#(YF ) sin
e the bulk and surfa
e sour
e terms are in equilibrium.Furthermore, the zero average 
ondition of the solution gives its uniqueness. Under 
ondition (17) it is knownthat U is 
ontinuous and a
hieves its minimum and maximum in YF .Then our L∞-bound reads as followsProposition 3. The solution Ψ of (10) satis�es the following bounds

U(y) − Um − 1

z1
log max



1,
σ

βz1n0
1(∞)

−
∑

j∈j+

zjn
0
j(∞)

z1n0
1(∞)



 ≥ Ψ(y) ≥

U(y) − UM − 1

zN
log max



1,
σ

βzNn
0
N(∞)

−
∑

j∈j−

zjn
0
j(∞)

zNn
0
N(∞)



 , (19)where the symbols j+ and j− denote the sets of positive and negative valen
es, respe
tively, and
σ =

1

|YF |

∫

S
σ dS , Um = min

y∈YF

U(y) and UM = max
y∈YF

U(y).Proof. We use the variational formulation for Ψ − U , whi
h reads, for any smooth 1-periodi
 fun
tion ϕ,
∫

YF

∇(Ψ − U) · ∇ϕ dy + β

∫

YF

Φ(Ψ)ϕ dy + σ

∫

YF

ϕ dy = 0. (20)We take ϕ(y) = (Ψ(y) − U(y) + C)−, where C is a 
onstant to be determined and, as usual, the fun
tion
f− = min(f, 0) is the negative part of f . We note that by Lemma 2, ϕ ∈ H1

#(YF ) and Φ(Ψ)ϕ is integrable. Ityields
∫

YF

|∇ϕ|2 dy + β

∫

YF

(Φ(Ψ) − Φ(U −C)) (Ψ − U + C)− dy

+

∫

YF

(βΦ(U − C) + σ)ϕdy = 0.7



By monotoni
ity of Φ the se
ond term is nonnegative. Hen
e we should 
hoose C in su
h a way that the 
oe�
ientin front of ϕ in the third term is nonpositive. If C ≥ UM , we have
βΦ(U − C) + σ ≤ −βzNn0

N(∞)ezN (C−UM ) − β
∑

j∈j−
zjn

0
j(∞) + σ.Thus, if it happens that

−β
∑

j∈j−
zjn

0
j(∞) + σ < βzNn

0
N (∞), (21)we indeed take C = UM and the 
orresponding term is nonpositive. If (21) is not true, then our 
hoi
e is

C = UM +
1

zN
log





σ

βzNn0
N (∞)

−
∑

j∈j−

zjn
0
j(∞)

zNn0
N (∞)



 ≥ UM .This 
hoi
e of the 
onstant C implies that ϕ(y) = 0 and it yields the lower bound in (19).Let us swit
h to the upper bound. We now take ϕ(y) = (Ψ(y)−U(y)−C)+, where C is another 
onstant tobe determined. We note that by Lemma 2, ϕ ∈ H1
#(YF ) and Φ(Ψ)ϕ is integrable. It yields

∫

YF

|∇ϕ|2 dy + β

∫

YF

(Φ(Ψ) − Φ(U +C))(Ψ − U − C)+ dy

+

∫

YF

(βΦ(U + C) + σ)ϕ dy = 0.By monotoni
ity the se
ond term is nonnegative. Again we should 
hoose C in su
h a way that the 
oe�
ient infront of ϕ in the third term is nonnegative. If C + Um ≥ 0, we have
βΦ(U(y) + C) + σ ≥ −βz1n0

1(∞)e−z1(C+Um) − β
∑

j∈j+
zjn

0
j(∞) + σ.Thus, if it happens that

β
∑

j∈j+
zjn

0
j(∞) − σ < −βz1n0

1(∞), (22)we take C = −Um. If (22) is not true, then our 
hoi
e is
C = −Um − 1

z1
log





σ

βz1n
0
1(∞)

−
∑

j∈j+

zjn
0
j(∞)

z1n
0
1(∞)



 ≥ −Um.This 
hoi
e of the 
onstant C gives the upper bound in (19) and the Proposition is proved.By 
lassi
al regularity theory for ellipti
 partial di�erential equations, we easily dedu
e from Proposition 3that the solution of the Poisson-Boltzmann equation is as smooth as the data are.Corollary 4. Suppose S ∈ C∞ and σ ∈ C∞
# (S). Then Ψ ∈ C∞(ȲF ).4 The limit 
ase of small βIn this se
tion we investigate the 
ase of small values of β whi
h o

urs for small pore sizes. Equivalently, in the
ase of very dilute 
on
entrations, we 
an s
ale all 
on
entration 
oe�
ients n0

j(∞) by a small parameter whi
ha
ts as a multipli
ative fa
tor of β. We shall prove that the solution Ψ = Ψβ of the Poisson-Boltzmann equation(10) (with a subs
ript β to indi
ate that we study the behavior when β → 0+) is uniformly bounded up to anadditive 
onstant whi
h may blow up. 8



Lemma 5. Let Ψβ be the unique solution of (10). There exists a 
onstant C, whi
h does not depend on β, su
hthat
‖Ψβ −M(Ψβ)‖H1(YF ) ≤ C‖σ‖L2(S), (23)where M is the averaging operator de�ned by M(g) = 1

|YF |
∫

YF
g(y) dy.Proof. We re
all that the variational formulation 
orresponding to (10) is, for any smooth 1-periodi
 fun
tion ϕ,

∫

YF

∇Ψβ · ∇ϕdy + β

∫

YF

Φ(Ψβ)ϕdy +

∫

S
σϕdS = 0, (24)where the nonlinear fun
tion Φ is de�ned by (11). Taking the test fun
tion ϕ = Ψβ −M(Ψβ) in (24) we get

∫

YF

|∇Ψβ|2 dy + β

∫

YF

(Φ(Ψβ) − Φ(M(Ψβ)) (Ψβ −M(Ψβ)) dy

+

∫

S
σ(Ψβ −M(Ψβ)) dS = 0.By monotoni
ity of Φ the se
ond term is nonnegative and Poin
aré inequality yields the a priori estimate (23).When ∫S σ dS 6= 0, we expe
t that M(Ψβ) blows up as β tends to zero. This is already indi
ated by the

L∞-bounds from Proposition 3. More 
onvin
ingly, 
hoosing ϕ = 1 in (24) leads to
β

∫

YF

Φ(Ψβ) dy = −
∫

S
σ dS, (25)whi
h shows that M(Φ(Ψβ)) blows up, at least. Remark also that, for β = 0, the 
orresponding boundary valueproblem (10) has no solution. However, in the 
ase ∫S σ dS = 0, Ψβ is bounded as will be proved in Se
tion 4.3.4.1 Formal asymptoti
sWe �rst obtain by a formal method of asymptoti
 expansions the boundary value problem, 
orresponding to thelimit β → 0. There are 3 possibilities.Case 1: ∫S σ < 0. Sin
e the Neumann boundary 
ondition (2) or (7) involves −σ, this 
ase 
orrespondsto positively 
harged walls. Therefore, it is the most negative valen
e z1 whi
h matters. Sin
e Ψβ −M(Ψβ) isbounded, we look for an asymptoti
 formula

Ψβ(y) = aβ + ψ0(y) + o(1), (26)with a 
onstant aβ → +∞ and ψ0 a fun
tion independent of β and of zero mean in YF . We will see that furtherterms in the asymptoti
 expansion 
ome in general with fra
tional powers of β.The equality (25) be
omes
−β

N
∑

j=1

zjn
0
j(∞)

∫

YF

e−zj(aβ+ψ0(x)+o(1)) dy = −
∫

S
σ dS.Therefore, we have

z1n
0
1(∞)βe−z1aβ

∫

YF

ez1(ψ0(y)+o(1)) dy

+β
N
∑

j=2

zjn
0
j(∞)e−zjaβ

∫

YF

e−zj(ψ0(y)+o(1)) dy =

∫

S
σ dS, (27)9



and, sin
e aβ → +∞, at the leading order (27) reads
z1n

0
1(∞)βe−z1aβ

∫

YF

e−z1(ψ0(y)+o(1)) dy =

∫

S
σ dS. (28)From (28) we dedu
e

aβ =
log β

z1
+ C0, (29)where C0 is a 
onstant whi
h may depend on β but is bounded as a fun
tion of β → 0. This de
omposition allowsus to eliminate the singular part aβ in the expansion. We thus get the following nonlinear equation for ψ0(y)























−∆ψ0(y) −
∫

S
σ dS

e−z1ψ0

∫

YF
e−z1ψ0(y) dy

= 0 in YF ,

∇ψ0 · n = −σ on S,

ψ0 is 1 − periodi
 and ∫
YF

ψ0 dy = 0.

(30)In our approximate formula for Ψβ we have negle
ted terms of order O(β1−z2/z1). In the 
anoni
al 
ase of 2opposite valen
ies (N = 2, z1 = −z2), the negle
ted term is of order O(β2).Equation (30) does not 
ontain β. Rather than using ψ0, it is more pra
ti
al to use ϕ0(y) = ψ0(y)+C0. Thenwe have
Ψβ(y) =

log β

z1
+ ϕ0(y) +O(β1/z−), (31)and ϕ0 is the solution to the boundary value problem







−∆ϕ0(y) − z1n
0
1(∞)e−z1ϕ0(y) = 0 in YF ,

∇ϕ0 · n = −σ on S,
ϕ0 is 1 − periodi
. (32)We note that by testing (32) by a 
onstant and integrating, we get
z1n

0
1(∞)

∫

YF

e−z1ϕ0(y) dy =

∫

S
σ dS.Consequently, ϕ0 solves (30) ex
ept that it is not of mean zero. We have the following simple result.Lemma 6. Assume that σ is a smooth bounded fun
tion su
h that ∫S σ dS < 0. Then problem (32) has a uniquesolution ϕ0 ∈ H1

#(YF ) su
h that
e−z1ϕ0 and e−z1ϕ0ϕ0are absolutely integrable.Proof. The 
orresponding fun
tional, to be minimized, is

J0(ϕ) =
1

2

∫

YF

|∇ϕ|2 dy + n0
1(∞)

∫

YF

e−z1φ dy +

∫

S
σϕ dS.It is stri
tly 
onvex and the 
ondition ∫S σ dS < 0 insures the 
oer
ivity. The rest of the proof follows that ofLemma 2.Case 2: ∫S σ > 0. Sin
e the Neumann boundary 
ondition (2) or (7) involves −σ, this 
ase 
orresponds tonegatively 
harged walls. Thus, it is the largest positive valen
e zN whi
h matters. At the leading order, (25)reads

βzNn
0
N (∞)e−zNaβ

∫

YF

e−zN (ψ0(y)+o(1))) dy =

∫

S
σ dS. (33)10



For the same asymptoti
 expansion (26), equation (33) allows us to 
ompute the singular behavior aβ and we getthe following equation for the zero-mean perturbation ψ0, ∫
YF

ψ0 dy = 0



















−∆ψ0 −
∫

S
σ dS

e−zNψ0

∫

YF
e−zNψ0(x) dy

= 0 in YF ,

∇ψ0 · n = −σ on S,
ψ0 is 1 − periodi
 and ∫YF

ψ0 dy = 0.

(34)By the same reasoning as in the �rst 
ase, we dedu
e
Ψβ(y) =

log β

zN
+ ξ0(y) +O(β1/zN ), (35)where ξ0 is the solution of







−∆ξ0(y) − zNn
0
N (∞)e−zN ξ0(y) = 0 in YF ,

∇ξ0 · n = −σ on S,
ξ0 is 1 − periodi
. (36)By testing (36) with a 
onstant and integrating, we get
zNn

0
N (∞)

∫

YF

e−zNξ0(y) dy =

∫

S
σ dS.Consequently, ξ0 solves (34) ex
ept that it is not of zero average. We have the following simple result.Lemma 7. Assume that σ is a smooth bounded fun
tion su
h that ∫S σ dS > 0. Then problem (36) has a uniquesolution ϕ0 ∈ H1

#(YF ) su
h that
e−zN ξ0 and e−zN ξ0ξ0are absolutely integrable.Case 3: ∫S σ = 0. In this 
ase the problem 
orresponding to β = 0 has a solution and the analysis is mu
hsimpler.The following limit problem















−∆Ψ0(y) = 0 in YF ,
∇Ψ0 · n = −σ on S,

Ψ0 is 1 − periodi
 and ∫
YF

Φ(Ψ0) dy = 0,
(37)has a unique solution Ψ0 sin
e the fun
tion Φ is monotone. Then we have

Ψβ(y) = Ψ0(y) +O(β). (38)4.2 Rigorous perturbation results when ∫
S

σ dS 6= 0We fo
us on the 
ase ∫S σ dS < 0: the opposite one, ∫S σ dS > 0, is 
ompletely analogous. Motivated by thedis
ussion leading to (31), we look for Ψβ in the form
Ψβ(y) =

log β

z1
+ ϕβ(y), (39)where ϕβ is the solution of







−∆ϕβ(y) − z1n
0
1(∞)e−z1ϕβ(y) + Φ̃(ϕβ) = 0 in YF ,

∇ϕβ · n = −σ on S,
ϕβ is 1 − periodi
, (40)11



with
Φ̃(g) = −

N
∑

j=2

zjn
0
j(∞)β1−zj/z1e−zjg. (41)We start with a uniform H1-estimate for ϕβ.Lemma 8. Let σ be a smooth bounded fun
tion su
h that ∫S σ dS < 0. Then, for small enough β, the solution

ϕβ of (40) satis�es the estimate
‖ϕβ‖H1(YF ) ≤ C, (42)where C is independent of β.Proof. The variational formulation of problem (40) reads, for any smooth 1-periodi
 fun
tion ϕ,

∫

YF

∇ϕβ · ∇ϕdy +

∫

YF

(

Φ̃(ϕβ) − z1n
0
1(∞)e−z1ϕβ

)

ϕdy +

∫

S
σϕ dS = 0. (43)In (43) we take ϕ = ϕβ = ϕ+

β + ϕ−
β and we get

∫

YF

|∇ϕ+
β |2 dy + (z1)

2n0
1(∞)

∫

YF

|ϕ+
β |2 dy + βΦ(

log β

z1
)M(ϕ+

β )

+

∫

S
σϕ+

β dS +

∫

YF

|∇ϕ−
β |2 dy + βΦ(

log β

z1
)M(ϕ−

β )

+

∫

S
σ(ϕ−

β −M(ϕ−
β )) dS +

(
∫

S
σ dS

)

M(ϕ−
β ) ≤ 0.

(44)Indeed,
∫

YF

|∇ϕβ|2 dy =

∫

YF

|∇ϕ+
β |2 dy +

∫

YF

|∇ϕ−
β |2 dy, (45)and

∫

S
σϕβ dS =

∫

S
σϕ+

β dS +

∫

S
σ(ϕ−

β −M(ϕ−
β )) dS +

(∫

S
σ dS

)

M(ϕ−
β ). (46)Furthermore, both fun
tions Φ̃(g) and g → −z1e−z1g are monotone and

Φ̃(0) − z1n
0
1(∞) = βΦ(

log β

z1
).Thus, we dedu
e

(

Φ̃(ϕβ) − z1n
0
1(∞)e−z1ϕβ − Φ̃(0) + z1n

0
1(∞)

)

ϕβ ≥ 0. (47)We use a further argument of stri
t monotoni
ity for −z1e−z1g, namely
(

−z1n0
1(∞)e−z1ϕβ + z1n

0
1(∞)

)

ϕ+
β =

(

−z1n0
1(∞)e−z1ϕ

+
β + z1n

0
1(∞)

)

ϕ+
β

≥ (z1)
2n0

1(∞)ϕ+
β , (48)be
ause (−z1e−z1g)′ = (z1)

2e−z1g ≥ (z1)
2 for g ≥ 0. Equalities (45), (46), together with the lower bounds (47),(48), applied to the variational formulation (43), yield the desired inequality (44). We re
all that
lim
β→0+

βΦ(
log β

z1
) = −z1n0

1(∞) > 0,so that, for su�
iently small β > 0, βΦ( log β
z1

) is a positive bounded 
onstant. Further, the produ
t (
∫

S σ dS)M(ϕ−
β )is nonnegative. Therefore it su�
es to apply Poin
aré inequality and (42) follows.Next we need a uniform L∞-bound for ϕβ , as β goes to 0. (Re
all that the L∞-bounds of Proposition 3 arenot uniform with respe
t to β.) 12



Proposition 9. For su�
iently small β > 0, we have the bounds
U(y) − Um − 1

z1
log max{1, σ

z1n0
1(∞)

} ≥ ϕβ(y) ≥

U(y) − UM − 1

z1
log min{1, σ

z1n
0
1(∞)

}, (49)where U is the solution of the Neumann problem (18).Proof. We start with the variational formulation for ϕβ − U whi
h reads, for any smooth 1-periodi
 fun
tion ϕ,
∫

YF

∇(ϕβ − U) · ∇ϕdy − z1n
0
1(∞)

∫

YF

e−z1ϕβϕdy +

∫

YF

Φ̃(ϕβ)ϕdy

+σ

∫

YF

ϕdy = 0 . (50)We take ϕ(y) = (ϕβ(y)−U(y)+C)−, where C is a 
onstant to be determined. By virtue of Lemma 2, ϕ ∈ H1
#(YF )and Φ(ϕβ)ϕ is integrable. Sin
e the fun
tion g → −zje−zjg and g → Φ̃(g) are monotone, we dedu
e from (50)

∫

YF

|∇ϕ|2 dy +

∫

YF

(

−z1n0
1(∞)e−z1(U−C) + Φ̃(U − C) + σ

)

ϕdy ≤ 0.Hen
e we want to 
hoose C su
h that the expression in front of ϕ in the se
ond integral is nonpositive. We have
−z1n0

1(∞)e−z1(U(y)−C) + Φ̃(U(y) − C) + σ ≤
−z1n0

1(∞)e−z1(UM−C) −
∑

z1<zj<0

β1−zj/z1zjn
0
j(∞)e−zj(UM−C) + σ. (51)Now if

σ < z1n
0
1(∞) < 0,we take C = UM and the left hand side of (51) is nonpositive for β su�
iently small be
ause the sum in (51) issmall. If not, then our 
hoi
e is

C > UM +
1

z1
log
( σ

z1n0
1(∞)

)

> UM .This 
hoi
e of the 
onstant C implies that ϕ(y) = 0, for small enough β, and yields the lower bound in (49).For the upper bound we take ϕ(y) = (ϕβ(y)−U(y)−C)+, where C is a 
onstant to be determined. It yields
∫

YF

|∇ϕ|2 dy +

∫

YF

(

−z1n0
1(∞)e−z1(U+C) + Φ̃(U + C) + σ

)

ϕdy ≤ 0.Hen
e we should 
hoose C su
h that the expression in front of ϕ in the se
ond integral is nonnegative. We have
−z1n0

1(∞)e−z1(U(y)+C) + Φ̃(U + C) + σ ≥ (52)
−z1n0

1(∞)e−z1(Um+C) −
∑

j∈j+
β1−zj/z1zjn

0
j(∞)e−zj(Um+C) + σ.Now if

z1n
0
1(∞) < σ < 0,we 
hoose C = −Um and, for su�
iently small β, the right hand side of (52) is positive be
ause the sum over

j ∈ j+ is small and the expression in front of ϕ in the se
ond integral is nonnegative. Otherwise, we 
hoose
C > −Um − 1

z1
log

(

σ

z1n0
1(∞)

)

> −Umand, again, for su�
iently small β, the right hand side of (52) is positive, whi
h implies the upper bound in(49). 13



As an immediate 
onsequen
e of Proposition 9, taking the limit as β goes to 0, we obtain the following
orollary.Corollary 10. Let ϕ0 be the solution of (32). It satis�es the L∞-estimate
U(y) − Um − 1

z1
log max{1, σ

z1n0
1(∞)

} ≥ ϕ0(y) ≥

U(y) − UM − 1

z1
log min{1, σ

z1n
0
1(∞)

}. (53)Theorem 11. We have
‖ϕβ − ϕ0‖Ck(ȲF )) ≤ Cβ1−z2/z1, (54)for every positive integer k. Furthermore, let ϕ1 be the solution for







−∆ϕ1 + (z1)
2n0

1(∞)e−z1ϕ0ϕ1 = z2n
0
2(∞)e−z2ϕ0 in YF ,

∇ϕ1 · n = 0 on S,
ϕ1 is 1 − periodi
. (55)Then, for every positive integer k, we have

‖ϕβ − ϕ0 − β1−z2/z1ϕ1‖Ck(ȲF )) ≤ Cβq, (56)where 0 < q = min
(

1 − z3/z1 , 2(1 − z2/z1)
).Proof. First we observe that ϕβ − ϕ0 satis�es the variational equation

∫

YF

∇(ϕβ − ϕ0) · ∇ϕdy − z1n
0
1(∞)

∫

YF

(e−z1ϕβ − e−z1ϕ0)ϕdy =

−
∫

YF

Φ̃(ϕβ)ϕdy for all smooth 1-periodi
 ϕ. (57)Now we take ϕ = ϕβ − ϕ0 as a test fun
tion, use the stri
t monotoni
ity of the fun
tion g → −zje−zjg, the
L∞-bounds (49) and (53) to 
on
lude that

‖ϕβ − ϕ0‖H1(YF ) ≤ Cβ1−z2/z1 . (58)Next we write the equation for ϕβ − ϕ0 as














−∆(ϕβ − ϕ0) + (ϕβ − ϕ0) = (ϕβ − ϕ0)

+z1n
0
1(∞)(e−z1ϕβ − e−z1ϕ0) − Φ̃(ϕβ) in YF ,

∇(ϕβ − ϕ0) · n = 0 on S,
(ϕβ − ϕ0) is 1 − periodi
. (59)Using the estimate (58), we get the H2−error estimate of the same order. After bootstrapping we obtain therequired error estimate (54).Eventually, we write the equation for ϕβ−ϕ0−β1−z2/z1ϕ1 and repeating the above pro
edure yields (56).Remark 12. In the frequently 
onsidered 
ase of two ions of opposite unit 
harge (N = 2, −z1 = z2 = 1),normalizing the 
oe�
ients n0

1(∞) = n0
2(∞) = 1, we have

Φ(g) = 2 sinh g , ϕβ = ϕ0 + β2ϕ1 + β4ϕ2 + . . .and, in the 
ase ∫S σ dS < 0, the equations for the fun
tions ϕj read
−∆ϕ0 + eϕ0 = 0,

−∆ϕ1 + eϕ0ϕ1 = e−ϕ0 ,

−∆ϕ2 + eϕ0ϕ2 = −eϕ0ϕ2
1 − e−ϕ0ϕ1and we have

‖ϕβ − ϕ0 − β2ϕ1 − β4ϕ2‖Ck(ȲF )) ≤ Cβ6, (60)for every positive integer k.The 
ase ∫S σ dS > 0 is analogous and it is enough to repeat the above strategy with z1 repla
ed with zN .14



4.3 Rigorous perturbation results in the 
ase ∫
S

σ dS = 0Here the proofs are mu
h simpler than in the previous subse
tion. We just state the results. Again, the startingpoint are the uniform H1-estimate for Ψβ.Lemma 13. Let σ be a smooth fun
tion su
h that ∫S σ dS = 0. Then the solution Ψβ of problem (10) satis�esthe uniform estimates
U(y) − Um − 1

z1
log max



1, −
∑

j∈j+

zjn
0
j(∞)

z1n
0
1(∞)



 ≥ Ψ(y) ≥

U(y) − UM − 1

zN
log max



1, −
∑

j∈j−

zjn
0
j(∞)

zNn0
N (∞)



 , (61)and
‖Ψβ‖H1(YF ) ≤ C, (62)where C is independent of β.Proof. The L∞-bound (61) is a dire
t 
onsequen
e of Proposition 3. Note that (61) is uniform with respe
t to β.To obtain (62) we take the test fun
tion ϕ = Ψβ in the variational formulation (24)

∫

YF

|∇Ψβ|2 dy + β

∫

YF

Φ(Ψβ)Ψβ dy +

∫

S
σΨβ dS = 0.Sin
e Φ is monotone and satis�es Φ(0) = 0, we have Φ(Ψβ)Ψβ ≥ 0, while the assumption ∫S σ dS = 0 impliesthat

∫

S
σΨβ dS =

∫

S
σ (Ψβ −M(Ψβ)) dS ≤ C‖σ‖L2(S)‖∇Ψβ‖L2(YF )by virtue of Poin
aré-Wirtinger inequality. We thus dedu
e
‖∇Ψβ‖L2(YF ) ≤ C‖σ‖L2(S),whi
h, together with (61), implies (62).In subse
tion 4.1 we already introdu
ed the limit problem (37) for Ψ0 = limβ→0 Ψβ. We 
an also de�ne a
orre
tor Ψ1 as the unique solution of















−∆Ψ1(y) = −Φ(Ψ0) in YF ,
∇Ψ1 · n = 0 on S,

Ψ1 is 1 − periodi
 and ∫
YF

Φ′(Ψ0)Ψ1 dy = 0.
(63)There exists a solution of (63) be
ause ∫YF

Φ(Ψ0) dy = 0 as required by the de�nition of (37). As an obvious
onsequen
e of Lemma 13 we get the following error estimate.Theorem 14. Let Ψ0 be the solution of (37) and Ψ1 that of (63). Then we have
‖Ψβ − Ψ0‖Ck(ȲF )) ≤ Cβ, ‖Ψβ − Ψ0 − βΨ1‖Ck(ȲF )) ≤ Cβ2, (64)for every positive integer k.The proof of Theorem 14 follows the lines of the proof of Theorem 11.
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5 Large β limitWe now investigate the asymptoti
 behavior of Ψβ when the β parameter goes to +∞. In view of its de�nition(5), a large value of β 
orresponds either to a large pore size L or to a small Debye length λD, but also to a large
ommon value of the 
on
entrations n0
j(∞). A similar asymptoti
 analysis has been performed in [2℄, [18℄ in onespa
e dimension. In higher spa
e dimension our main tool to obtain the behavior near the solid boundaries isthe multidimensional boundary layer te
hnique introdu
ed by Vishik and Lyusternik [25℄ (whi
h was originallyintrodu
ed for linear problems).5.1 Formal asymptoti
sIn the Poisson-Boltzmann system (10) the parameter β appears in the partial di�erential equation but not in theNeumann boundary 
ondition. This indi
ates the presen
e of boundary layers in the asymptoti
 analysis, thethi
kness of whi
h shall be of the order of O(1/β). The usual te
hnique to handle this situation is that of mat
hedasymptoti
 expansion. We �rst 
onsider an outer expansion of the solution Ψβ in YF , away from the boundary

S. In a se
ond step we shall 
onstru
t an inner expansion of Ψβ in the vi
inity of S, whi
h is equivalently aboundary layer.We begin with the outer expansion for Ψβ whi
h reads
Ψβ = Ψ∞ +

1

β
Ψ1,∞ +

1

β2
Ψ2,∞ + . . . .After plugging this ansatz in the Poisson-Boltzmann equation (10) we get

− 1

β
∆Ψβ + Φ(Ψβ) = Φ(Ψ∞) +

1

β

(

Φ′(Ψ∞)Ψ1,∞ − ∆Ψ∞
)

+ · · · = 0 in YFwhi
h implies, at the zero order, that Φ(Ψ∞) = 0. The ele
troneutrality 
ondition (16) tells us that 0 is theunique root of the monotone fun
tion Φ. Therefore we dedu
e Ψ∞ = 0 in YF . In other words we have
Ψβ(y) = O(

1

β
) in YF , away from the boundary S. (65)In fa
t we will 
he
k rigorously in the next Subse
tion that this order of magnitude holds for the L1−norm of Ψβ.We now turn to the inner expansion of Ψβ, i.e., its behavior 
lose to S, whi
h is more 
ompli
ated. We studyit lo
ally near a point y0 ∈ S, using the geometri
al setting introdu
ed in Subse
tion 3.1. We 
onsider a tubularneighborhood Y µ

F of S with µ small but mu
h bigger than β−1/2. Lo
ally, in a neighborhood N (y0) of y0, wemake the 
hange of variables y → q = (q′, qd), as de�ned in Subse
tion 3.1, whi
h satis�es |∇yqd| = 1 in N (y0)and n · ∇yqd = 1 on N (y0) ∩ S. The Ja
obian J (
orresponding to the volume di�erential 
hange dy = Jdq) isde�ned by
J = det

(

∂yk
∂qj

)

1≤j,k≤d
, (66)and the metri
 matrix (
orresponding to the transformation y → q)

K =





d
∑

j=1

∂qk
∂yj

∂qr
∂yj





1≤k,r≤d

, (67)whi
h satis�es
Kd,d = 1, Kk,d = 0 for 1 ≤ k ≤ d− 1.Noti
e that the 
oordinates q = q(y) are introdu
ed in su
h a way that the level sets {qd = 
onst} and thenormal lines {q′ = (C1, . . . , Cd−1} are orthogonal (that is the 
orresponding tangential hyperplanes and lines areorthogonal). Sin
e ∇yqd(y) gives the dire
tion of the normal line and ∇yqk, k = 1, 2, . . . , d − 1, form a basis inthe tangential hyperplane, we have Kk,d = ∇yqk · ∇ydist(y, S) = 0 for k 6= d.16



Di�erential operators in new 
oordinates transform as follows:
∂

∂yj
=

d
∑

k=1

∂qk
∂yj

∂

qk
, j = 1, . . . , d;

d
∑

k=1

∂2

∂y2
k

=
1

J
divq (J K∇q) in Y µ

F ∩N (y0); (68)
n · ∇y = − ∂

∂qd
on S. (69)Applying this 
hange of variables to the variational formulation (24) of the Poisson-Boltzmann system (10) yieldsthe following equation in the new 
oordinates

−divq (J K∇qΨβ) + β J Φ(Ψβ) = 0. (70)Dividing (70) by J yields that the partial di�erential equation in Y µ
F ∩ N (y0) and the boundary 
ondition on

S ∩ N (y0) of (10) transform into
−∂

2Ψβ

∂q2d
+ βΦ(Ψβ) + lower order derivatives in qd

+ se
ond order di�erential operator in q′ = 0 in Y µ
F ∩N (y0), (71)

∂Ψβ

∂qd
= σ on S ∩ N (y0). (72)As usual in the method of mat
hed asymptoti
 expansions, problem (71)-(72) serves to 
onstru
t the innerexpansion. Sin
e we expe
t the thi
kness of the boundary layer to be of order O(1/β), we sear
h for the innerexpansion of the form

Ψβ(q
′, qd) = β−1/2

∞
∑

j=0

β−j/2Ψj(q
′, β1/2qd). (73)Expanding the zero order term Φ(Ψβ) in Taylor series and taking into a

ount the bulk ele
troneutrality 
ondition(16), Φ(0) = 0, we obtain

Φ(Ψβ) = −
N
∑

k=1

zkn
0
k(∞)e−zkΨβ = Φ′(0)Ψβ +

1

2
Φ′′(0)(Ψβ)

2 + . . .

= β−1/2
N
∑

k=1

z2
kn

0
k(∞)Ψ0 + β−1

N
∑

k=1

z2
kn

0
k(∞)

(

Ψ1 −
1

2
zk(Ψ0)

2
)

+ . . . (74)Introdu
ing ξ = β1/2qd, substituting (73) and (74) in (71)-(72) and 
olle
ting power-like terms in the resultingequations, after straightforward rearrangements we arrive at the following problem for the main term of theexpansion:
d2

dξ2
Ψ0(q

′, ξ) −
(

N
∑

k=1

z2
kn

0
k(∞)

)

Ψ0(q
′, ξ) = 0 for ξ > 0; (75)

d

dξ
Ψ0(q

′, 0) = σ(q′) for ξ = 0. (76)Problem (75)-(76) is a se
ond-order ordinary di�erential equation on the positive half-line. After mat
hing withthe outer solution Ψβ = O(
1

β
), we impose additionally that Ψ0(q

′,+∞) = 0. The exa
t solution of (75)-(76) isthus
Ψ0(q

′, ξ) =
−σ(q′)
√

Φ′(0)
exp{−ξ

√

Φ′(0)}, (77)17



with Φ′(0) =
∑N

k=1 z
2
kn

0
k(∞). Ba
k to the original variables, we get

Ψβ(y) =
−σ(y)
√

βΦ′(0)
exp{−d(y)

√

βΦ′(0)} +O(
1

β
), (78)where d(y) is the distan
e between y and S. This asymptoti
 expansion (78) will be justi�ed rigorously in thenext subse
tion.Remark 15. The above expressions 
an be simpli�ed if we spe
ify our 
hoi
e of the 
hara
teristi
 
on
entration

nc. Spe
i�
ally, taking nc =
∑N

k=1 z
2
kn

∗
k(∞) we obtain that ∑N

k=1 z
2
kn

0
k(∞) = 1 or equivalently Φ′(0) = 1.5.2 Rigorous error estimateWe start with two useful simple inequalities for the nonlinearity Φ.Lemma 16. Let Φ be given by (11), i.e., Φ(x) = −∑N

k=1 zkn
0
k(∞)e−zkx. There exist positive 
onstants H,C0, Cksu
h that, ∀x ∈ R,

Φ(x) sign(x) ≥ H2 |x|, (79)
Φ′(x) ≥ C0 + Ck|x|k−2, k ≥ 2. (80)Proof. To prove (80) we note that

Φ′(x) ≥ (z1)
2n0

1(∞)e−z1x + (zN )2n0
N (∞)e−zNxwith z1 < 0 < zN , whi
h implies the desired result. Then (79) follows from a Taylor expansion of Φ(x) at 0 andthe bulk ele
troneutrality 
ondition (16), Φ(0) = 0.We now prove a priori estimates whi
h improve that of Lemma 5.Lemma 17. Let Ψβ be the unique solution of (10). There exists a positive 
onstant C su
h that, ∀ β ≥ 1,

‖Ψβ‖L1(YF ) ≤
C

β
, (81)

‖Ψβ‖Lk(YF ) ≤ Cβ−3/(2k), k ≥ 2, (82)
‖Ψβ‖H1(YF ) ≤ Cβ−1/4. (83)Proof. First, in the variational formulation (24) we use the test fun
tion ϕ = Ψβ. It yields

∫

YF

|∇Ψβ|2 dy + β

∫

YF

Φ(Ψβ)Ψβ dy = −
∫

S
σΨβ dS. (84)Sin
e β ≥ 1 and Φ(x)x ≥ H2 |x|2 be
ause of (79), we dedu
e from (84) that ‖Ψβ‖H1(YF ) ≤ C (this estimate willbe improved later). Se
ond, in the variational formulation (24) we use a test fun
tion whi
h is a (monotone)regularization of the sign of Ψβ. The �rst term in (24) is non-negative and the right hand side is bounded thanksto the previous estimate. Thus, after passing to the regularization parameter limit, we get

β

∫

YF

Φ(Ψβ) sign(Ψβ) dy ≤ C,and after applying inequality (79) we get (81). Next, we 
onsider again (84) where the nonlinear term is boundedfrom below using inequality (80)
β

∫

YF

Φ(Ψβ)Ψβ dy ≥ β

(

C0

∫

YF

|Ψβ|2 dy + Ck

∫

YF

|Ψβ |k dy
)

. (85)18



Furthermore, using a tra
e inequality [13℄, we get
∣

∣

∣

∣

∫

S
σΨβ dS

∣

∣

∣

∣

≤ C‖Ψβ‖L2(S) ≤ C‖Ψβ‖1/2
H1(YF )

‖Ψβ‖1/2
L2(YF )

≤ C
(

βδ‖Ψβ‖2
L2(YF ) + (βδ)−1/3‖Ψβ‖2/3

H1(YF )

)

, (86)where we used Young's inequality ab ≤ a4/4 + 3b4/3/4 for a = (βδ)1/4‖Ψβ‖1/2
L2(YF )

and b = (βδ)−1/4‖Ψβ‖1/2
H1(YF )

.For β ≥ 1 and δ > 0 small enough, (82)-(83) is a dire
t 
onsequen
e of (86).Sin
e S is 
ompa
t there exist �nitely many points y0
i ∈ S and neighborhoods N (y0

i ), 1 ≤ i ≤ M , su
h thatthe open sets Wi = YF ∩N (y0
i ) 
over S, i.e., S ⊂ ∪Mi=1W i. Take W0 ⊂⊂ YF so that YF ⊂ ∪Mi=0Wi and let {ζi}Mi=0be an asso
iated partition of unity. Here YF and S are 
onsidered as subsets of the unit torus T

d, so the fun
tions
ζi(y) are 1-periodi
.Proposition 18. In ea
h set q(Wi) (the image of Wi by the map y → q) de�ne a boundary layer fun
tion

ψbli (q) = β−1/2Ψ0(q
′, β1/2qd) =

−σ(q′)
√

βΦ′(0)
exp{−qd

√

βΦ′(0)}, (87)where Ψ0 is de�ned by (77). For any smooth test fun
tion ϕ, su
h that ϕ = 0 on ∂q(Wi) \ q(S ∩Wi), it satis�es
∫

q(Wi)
Ki∇qψ

bl
i · ∇qϕJ

i dq + β

∫

q(Wi)
Φ(ψbli )ϕJ i dq

+

∫

q(S∩Wi)
σϕ
√

1 + |∇q′γi|2 dq′ =

∫

q(Wi)
Riβϕdq, (88)where J i is the Ja
obian of the map y → q, de�ned by (66), Ki is the metri
 matrix de�ned by (67) and

‖Riβ‖L∞(q(Wi)) ≤ C, ‖Riβ‖L1(q(Wi)) ≤
C√
β
. (89)Proof. By dire
t 
al
ulations, using the expli
it formula (87) and taking into a

ount that Ki

k,d = 0 for 1 ≤ k ≤
d− 1.Considering the boundary layers ψbli as fun
tions of y now, we immediately obtain the following 
orollary.Corollary 19. The boundary layers ψbli (q(y)) satisfy, for any ϕ ∈ H1(Wi),

∫

Wi

∇y(ζiψ
bl
i ) · ∇yϕdy + β

∫

Wi

Φ(ζiψ
bl
i )ϕdy +

∫

S∩Wi

ζiσϕdS =

∫

Wi

Riβϕ dy, (90)where the rede�ned reminders Riβ satisfy
‖Riβ‖L∞(Wi) ≤ C, ‖Riβ‖L1(Wi) ≤

C√
β
. (91)Due to the geometri
 assumptions from Se
tion 3.1, for µ su�
iently small, the tubular neighborhood Y µ

F =
{y ∈ YF : dist(y, S) < µ} satis�es Y µ

F ⊂ ∪Mi=1Wi.An arbitrary smooth fun
tion f , de�ned on YF is then written as f =
∑M

i=1 ζif + ζ0f . The boundary between
Y µ
F and YF \ Y µ

F is C3 and we extend smoothly f from Y µ
F into YF \ Y µ

F . In YF \ Y µ
F , f , together with itsderivatives, is exponentially small with respe
t to 1/β.In the 
al
ulations whi
h follow we repla
e f by the above extension of ∑M

i=1 ζif from Y µ
F to YF . The erroris exponentially small in 1/

√
β and we ignore it. 19



Colle
ting together the boundary layers with the asso
iated partition of unity, we de�ne
ψbl =

M
∑

i=1

ζiψ
bl
i (92)and dedu
e the following result.Proposition 20. For any ϕ ∈ H1

#(YF ), we have
∫

YF

∇(Ψβ − ψbl) · ∇ϕdy + β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
)

ϕdy =

∫

YF

Rβϕdy, (93)where the global reminder Rβ satis�es
‖Rβ‖L∞(YF ) ≤ C, ‖Rβ‖L1(YF ) ≤

C√
β
. (94)Proof. We obtain (93) by subtra
ting the variational formulations (90) of the boundary layers ψbli from thevariational formulation (24) of Ψβ. We use the fa
t that

Φ(

M
∑

i=1

ζiψ
bl
i ) =

M
∑

i=1

ζiΦ(ψbli ) +O(β−1/2)sin
e ψbli = O(β−1/2) and Φ(0) = 0.Finally we obtain the main result of this se
tion whi
h is a rigorous justi�
ation of (78) (re
all that ψbli (q) =
β−1/2Ψ0(q

′, β1/2qd)).Theorem 21. Let Ψβ be the unique solution of (10) and ψbl be given by (92). There exists a positive 
onstant Csu
h that, ∀ β ≥ 1,
‖Ψβ − ψbl‖L1(YF ) ≤

C

β3/2
, (95)

‖Ψβ − ψbl‖L2(YF ) ≤
C

β5/4
, (96)

‖Ψβ − ψbl‖H1(YF ) ≤
C

β3/4
. (97)Proof. The proof is similar to that of Lemma 17. First, we test (93) by the regularized sign of Ψβ − ψbl. Afterpassing to the regularization parameter limit and using the se
ond inequality of (94), we get

β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
) sign(Ψβ − ψbl

)

dy ≤ C√
β
,Sin
e (80) implies that Φ′(x) ≥ C > 0, we dedu
e (95).Next we test (93) by Ψβ − ψbl. It yields

∫

YF

|∇(Ψβ − ψbl)|2 dy + β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
)

(Ψβ − ψbl) dy

≤ ‖Rβ‖L∞(YF )‖Ψβ − ψbl‖L1(YF ) ≤
C

β3/2
. (98)For β ≥ 1, (96)-(97) is a dire
t 
onsequen
e of (98).Theorem 21 justi�es the approximation (78) by providing error estimates in integral norms. The next resultgives pointwise estimates for the same asymptoti
 approximation.20



Lemma 22. There exist positive 
onstants β0, C1 and C2 su
h that, for all β > β0 and for all y ∈ YF , thefollowing estimates hold:
|Ψβ(y)| ≤

C1√
β

exp
{

− C2

√

β dist(y, S)
}

, (99)
|∇Ψβ(y)| ≤ C1 exp

{

− C2

√

β dist(y, S)
}

, (100)
|Ψβ(y) − ψbl(y)| ≤ C1

β
exp

{

− C2

√

β dist(y, S)
}

. (101)Proof. Introdu
e a fun
tion of s ∈ R

p(s) =















Φ(s)/s for s 6= 0,

N
∑

j=1

z2
jn

0
j(∞) for s = 0.From (79) in Lemma 16, we dedu
e p(s) ≥ H2 > 0 for all s ∈ R. It also readily follows from the de�nition of pthat p is a 
ontinuous fun
tion of s.Re
all that YF and S are subsets of the unit torus T
d. Therefore, 1-periodi
 boundary 
onditions are impli
itfor all boundary value problems below. For the sake of brevity we do not indi
ate them. Introdu
ing a fun
tion

Bβ(y) = p(Ψβ(y)) (whi
h is 
ontinuous and satis�es Bβ(y) ≥ H2), the Poisson-Boltzmann equation (10) 
an berewritten as
{

−∆Ψβ + βBβ(y)Ψβ = 0, in YF ,
∇Ψβ · n = −σ, on S.Denote Σ = ‖σ‖L∞(S). Then, by the maximum prin
iple,

|Ψβ| ≤ Ψ+
β in YF ,where Ψ+

β is the unique solution of
{

−∆Ψ+
β + βH2Ψ+

β = 0, in YF ,
∇Ψβ · n = Σ, on S.Thus, it su�
es to show that

|Ψ+
β (y)| ≤ C1√

β
exp

{

− C2

√

β dist(y, S)
}

, for all y ∈ YF . (102)In order to prove (102), we are going to 
onstru
t a so-
alled barrier fun
tion. For any y ∈ S denote by R(y)the radius of 
urvature of S at y. Under our standing assumption on the smoothness of S we have R(y) ≥ R0 > 0,
∀ y ∈ S. For R0 small enough, ea
h of the neighborhoods N (y0

i ), 1 ≤ i ≤M , 
overing S 
ontains a ball of 
enter
y0
i and radius (R0/2). In this ball, we rewrite the Lapla
e operator in terms of the new 
oordinates q = q(y),introdu
ed in Subse
tion 3.1,

−∆y = − ∂2

∂q2d
+

d−1
∑

i,j=1

Qij(q)
∂2

∂qi∂qj
+

d
∑

j=1

Q0
j(q)

∂

∂qj
,with regular bounded fun
tions Qij(q) and Q0

j(q) de�ned in terms of Kij and J . Setting
G(s) =

{

s− s2

R0
if s ≤ R0

2 ,

R0

4 , otherwise,and
U(y) =

2Σ

H
√
β

exp

{

−
√

β
H

2
G(qd)

}

,21



after straightforward 
omputations we obtain
∇U · n

∣

∣

∣

S
= −∂U

∂qd

∣

∣

∣

qd=0
= Σ. (103)Noti
e also that U ∈ H2(YF ) be
ause ∇U(y) = 0 if dist(y, S) = R0/2.Substituting U in the equation yields, for all y ∈ YF su
h that qd ≤ R0/2,

−∆U + βH2U = β
{

− H2

4

(

1 − 2qd
R0

)2
− H

R0
√
β
− Q0

d(q)H

2
√
β

(

1 − 2qd
R0

)

+H2
}

U.Clearly, for all su�
iently large β the above right hand side is positive. Therefore, for β > β0,
−∆U + βH2U ≥ 0 in YF .Combining this relation with (103), and using the maximum prin
iple, we 
on
lude that Ψ+

β ≤ U in YF . Sin
e
dist(y, S) in YF is bounded by some 
onstant C3 and G(s) ≥ C4s for any s ∈ (0, C3), this implies the �rst desiredestimate (99).Estimate (100) follows from (99) thanks to the standard ellipti
 estimates. Indeed, in the res
aled 
oordinates
z =

√
βy equation (10) reads

−∆zΨβ = −Φ(Ψβ) in √βYF
∇zΨβ · nz = − 1√

β
σ on √βS.By (99) for any ball Bz0,1 = {z : |z − z0| ≤ 1} with y0 ∈ √
βYF we have

|Ψβ(z)| ≤
C√
β
e−c2dist(z0,

√
βS), |Φ(Ψβ(z))| ≤

C√
β
e−c2dist(z0,

√
βS),

z ∈ Bz0,1 ∩
√
βYF . Considering our regularity assumptions on S and σ, by the lo
al ellipti
 estimates for Poissonequation in
luding those near the boundary, we obtain

|∇zΨβ(z)| ≤
C√
β
e−c2dist(z0,

√
βS), z ∈ Bz0,1/2 ∩

√

βYF .In the 
oordinates y this yields the desired estimate (100).Estimate (101) 
an be obtained by means of similar arguments as in the proof of (99). Here we just outlinethe proof and leave the details to the reader. From the de�nition of Ψβ and ψbl and estimate (99) it readilyfollows that the di�eren
e Vβ = Ψβ − ψbl satis�es in Y µ
F , µ = R0/2, the following problem:

−∆Vβ(y) + βΦ′(0)Vβ(y) = g1(y) in Y µ
F ,

∇Vβ · n
∣

∣

S
= 0, Vβ

∣

∣

|qd(y)|= R0
2

= g2(y)with
|g1(y)| ≤ c1e

−c2
√
βqd(y), |g2(y)| ≤

1√
β
c1e

−c2
√
βR0/2 ≤ 1

β
c1e

−c3
√
βR0/2;here the 
onstants c2 > 0 and c3 > 0 do not depend on β. Setting V β = C

β e
−
√
βH1qd(y) and 
hoosing large enough

C > 0 and small enough H1 > 0, we obtain that for all su�
iently large β it holds
−∆V β + βΦ′(0)V β > g1, ∇V β · n

∣

∣

S
< 0, V β

∣

∣

|qd(y)|= R0
2

> g2.Therefore, Vβ ≤ V β in Y µ
F . Similarly, Vβ ≥ −V β in Y µ

F . This yields (101) in Y µ
F . In YF \ Y µ

F (101) follows by themaximum prin
iple. 22



6 Diri
hlet boundary 
ondition or ζ potential at the boundaryThe previous asymptoti
 analysis was spe
i�
 to the Neumann boundary 
ondition (or given 
harge density σ)imposed on the pore walls S. The situation is quite di�erent for Diri
hlet boundary 
ondition (or ζ potential) on
S. We brie�y investigate this 
ase. We modify the boundary 
ondition in the Poisson-Boltzmann equation







−∆Ψβ + βΦ(Ψβ) = 0 in YF ,
Ψβ = ζ on S,
Ψβ is 1 − periodi
. (104)All unknowns and parameters are exa
tly the same as the ones in Se
tion 3.2.6.1 The limit 
ase of small βWe start by studying the behavior of Ψβ when β goes to zero. Performing a formal asymptoti
 expansion

Ψβ = Ψ0 + βΨ1 + . . . ,it is easy to 
he
k that the zero-order term is 
onstant
Ψ0(y) ≡ ζ,while the �rst-order term is the solution of the linear problem







−∆Ψ1 = −Φ(ζ) in YF ,
Ψ1 = 0 on S,
Ψ1 is 1 − periodi
. (105)It is not di�
ult to justify this ansatz and to prove the following error estimate.Lemma 23. There exists a positive 
onstant C, independent of β, su
h that

‖Ψβ − ζ − βΨ1‖H1(YF ) ≤ Cβ2.6.2 The limit 
ase of large β: formal asymptoti
sWe are now interested in the behavior of Ψβ for large β. As in subse
tion 5.1 we use mat
hing asymptoti
expansion. Of 
ourse, the outer expansion, being independent of the boundary 
ondition, is the same and we getagain (65), namely
Ψβ(y) = O(

1

β
) away from the boundary S. (106)To the 
ontrary, the behavior 
lose to S di�ers signi�
antly from Se
tion 5. We study it lo
ally, in the samegeometri
al setting as before. We obtain the same di�erential operator 
lose to the boundary with a di�erentboundary 
ondition

−∂
2Ψβ

∂q2d
+ βΦ(Ψβ) + lower order derivatives in qd

+ se
ond order di�erential operator in q′ = 0 in YF ∩N (y0), (107)
Ψβ = ζ(q1, . . . , qd−1) on S ∩ N (y0). (108)The boundary 
ondition (108) (given ζ potential) is a mu
h stronger 
onstraint than the previous Neumann
ondition (72). Consequently, we 
hange the inner asymptoti
 expansion whi
h, instead of (73), is now of theform

Ψβ(q
′, qd) = Ψ0,ζ(q

′, β1/2qd) + β−1/2Ψ1,ζ(q
′, β1/2qd) + . . . . (109)23



Introdu
ing ξ = β1/2qd, substituting (109) in (107)-(108) and 
olle
ting power-like terms in the resulting equations,we arrive at the following problem for the leading term of the expansion
− d2

dξ2
Ψ0,ζ(q

′, ξ) + Φ(Ψ0,ζ(q
′, ξ)) = 0 for ξ > 0, (110)

Ψ0,ζ(q
′, 0) = ζ(q′). (111)After mat
hing with the outer solution Ψβ = O(β−1), we impose additionally that Ψ0,ζ(q

′,+∞) = 0 and thesquare integrability of the derivative.Let C(x) =

N
∑

j=1

n0
j(∞)e−zjx be the primitive of Φ(x). Then the problem (110)-(111) admits the �rst integral

−1

2
(
d

dξ
Ψ0,ζ)

2 + C(Ψ0,ζ) = C1 = 
onstant. (112)As we impose Ψ0,ζ(q
′,+∞) = 0 and the square integrability of the derivative, it follows that

C1 = C(0) =

N
∑

j=1

n0
j(∞) > 0. (113)Thus, (111), (112) and (113) give







Ψ0,ζ |ξ=0 = ζ,
d

dξ
Ψ0,ζ = −2 sign(ζ)

√

C(Ψ0,ζ) − C(0).
(114)Proposition 24. The Cau
hy problem (114) has a unique smooth solution Ψ0,ζ on (0,+∞), satisfying (110) and

|Ψ0,ζ(q
′, ξ)| ≤ |ζ(q′)|e−

√
Csξ,

| d
dξ

Ψ0ζ(q
′, ξ)| ≤

√

C0|ζ(q′)|1/2e−
√
Csξ/2,

(115)where Cs = min{∑j∈j− z
2
jn

0
j(∞),

∑

j∈j+ z
2
jn

0
j(∞)} and C0 = 2max

S
|Φ(ζ(q′))|.Proof. For ζ = 0, the unique solution is Ψ0,ζ = 0 and there is nothing to prove.For ζ 6= 0, the Cau
hy problem (114) has a unique maximal smooth solution on some interval (0, ℓ). If ζ > 0,then the solution is positive, monotone de
reasing and it rea
hes the value 0 at ξ = ℓ. For ζ < 0, it is the oppositesituation. But 0 is a 
riti
al point of (114) and no traje
tory 
an leave or rea
h that point. So the solution 
annotbe zero for some �nite ℓ. Therefore, the Cau
hy problem (114) has a unique maximal smooth solution on theentire real line (0,+∞).Next, a simple 
al
ulation gives

| d
dξ

Ψ0,ζ(q
′, ξ)|2 ≥ Cs|Ψ0,ζ(q

′, ξ)|2,with Cs = min{∑j∈j− z
2
jn

0
j(∞),

∑

j∈j+ z
2
jn

0
j(∞)}. Consequently, for ζ > 0, we have
d

dξ
Ψ0,ζ(q

′, ξ) ≤ ζ(q′)e−
√
Csξand we establish the exponential de
ay of Ψ0,ζ and the �rst part of (115). For ζ < 0 everything is analogous.The ordinary di�erential equation (114) gives

| d
dξ

Ψ0,ζ(q
′, ξ)|2 ≤ 2max

S
|Φ(ζ)||Ψ0,ζ(q

′, ξ)|and we 
on
lude the remaining part of estimate (115). 24



Remark 25. In many situations, for a symmetri
 ele
trolyte with ion 
harges ±Q, the expli
it solutions areknown. A 
lassi
al referen
e is the book [24℄. For example, in the 
ase −z1 = 1 = z2 and n0
1(∞) = n0

2(∞) = 1/2,we have the following Gouy-Chapman solution
Ψ0,ζ(q

′, ξ) = 2 ln
1 + tanh(ζ/2)e−ξ

1 − tanh(ζ/2)e−ξ
.By dire
t 
omputation we 
an 
he
k that this solution satis�es the properties established in Proposition 24. In thegeneral 
ase Ψ0,ζ 
an be expressed using ellipti
 fun
tions. Nevertheless, our simple analysis gave us the propertiesof the solution without using its expli
it form.6.3 The limit 
ase of large β: rigorous error estimateWe start with the study of the boundary layer fun
tion Ψ0,ζ . As in se
tion 5 we use the lo
al 
hange of variables

y → q.Proposition 26. For ea
h open subset Wi = YF ∩N (y0
i ), let the boundary layer fun
tion be de�ned by

ψbli (q) = Ψ0,ζ(q
′, qd

√

β) (116)for the given boundary data ζ on S ∩W i. Then, for any smooth fun
tion ϕ su
h that ϕ = 0 on ∂q(S ∩W i), wehave
∫

q(Wi)
Ki∇qψ

bl
i (q) · ∇qϕ J i dq + β

∫

q(Wi)
Φ(ψbli (q))ϕJ i dq =

∫

q(Wi)
Ri1∇q′ϕJ

i dq

+

∫

q(Wi)
Ri2ϕJ

i dq =

∫

q(Wi)
Ri3ϕJ

i dq +

∫

q(∂Wi\(S∩W i))
σi1ϕdq

′, (117)where J i is the Ja
obian of the map q → y, de�ned by (66), Ki is the metri
 matrix de�ned by (67), ∇q′ isgradient with respe
t to q′ and
√

β(‖Ri1‖L∞(q(Wi)) + ‖σi1‖L∞(q(∂Wi\(S∩W i)))
) + ‖Rij‖L∞(q(Wi)) ≤ C

√

β; (118)
√

β(‖Ri1‖Lr(q(Wi)) + ‖σi1‖L∞(q(∂Wi\(S∩W i)))
)+

‖Rij‖Lr(q(Wi)) ≤ Cβ(1−1/r)/2 j = 2, 3. (119)Proof. By dire
t 
al
ulation, using the estimate (115). We note that the higher derivatives of Ψ0,ζ with respe
tto q′ satisfy also the estimate (115).Corollary 27. For all ϕ ∈ H1(Wi) su
h that ϕ = 0 on S ∩ ∂Wi, we have
∫

Wi

∇yψ
bl
i · ∇yϕdy + β

∫

Wi

Φ(ψbli )ϕdy =

∫

Wi

Ri1∇yϕdy

+

∫

Wi

Ri2ϕdy =

∫

Wi

Ri3ϕdy +

∫

∂Wi\(S∩W i)
σi1ϕdS, (120)where rede�ned reminders σi1, Rij , j = 1, 2, 3, satisfy (118)-(119).Using the de�nition of ψbli , we see that ψbli = ψblj on Wi ∩Wj, when Wi ∩Wj is nonempty. Now let ψbl = ψblion Wi. As in Subse
tion 5.2, we make a smooth extension of ψbl into YF \ Y µ

F . In YF \ Y µ
F , ψbl, together withits derivatives, is exponentially small with respe
t to 1/β. We simply ignore the exponentially small terms in ourestimates. We have

25



Proposition 28. For any ϕ ∈ H1(YF ) su
h that ϕ = 0 on S, we have
∫

YF

∇(Ψβ − ψbl) · ∇ϕ dy + β

∫

YF

(Φ(Ψβ) − Φ(ψbl))ϕ dy =

∫

YF

R1
β∇ϕ dy

+

∫

YF

R2
βϕ dy =

∫

YF

R3
βϕdy +

M
∑

i=1

∫

∂Wi\(S∩W i)
σiβϕdS, (121)where the global reminders Rjβ, j = 1, 2, 3 and σiβ, i = 1, . . . ,M satisfy

√

β(‖R1
β‖Lr(YF ) + ‖σiβ‖Lr(∂Wi\(S∩W i))

)+

‖Rjβ‖Lr(YF ) ≤ Cβ(1−1/r)/2, ∀r ∈ [1,+∞], j = 2, 3, i = 1, . . . ,M. (122)Theorem 29. Let Ψβ be given by (104) and ψbl by (116). Then we have the following behavior for large β:
‖Ψβ − ψbl‖L1(YF ) ≤

C

β
, (123)

‖Ψβ − ψbl‖L2(YF ) ≤
C

β1/2
(124)

‖Ψβ − ψbl‖H1(YF ) ≤ C. (125)Proof. First we test the variant of (121) involving boundary terms by the regularized sign of (Ψβ − ψbl). Afterpassing to the regularization parameter limit, we get
β

∫

YF

(Φ(Ψβ) − Φ(ψbl)) sign (Ψβ − ψbl) dy ≤ C,and after applying a slight generalization of the inequality (79) we get (123).Next we use the variant of (121) involving only volume terms and test (121) by gβ = Ψβ − ψbl. It yields
∫

YF

|∇(Ψβ − ψbl)|2 dy + β

∫

YF

(Φ(Ψβ) − Φ(ψbl))(Ψβ − ψbl) dy ≤

Cβ1/4 max
i

‖gβ‖L2(∂Wi∩T ) + Cβ1/4‖gβ‖L2(YF )

≤ βminΦ′

2
‖gβ‖2

L2(YF ) +
1

2
‖∇gβ‖2

L2(YF ) + C. (126)For β ≥ β0, (124)-(125) is a dire
t 
onsequen
e of (126).Remark 30. By the same arguments as in Se
tion 5, one 
an obtain, in addition to the inequalities of Theorem 29,pointwise estimates for Ψβ and for the dis
repan
y Ψβ − ψbl. In the 
ase of Diri
hlet boundary 
ondition theseestimates read, for β ≥ 1,
|Ψβ(y)| ≤ C1 exp

{

− C2

√

β dist(y, S)
}

,

|∇Ψβ(y)| ≤ C1

√

β exp
{

−C2

√

β dist(y, S)
}

,

|Ψβ(y) − ψbl(y)| ≤ C1√
β

exp
{

− C2

√

β dist(y, S)
}

,where C1 and C2 are positive 
onstants, independent of β.
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