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Abstract

This note is about filtering and subsampling of signals sampled on
irregular sampling points. The number of filters and wavelets available
in the litterature on regular grids is far higher than on irregular grids,
because the filtering scheme is uniform and can be efficiently examined
by means of a Fourier transform or a z-transform. What is described
here is how to adapt a filtering scheme designed for regular grids to
irregular grids. The filtering and subsampling process is decomposed
into lifting steps, and then each of the steps are adapted to the irregular
grid structure.

1 Introduction

The lifting scheme is regarded as a way to devise filtering and subsampling
schemes adapted to irregular grids. Using the lifting scheme, it is relatively
easy to build interpolating subdivisions: a Lagrange interpolation (as used in
the construction of Deslauriers-Dubuc wavelets) can easily be implemented
on an irregular grid in 1D.

It then possible to slightly modify such schemes so that the resulting
wavelet basis is well conditioned in L2 (which is not the case of Deslauriers-
Dubuc wavelets whose dual wavelets are Radon measures, and do live
in L2(R)). In a recent paper “Commutation for irregular subdivisions”,
Daubechies, Guskov and Sweldens provide a technique to enrich the set of
wavelets available on irregular grids. They extend Lemarié’s commutation
idea to irregular grids. With commutation, it is possible to derive a new
wavelet system from an older one by derivating the wavelets and integrating
the dual wavelets, thus transferring some of the wavelet smoothness to the
dual wavelets. In this way, it is possible to transform interpolating schemes
into other schemes that are better conditioned in L2(R). Daubechies et al.
support their description with extensive theoretical analysis and caracterize
under which conditions the new wavelet system obtained with commuta-
tion behaves well. However, it is not possible, using commutation ideas and
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starting with interpolating subdivisions, to reach the full spectrum of all
possible wavelet transforms as available on regular grids. Especially, it is
not possible to construct a lifting based transform that coincides with a 7-9
biorthogonal wavelet transform on regular grids.

In this technical note, we introduce another approach devised to adapt
various existing wavelet systems for regular grids to irregular grids, and to
preserve their number of vanishing moments. This is done by modifying
each lifting step in order to preserve polynomial reproduction properties in
the irregular grid.

The note is thus organized as follows: a short presentation of the lifting
scheme, as well as a main result by Daubechies and Sweldens is presented
in Sec. 2. The limits of the spectrum covered by commutation are described
in Sec. 3. Our adaptation method of regular grid wavelets to irregular grids
is described in Sec. 4. Sec. 5 concludes the technical note.

2 Decomposing a wavelet transform into lifting
steps

A lifting transform is a sequence of operations applied to a sequence of
samples (sk), to compute two sequences of low-pass and high-pass coefficients
(lk) and (hk).

The first step, called splitting step, consists in splitting the (sk) sequence
into even and odd sample sequences:

e
(0)
k = s2k

o
(0)
k = s2k+1

Then follow a variable number of predict and update steps, each com-
puting from sequences (e(n)

k )k∈Z and (o(n)
k ) two new sequences (e(n+1)

k )k∈Z

and (o(n+1)
k ). In a predict step, the even sample sequence is unchanged, and

the odd sample sequence is computed by addition of a function of the even
sample sequence, i.e.:

e
(n+1)
k = e

(n)
k

o
(n+1)
k = o

(n)
k + Fk({e

(n)
k′ }k′∈Z)

while an update step has the reverse structure:

e
(n+1)
k = e

(n)
k +Gk({o

(n)
k′ }k′∈Z)

o
(n+1)
k = o

(n)
k
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Traditionally, the operators Fk and Gk perform a filtering on the input
coefficients, so that for example:

Fk({e
(n)
k′ }k′∈Z) =

∑
k′∈Z

F [k − k′]e(n)
k′

and

Gk({o
(n)
k′ }k′∈Z) =

∑
k′∈Z

G[k − k′]o(n)
k′ .

Finally, a last rescaling step is performed to compute the output coeffi-
cients:

lk = ζe
(N)
k

hk = 1/ζ o(N)
k

for some nonzero ζ.
Obviously, two successive update steps can be merged into a single one,

and two successive predict steps can also be merged into a single one. For
this reason, we can always assume that in the sequence of predict and update
steps, an update step is always followed by a predict step, and conversely a
predict step is always followed by an update step.

A lifting transform is trivially invertible, because each step composing it
is separately invertible. This even holds if the functions Fk and Gk are non-
linear, and lifting was for this reason considered as a way to build nonlinear
wavelet transform schemes.

In their paper of 1996, “Factoring wavelet transform into lifting steps”,
Daubechies and Sweldens provide an extensive description on how to de-
compose any filtering and subsampling step into a sequence of lifting steps.

3 Existing wavelets on irregular grids

In this section, we introduce some notations on wavelets and filters used in
filter design, and then indicate using these notations what kinds of filters
can be implemented using commutation on irregular grids.

3.1 Notations for filter design

Constructing a wavelet basis on a regular grid in R consists in choosing a
low-pass filter m0 and a high-pass filter m1, which define a scaling function
φ and a wavelet ψ with the following formulas:

φ̂(ω) =
+∞∏
j=1

m0(2−jω) (1)

ψ̂(ω) = m1(ω/2)φ̂(ω/2) (2)
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In this the coefficients of the filter m0 are written m0[k] for k ∈ Z, and
m0(ω) denotes its Fourier transform:

m0(ω) =
∑
k∈Z

m0[k]e−iω

and similarly for m1. The hat denotes the Fourier transform, so f̂ is the
Fourier transform of f .

A necessary condition for the resulting wavelet family to be a basis of L2

is that the pair of filters m0,m1 form a perfect reconstruction pair of filters.
This requires that the transfer matrix[

m0(ω) m1(ω)
m0(ω + π) m1(ω + π)

]
is invertible for all ω. We can then define dual filters m̃0 and m̃1 such that[

m̃0(ω) m̃1(ω)
m̃0(ω + π) m̃1(ω + π)

]T

×
[

m0(ω) m1(ω)
m0(ω + π) m1(ω + π)

]
=

[
1 0
0 1

]
and m̃0 and m̃1 define dual wavelets with formulas similar to (1)–(2).

As a consequence of the above formula, we have:

m̃0(ω)m0(ω) + m̃1(ω)m1(ω) = 1 for all ω.

The filter M0 defined by M0(ω) = m̃0(ω)m0(ω) is an interpolating fil-
ter. The design of a compactly supported biorthogonal wavelet system then
proceeds as follows:

1. An interpolating filterM0 is chosen (for example a Deslauriers-Dubuc).

2. M0 is a trigonometric polynomial. It is factored as a product
m̃0(ω)m0(ω), to obtain expressions of m0 and m̃0.

3. From this, the inversion formula leaves little choice for m1 and m̃1,
and usually m1 is defined by

m1(ω) = e−iωm̃0(ω + π)

and similarly for m̃1.

Owing to this, the two mains choices done in a wavelet design consists
in choosing the interpolating filter M0 that is factored, and then choosing
how the filter is factored. Usually the filter M0 is factored into a product of
irreducible terms, putting aside the irreducible terms vanishing at π:

M0(ω) =
(
eiω + 1

2

)d

R(eiω)
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where R(eiω) is a trigonometric polynomial that does not vanish on π. The
factoring of M0 into a product m̃0(ω)m0(ω) consists in choosing d′ ∈ [0, d],
factoring R(eiω) into R1(eiω)R2(eiω), and in writing:

m0(ω) =
(
eiω + 1

2

)d′

R1(eiω)

m̃0(ω) =
(
eiω + 1

2

)d−d′

R2(eiω)

The design of 5-3 filters starts with a Deslauriers-Dubuc filter M0 of
order 4:

M0(ω) =
−e−3iω + 9e−iω + 16 + 9eiω − e3iω

32

=
(
eiω + 1

2

)2 (
e−iω + 1

2

)2 (
−e−iω + 4− eiω

2

)
The choice for m0 and m̃0 is then:

m0(ω) =
e−iω + 2 + eiω

4
(reconstruction filter)

m̃0(ω) =
(e−iω + 2 + eiω)(−e−iω + 4− eiω)

8
(analysis filter)

Hence in the distribution of the irreducible factors of M0(ω) between m0 and
m̃0, only m̃0 actually receives factors of the polynomial R: R1 is a constant
polynomial.

The design of the 9-7 wavelets starts with the Deslauriers-Dubuc filter
M0 of order 8:

M0(ω) =
(
eiω + 1

2

)4 (
e−iω + 1

2

)4

R(eiω)

where

R(ω) =
(
−5e−3iω + 40e−2iω − 131e−iω + 208− 131eiω + 40e2iω − 5e3iω

8

)
The polynomial R(ω) has 6 zeros: {r1, 1/r1, r2, r2, 1/r2, 1/r2}, where

r1 ' 3.04066
r2 ' 2.03114 + 1.73895i

In this case, the polynomial R1 inherits the zeros r1 and 1/r1, while R2

inherits all 4 other zeros.
Note that interpolating filters are obtained with the trivial factorization:

m0(ω) = M0(ω)
m̃0(ω) = 1
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3.2 Filters covered by commutation

Commutation on a regular grid amounts to replacing the low-pass recon-
struction and analysis filters m0 and m̃0 with

µ0(ω) =
m0(ω)(
eiω+1

2

)
µ̃0(ω) = m̃0(ω)×

(
e−iω + 1

2

)
i.e. transferring in the factorization of M0 into the product of m0 and m̃0

one term (eiω + 1)/2 from m0 to m̃0.
When used on B-spline subdivision schemes, commutation simply trans-

forms a B-spline subdivision scheme into a B-spline subdivision scheme of a
different order, so in this case commutation does provide new subdivisions.

When used on a Lagrange subdivision scheme, corresponding to
Deslauriers-Dubuc interpolating wavelets, r steps of commutation transfer
a factor (eiω + 1)r/2r from m0 to m̃0. So if we start with any interpolating
filter like a Deslauriers-Dubuc filter, of dual filter equal to 1:

m0(ω) =
(
eiω+1

2

)d

R(eiω)

m̃0(ω) = 1

the filters corresponding to some commuted subdivision scheme always has
the form:

m0(ω) =
(
eiω+1

2

)d−r

R(eiω)

m̃0(ω) =
(
e−iω+1

2

)r

up a multiplication with some power of eiω. However, no zero of R is trans-
ferred from m0 to m̃0. The dual analysis scaling function is always a B-spline
function. The 5-3 dual scaling function is a B-spline function. However the
9-7 dual scaling function is not, so commutation cannot be used to imple-
ment a 9-7 equivalent on an irregular grid.

4 Porting regular grid wavelets to irregular grids

In their paper “Factoring wavelet transforms into lifting steps”, Daubechies
and Sweldens proved that any wavelet transform can be factored into a
sequence of lifting steps.
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4.1 Example of the biorthogonal wavelets

For example, defining the predict operator of parameter α as:

Pα : {ek}, {ok} 7→ {e′k}, {o′k}

by

e′k = ek

o′k = ok + α(ek + ek+1)

and the update operator of parameter β as:

Uβ : {ek}, {ok} 7→ {e′k}, {o′k}

where

e′k = ek + β(ok−1 + ok)
o′k = ok

and scaling operator of parameter ζ as:

Sζ : {ek}, {ok} 7→ {e′k}, {o′k}

where

e′k = ζek

o′k = ok/ζ

and denoting Split the splitting operator that separates the even and odd
samples in a sample sequence, one filtering and subsampling of a 5-3 trans-
form is implemented as

S√2 ◦ U1/4 ◦ P−1/2 ◦ Split

One filtering and subsampling of a 9-7 transform is implemented as

Sζ ◦ Uδ ◦ Pγ ◦ Uβ ◦ Pα ◦ Split

where

α ' −1.5861 β ' −0.0530
γ ' 0.8829 δ ' 0.4435
ζ ' 1.1496

In the same way, one filtering and subsampling of a 13-11 transform is im-
plemented with 3 update and 3 predict steps of the same kind.
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4.2 Adapting the lifting steps to irregular sampling

The notations we use for irregular grid subdivision are the following: each
sample value sk is placed at location xk, where the xk sequence is increasing.

The 5-3, 9-7 and 13-11 wavelet transforms have respectively 2, 4 and 6
vanishing moments. This means that if the input samples are polynomial
values of degree 1, 3, or 5, i.e. sk = Q(xk) where Q is a polynomial of degree
1, 3 or 5, the output low-pass coefficients are polynomial values of the same
degree, and the output high-pass coefficients are 0.

Also, the intermediate lifting coefficients e(n)
k and o(n)

k also take polyno-
mial values.

The basic principle underlying the design of an irregular grid filtering and
subsampling after any of the above regular grid filtering and subsampling
schemes consists in writing that coefficients e(n) and o(n) through all lifting
steps obtained with an input polynomial Q should correspond to the same
polynomials as when Q is transformed with a regular grid lifting step: the
irregular grid filtering and subsampling must reproduce polynomials in all
intermediate computation steps in the same way as some reference regular
grid filtering and subsampling where the sampling points x′k in the reference
regular grid have a grid step x′k+1 − x′k that depends on the irregular grid
structure (like the minimum grid step, or some average grid step of (xk)k∈Z).

For this, each predict or update step must be replaced with a modified
predict or update step. When we want the irregular grid transform to inherit
2p vanishing moments from the original regular grid transform, we must
modify the predict operator Pα and replace it with:

Pα : {ek}, {ok} 7→ {e′k}, {o′k}

with

o′k = ok +
p∑

l=−p+1

αk,lek−l

That for each k, the 2p coefficients (αk,l)l=−p+1,...,p are uniquely defined
with the polynomial reproduction constraints is a direct consequence of the
following proposition: if

Pd(x) = (1, x, x2, . . . , xd)

then P2p−1(x2k+1) can be expanded in a unique way in the basis of 2p vectors:

(P2p−1(x2k−2p+2),P2p−1(x2k−2p+4), . . . ,P2p−1(x2k+2p))

The system matrix solved to find the expansion is an invertible Van der
Monde matrix.
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4.3 Example: keeping 2 vanishing moments

When adapting a lifting transform corresponding to the 5-3, 9-7 or 13-11
wavelet transform to an irregular grid, the resulting formulas are particularly
simple. The transform is again written as a sequence of the same number of
lifting steps Pα and Uβ with various parameters α and β, where the irregular
grid implementation of the lifting steps Pα and Uα are respectively

Pα : {ek}, {ok} 7→ {e′k}, {o′k}

where

e′k = ek

o′k = ok + 2α
(

(x2k+2 − x2k+1)ek + (x2k+1 − x2k)ek+1

x2k+2 − x2k

)
and the update operator of parameter β as:

Uβ : {ek}, {ok} 7→ {e′k}, {o′k}

where

e′k = ek + 2β
(

(x2k+1 − x2k)ok−1 + (x2k − x2k−1)ok

x2k+1 − x2k−1

)
o′k = ok

This can be interpreted very simply: in a regular grid predict step, an odd
rank coefficient ok is modified by addition or subtraction of some multiple
of the average (ek + ek+1)/2 of the neighboring even rank coefficients. In an
irregular grid predict step, the same modification is done, but the average is
replaced with an average use weighting factors that depend on the respective
locations of the sampling points corresponding to ok, ek and ek+1. The same
holds for the update step.

5 Conclusion

In this technical note, we showed how to implement on an irregular grid
a symmetric wavelet transform designed on a regular grid in order to keep
an even number of its vanishing moments. Since the modified transform is
implemented with a lifting scheme, it is clear that the modified transform
is perfectly invertible. Preliminary numerical experimentations show that
as long as the irregular grid steps xk+1 − xk do not vary too fast, i.e. if
(xk+1 − xk)/(xk − xk−1) is bounded, then the irregular grid transform does
not become ill-conditioned.
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