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Abstract. We consider weighted Radon transforms on the plane. We show that the
Chang approximate inversion formula for these transforms admits a principal refinement
as inversion via finite Fourier series weight approximations. We illustrate this inversion
approach by numerical examples for the case of the attenuated Radon transforms in the
framework of the single-photon emission computed tomography (SPECT).

1. Introduction

A basic problem of many tomographies consists in finding an unknown function f on
R

2 from its weighted ray transform PW f on R × S
1 for some known weight W , where

PW f(s, θ) =

∫

R

W (sθ⊥ + tθ, θ)f(sθ⊥ + tθ)dt,

s ∈ R, θ = (θ1, θ2) ∈ S
1, θ⊥ = (−θ2, θ1),

(1.1)

where f = f(x), W = W (x, θ), x ∈ R
2. Up to change of variables, the operator PW is

known also in the literature as the weighted Radon transform on the plane. In this work
we always assume that

W ∈ C(R2 × S
1) ∩ L∞(R2 × S

1),

w0(x)
def
=

1

2π

∫

S
1

W (x, θ)dθ 6= 0, x ∈ R
2, (1.2)

where W is complex-valued, in general, and dθ is the standard element of arc length on
S

1. Additional assumptions on W will be formulated in the framework of context. In
particular, in important particular cases W is real-valued and strictly positive:

W = W̄ , W ≥ c > 0. (1.3)

In addition, for this work one can always assume that

f ∈ L∞(R2), supp f ⊂ D, (1.4)

where f is complex-valued, in general, and D is an open bounded domain (which is fixed
a priori).
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In definition (1.1) the product R × S
1 is interpreted as the set of all oriented straight

lines in R
2. If γ = (s, θ) ∈ R × S

1, then γ = {x ∈ R
2 : x = sθ⊥ + tθ, t ∈ R} (modulo

orientation) and θ gives the orientation of γ.
If W ≡ 1, then PW is reduced to the classical ray (or Radon) transform on the plane.

If

W (x, θ) = exp

(

−

+∞
∫

0

a(x + tθ)dt

)

, (1.5)

where a is a complex-valued sufficiently regular function on R
2 with sufficient decay at

infinity, then PW is known in the literature as the attenuated ray (or Radon) transform
on the plane.

The classical ray transform arises, in particular, in X-ray transmission tomography,
see e.g. [Na]. The attenuated ray transform (at least, with real-valued a ≥ 0) arises, in
particular, in single-photon emission computed tomography (SPECT), see e.g. [Na], [Ku].
Transforms PW with some other weights also arise in applications, see e.g. [Q], [Ku], [MP],
[Ba].

Exact and simultaneously explicit inversion formulas for the classical and attenuated
ray (or Radon) transforms on the plane were given for the first time in [Ra] and [No1],
respectively. For some other weights W , exact and simultaneously explicit inversion for-
mulas were given in [TM], [BS], [G], [No2]. Note that we say that an inversion method for
PW is an explicit inversion formula if its complexity is comparable with complexity of the
aforementioned Radon inversion formula of [Ra].

Apparently, for general PW , under assumptions (1.2), (1.3), explicit and simultane-
ously exact (modulo Ker PW ) inversion formulas are impossible. In addition, [Bo] gives
an example of infinitely smooth W satisfying (1.2), (1.3) and such that Ker PW 6= 0 in
the space of infinitely smooth compactly supported functions on R

2. But, due to [BQ],
Ker PW = 0 in the space of continuous compactly supported functions on R

2 for real-
analytic W satisfying (1.3).

On the other hand, the following Chang approximate (but explicit) inversion formula
for PW , where W is given by (1.5) with a ≥ 0, has been used for a long time (see e.g. [Ch],
[Ku], [No2]):

fappr = (w0)
−1P−1PW f, (1.6)

where w0 is defined in (1.2), P−1 denotes the classical Radon inversion realized via the
formula

P−1q(x) =
1

4π

∫

S
1

θ⊥∇x

(

1

π
p.v.

∫

R

q(t, θ)

xθ⊥ − t
dt

)

dθ, x ∈ R
2,

θ⊥∇x = −θ2∂/∂x1 + θ1∂/∂x2, xθ⊥ = −θ2x1 + θ1x2, θ = (θ1, θ2), x = (x1, x2),

(1.7)

where q is a test function on R × S
1. It is known that formula (1.6) is efficient for the

first approximation in SPECT reconstructions and, in particular, is sufficiently stable for
reconstructions from discrete data with strong Poisson noise. The exact inversion formula
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of [No1] for the attenuated ray transform is considerably less stable in this respect. For
more information in this connection see [GN2].

Formula (1.6), under assumptions (1.2), can be considered as approximate inversion
of PW via the approximation

W (x, θ) ≈ w0(x), x ∈ R
2, θ ∈ S

1, (1.8)

i.e. via the zero term Fourier approximation for W in angle variable. In addition, due to
[Ra], formula (1.5) is exact if

W (x, θ) ≡ w0(x), x ∈ R
2, θ ∈ S

1. (1.9)

Besides, due to [No2], formula (1.5) is exact if and only if

W (x, θ) − w0(x) ≡ w0(x) − W (x,−θ), x ∈ R
2, θ ∈ S

1. (1.10)

However, already for W of (1.5) property (1.10) is not fulfilled, in general.
In the present work we consider approximate inversion of PW via the approximations

W (x, θ(ϕ)) ≈

N
∑

n=−N

einϕwn(x),

wn(x) =
1

2π

π
∫

−π

e−inϕW (x, θ(ϕ))dϕ,

x ∈ R
2, θ(ϕ) = (cos ϕ, sin ϕ), ϕ ∈ [−π, π], N ∈ N ∪ 0.

(1.11)

One can see that for N = 0 approximation (1.11) is reduced to (1.8).
Our approximate inversion algorithms for PW on functions of (1.4), under assumptions

(1.2), are presented in Subsection 2.4 of Section 2. In these considerations we proceed from
[Ku] and [No3].

In Section 3, our approximate inversions (2.20), (2.22) of Subsection 2.4 are illustrated
by numerical examples for W given by (1.5) with a ≥ 0 in the framework of SPECT.

2. Approximate inversion of PW

2.1. Symmetrization of W . Let

AW f = P−1PW f, (2.1)

where P−1 is defined by (1.7). Let

Wsym(x, θ) =
1

2
(W (x, θ) + W (x,−θ)), x ∈ R

2, θ ∈ S
1. (2.2)

We consider also the Fourier series

W (x, θ(ϕ)) =

+∞
∑

n=−∞

einϕwn(x), x ∈ R
2, ϕ ∈ [−π, π], (2.3)
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where wn are defined in (1.11), θ(ϕ) = (cos ϕ, sin ϕ).
The following formulas hold (see [Ku], [No2]):

1

2

(

PW f(s, θ) + PW f(−s,−θ)

)

= PWsym
f(s, θ), (s, θ) ∈ R × S

1, (2.4)

AW f = P−1PWsym
f, (2.5)

Wsym(x, θ(ϕ)) =
+∞
∑

l=−∞

ei2lϕw2l(x), x ∈ R
2, ϕ ∈ [−π, π]. (2.6)

Actually, using (2.4)-(2.6) we reduce inversion of PW to inversion of PWsym
. In par-

ticular, using (2.1), (2.5), (2.6), one can see that such a reduction arises already in the
framework of (1.6).

2.2. Operators QW,D,m and numbers σW,D,m. Consider

z = x1 + ix2, z̄ = x1 − ix2, x = (x1, x2) ∈ R
2. (2.7)

Using (2.7) we identify R
2 with C.

Let Π, Π̄ denote the linear integral operators on R
2 identified with C such that

Πu(z) = −
1

π

∫

C

u(ζ)

(ζ − z)2
dRe ζ dImζ,

Π̄u(z) = −
1

π

∫

C

u(ζ)

(ζ̄ − z̄)2
dRe ζ dImζ,

(2.8)

where u is a test function, z ∈ C; see e.g. [V] for detailed properties of these operators.
Let D be the domain of (1.4).
Let χD denote the characteristic function of D, i.e.

χD ≡ 1 on D, χD ≡ 0 on R
2\D. (2.9)

Let

QW,D,m =
m

∑

l=1

(

(−Π̄)l w2l

w0
+ (−Π)l w−2l

w0

)

χD for m ∈ N,

QW,D,m = 0 for m = 0,

(2.10)

where w0, w2l are the Fourier coefficients of (2.3), (2.6) and w±2l/w0, χD are considered
as the multiplication operators on R

2.
Let

σW,D,m =

m
∑

l=1

(

sup
x∈D

∣

∣

∣

∣

w2l(x)

w0(x)

∣

∣

∣

∣

+ sup
x∈D

∣

∣

∣

∣

w−2l(x)

w0(x)

∣

∣

∣

∣

)

for m ∈ N,

σW,D,m = 0 for m = 0.

(2.11)
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According to [No3] we have that

‖QW,D,m‖
L2(R

2

)→L2(R
2

)
≤ σW,D,m. (2.12)

2.3. Exact inversion for finite Fourier series weights. Let conditions (1.2), (1.4) be
fulfilled and

W (x, θ(ϕ) =
N

∑

n=−N

einϕwn(x),

x ∈ R
2, θ(ϕ) = (cos ϕ, sinϕ), ϕ ∈ [−π, π], N ∈ N ∪ 0.

(2.13)

Suppose also that
σW,D,m < 1 for m = [N/2], (2.14)

where [N/2] denotes the integer part of N/2. Then according to [No3] we have the following
exact inversion for PW :

f = (w0)
−1(I + QW,D,m)−1P−1PW f, (2.15)

where I is the identity operator on R
2, P−1 is defined by (1.7). In addition, in view of

(2.12), (2.14) we have that

(I + QW,D,m)−1 = I +

+∞
∑

j=1

(−QW,D,m)j . (2.16)

In addition, under our assumptions, we have that (see [No3]):

AW f = P−1PW f ∈ L2(R2). (2.17)

2.4. Approximate inversion for general weights. Let conditions (1.2), (1.4) be fulfilled
and

∞
∑

l=1

(∥

∥

∥

∥

w2l

w0

∥

∥

∥

∥

L2(D)

+

∥

∥

∥

∥

w−2l

w0

∥

∥

∥

∥

L2(D)

)

< +∞, (2.18)

where wn are defined by (2.11). Suppose that

σW,D,m < 1 for fixed m ∈ N ∪ 0. (2.19)

Then we consider that

f ≈ fm, (2.20a)

fm = (w0)
−1(I + QW,D,m)−1P−1PW f, (2.20b)
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where I is the identity operator, QW,D,m is defined by (2.10), P−1 is defined by (1.7). Note
that the right-hand side of (2.20b) is well-defined: in particular, in view of (2.12), (2.19)
we have formula (2.16) in norm ‖ · ‖

L2(R
2

)→L2(R
2

)
and using (2.18) one can show that

P−1PW f ∈ L2(R2). (2.21)

Formula (2.20) is a natural extension of the Chang formula (1.6). In particular, (2.20) for
m = 0 coincides with (1.6).

In addition, if (2.19) is fulfilled for some m ≥ 1, then fm is a refinement of the Chang
approximation f0 and, more generally, fj is a refinement of fi for 0 ≤ i < j ≤ m. But of
course fj = fi if w2l ≡ 0, w−2l ≡ 0 for i < l ≤ j.

Actually, in many important examples condition (2.19) is efficiently fulfilled for small
m (e.g. m = 2) and is not fulfilled for great m. Therefore, in the present work we propose
the following approximate reconstruction of f from PW f :

find maximal m such that (2.19) is still efficiently fulfilled

and approximately reconstruct f via (2.20) using (2.12), (2.16).
(2.22)

In Section 3 we illustrate this approximate reconstruction by numerical examples in
the framework of SPECT. In particular, these numerical examples show that stability
properties of this approximate reconstruction fm are similar to stability properties of the
Chang approximate reconstruction f0 but fm is more precise than f0 if m > 0.

Using considerations of Subsection 2.3 one can see also that

f = fm − (w0)
−1(I + QW,D,m)−1P−1PδWm

f, (2.23)

where

δWm(x, θ(ϕ))
def
= W (x, θ(ϕ)) −

2m+1
∑

n=−2m−1

einϕwn(x), (2.23)

x ∈ R
2, θ(ϕ) = (cos ϕ, sin ϕ), ϕ ∈ [−π, π], m ∈ N ∪ 0, (2.24)

where wn are defined by (1.11). One can use (2.23) for estimating the error f − fm. One
can also consider (2.23) as an integral equation for finding f from fm. Note also that
equation (2.23) for m = 0 is, actually, well-known, see e.g. [Ku].

2.5. Relations with [Ku]. Let conditions (1.2), (1.4) be fulfilled and

lim
m→+∞

σW,D,m = σW,D < +∞. (2.25)

Then we can consider

QW,D = lim
m→+∞

QW,D,m in ‖ · ‖
L2(R

2

)→L2(R
2

)
. (2.26)
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In addition, if
σW,D < 1, (2.27)

then

f = (w0)
−1(I + QW,D)−1P−1PW f, (2.28)

(I + QW,D)−1 = I +

+∞
∑

j=1

(−QW,D)j . (2.29)

Actually, (2.28) is a linear integral equation for exact reconstruction of f from PW f under
assumptions (1.2), (1.4), (2.27). In addition, (2.29) can be interpreted as the method of
successive approximations for solving this equation.

It is possible to show that the reconstruction of f from PW f of [Ku] (or, more precisely,
the linear integral equation on ε on page 814 of [Ku]) can be transformed into (2.28).

In [Ku] (under the assumption that 0 < W < 1) it was shown that this equation on ε
of [Ku] is uniquely solvable if

lim
m→+∞

ρW,D,m = ρW,D < 1,

ρW,D,m
def
=

∑m
l=1(sup

x∈D

|w2l(x)| + sup
x∈D

|w−2l(x)|)

min
x∈D

|w0(x)|
.

(2.30)

One can see that in many cases σW,D,m is much smaller than ρW,D,m and condition (2.27)
is much less restrictive than (2.30).

Actually, in order to relate considerations of [Ku] on one hand with considerations of
[No3] and the present work on the other hand, we use the following formulas

F(Πlu)(ξ) =

(

ξ1 − iξ2

ξ1 + iξ2

)l

Fu(ξ),

F(Π̄lu)(ξ) =

(

ξ1 + iξ2

ξ1 − iξ2

)l

Fu(ξ),

ξ = (ξ1, ξ2) ∈ R
2, l ∈ N,

(2.31)

QW,D,mu(x) = P−1(PW,D,mu)(x),

PW,D,mu(s, θ)
def
=

∫

R

(( −1
∑

l=−m

+

m
∑

l=1

)

w2l(sθ
⊥ + tθ)

w0(sθ⊥ + tθ)
(θ1 + iθ2)

2l

)

×

χD(sθ⊥ + tθ)u(sθ⊥ + tθ)dt,

x ∈ R
2, s ∈ R, θ = (θ1, θ2) ∈ S

1, m ∈ N,

(2.32)

where F denotes the 2D Fourier transform operator, Π, Π̄ are defined by (2.8), Qm is
defined by (2.10), P−1 is defined by (1.7), u is a test function.
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Finally, note that in our numerical examples of Section 3 the approximate reconstruc-
tion (2.20) is realized numerically using formula (2.32).

3. Numerical examples

3.1. Framework of SPECT. All numerical examples of this work are given in the
framework of SPECT. In particular, we assume that W is given by (1.5), where a ≥ 0.
We recall that in SPECT, after restricting the problem to a fixed 2D plane, the functions
PW f , a, f are interpreted as follows:

• f is distribution of radioactive isotopes emitting photons;

• a is photon attenuation coefficient;

• in addition, it is assumed that supp a ⊆ D, supp f ⊆ D, where D is some known compact
domain;

• PW f describes the expected radiation outside D.

In addition, in some approximation, measured SPECT data are modeled as PW f with
Poisson noise on some discrete subset Γ of R × S

1. Usually, it is also assumed that:

• D ⊂ BR = {x ∈ R
2 : |x| ≤ R}, where R is the radius of image support,

• Γ is a uniform n × n sampling of

TR = {γ ∈ R × S
1 : γ ∩ BR 6= 0} = {(s, θ) ∈ R × S

1 : |s| ≤ R}. (3.1)

For more information on SPECT see e.g. [Na], [Br], [GN1] and references therein.

3.2. Image parameters. All 2D images of this work are considered on n × n grids (X
and Γ), where n = 128. We assume that X is a uniform n × n sampling of

DR = {x = (x1, x2) ∈ R
2 : |x1| ≤ R, |x2| ≤ R} (3.2)

and Γ is a uniform n × n sampling of TR, where R is the radius of the image support.

In addition, all 2D images of this work are drawn using a linear greyscale in such a way
that the dark grey color represents zero (or negative values, if any) and white corresponds
to the maximum value of the imaged function.

3.3. Numerical phantoms. We consider two numerical phantoms (phantom 1 and
phantom 2). Attenuation maps a, emitter activities f , noiseless emission data g = PW f
and noisy emission data p for these phantoms are shown in figures 1 and 2.

8
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(a) (b) (c) (d)
Figure 1. Attenuation map a (a), emitter activity f (b), noiseless emission data

g = PW f (c), noisy emission data p (d) for phantom 1. (See Subsections 3.1, 3.3)

(a) (b) (c) (d)
Figure 2. Attenuation map a (a), emitter activity f (b), noiseless emission data

g = PW f (c), noisy emission data p (d) for phantom 2. (See Subsections 3.1, 3.3)

Phantom 1 is a version of the elliptical chest phantom (used for numerical simulations
of cardiac SPECT imaging; see e.g. [Br], [GN1], [GN2]). Actually, this version is the
same as in [GN1], [GN2] and, in addition to figure 1, its description includes the following
information:
• the major axis of the ellipse representing the body is 30 cm,
• attenuation coefficient a is 0.04 cm−1 in the lung region (modeled as two interior ellipses),
0.15 cm−1 elsewhere within the body ellipse, and zero outside the body,
• emitter activity f is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs,
elsewhere within the body, and outside the body,
• noisy emission data p contain 30 percents of the Poisson noise in the sense of L2-norm
and the total number of photons is 125 450.

Phantom 2 is a simulated numerical version of the Utah phantom (designed at the 2nd

International Meeting on fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, Snowbird, Utah, 1993). A real non simulated version of this phantom
was considered, in particular, in [GJKNT]. However, in the present work we consider
its simulated numerical version in order to see clearly different reconstruction errors. In
addition to figure 2, the description of phantom 2 includes the following information:
• geometrically the phantom consists of a large disk containing two small disks, where the
radius of the large disks 10 cm,

9
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• attenuation coefficient a is 0.16 cm−1 in the large disk outside the small disks, 0.63 cm−1

in the left small disk, 0.31 cm−1 in the right small disk, and zero outside the large disk,
• emitter activity f is a positive constant in the large disk outside the small disks and zero
elsewhere
• noisy emission data p contain 30 percents of the Poisson noise in the sense of L2-norm
and the total number of photons is 89 350.

Note also that all computations of the present work are fulfilled using the same nu-
merical realizations of basic formulas as in [GJKNT], [GN1], [GN2].

3.4. Results for the bounds σW,D,m and ρW,D,m. The bound numbers σW,D,m, ρW,D,m

of (2.11), (2.30) for phantoms 1 and 2 are shown in tables 1 and 2, where D = BR.

Table 1. Numbers σW,D,m, ρW,D,m of (2.11), (2.30) for phantom 1, where D = BR.

m = 1| m = 2| m = 3| m = 20|
σW,D,m | 0.390 | 0.584 | 0.739 | 1.320 |
ρW,D,m | 1.399 | 2.025 | 2.494 | 4.532 |

Table 2. Numbers σW,D,m, ρW,D,m of (2.11), (2.30) for phantom 2, where D = BR.

m = 1| m = 2| m = 3| m = 20|
σW,D,m | 0.489 | 0.694 | 0.803 | 1.296 |
ρW,D,m | 3.112 | 4.567 | 5.436 | 9.719 |

For phantoms 1 and 2, tables 1 and 2 show that condition (2.19) is efficiently fulfilled,
at least, for m = 1 and m = 2, whereas ρW,D,m > 1 already for m = 1.

3.5. Reconstruction results. For phantoms 1 and 2 we consider the approximate
reconstructions fm realized numerically via (2.20b) (using the method of successive ap-
proximations i.e. using (2.16)) from the noiseless data g and filtered noisy data p̃. In
addition:

• we consider fm, mainly, under the condition that σW,D,m ≤ 0.7,

• we consider p̃ = Wp for W = Asym
8,8 , where W = Asym

l1,l2
is the approximately optimal

space-variant Wiener-type filter of Section 5.3 of [GN1].

In addition to fm we consider also their non-negative parts f+
m, where

f+
m(x) = fm(x) if fm(x) ≥ 0 and f+

m(x) = 0 if fm(x) < 0

For phantoms 1 and 2, tables 1 and 2 show that σW,D,m ≤ 0.7 is fulfilled for m = 0, 1, 2
only.

To study reconstruction errors we consider, in particular,

η(u2, u1, X) =
‖u2 − u1‖L2(X)

‖u1‖L2(X)
, (3.3)

where u1, u2 are test functions on X.
The approximate reconstructions f0, f2 with their central horizontal profiles from the

noiseless data g for phantoms 1 and 2 are shown in figures 3 and 4.

10
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(a) (b) (c) (d)
Figure 3. Approximate reconstructions f0 (a) and f2 (c) with their central horizontal

profiles (b) and (d) from the noiseless data g for phantom 1. (See Subsections 3.3, 3.5)

(a) (b) (c) (d)
Figure 4. Approximate reconstructions f0 (a) and f2 (c) with their central horizontal

profiles (b) and (d) from the noiseless data g for phantom 2. (See Subsections 3.3, 3.5)

Tables 3 and 4 show the relative errors η(fm, f,X) and η(f+
m, f,X) in L2- norm for

the approximate reconstructions fm with respect to precise f for the noiseless case for
phantoms 1 and 2.

Table 3. Relative reconstruction errors η(fm, f,X), η(f+
m, f,X) for the noiseless case

for phantom 1.

m = 0| m = 1| m = 2| m = 3|
η(fm, f,X) | 0.331 | 0.305 | 0.295 | 0.295 |
η(f+

m, f,X) | 0.331 | 0.305 | 0.295 | 0.293 |

Table 4. Relative reconstruction errors η(fm, f,X), η(f+
m, f,X) for the noiseless case

for phantom 2.

m = 0| m = 1| m = 2| m = 3|
η(fm, f,X) | 0.292 | 0.179 | 0.152 | 0.141 |
η(f+

m, f,X) | 0.168 | 0.151 | 0.138 | 0.136 |

Figures 3, 4 and tables 3, 4 show that for phantoms 1 and 2 for the noiseless case the
approximations f1, f2 are considerably more precise than the classical Chang approxima-
tion f0.

11
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The approximate reconstructions f0, f2 with their central horizontal profiles from the
filtered noisy data p̃ = Asym

8,8 p for phantoms 1 and 2 are shown in figures 5 and 6, where
Asym

l1,l2
is the aforementioned filter of [GN1].

;

(a) (b) (c) (d)

Figure 5. Approximate reconstructions f0 (a) and f2 (c) with their central horizontal
profiles (b) and (d) from the filtered noisy data p̃ = Asym

8,8 p for phantom 1.

(a) (b) (c) (d)

Figure 6. Approximate reconstructions f0 (a) and f2 (c) with their central horizontal
profiles (b) and (d) from the filtered noisy data p̃ = Asym

8,8 p for phantom 2.

Tables 5 and 6 show the relative errors η(fm, f,X) and η(f+
m, f,X) in L2- norm for

fm reconstructed from filtered noisy data p̃ = Asym
8,8 p for phantoms 1 and 2.

Table 5. Relative errors η(fm, f,X), η(f+
m, f,X) for fm reconstructed from

p̃ = Asym
8,8 p for phantom 1.

m = 0| m = 1| m = 2| m = 3|
η(fm, f,X) | 0.398 | 0.380 | 0.374 | 0.373 |
η(f+

m, f,X) | 0.398 | 0.379 | 0.373 | 0.371 |

Table 6. Relative errors η(fm, f,X), η(f+
m, f,X) for fm reconstructed from

p̃ = Asym
8,8 p for phantom 2.

m = 0| m = 1| m = 2| m = 3|
η(fm, f,X) | 0.268 | 0.218 | 0.218 | 0.225 |
η(f+

m, f,X) | 0.214 | 0.209 | 0.213 | 0.221 |
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Figures 5, 6 and tables 5, 6 show that for phantoms 1 and 2 for the noisy case the
approximations f1, f2 are also more correct than the classical Chang approximation f0.

4. Conclusions

In this work we showed that the classical Chang approximate inversion formula (1.6)
admits a very natural extention into inversion via finite Fourier series weight approxi-
mations or, more precisely, into inversion via (2.20) considered under assumption (2.19).
Related theoretical considerations are presented in Sections 1 and 2 and numerical exam-
ples in the framework of SPECT are given in Section 3. Our examples of Section 3 include
comparisons with the approximate Chang reconstruction f0 and show numerical efficiency
(with respect to precision and stability) of our approximate reconstructions fm for m > 0,
under the condition that inequality (2.19) is efficiently fulfilled.

Note also that considerations of Subsections 2.5 and 3.4 explain convergence of the
iterative inversion of [Ku] for many cases when the inequality of (2.30) is not fulfilled. The
point is that less restrictive inequality (2.27) is sufficient for this convergence.
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