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1 IntrodutionOriginally proposed at the dawn of the XXth entury by Gouy and Chapman [10, 5℄, the Poisson-Boltzmann(PB) equation is still the orner stone of most of the theoretial desriptions of eletrokineti phenomena. Manyworks emphasized the limitation of suh a model in the last deades, though. The ions are only represented bytheir harge, they do not have any volume, the orrelations are negleted. The moleular nature of the solventand further spei� fores (suh as the London dispersion) are ompletely ignored [4, 11℄. Thus the domain ofvalidity appears to be relatively narrow, typially in the regime of dilute simple (most of the time monovalent)eletrolytes. Nevertheless, beause of its simpliity, most of the theories of equilibrium and transport in hargeddiphasi media are still diret generalizations of the PB approah. For example, geologial media (suh as lays)[17, 22℄, eletrohemistry [3, 12℄, and olloidal physis [15℄ are still based on the original onepts desribed bythe Poisson-Boltzmann equation.The suess of suh an approah is due to several aspets. It justi�es the popular Derjaguin, Landau, Verweyand Overbeek (DLVO) theory [24℄ that explains the stability of harged suspensions. In the ase of hargedporous media, the Poisson-Boltzmann approah is also partiularly signi�ant beause it yields the equilibriumeletrostati properties of the materials and it an be easily oupled to further equations in order to providea global model of the system. Indeed, for the transport properties, the Poisson-Boltzmann equation an beextended in order to give the Poisson-Nernst-Plank (PNP) formalism whih desribes non-equilibrium proessesin omplex systems [26℄. For example, in the ase of lays, the desription of eletrokineti proesses in the largepores (meso and maroporosities) an be performed thanks to the PB equation [19℄. The moleular nature of thesystem is found to be important only for miropores (typially for distanes less than 2 nm) [16℄.In porous media, the PB model exhibits two di�erent regimes, depending on the values of the salt onentrationand of the pore size.
• If the pore size L is muh larger than the Debye length λD of the eletrolyte, the solid harge is sreenedby the mirosopi ions. Thus, the loal harge density is globally zero, away from the interfae. Beauseof the relatively small value λD, this ase orresponds to numerous appliations. The solid interfaes areunoupled so that the DLVO approah is valid. Far away from the interfae, the oulombi fores an bemodelled by e�etive parameters, suh as the e�etive harge [23℄ or the zeta potential.
• Conversely, if the pore size L is muh smaller than λD, the harge of the solid surfae is not sreened. Itmeans that the resulting eletrostati fore is important anywhere in the material. Ions for whih the hargeis the same as the one of the solid phase are expelled from the material (Donnan e�et) [11℄. The eletro-osmoti �ux beomes espeially important. This ase is signi�ant beause it orresponds to nanoporositiesat low salt onentration.The two asymptoti limits an be taken into aount thanks to the oupling parameter β = (L/λD)2. The largepore size domain (large β) orresponds to most of the porous systems. Nevertheless, many porous materialsexhibit mirosopi pores for whih the opposite limit (small β) is relevant. For example, montmorillonite layshave di�erent porosities, and the smallest ones, whih are obtained at very low hydration, are even of the orderof moleular distanes.The goal of the present paper is to give a rigorous mathematial analysis of these two opposite asymptotilimits. The paper is organized as follows. Setion 2 introdues the model and de�nes the relevant reduedunits. Setion 3 desribes preisely the geometry of the porous ell and disusses the issue of the existene anduniqueness of the solution to PB equation. Setion 4 studies the limit ase of very small pores, i.e., when β goesto zero. Setion 5 is onerned with the opposite situation of very large pores, when β goes to in�nity. EventuallySetion 6 investigates the ase of Dirihlet boundary onditions (namely for imposed surfae potential) instead ofNeumann boundary ondition (namely imposed surfae harge). A brief desription of our main results is givenin the next setion after introduing the neessary notations.2 The model and our main resultsWe onsider the Poisson-Boltzmann system whih desribes the eletrostati distribution of N hemial speiesdiluted in a liquid at rest, oupying a porous medium with harged solid boundaries. The eletrostati potential2



Ψ∗ is alulated from the Poisson equation
E∆Ψ∗ = −e

N
∑

j=1

zjn
∗
j in the bulk, (1)where E = E0Er is the dieletri onstant of the solvent, e is the eletron harge and n∗j , 1 ≤ j ≤ N , are thespeies onentrations. Sine the pore walls are harged, the orresponding boundary ondition is of Neumanntype

E∇Ψ∗ · n = −σ∗ on the surfae, (2)where σ∗ is a given surfae harge and n is the unit exterior normal. Following the literature we inlude a minussign in (2) whih means that σ∗ is positive for a negatively harged surfae.At equilibrium the speies onentrations n∗j are given by the Boltzmann distribution whih orresponds to abalane between the hemial potential and the eletrial �eld
∇(kBT lnn∗j) = −∇(zjeΨ

∗). (3)where zj is the valene of the j-th speies, kB the Boltzmann onstant and T the temperature. It follows from(3) that there exist positive onstants n∗j(∞) (alled in�nite dilution onentrations) suh that
n∗j = n∗j(∞) exp

{

−zjeΨ
∗

kBT

}

. (4)The Poisson-Boltzmann system is the ombination of (1) and (4), together with the boundary ondition (2).In order to make an asymptoti analysis of the Poisson-Boltzmann system, we �rst adimensionalize equations(1), (2), (4). We denote by L the harateristi pore size and by nc the harateristi onentration. We introduethe Debye length de�ned by
λD =

√

EkBT
e2nc

,and de�ne a parameter
β = (

L

λD
)2. (5)The parameter β is the fundamental physial harateristi whih drives the transport properties of an eletrolytesolution in a porous media. For large β the eletrial potential is onentrated in a di�use layer next to theliquid/solid interfae. Co-ions, for whih the harge is the same as the one of the solid phase are able to goeverywhere in the pores beause the repelling eletrostati fore of the solid phase is sreened by the ounterions.The eletrostati phenomena are mainly surfai, and the interfaes are globally independent. For small β, o-ionsdo not have aess to the very small pores (Donnan e�et). The loal eletroneutrality ondition is not validanymore and the eletri �elds of the solid interfaes are oupled.Furthermore, we de�ne a harateristi surfae harge density σc by

σc =
EkBT
eL

,and adimensionalized quantities
σ =

σ∗

σc
, Ψ =

eΨ∗

kBT
, nj =

n∗j
nc
, n0

j(∞) =
n∗j(∞)

nc
.Resaling the spae variable y = x/L, this yields the adimensionalized Poisson-Boltzmann system

∆yΨ = −β
N
∑

j=1

zjnj(Ψ) with nj(Ψ) = n0
j(∞)e−zjΨ in the bulk, (6)3



and
∇yΨ · n = −σ on the surfae. (7)The goal of the present paper is to study the limit of equations (6) and (7) when the parameter β is either verysmall or very large. Setion 3.2 gives a preise mathematial framework for the Poisson-Boltzmann system. Todisuss our results we sort the valenes by inreasing order and we assume that there are both anions and ations

z1 < z2 < ... < zN and z1 < 0 < zN .Setion 4 is devoted to the asymptoti analysis of (6)-(7) when β goes to zero. This ase orresponds to verysmall pores, L << λD. In view of the de�nition of the Debye length λD, a small value of β orresponds also to asmall harateristi onentration nc. The asymptoti regime depends on the sign of the averaged harge ∫S σ dS.If it is negative (whih means that the surfae is positively harged), then Theorem 11 states that only the anionwith the most negative valene (z1) is important and that the potential behaves as
Ψ ≈ log β

z1
+ ϕ0,where ϕ0 is the solution of the redued system, involving only the speies 1,

{

∆ϕ0 = −z1n0
1(∞)e−z1ϕ0 in the bulk,

∇ϕ0 · n = −σ on the surfae.Note that the onstant log β/z1 is going to +∞ sine z1 < 0: it is a manifestation of the singularly perturbedharater of the asymptoti analysis. As a onsequene, the ation onentrations go to zero while the iononentrations blow up as nj = O(β−zj/z1) and n1 >> nj for j 6= 1. Of ourse, a symmetri behavior (involvingonly the speies with most positive valene zN ) holds true when the averaged harge is positive. On the otherhand, when the averaged harge is zero, then the limit problem is muh simpler (there is no singular perturbation)and it is given by Theorem 14. Our analysis is reminisent of another asymptoti limit studied in [8℄, [20℄ wherethe solid surfae is a small sphere, the radius of whih is going to zero.Setion 5 is onerned with the opposite situation when β goes to in�nity. This ase orresponds to very largepores, L >> λD or to large values of the harateristi onentration nc. Suh a situation is well understood inthe physial and mathematial literature: it gives rise to a boundary layer (the so-alled Debye's layer) lose tothe surfae. For example, it has been analyzed in [2℄, [18℄ but the analysis is restrited to 1-d or similar simpli�edgeometry. Our main ontribution, Theorem 21, derives this boundary layer in a general geometri setting andgives a rigorous error estimate. To simplify the following formulas we hoose the harateristi onentration
nc =

∑N
k=1 z

2
kn

∗
k(∞), whih implies that ∑N

k=1 z
2
kn

0
k(∞) = 1. Loally, lose to the surfae, the potential behavesas

Ψ(y) ≈ −σ√
β

exp
{

−d(y)
√

β
}

,where d(y) is the distane between the point y and the surfae. Away from the surfae, the onentrations nj areonstant and satisfy the so-alled bulk eletroneutrality ondition. Some numerial simulations for varying β anbe found in our other work [1℄.In the literature, one may �nd instead of the Neumann boundary ondition (2) a Dirihlet one
Ψ = ζ on the surfae, (8)where ζ is an imposed potential. Eventually Setion 6 investigates the ase when the Neumann boundary ondition(2) is replaed with the Dirihlet boundary ondition (8). Lemma 23 gives the asymptoti behavior for small β:the analysis is quite obvious sine there is no more singular perturbation. The potential now behaves as

Ψ ≈ ζ + βΨ1,where Ψ1 is the solution of the orretor problem










∆Ψ1 = −
N
∑

j=1

zjn
0
j(∞)e−zjζ in the bulk,

Ψ1 = 0 on the surfae.4



Theorem 29 gives the asymptoti behavior for large β. It is again a boundary layer but with a totally di�erentpro�le. More preisely we establish
Ψ(y) ≈ Ψ0,ζ

(

√

βd(y)
)where d(y) is the distane between the point y and the surfae and Ψ0,ζ is the solution of the nonlinear ordinarydi�erential equation (114), solution whih, starting from the boundary value ζ on the surfae, is exponentiallydeaying at in�nity.3 Geometry and existene theory for the Poisson-Boltzmann equationIn this setion we de�ne the geometry and reall a lassial result on the existene and uniqueness of a solutionof the Poisson-Boltzmann equation. Furthermore we establish L∞-bounds for the solution.3.1 Geometry of the porous ellTo simplify the presentation we onsider a sample of a porous medium whih oupies the periodi unit ell

Y = (0, 1)d (identi�ed with the unit torus T
d). The spae dimension is typially d = 2, 3. The pore spae YF ,ontaining the eletrolyte, is a 1-periodi smooth onneted open subset of Y . More preisely, we onsider asmooth partition Y = YS ∪ YF where YS is the solid part and YF is the �uid part. The liquid/solid interfae is

S = ∂YS \∂Y . It is known that for a general YF with non-empty boundary S, the distane funtion d, de�ned by
d(y) = dist (y, S), y ∈ YF , is uniformly Lipshitz ontinuous. Let Y µ

F = {y ∈ YF : d(y) < µ}. If we assume S tobe smooth of lass C3, then, for su�iently small µ, the distane funtion has the same regularity, d ∈ C3(Y µ
F ).Furthermore, by the Collar Neighborhood Theorem (see e.g. [21℄), there exists a tubular neighborhoods U , S ⊂ U ,isomorphi to S × I, for I ⊂ R an open interval.For y0 ∈ S, let n(y0) and T(y0) denote respetively the unit normal to S at y0 (exterior to YF ) and the tangenthyperplane to S at y0. Without loosing generality, we an suppose that in some neighborhood N = N (y0) of y0,

S is then given by yd = γ(y′), where y′ = (y1, . . . , yd−1), γ ∈ C3(T(y0) ∩N ) and ∇y′γ(y
′
0) = 0. The unit normalon S, at the point y = (y′, γ(y′)) is

n(y) =
(∇y′γ(y

′),−1)
√

1 + |∇y′γ(y′)|2
.Here YS orresponds to yd > γ(y′).Following [9℄, page 355, for eah point y ∈ Y µ

F , there exists a unique point z = z(y) ∈ S suh that |y−z| = d(y).The points y and its losest point z ∈ S are related by
y = z − n(z)d. (9)By the Inverse Mapping Theorem applied in a neighborhood of y0 ∈ S (S an be overed with a �nite numberof suh neighbourhoods), (9) de�nes uniquely a prinipal oordinate system (q′, qd) with q′ = z′ and qd = d(y)whih are C2 funtions of y. The �rst oordinates q′ are the tangential oordinates to S while the last oordinate

qd is the signed distane to S taken with the sign + in the interior of YF and with − in its exterior. We denoteby qd = 0 the loal representation of the boundary S in the neighborhood of y0. Of ourse, the distane funtion
d ∈ C3 satis�es ∇d(y) = −n(q′(y)) and |∇d(y)| = 1. Furthermore, the tangential oordinates q′ = (q1, . . . , qd−1)an be hosen in suh a way that the Hessian matrix [D2γ(q′(y0))] is diagonal at y0. For more details we refer to[9℄, pages 354-356.3.2 Mathematial framework for the Poisson-Boltzmann equationWe start from the adimensionalized Poisson-Boltzmann system (6) and (7) (where we drop the index y for thespatial derivatives) that we omplement with periodi boundary onditions on the outer boundary of the unit ell
Y . More preisely, the potential Ψ is a solution of the Poisson-Boltzmann equation







−∆Ψ + βΦ(Ψ) = 0 in YF ,
∇Ψ · n = −σ on S,
Ψ is 1 − periodi, (10)5



where σ(y) is the adimensionalized harge distribution on the pore surfae, β > 0 is a parameter de�ned by (5) asthe square of the ratio of the pore size and the Debye length, and Φ(Ψ) is the bulk density of harges, a nonlinearfuntion de�ned by
Φ(Ψ) = −

N
∑

j=1

zjnj(Ψ) (11)where nj is the onentration of speies j given, at equilibrium, as a funtion of the potential
nj(Ψ) = n0

j(∞)e−zjΨ (12)with a onstant n0
j(∞) > 0. We assume that all valenies zj are di�erent. If not, we lump together di�erent ionswith the same valene. Of ourse, for physial reasons, all valenies zj are integers. We rank them by inreasingorder,

z1 < z2 < ... < zN ,and we denote by j+ and j− the sets of positive and negative valenes. We also assume that there are both anionsand ations, namely positive and negative valenes, i.e.,
z1 < 0 < zN . (13)The funtion Φ is monotone sine it is the derivative of a onvex funtion

Φ(Ψ) = C′(Ψ) with C(Ψ) =

N
∑

j=1

n0
j(∞)e−zjΨ. (14)The boundary value problem (10) is equivalent to the following minimization problem:

inf
ϕ∈H1

#
(YF )

{

J(ϕ) =
1

2

∫

YF

|∇ϕ|2 dy + β

∫

YF

C(φ) dy +

∫

S
σϕdS

}

, (15)with H1
#(YF ) = {ϕ ∈ H1(YF ), ϕ is 1 − periodi}. Note that the funtional J may take in�nite values for somefuntions ϕ ∈ H1

#(YF ) sineH1
#(YF ) is not embedded in L∞

# (YF ), exept in spae dimension d = 1. The funtional
J is stritly onvex, whih gives the uniqueness of the minimizer. Nevertheless, for arbitrary non-negative β, ncj ,
J may be not oerive on H1

#(YF ) if all zj's have the same sign. Therefore, we must put a ondition on the
zj 's so that the minimization problem (15) admits a solution. Following the literature, we impose the bulkeletroneutrality ondition

−Φ(0) =

N
∑

j=1

zjn
0
j(∞) = 0, (16)whih guarantees that for σ = 0, the unique solution of (10) is Ψ = 0. Under assumption (16) it is easy to seethat J is oerive on H1

#(YF ).Remark 1. The bulk eletroneutrality ondition (16) is not a restrition. Atually all our results hold under theweaker assumption (13) that all valenes zj do not have the same sign. Indeed, if (16) is not satis�ed, we anmake a hange of variables in the Poisson-Boltzmann equation (10), de�ning a new potential Ψ̃ = Ψ + Ψ0 where
Ψ0 is a onstant referene potential. Sine the funtion Φ(Ψ0) is ontinuous and admits the following limits atin�nity

lim
Ψ0→±∞

Φ(Ψ0) = ±∞,there exists at least one value Ψ0 suh that Φ(Ψ0) = 0. This hange of variables for the potential leaves (10)invariant if we hange the onstants n0
j(∞) in new onstants ñ0

j(∞) = n0
j(∞)e−zjΨ

0 . These new onstants satisfythe bulk eletroneutrality ondition (16).In the sequel we assume that the harge density is a ontinuous periodi funtion
σ(y) ∈ C#(S). (17)The well-posedness of the boundary value problem (10) is a lassial result.6



Lemma 2 ([14℄). Assume (17) and that the eletroneutrality ondition (16) holds true. Then problem (10), orequivalently (15), has a unique solution Ψ ∈ H1
#(YF ) suh that

N
∑

j=1

zje
−zjΨ and Ψ

N
∑

j=1

zje
−zjΨare absolutely integrable.In truth, the paper [14℄ proves the existene and uniqueness of a solution of the boundary value problem (10)and not of the minimization problem (15) (the method of proof relies on monotone operators and a trunationargument). However, it is not di�ult to hek the equivalene between (10) and (15), as already exploited inmany works inluding [6℄, [8℄. The interest of (15), ompared to (10), is that the existene and uniqueness proofis simpler, although the regularity properties of the solution ome from (10).Atually, the issue of the solution boundedness was not orretly addressed in [14℄, where it was merely provedthat Ψ ∈ Lp(YF ) for every �nite p. By using elementary omparison arguments we will prove a L∞-estimate inProposition 3 (a similar result is also proved in [7℄). To this end we introdue the following auxiliary Neumannproblem















−∆U =
1

|YF |

∫

S
σ dS in YF ,

∇U · n = −σ on S,
U is 1 − periodi, ∫

YF
U(y) dy = 0.

(18)Remark that (18) admits a solution U ∈ H1
#(YF ) sine the bulk and surfae soure terms are in equilibrium.Furthermore, the zero average ondition of the solution gives its uniqueness. Under ondition (17) it is knownthat U is ontinuous and ahieves its minimum and maximum in YF .Then our L∞-bound reads as followsProposition 3. The solution Ψ of (10) satis�es the following bounds

U(y) − Um − 1

z1
log max



1,
σ

βz1n0
1(∞)

−
∑

j∈j+

zjn
0
j(∞)

z1n0
1(∞)



 ≥ Ψ(y) ≥

U(y) − UM − 1

zN
log max



1,
σ

βzNn
0
N(∞)

−
∑

j∈j−

zjn
0
j(∞)

zNn
0
N(∞)



 , (19)where the symbols j+ and j− denote the sets of positive and negative valenes, respetively, and
σ =

1

|YF |

∫

S
σ dS , Um = min

y∈YF

U(y) and UM = max
y∈YF

U(y).Proof. We use the variational formulation for Ψ − U , whih reads, for any smooth 1-periodi funtion ϕ,
∫

YF

∇(Ψ − U) · ∇ϕ dy + β

∫

YF

Φ(Ψ)ϕ dy + σ

∫

YF

ϕ dy = 0. (20)We take ϕ(y) = (Ψ(y) − U(y) + C)−, where C is a onstant to be determined and, as usual, the funtion
f− = min(f, 0) is the negative part of f . We note that by Lemma 2, ϕ ∈ H1

#(YF ) and Φ(Ψ)ϕ is integrable. Ityields
∫

YF

|∇ϕ|2 dy + β

∫

YF

(Φ(Ψ) − Φ(U −C)) (Ψ − U + C)− dy

+

∫

YF

(βΦ(U − C) + σ)ϕdy = 0.7



By monotoniity of Φ the seond term is nonnegative. Hene we should hoose C in suh a way that the oe�ientin front of ϕ in the third term is nonpositive. If C ≥ UM , we have
βΦ(U − C) + σ ≤ −βzNn0

N(∞)ezN (C−UM ) − β
∑

j∈j−
zjn

0
j(∞) + σ.Thus, if it happens that

−β
∑

j∈j−
zjn

0
j(∞) + σ < βzNn

0
N (∞), (21)we indeed take C = UM and the orresponding term is nonpositive. If (21) is not true, then our hoie is

C = UM +
1

zN
log





σ

βzNn0
N (∞)

−
∑

j∈j−

zjn
0
j(∞)

zNn0
N (∞)



 ≥ UM .This hoie of the onstant C implies that ϕ(y) = 0 and it yields the lower bound in (19).Let us swith to the upper bound. We now take ϕ(y) = (Ψ(y)−U(y)−C)+, where C is another onstant tobe determined. We note that by Lemma 2, ϕ ∈ H1
#(YF ) and Φ(Ψ)ϕ is integrable. It yields

∫

YF

|∇ϕ|2 dy + β

∫

YF

(Φ(Ψ) − Φ(U +C))(Ψ − U − C)+ dy

+

∫

YF

(βΦ(U + C) + σ)ϕ dy = 0.By monotoniity the seond term is nonnegative. Again we should hoose C in suh a way that the oe�ient infront of ϕ in the third term is nonnegative. If C + Um ≥ 0, we have
βΦ(U(y) + C) + σ ≥ −βz1n0

1(∞)e−z1(C+Um) − β
∑

j∈j+
zjn

0
j(∞) + σ.Thus, if it happens that

β
∑

j∈j+
zjn

0
j(∞) − σ < −βz1n0

1(∞), (22)we take C = −Um. If (22) is not true, then our hoie is
C = −Um − 1

z1
log





σ

βz1n
0
1(∞)

−
∑

j∈j+

zjn
0
j(∞)

z1n
0
1(∞)



 ≥ −Um.This hoie of the onstant C gives the upper bound in (19) and the Proposition is proved.By lassial regularity theory for ellipti partial di�erential equations, we easily dedue from Proposition 3that the solution of the Poisson-Boltzmann equation is as smooth as the data are.Corollary 4. Suppose S ∈ C∞ and σ ∈ C∞
# (S). Then Ψ ∈ C∞(ȲF ).4 The limit ase of small βIn this setion we investigate the ase of small values of β whih ours for small pore sizes. Equivalently, in thease of very dilute onentrations, we an sale all onentration oe�ients n0

j(∞) by a small parameter whihats as a multipliative fator of β. We shall prove that the solution Ψ = Ψβ of the Poisson-Boltzmann equation(10) (with a subsript β to indiate that we study the behavior when β → 0+) is uniformly bounded up to anadditive onstant whih may blow up. 8



Lemma 5. Let Ψβ be the unique solution of (10). There exists a onstant C, whih does not depend on β, suhthat
‖Ψβ −M(Ψβ)‖H1(YF ) ≤ C‖σ‖L2(S), (23)where M is the averaging operator de�ned by M(g) = 1

|YF |
∫

YF
g(y) dy.Proof. We reall that the variational formulation orresponding to (10) is, for any smooth 1-periodi funtion ϕ,

∫

YF

∇Ψβ · ∇ϕdy + β

∫

YF

Φ(Ψβ)ϕdy +

∫

S
σϕdS = 0, (24)where the nonlinear funtion Φ is de�ned by (11). Taking the test funtion ϕ = Ψβ −M(Ψβ) in (24) we get

∫

YF

|∇Ψβ|2 dy + β

∫

YF

(Φ(Ψβ) − Φ(M(Ψβ)) (Ψβ −M(Ψβ)) dy

+

∫

S
σ(Ψβ −M(Ψβ)) dS = 0.By monotoniity of Φ the seond term is nonnegative and Poinaré inequality yields the a priori estimate (23).When ∫S σ dS 6= 0, we expet that M(Ψβ) blows up as β tends to zero. This is already indiated by the

L∞-bounds from Proposition 3. More onviningly, hoosing ϕ = 1 in (24) leads to
β

∫

YF

Φ(Ψβ) dy = −
∫

S
σ dS, (25)whih shows that M(Φ(Ψβ)) blows up, at least. Remark also that, for β = 0, the orresponding boundary valueproblem (10) has no solution. However, in the ase ∫S σ dS = 0, Ψβ is bounded as will be proved in Setion 4.3.4.1 Formal asymptotisWe �rst obtain by a formal method of asymptoti expansions the boundary value problem, orresponding to thelimit β → 0. There are 3 possibilities.Case 1: ∫S σ < 0. Sine the Neumann boundary ondition (2) or (7) involves −σ, this ase orrespondsto positively harged walls. Therefore, it is the most negative valene z1 whih matters. Sine Ψβ −M(Ψβ) isbounded, we look for an asymptoti formula

Ψβ(y) = aβ + ψ0(y) + o(1), (26)with a onstant aβ → +∞ and ψ0 a funtion independent of β and of zero mean in YF . We will see that furtherterms in the asymptoti expansion ome in general with frational powers of β.The equality (25) beomes
−β

N
∑

j=1

zjn
0
j(∞)

∫

YF

e−zj(aβ+ψ0(x)+o(1)) dy = −
∫

S
σ dS.Therefore, we have

z1n
0
1(∞)βe−z1aβ

∫

YF

ez1(ψ0(y)+o(1)) dy

+β
N
∑

j=2

zjn
0
j(∞)e−zjaβ

∫

YF

e−zj(ψ0(y)+o(1)) dy =

∫

S
σ dS, (27)9



and, sine aβ → +∞, at the leading order (27) reads
z1n

0
1(∞)βe−z1aβ

∫

YF

e−z1(ψ0(y)+o(1)) dy =

∫

S
σ dS. (28)From (28) we dedue

aβ =
log β

z1
+ C0, (29)where C0 is a onstant whih may depend on β but is bounded as a funtion of β → 0. This deomposition allowsus to eliminate the singular part aβ in the expansion. We thus get the following nonlinear equation for ψ0(y)























−∆ψ0(y) −
∫

S
σ dS

e−z1ψ0

∫

YF
e−z1ψ0(y) dy

= 0 in YF ,

∇ψ0 · n = −σ on S,

ψ0 is 1 − periodi and ∫
YF

ψ0 dy = 0.

(30)In our approximate formula for Ψβ we have negleted terms of order O(β1−z2/z1). In the anonial ase of 2opposite valenies (N = 2, z1 = −z2), the negleted term is of order O(β2).Equation (30) does not ontain β. Rather than using ψ0, it is more pratial to use ϕ0(y) = ψ0(y)+C0. Thenwe have
Ψβ(y) =

log β

z1
+ ϕ0(y) +O(β1/z−), (31)and ϕ0 is the solution to the boundary value problem







−∆ϕ0(y) − z1n
0
1(∞)e−z1ϕ0(y) = 0 in YF ,

∇ϕ0 · n = −σ on S,
ϕ0 is 1 − periodi. (32)We note that by testing (32) by a onstant and integrating, we get
z1n

0
1(∞)

∫

YF

e−z1ϕ0(y) dy =

∫

S
σ dS.Consequently, ϕ0 solves (30) exept that it is not of mean zero. We have the following simple result.Lemma 6. Assume that σ is a smooth bounded funtion suh that ∫S σ dS < 0. Then problem (32) has a uniquesolution ϕ0 ∈ H1

#(YF ) suh that
e−z1ϕ0 and e−z1ϕ0ϕ0are absolutely integrable.Proof. The orresponding funtional, to be minimized, is

J0(ϕ) =
1

2

∫

YF

|∇ϕ|2 dy + n0
1(∞)

∫

YF

e−z1φ dy +

∫

S
σϕ dS.It is stritly onvex and the ondition ∫S σ dS < 0 insures the oerivity. The rest of the proof follows that ofLemma 2.Case 2: ∫S σ > 0. Sine the Neumann boundary ondition (2) or (7) involves −σ, this ase orresponds tonegatively harged walls. Thus, it is the largest positive valene zN whih matters. At the leading order, (25)reads

βzNn
0
N (∞)e−zNaβ

∫

YF

e−zN (ψ0(y)+o(1))) dy =

∫

S
σ dS. (33)10



For the same asymptoti expansion (26), equation (33) allows us to ompute the singular behavior aβ and we getthe following equation for the zero-mean perturbation ψ0, ∫
YF

ψ0 dy = 0



















−∆ψ0 −
∫

S
σ dS

e−zNψ0

∫

YF
e−zNψ0(x) dy

= 0 in YF ,

∇ψ0 · n = −σ on S,
ψ0 is 1 − periodi and ∫YF

ψ0 dy = 0.

(34)By the same reasoning as in the �rst ase, we dedue
Ψβ(y) =

log β

zN
+ ξ0(y) +O(β1/zN ), (35)where ξ0 is the solution of







−∆ξ0(y) − zNn
0
N (∞)e−zN ξ0(y) = 0 in YF ,

∇ξ0 · n = −σ on S,
ξ0 is 1 − periodi. (36)By testing (36) with a onstant and integrating, we get
zNn

0
N (∞)

∫

YF

e−zNξ0(y) dy =

∫

S
σ dS.Consequently, ξ0 solves (34) exept that it is not of zero average. We have the following simple result.Lemma 7. Assume that σ is a smooth bounded funtion suh that ∫S σ dS > 0. Then problem (36) has a uniquesolution ϕ0 ∈ H1

#(YF ) suh that
e−zN ξ0 and e−zN ξ0ξ0are absolutely integrable.Case 3: ∫S σ = 0. In this ase the problem orresponding to β = 0 has a solution and the analysis is muhsimpler.The following limit problem















−∆Ψ0(y) = 0 in YF ,
∇Ψ0 · n = −σ on S,

Ψ0 is 1 − periodi and ∫
YF

Φ(Ψ0) dy = 0,
(37)has a unique solution Ψ0 sine the funtion Φ is monotone. Then we have

Ψβ(y) = Ψ0(y) +O(β). (38)4.2 Rigorous perturbation results when ∫
S

σ dS 6= 0We fous on the ase ∫S σ dS < 0: the opposite one, ∫S σ dS > 0, is ompletely analogous. Motivated by thedisussion leading to (31), we look for Ψβ in the form
Ψβ(y) =

log β

z1
+ ϕβ(y), (39)where ϕβ is the solution of







−∆ϕβ(y) − z1n
0
1(∞)e−z1ϕβ(y) + Φ̃(ϕβ) = 0 in YF ,

∇ϕβ · n = −σ on S,
ϕβ is 1 − periodi, (40)11



with
Φ̃(g) = −

N
∑

j=2

zjn
0
j(∞)β1−zj/z1e−zjg. (41)We start with a uniform H1-estimate for ϕβ.Lemma 8. Let σ be a smooth bounded funtion suh that ∫S σ dS < 0. Then, for small enough β, the solution

ϕβ of (40) satis�es the estimate
‖ϕβ‖H1(YF ) ≤ C, (42)where C is independent of β.Proof. The variational formulation of problem (40) reads, for any smooth 1-periodi funtion ϕ,

∫

YF

∇ϕβ · ∇ϕdy +

∫

YF

(

Φ̃(ϕβ) − z1n
0
1(∞)e−z1ϕβ

)

ϕdy +

∫

S
σϕ dS = 0. (43)In (43) we take ϕ = ϕβ = ϕ+

β + ϕ−
β and we get

∫

YF

|∇ϕ+
β |2 dy + (z1)

2n0
1(∞)

∫

YF

|ϕ+
β |2 dy + βΦ(

log β

z1
)M(ϕ+

β )

+

∫

S
σϕ+

β dS +

∫

YF

|∇ϕ−
β |2 dy + βΦ(

log β

z1
)M(ϕ−

β )

+

∫

S
σ(ϕ−

β −M(ϕ−
β )) dS +

(
∫

S
σ dS

)

M(ϕ−
β ) ≤ 0.

(44)Indeed,
∫

YF

|∇ϕβ|2 dy =

∫

YF

|∇ϕ+
β |2 dy +

∫

YF

|∇ϕ−
β |2 dy, (45)and

∫

S
σϕβ dS =

∫

S
σϕ+

β dS +

∫

S
σ(ϕ−

β −M(ϕ−
β )) dS +

(∫

S
σ dS

)

M(ϕ−
β ). (46)Furthermore, both funtions Φ̃(g) and g → −z1e−z1g are monotone and

Φ̃(0) − z1n
0
1(∞) = βΦ(

log β

z1
).Thus, we dedue

(

Φ̃(ϕβ) − z1n
0
1(∞)e−z1ϕβ − Φ̃(0) + z1n

0
1(∞)

)

ϕβ ≥ 0. (47)We use a further argument of strit monotoniity for −z1e−z1g, namely
(

−z1n0
1(∞)e−z1ϕβ + z1n

0
1(∞)

)

ϕ+
β =

(

−z1n0
1(∞)e−z1ϕ

+
β + z1n

0
1(∞)

)

ϕ+
β

≥ (z1)
2n0

1(∞)ϕ+
β , (48)beause (−z1e−z1g)′ = (z1)

2e−z1g ≥ (z1)
2 for g ≥ 0. Equalities (45), (46), together with the lower bounds (47),(48), applied to the variational formulation (43), yield the desired inequality (44). We reall that
lim
β→0+

βΦ(
log β

z1
) = −z1n0

1(∞) > 0,so that, for su�iently small β > 0, βΦ( log β
z1

) is a positive bounded onstant. Further, the produt (
∫

S σ dS)M(ϕ−
β )is nonnegative. Therefore it su�es to apply Poinaré inequality and (42) follows.Next we need a uniform L∞-bound for ϕβ , as β goes to 0. (Reall that the L∞-bounds of Proposition 3 arenot uniform with respet to β.) 12



Proposition 9. For su�iently small β > 0, we have the bounds
U(y) − Um − 1

z1
log max{1, σ

z1n0
1(∞)

} ≥ ϕβ(y) ≥

U(y) − UM − 1

z1
log min{1, σ

z1n
0
1(∞)

}, (49)where U is the solution of the Neumann problem (18).Proof. We start with the variational formulation for ϕβ − U whih reads, for any smooth 1-periodi funtion ϕ,
∫

YF

∇(ϕβ − U) · ∇ϕdy − z1n
0
1(∞)

∫

YF

e−z1ϕβϕdy +

∫

YF

Φ̃(ϕβ)ϕdy

+σ

∫

YF

ϕdy = 0 . (50)We take ϕ(y) = (ϕβ(y)−U(y)+C)−, where C is a onstant to be determined. By virtue of Lemma 2, ϕ ∈ H1
#(YF )and Φ(ϕβ)ϕ is integrable. Sine the funtion g → −zje−zjg and g → Φ̃(g) are monotone, we dedue from (50)

∫

YF

|∇ϕ|2 dy +

∫

YF

(

−z1n0
1(∞)e−z1(U−C) + Φ̃(U − C) + σ

)

ϕdy ≤ 0.Hene we want to hoose C suh that the expression in front of ϕ in the seond integral is nonpositive. We have
−z1n0

1(∞)e−z1(U(y)−C) + Φ̃(U(y) − C) + σ ≤
−z1n0

1(∞)e−z1(UM−C) −
∑

z1<zj<0

β1−zj/z1zjn
0
j(∞)e−zj(UM−C) + σ. (51)Now if

σ < z1n
0
1(∞) < 0,we take C = UM and the left hand side of (51) is nonpositive for β su�iently small beause the sum in (51) issmall. If not, then our hoie is

C > UM +
1

z1
log
( σ

z1n0
1(∞)

)

> UM .This hoie of the onstant C implies that ϕ(y) = 0, for small enough β, and yields the lower bound in (49).For the upper bound we take ϕ(y) = (ϕβ(y)−U(y)−C)+, where C is a onstant to be determined. It yields
∫

YF

|∇ϕ|2 dy +

∫

YF

(

−z1n0
1(∞)e−z1(U+C) + Φ̃(U + C) + σ

)

ϕdy ≤ 0.Hene we should hoose C suh that the expression in front of ϕ in the seond integral is nonnegative. We have
−z1n0

1(∞)e−z1(U(y)+C) + Φ̃(U + C) + σ ≥ (52)
−z1n0

1(∞)e−z1(Um+C) −
∑

j∈j+
β1−zj/z1zjn

0
j(∞)e−zj(Um+C) + σ.Now if

z1n
0
1(∞) < σ < 0,we hoose C = −Um and, for su�iently small β, the right hand side of (52) is positive beause the sum over

j ∈ j+ is small and the expression in front of ϕ in the seond integral is nonnegative. Otherwise, we hoose
C > −Um − 1

z1
log

(

σ

z1n0
1(∞)

)

> −Umand, again, for su�iently small β, the right hand side of (52) is positive, whih implies the upper bound in(49). 13



As an immediate onsequene of Proposition 9, taking the limit as β goes to 0, we obtain the followingorollary.Corollary 10. Let ϕ0 be the solution of (32). It satis�es the L∞-estimate
U(y) − Um − 1

z1
log max{1, σ

z1n0
1(∞)

} ≥ ϕ0(y) ≥

U(y) − UM − 1

z1
log min{1, σ

z1n
0
1(∞)

}. (53)Theorem 11. We have
‖ϕβ − ϕ0‖Ck(ȲF )) ≤ Cβ1−z2/z1, (54)for every positive integer k. Furthermore, let ϕ1 be the solution for







−∆ϕ1 + (z1)
2n0

1(∞)e−z1ϕ0ϕ1 = z2n
0
2(∞)e−z2ϕ0 in YF ,

∇ϕ1 · n = 0 on S,
ϕ1 is 1 − periodi. (55)Then, for every positive integer k, we have

‖ϕβ − ϕ0 − β1−z2/z1ϕ1‖Ck(ȲF )) ≤ Cβq, (56)where 0 < q = min
(

1 − z3/z1 , 2(1 − z2/z1)
).Proof. First we observe that ϕβ − ϕ0 satis�es the variational equation

∫

YF

∇(ϕβ − ϕ0) · ∇ϕdy − z1n
0
1(∞)

∫

YF

(e−z1ϕβ − e−z1ϕ0)ϕdy =

−
∫

YF

Φ̃(ϕβ)ϕdy for all smooth 1-periodi ϕ. (57)Now we take ϕ = ϕβ − ϕ0 as a test funtion, use the strit monotoniity of the funtion g → −zje−zjg, the
L∞-bounds (49) and (53) to onlude that

‖ϕβ − ϕ0‖H1(YF ) ≤ Cβ1−z2/z1 . (58)Next we write the equation for ϕβ − ϕ0 as














−∆(ϕβ − ϕ0) + (ϕβ − ϕ0) = (ϕβ − ϕ0)

+z1n
0
1(∞)(e−z1ϕβ − e−z1ϕ0) − Φ̃(ϕβ) in YF ,

∇(ϕβ − ϕ0) · n = 0 on S,
(ϕβ − ϕ0) is 1 − periodi. (59)Using the estimate (58), we get the H2−error estimate of the same order. After bootstrapping we obtain therequired error estimate (54).Eventually, we write the equation for ϕβ−ϕ0−β1−z2/z1ϕ1 and repeating the above proedure yields (56).Remark 12. In the frequently onsidered ase of two ions of opposite unit harge (N = 2, −z1 = z2 = 1),normalizing the oe�ients n0

1(∞) = n0
2(∞) = 1, we have

Φ(g) = 2 sinh g , ϕβ = ϕ0 + β2ϕ1 + β4ϕ2 + . . .and, in the ase ∫S σ dS < 0, the equations for the funtions ϕj read
−∆ϕ0 + eϕ0 = 0,

−∆ϕ1 + eϕ0ϕ1 = e−ϕ0 ,

−∆ϕ2 + eϕ0ϕ2 = −eϕ0ϕ2
1 − e−ϕ0ϕ1and we have

‖ϕβ − ϕ0 − β2ϕ1 − β4ϕ2‖Ck(ȲF )) ≤ Cβ6, (60)for every positive integer k.The ase ∫S σ dS > 0 is analogous and it is enough to repeat the above strategy with z1 replaed with zN .14



4.3 Rigorous perturbation results in the ase ∫
S

σ dS = 0Here the proofs are muh simpler than in the previous subsetion. We just state the results. Again, the startingpoint are the uniform H1-estimate for Ψβ.Lemma 13. Let σ be a smooth funtion suh that ∫S σ dS = 0. Then the solution Ψβ of problem (10) satis�esthe uniform estimates
U(y) − Um − 1

z1
log max



1, −
∑

j∈j+

zjn
0
j(∞)

z1n
0
1(∞)



 ≥ Ψ(y) ≥

U(y) − UM − 1

zN
log max



1, −
∑

j∈j−

zjn
0
j(∞)

zNn0
N (∞)



 , (61)and
‖Ψβ‖H1(YF ) ≤ C, (62)where C is independent of β.Proof. The L∞-bound (61) is a diret onsequene of Proposition 3. Note that (61) is uniform with respet to β.To obtain (62) we take the test funtion ϕ = Ψβ in the variational formulation (24)

∫

YF

|∇Ψβ|2 dy + β

∫

YF

Φ(Ψβ)Ψβ dy +

∫

S
σΨβ dS = 0.Sine Φ is monotone and satis�es Φ(0) = 0, we have Φ(Ψβ)Ψβ ≥ 0, while the assumption ∫S σ dS = 0 impliesthat

∫

S
σΨβ dS =

∫

S
σ (Ψβ −M(Ψβ)) dS ≤ C‖σ‖L2(S)‖∇Ψβ‖L2(YF )by virtue of Poinaré-Wirtinger inequality. We thus dedue
‖∇Ψβ‖L2(YF ) ≤ C‖σ‖L2(S),whih, together with (61), implies (62).In subsetion 4.1 we already introdued the limit problem (37) for Ψ0 = limβ→0 Ψβ. We an also de�ne aorretor Ψ1 as the unique solution of















−∆Ψ1(y) = −Φ(Ψ0) in YF ,
∇Ψ1 · n = 0 on S,

Ψ1 is 1 − periodi and ∫
YF

Φ′(Ψ0)Ψ1 dy = 0.
(63)There exists a solution of (63) beause ∫YF

Φ(Ψ0) dy = 0 as required by the de�nition of (37). As an obviousonsequene of Lemma 13 we get the following error estimate.Theorem 14. Let Ψ0 be the solution of (37) and Ψ1 that of (63). Then we have
‖Ψβ − Ψ0‖Ck(ȲF )) ≤ Cβ, ‖Ψβ − Ψ0 − βΨ1‖Ck(ȲF )) ≤ Cβ2, (64)for every positive integer k.The proof of Theorem 14 follows the lines of the proof of Theorem 11.
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5 Large β limitWe now investigate the asymptoti behavior of Ψβ when the β parameter goes to +∞. In view of its de�nition(5), a large value of β orresponds either to a large pore size L or to a small Debye length λD, but also to a largeommon value of the onentrations n0
j(∞). A similar asymptoti analysis has been performed in [2℄, [18℄ in onespae dimension. In higher spae dimension our main tool to obtain the behavior near the solid boundaries isthe multidimensional boundary layer tehnique introdued by Vishik and Lyusternik [25℄ (whih was originallyintrodued for linear problems).5.1 Formal asymptotisIn the Poisson-Boltzmann system (10) the parameter β appears in the partial di�erential equation but not in theNeumann boundary ondition. This indiates the presene of boundary layers in the asymptoti analysis, thethikness of whih shall be of the order of O(1/β). The usual tehnique to handle this situation is that of mathedasymptoti expansion. We �rst onsider an outer expansion of the solution Ψβ in YF , away from the boundary

S. In a seond step we shall onstrut an inner expansion of Ψβ in the viinity of S, whih is equivalently aboundary layer.We begin with the outer expansion for Ψβ whih reads
Ψβ = Ψ∞ +

1

β
Ψ1,∞ +

1

β2
Ψ2,∞ + . . . .After plugging this ansatz in the Poisson-Boltzmann equation (10) we get

− 1

β
∆Ψβ + Φ(Ψβ) = Φ(Ψ∞) +

1

β

(

Φ′(Ψ∞)Ψ1,∞ − ∆Ψ∞
)

+ · · · = 0 in YFwhih implies, at the zero order, that Φ(Ψ∞) = 0. The eletroneutrality ondition (16) tells us that 0 is theunique root of the monotone funtion Φ. Therefore we dedue Ψ∞ = 0 in YF . In other words we have
Ψβ(y) = O(

1

β
) in YF , away from the boundary S. (65)In fat we will hek rigorously in the next Subsetion that this order of magnitude holds for the L1−norm of Ψβ.We now turn to the inner expansion of Ψβ, i.e., its behavior lose to S, whih is more ompliated. We studyit loally near a point y0 ∈ S, using the geometrial setting introdued in Subsetion 3.1. We onsider a tubularneighborhood Y µ

F of S with µ small but muh bigger than β−1/2. Loally, in a neighborhood N (y0) of y0, wemake the hange of variables y → q = (q′, qd), as de�ned in Subsetion 3.1, whih satis�es |∇yqd| = 1 in N (y0)and n · ∇yqd = 1 on N (y0) ∩ S. The Jaobian J (orresponding to the volume di�erential hange dy = Jdq) isde�ned by
J = det

(

∂yk
∂qj

)

1≤j,k≤d
, (66)and the metri matrix (orresponding to the transformation y → q)

K =





d
∑

j=1

∂qk
∂yj

∂qr
∂yj





1≤k,r≤d

, (67)whih satis�es
Kd,d = 1, Kk,d = 0 for 1 ≤ k ≤ d− 1.Notie that the oordinates q = q(y) are introdued in suh a way that the level sets {qd = onst} and thenormal lines {q′ = (C1, . . . , Cd−1} are orthogonal (that is the orresponding tangential hyperplanes and lines areorthogonal). Sine ∇yqd(y) gives the diretion of the normal line and ∇yqk, k = 1, 2, . . . , d − 1, form a basis inthe tangential hyperplane, we have Kk,d = ∇yqk · ∇ydist(y, S) = 0 for k 6= d.16



Di�erential operators in new oordinates transform as follows:
∂

∂yj
=

d
∑

k=1

∂qk
∂yj

∂

qk
, j = 1, . . . , d;

d
∑

k=1

∂2

∂y2
k

=
1

J
divq (J K∇q) in Y µ

F ∩N (y0); (68)
n · ∇y = − ∂

∂qd
on S. (69)Applying this hange of variables to the variational formulation (24) of the Poisson-Boltzmann system (10) yieldsthe following equation in the new oordinates

−divq (J K∇qΨβ) + β J Φ(Ψβ) = 0. (70)Dividing (70) by J yields that the partial di�erential equation in Y µ
F ∩ N (y0) and the boundary ondition on

S ∩ N (y0) of (10) transform into
−∂

2Ψβ

∂q2d
+ βΦ(Ψβ) + lower order derivatives in qd

+ seond order di�erential operator in q′ = 0 in Y µ
F ∩N (y0), (71)

∂Ψβ

∂qd
= σ on S ∩ N (y0). (72)As usual in the method of mathed asymptoti expansions, problem (71)-(72) serves to onstrut the innerexpansion. Sine we expet the thikness of the boundary layer to be of order O(1/β), we searh for the innerexpansion of the form

Ψβ(q
′, qd) = β−1/2

∞
∑

j=0

β−j/2Ψj(q
′, β1/2qd). (73)Expanding the zero order term Φ(Ψβ) in Taylor series and taking into aount the bulk eletroneutrality ondition(16), Φ(0) = 0, we obtain

Φ(Ψβ) = −
N
∑

k=1

zkn
0
k(∞)e−zkΨβ = Φ′(0)Ψβ +

1

2
Φ′′(0)(Ψβ)

2 + . . .

= β−1/2
N
∑

k=1

z2
kn

0
k(∞)Ψ0 + β−1

N
∑

k=1

z2
kn

0
k(∞)

(

Ψ1 −
1

2
zk(Ψ0)

2
)

+ . . . (74)Introduing ξ = β1/2qd, substituting (73) and (74) in (71)-(72) and olleting power-like terms in the resultingequations, after straightforward rearrangements we arrive at the following problem for the main term of theexpansion:
d2

dξ2
Ψ0(q

′, ξ) −
(

N
∑

k=1

z2
kn

0
k(∞)

)

Ψ0(q
′, ξ) = 0 for ξ > 0; (75)

d

dξ
Ψ0(q

′, 0) = σ(q′) for ξ = 0. (76)Problem (75)-(76) is a seond-order ordinary di�erential equation on the positive half-line. After mathing withthe outer solution Ψβ = O(
1

β
), we impose additionally that Ψ0(q

′,+∞) = 0. The exat solution of (75)-(76) isthus
Ψ0(q

′, ξ) =
−σ(q′)
√

Φ′(0)
exp{−ξ

√

Φ′(0)}, (77)17



with Φ′(0) =
∑N

k=1 z
2
kn

0
k(∞). Bak to the original variables, we get

Ψβ(y) =
−σ(y)
√

βΦ′(0)
exp{−d(y)

√

βΦ′(0)} +O(
1

β
), (78)where d(y) is the distane between y and S. This asymptoti expansion (78) will be justi�ed rigorously in thenext subsetion.Remark 15. The above expressions an be simpli�ed if we speify our hoie of the harateristi onentration

nc. Spei�ally, taking nc =
∑N

k=1 z
2
kn

∗
k(∞) we obtain that ∑N

k=1 z
2
kn

0
k(∞) = 1 or equivalently Φ′(0) = 1.5.2 Rigorous error estimateWe start with two useful simple inequalities for the nonlinearity Φ.Lemma 16. Let Φ be given by (11), i.e., Φ(x) = −∑N

k=1 zkn
0
k(∞)e−zkx. There exist positive onstants H,C0, Cksuh that, ∀x ∈ R,

Φ(x) sign(x) ≥ H2 |x|, (79)
Φ′(x) ≥ C0 + Ck|x|k−2, k ≥ 2. (80)Proof. To prove (80) we note that

Φ′(x) ≥ (z1)
2n0

1(∞)e−z1x + (zN )2n0
N (∞)e−zNxwith z1 < 0 < zN , whih implies the desired result. Then (79) follows from a Taylor expansion of Φ(x) at 0 andthe bulk eletroneutrality ondition (16), Φ(0) = 0.We now prove a priori estimates whih improve that of Lemma 5.Lemma 17. Let Ψβ be the unique solution of (10). There exists a positive onstant C suh that, ∀ β ≥ 1,

‖Ψβ‖L1(YF ) ≤
C

β
, (81)

‖Ψβ‖Lk(YF ) ≤ Cβ−3/(2k), k ≥ 2, (82)
‖Ψβ‖H1(YF ) ≤ Cβ−1/4. (83)Proof. First, in the variational formulation (24) we use the test funtion ϕ = Ψβ. It yields

∫

YF

|∇Ψβ|2 dy + β

∫

YF

Φ(Ψβ)Ψβ dy = −
∫

S
σΨβ dS. (84)Sine β ≥ 1 and Φ(x)x ≥ H2 |x|2 beause of (79), we dedue from (84) that ‖Ψβ‖H1(YF ) ≤ C (this estimate willbe improved later). Seond, in the variational formulation (24) we use a test funtion whih is a (monotone)regularization of the sign of Ψβ. The �rst term in (24) is non-negative and the right hand side is bounded thanksto the previous estimate. Thus, after passing to the regularization parameter limit, we get

β

∫

YF

Φ(Ψβ) sign(Ψβ) dy ≤ C,and after applying inequality (79) we get (81). Next, we onsider again (84) where the nonlinear term is boundedfrom below using inequality (80)
β

∫

YF

Φ(Ψβ)Ψβ dy ≥ β

(

C0

∫

YF

|Ψβ|2 dy + Ck

∫

YF

|Ψβ |k dy
)

. (85)18



Furthermore, using a trae inequality [13℄, we get
∣

∣

∣

∣

∫

S
σΨβ dS

∣

∣

∣

∣

≤ C‖Ψβ‖L2(S) ≤ C‖Ψβ‖1/2
H1(YF )

‖Ψβ‖1/2
L2(YF )

≤ C
(

βδ‖Ψβ‖2
L2(YF ) + (βδ)−1/3‖Ψβ‖2/3

H1(YF )

)

, (86)where we used Young's inequality ab ≤ a4/4 + 3b4/3/4 for a = (βδ)1/4‖Ψβ‖1/2
L2(YF )

and b = (βδ)−1/4‖Ψβ‖1/2
H1(YF )

.For β ≥ 1 and δ > 0 small enough, (82)-(83) is a diret onsequene of (86).Sine S is ompat there exist �nitely many points y0
i ∈ S and neighborhoods N (y0

i ), 1 ≤ i ≤ M , suh thatthe open sets Wi = YF ∩N (y0
i ) over S, i.e., S ⊂ ∪Mi=1W i. Take W0 ⊂⊂ YF so that YF ⊂ ∪Mi=0Wi and let {ζi}Mi=0be an assoiated partition of unity. Here YF and S are onsidered as subsets of the unit torus T

d, so the funtions
ζi(y) are 1-periodi.Proposition 18. In eah set q(Wi) (the image of Wi by the map y → q) de�ne a boundary layer funtion

ψbli (q) = β−1/2Ψ0(q
′, β1/2qd) =

−σ(q′)
√

βΦ′(0)
exp{−qd

√

βΦ′(0)}, (87)where Ψ0 is de�ned by (77). For any smooth test funtion ϕ, suh that ϕ = 0 on ∂q(Wi) \ q(S ∩Wi), it satis�es
∫

q(Wi)
Ki∇qψ

bl
i · ∇qϕJ

i dq + β

∫

q(Wi)
Φ(ψbli )ϕJ i dq

+

∫

q(S∩Wi)
σϕ
√

1 + |∇q′γi|2 dq′ =

∫

q(Wi)
Riβϕdq, (88)where J i is the Jaobian of the map y → q, de�ned by (66), Ki is the metri matrix de�ned by (67) and

‖Riβ‖L∞(q(Wi)) ≤ C, ‖Riβ‖L1(q(Wi)) ≤
C√
β
. (89)Proof. By diret alulations, using the expliit formula (87) and taking into aount that Ki

k,d = 0 for 1 ≤ k ≤
d− 1.Considering the boundary layers ψbli as funtions of y now, we immediately obtain the following orollary.Corollary 19. The boundary layers ψbli (q(y)) satisfy, for any ϕ ∈ H1(Wi),

∫

Wi

∇y(ζiψ
bl
i ) · ∇yϕdy + β

∫

Wi

Φ(ζiψ
bl
i )ϕdy +

∫

S∩Wi

ζiσϕdS =

∫

Wi

Riβϕ dy, (90)where the rede�ned reminders Riβ satisfy
‖Riβ‖L∞(Wi) ≤ C, ‖Riβ‖L1(Wi) ≤

C√
β
. (91)Due to the geometri assumptions from Setion 3.1, for µ su�iently small, the tubular neighborhood Y µ

F =
{y ∈ YF : dist(y, S) < µ} satis�es Y µ

F ⊂ ∪Mi=1Wi.An arbitrary smooth funtion f , de�ned on YF is then written as f =
∑M

i=1 ζif + ζ0f . The boundary between
Y µ
F and YF \ Y µ

F is C3 and we extend smoothly f from Y µ
F into YF \ Y µ

F . In YF \ Y µ
F , f , together with itsderivatives, is exponentially small with respet to 1/β.In the alulations whih follow we replae f by the above extension of ∑M

i=1 ζif from Y µ
F to YF . The erroris exponentially small in 1/

√
β and we ignore it. 19



Colleting together the boundary layers with the assoiated partition of unity, we de�ne
ψbl =

M
∑

i=1

ζiψ
bl
i (92)and dedue the following result.Proposition 20. For any ϕ ∈ H1

#(YF ), we have
∫

YF

∇(Ψβ − ψbl) · ∇ϕdy + β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
)

ϕdy =

∫

YF

Rβϕdy, (93)where the global reminder Rβ satis�es
‖Rβ‖L∞(YF ) ≤ C, ‖Rβ‖L1(YF ) ≤

C√
β
. (94)Proof. We obtain (93) by subtrating the variational formulations (90) of the boundary layers ψbli from thevariational formulation (24) of Ψβ. We use the fat that

Φ(

M
∑

i=1

ζiψ
bl
i ) =

M
∑

i=1

ζiΦ(ψbli ) +O(β−1/2)sine ψbli = O(β−1/2) and Φ(0) = 0.Finally we obtain the main result of this setion whih is a rigorous justi�ation of (78) (reall that ψbli (q) =
β−1/2Ψ0(q

′, β1/2qd)).Theorem 21. Let Ψβ be the unique solution of (10) and ψbl be given by (92). There exists a positive onstant Csuh that, ∀ β ≥ 1,
‖Ψβ − ψbl‖L1(YF ) ≤

C

β3/2
, (95)

‖Ψβ − ψbl‖L2(YF ) ≤
C

β5/4
, (96)

‖Ψβ − ψbl‖H1(YF ) ≤
C

β3/4
. (97)Proof. The proof is similar to that of Lemma 17. First, we test (93) by the regularized sign of Ψβ − ψbl. Afterpassing to the regularization parameter limit and using the seond inequality of (94), we get

β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
) sign(Ψβ − ψbl

)

dy ≤ C√
β
,Sine (80) implies that Φ′(x) ≥ C > 0, we dedue (95).Next we test (93) by Ψβ − ψbl. It yields

∫

YF

|∇(Ψβ − ψbl)|2 dy + β

∫

YF

(

Φ(Ψβ) − Φ(ψbl)
)

(Ψβ − ψbl) dy

≤ ‖Rβ‖L∞(YF )‖Ψβ − ψbl‖L1(YF ) ≤
C

β3/2
. (98)For β ≥ 1, (96)-(97) is a diret onsequene of (98).Theorem 21 justi�es the approximation (78) by providing error estimates in integral norms. The next resultgives pointwise estimates for the same asymptoti approximation.20



Lemma 22. There exist positive onstants β0, C1 and C2 suh that, for all β > β0 and for all y ∈ YF , thefollowing estimates hold:
|Ψβ(y)| ≤

C1√
β

exp
{

− C2

√

β dist(y, S)
}

, (99)
|∇Ψβ(y)| ≤ C1 exp

{

− C2

√

β dist(y, S)
}

, (100)
|Ψβ(y) − ψbl(y)| ≤ C1

β
exp

{

− C2

√

β dist(y, S)
}

. (101)Proof. Introdue a funtion of s ∈ R

p(s) =















Φ(s)/s for s 6= 0,

N
∑

j=1

z2
jn

0
j(∞) for s = 0.From (79) in Lemma 16, we dedue p(s) ≥ H2 > 0 for all s ∈ R. It also readily follows from the de�nition of pthat p is a ontinuous funtion of s.Reall that YF and S are subsets of the unit torus T
d. Therefore, 1-periodi boundary onditions are impliitfor all boundary value problems below. For the sake of brevity we do not indiate them. Introduing a funtion

Bβ(y) = p(Ψβ(y)) (whih is ontinuous and satis�es Bβ(y) ≥ H2), the Poisson-Boltzmann equation (10) an berewritten as
{

−∆Ψβ + βBβ(y)Ψβ = 0, in YF ,
∇Ψβ · n = −σ, on S.Denote Σ = ‖σ‖L∞(S). Then, by the maximum priniple,

|Ψβ| ≤ Ψ+
β in YF ,where Ψ+

β is the unique solution of
{

−∆Ψ+
β + βH2Ψ+

β = 0, in YF ,
∇Ψβ · n = Σ, on S.Thus, it su�es to show that

|Ψ+
β (y)| ≤ C1√

β
exp

{

− C2

√

β dist(y, S)
}

, for all y ∈ YF . (102)In order to prove (102), we are going to onstrut a so-alled barrier funtion. For any y ∈ S denote by R(y)the radius of urvature of S at y. Under our standing assumption on the smoothness of S we have R(y) ≥ R0 > 0,
∀ y ∈ S. For R0 small enough, eah of the neighborhoods N (y0

i ), 1 ≤ i ≤M , overing S ontains a ball of enter
y0
i and radius (R0/2). In this ball, we rewrite the Laplae operator in terms of the new oordinates q = q(y),introdued in Subsetion 3.1,

−∆y = − ∂2

∂q2d
+

d−1
∑

i,j=1

Qij(q)
∂2

∂qi∂qj
+

d
∑

j=1

Q0
j(q)

∂

∂qj
,with regular bounded funtions Qij(q) and Q0

j(q) de�ned in terms of Kij and J . Setting
G(s) =

{

s− s2

R0
if s ≤ R0

2 ,

R0

4 , otherwise,and
U(y) =

2Σ

H
√
β

exp

{

−
√

β
H

2
G(qd)

}

,21



after straightforward omputations we obtain
∇U · n

∣

∣

∣

S
= −∂U

∂qd

∣

∣

∣

qd=0
= Σ. (103)Notie also that U ∈ H2(YF ) beause ∇U(y) = 0 if dist(y, S) = R0/2.Substituting U in the equation yields, for all y ∈ YF suh that qd ≤ R0/2,

−∆U + βH2U = β
{

− H2

4

(

1 − 2qd
R0

)2
− H

R0
√
β
− Q0

d(q)H

2
√
β

(

1 − 2qd
R0

)

+H2
}

U.Clearly, for all su�iently large β the above right hand side is positive. Therefore, for β > β0,
−∆U + βH2U ≥ 0 in YF .Combining this relation with (103), and using the maximum priniple, we onlude that Ψ+

β ≤ U in YF . Sine
dist(y, S) in YF is bounded by some onstant C3 and G(s) ≥ C4s for any s ∈ (0, C3), this implies the �rst desiredestimate (99).Estimate (100) follows from (99) thanks to the standard ellipti estimates. Indeed, in the resaled oordinates
z =

√
βy equation (10) reads

−∆zΨβ = −Φ(Ψβ) in √βYF
∇zΨβ · nz = − 1√

β
σ on √βS.By (99) for any ball Bz0,1 = {z : |z − z0| ≤ 1} with y0 ∈ √
βYF we have

|Ψβ(z)| ≤
C√
β
e−c2dist(z0,

√
βS), |Φ(Ψβ(z))| ≤

C√
β
e−c2dist(z0,

√
βS),

z ∈ Bz0,1 ∩
√
βYF . Considering our regularity assumptions on S and σ, by the loal ellipti estimates for Poissonequation inluding those near the boundary, we obtain

|∇zΨβ(z)| ≤
C√
β
e−c2dist(z0,

√
βS), z ∈ Bz0,1/2 ∩

√

βYF .In the oordinates y this yields the desired estimate (100).Estimate (101) an be obtained by means of similar arguments as in the proof of (99). Here we just outlinethe proof and leave the details to the reader. From the de�nition of Ψβ and ψbl and estimate (99) it readilyfollows that the di�erene Vβ = Ψβ − ψbl satis�es in Y µ
F , µ = R0/2, the following problem:

−∆Vβ(y) + βΦ′(0)Vβ(y) = g1(y) in Y µ
F ,

∇Vβ · n
∣

∣

S
= 0, Vβ

∣

∣

|qd(y)|= R0
2

= g2(y)with
|g1(y)| ≤ c1e

−c2
√
βqd(y), |g2(y)| ≤

1√
β
c1e

−c2
√
βR0/2 ≤ 1

β
c1e

−c3
√
βR0/2;here the onstants c2 > 0 and c3 > 0 do not depend on β. Setting V β = C

β e
−
√
βH1qd(y) and hoosing large enough

C > 0 and small enough H1 > 0, we obtain that for all su�iently large β it holds
−∆V β + βΦ′(0)V β > g1, ∇V β · n

∣

∣

S
< 0, V β

∣

∣

|qd(y)|= R0
2

> g2.Therefore, Vβ ≤ V β in Y µ
F . Similarly, Vβ ≥ −V β in Y µ

F . This yields (101) in Y µ
F . In YF \ Y µ

F (101) follows by themaximum priniple. 22



6 Dirihlet boundary ondition or ζ potential at the boundaryThe previous asymptoti analysis was spei� to the Neumann boundary ondition (or given harge density σ)imposed on the pore walls S. The situation is quite di�erent for Dirihlet boundary ondition (or ζ potential) on
S. We brie�y investigate this ase. We modify the boundary ondition in the Poisson-Boltzmann equation







−∆Ψβ + βΦ(Ψβ) = 0 in YF ,
Ψβ = ζ on S,
Ψβ is 1 − periodi. (104)All unknowns and parameters are exatly the same as the ones in Setion 3.2.6.1 The limit ase of small βWe start by studying the behavior of Ψβ when β goes to zero. Performing a formal asymptoti expansion

Ψβ = Ψ0 + βΨ1 + . . . ,it is easy to hek that the zero-order term is onstant
Ψ0(y) ≡ ζ,while the �rst-order term is the solution of the linear problem







−∆Ψ1 = −Φ(ζ) in YF ,
Ψ1 = 0 on S,
Ψ1 is 1 − periodi. (105)It is not di�ult to justify this ansatz and to prove the following error estimate.Lemma 23. There exists a positive onstant C, independent of β, suh that

‖Ψβ − ζ − βΨ1‖H1(YF ) ≤ Cβ2.6.2 The limit ase of large β: formal asymptotisWe are now interested in the behavior of Ψβ for large β. As in subsetion 5.1 we use mathing asymptotiexpansion. Of ourse, the outer expansion, being independent of the boundary ondition, is the same and we getagain (65), namely
Ψβ(y) = O(

1

β
) away from the boundary S. (106)To the ontrary, the behavior lose to S di�ers signi�antly from Setion 5. We study it loally, in the samegeometrial setting as before. We obtain the same di�erential operator lose to the boundary with a di�erentboundary ondition

−∂
2Ψβ

∂q2d
+ βΦ(Ψβ) + lower order derivatives in qd

+ seond order di�erential operator in q′ = 0 in YF ∩N (y0), (107)
Ψβ = ζ(q1, . . . , qd−1) on S ∩ N (y0). (108)The boundary ondition (108) (given ζ potential) is a muh stronger onstraint than the previous Neumannondition (72). Consequently, we hange the inner asymptoti expansion whih, instead of (73), is now of theform

Ψβ(q
′, qd) = Ψ0,ζ(q

′, β1/2qd) + β−1/2Ψ1,ζ(q
′, β1/2qd) + . . . . (109)23



Introduing ξ = β1/2qd, substituting (109) in (107)-(108) and olleting power-like terms in the resulting equations,we arrive at the following problem for the leading term of the expansion
− d2

dξ2
Ψ0,ζ(q

′, ξ) + Φ(Ψ0,ζ(q
′, ξ)) = 0 for ξ > 0, (110)

Ψ0,ζ(q
′, 0) = ζ(q′). (111)After mathing with the outer solution Ψβ = O(β−1), we impose additionally that Ψ0,ζ(q

′,+∞) = 0 and thesquare integrability of the derivative.Let C(x) =

N
∑

j=1

n0
j(∞)e−zjx be the primitive of Φ(x). Then the problem (110)-(111) admits the �rst integral

−1

2
(
d

dξ
Ψ0,ζ)

2 + C(Ψ0,ζ) = C1 = onstant. (112)As we impose Ψ0,ζ(q
′,+∞) = 0 and the square integrability of the derivative, it follows that

C1 = C(0) =

N
∑

j=1

n0
j(∞) > 0. (113)Thus, (111), (112) and (113) give







Ψ0,ζ |ξ=0 = ζ,
d

dξ
Ψ0,ζ = −2 sign(ζ)

√

C(Ψ0,ζ) − C(0).
(114)Proposition 24. The Cauhy problem (114) has a unique smooth solution Ψ0,ζ on (0,+∞), satisfying (110) and

|Ψ0,ζ(q
′, ξ)| ≤ |ζ(q′)|e−

√
Csξ,

| d
dξ

Ψ0ζ(q
′, ξ)| ≤

√

C0|ζ(q′)|1/2e−
√
Csξ/2,

(115)where Cs = min{∑j∈j− z
2
jn

0
j(∞),

∑

j∈j+ z
2
jn

0
j(∞)} and C0 = 2max

S
|Φ(ζ(q′))|.Proof. For ζ = 0, the unique solution is Ψ0,ζ = 0 and there is nothing to prove.For ζ 6= 0, the Cauhy problem (114) has a unique maximal smooth solution on some interval (0, ℓ). If ζ > 0,then the solution is positive, monotone dereasing and it reahes the value 0 at ξ = ℓ. For ζ < 0, it is the oppositesituation. But 0 is a ritial point of (114) and no trajetory an leave or reah that point. So the solution annotbe zero for some �nite ℓ. Therefore, the Cauhy problem (114) has a unique maximal smooth solution on theentire real line (0,+∞).Next, a simple alulation gives

| d
dξ

Ψ0,ζ(q
′, ξ)|2 ≥ Cs|Ψ0,ζ(q

′, ξ)|2,with Cs = min{∑j∈j− z
2
jn

0
j(∞),

∑

j∈j+ z
2
jn

0
j(∞)}. Consequently, for ζ > 0, we have
d

dξ
Ψ0,ζ(q

′, ξ) ≤ ζ(q′)e−
√
Csξand we establish the exponential deay of Ψ0,ζ and the �rst part of (115). For ζ < 0 everything is analogous.The ordinary di�erential equation (114) gives

| d
dξ

Ψ0,ζ(q
′, ξ)|2 ≤ 2max

S
|Φ(ζ)||Ψ0,ζ(q

′, ξ)|and we onlude the remaining part of estimate (115). 24



Remark 25. In many situations, for a symmetri eletrolyte with ion harges ±Q, the expliit solutions areknown. A lassial referene is the book [24℄. For example, in the ase −z1 = 1 = z2 and n0
1(∞) = n0

2(∞) = 1/2,we have the following Gouy-Chapman solution
Ψ0,ζ(q

′, ξ) = 2 ln
1 + tanh(ζ/2)e−ξ

1 − tanh(ζ/2)e−ξ
.By diret omputation we an hek that this solution satis�es the properties established in Proposition 24. In thegeneral ase Ψ0,ζ an be expressed using ellipti funtions. Nevertheless, our simple analysis gave us the propertiesof the solution without using its expliit form.6.3 The limit ase of large β: rigorous error estimateWe start with the study of the boundary layer funtion Ψ0,ζ . As in setion 5 we use the loal hange of variables

y → q.Proposition 26. For eah open subset Wi = YF ∩N (y0
i ), let the boundary layer funtion be de�ned by

ψbli (q) = Ψ0,ζ(q
′, qd

√

β) (116)for the given boundary data ζ on S ∩W i. Then, for any smooth funtion ϕ suh that ϕ = 0 on ∂q(S ∩W i), wehave
∫

q(Wi)
Ki∇qψ

bl
i (q) · ∇qϕ J i dq + β

∫

q(Wi)
Φ(ψbli (q))ϕJ i dq =

∫

q(Wi)
Ri1∇q′ϕJ

i dq

+

∫

q(Wi)
Ri2ϕJ

i dq =

∫

q(Wi)
Ri3ϕJ

i dq +

∫

q(∂Wi\(S∩W i))
σi1ϕdq

′, (117)where J i is the Jaobian of the map q → y, de�ned by (66), Ki is the metri matrix de�ned by (67), ∇q′ isgradient with respet to q′ and
√

β(‖Ri1‖L∞(q(Wi)) + ‖σi1‖L∞(q(∂Wi\(S∩W i)))
) + ‖Rij‖L∞(q(Wi)) ≤ C

√

β; (118)
√

β(‖Ri1‖Lr(q(Wi)) + ‖σi1‖L∞(q(∂Wi\(S∩W i)))
)+

‖Rij‖Lr(q(Wi)) ≤ Cβ(1−1/r)/2 j = 2, 3. (119)Proof. By diret alulation, using the estimate (115). We note that the higher derivatives of Ψ0,ζ with respetto q′ satisfy also the estimate (115).Corollary 27. For all ϕ ∈ H1(Wi) suh that ϕ = 0 on S ∩ ∂Wi, we have
∫

Wi

∇yψ
bl
i · ∇yϕdy + β

∫

Wi

Φ(ψbli )ϕdy =

∫

Wi

Ri1∇yϕdy

+

∫

Wi

Ri2ϕdy =

∫

Wi

Ri3ϕdy +

∫

∂Wi\(S∩W i)
σi1ϕdS, (120)where rede�ned reminders σi1, Rij , j = 1, 2, 3, satisfy (118)-(119).Using the de�nition of ψbli , we see that ψbli = ψblj on Wi ∩Wj, when Wi ∩Wj is nonempty. Now let ψbl = ψblion Wi. As in Subsetion 5.2, we make a smooth extension of ψbl into YF \ Y µ

F . In YF \ Y µ
F , ψbl, together withits derivatives, is exponentially small with respet to 1/β. We simply ignore the exponentially small terms in ourestimates. We have
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Proposition 28. For any ϕ ∈ H1(YF ) suh that ϕ = 0 on S, we have
∫

YF

∇(Ψβ − ψbl) · ∇ϕ dy + β

∫

YF

(Φ(Ψβ) − Φ(ψbl))ϕ dy =

∫

YF

R1
β∇ϕ dy

+

∫

YF

R2
βϕ dy =

∫

YF

R3
βϕdy +

M
∑

i=1

∫

∂Wi\(S∩W i)
σiβϕdS, (121)where the global reminders Rjβ, j = 1, 2, 3 and σiβ, i = 1, . . . ,M satisfy

√

β(‖R1
β‖Lr(YF ) + ‖σiβ‖Lr(∂Wi\(S∩W i))

)+

‖Rjβ‖Lr(YF ) ≤ Cβ(1−1/r)/2, ∀r ∈ [1,+∞], j = 2, 3, i = 1, . . . ,M. (122)Theorem 29. Let Ψβ be given by (104) and ψbl by (116). Then we have the following behavior for large β:
‖Ψβ − ψbl‖L1(YF ) ≤

C

β
, (123)

‖Ψβ − ψbl‖L2(YF ) ≤
C

β1/2
(124)

‖Ψβ − ψbl‖H1(YF ) ≤ C. (125)Proof. First we test the variant of (121) involving boundary terms by the regularized sign of (Ψβ − ψbl). Afterpassing to the regularization parameter limit, we get
β

∫

YF

(Φ(Ψβ) − Φ(ψbl)) sign (Ψβ − ψbl) dy ≤ C,and after applying a slight generalization of the inequality (79) we get (123).Next we use the variant of (121) involving only volume terms and test (121) by gβ = Ψβ − ψbl. It yields
∫

YF

|∇(Ψβ − ψbl)|2 dy + β

∫

YF

(Φ(Ψβ) − Φ(ψbl))(Ψβ − ψbl) dy ≤

Cβ1/4 max
i

‖gβ‖L2(∂Wi∩T ) + Cβ1/4‖gβ‖L2(YF )

≤ βminΦ′

2
‖gβ‖2

L2(YF ) +
1

2
‖∇gβ‖2

L2(YF ) + C. (126)For β ≥ β0, (124)-(125) is a diret onsequene of (126).Remark 30. By the same arguments as in Setion 5, one an obtain, in addition to the inequalities of Theorem 29,pointwise estimates for Ψβ and for the disrepany Ψβ − ψbl. In the ase of Dirihlet boundary ondition theseestimates read, for β ≥ 1,
|Ψβ(y)| ≤ C1 exp

{

− C2

√

β dist(y, S)
}

,

|∇Ψβ(y)| ≤ C1

√

β exp
{

−C2

√

β dist(y, S)
}

,

|Ψβ(y) − ψbl(y)| ≤ C1√
β

exp
{

− C2

√

β dist(y, S)
}

,where C1 and C2 are positive onstants, independent of β.
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