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Abstract

Interface conditions are crucial in domain decomposition methods
and their design has been the subject of many works. We propose in
this paper a novel approach where only one or two real parameters
have to be chosen for the entire interface. The method relies on van
der Sluis’ result on a quasi optimal diagonal preconditioner for a sym-
metric positive definite matrix, see [35]. It is then possible to prove a
similar quasi optimality theorem in the class of Robin interface condi-
tions using only one real parameter for the entire interface. By adding
a second real parameter and more general interface conditions, it is
possible to take into account highly heterogeneous media. Numerical
results are given.
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1 Introduction

The classical Schwarz method is based on Dirichlet boundary conditions.
Overlapping subdomains are necessary to ensure convergence. It has been
proposed independently in [19] and [24] to use more general interface condi-
tions in order to accelerate the convergence and to allow for non overlapping
decomposition. In [19], exact absorbing conditions are used in domain de-
composition methods. They are optimal in terms of iteration counts [30]
but are practically very difficult to compute or even use. In [24], Robin
interface conditions are proposed. These seminal papers have been the basis
for many other works: [8], [9], [7], [3], [4], [5], [6] or [15] for Helmholtz and
Maxwell problems. The idea to design the interface conditions by solving
an optimization problem related to the convergence rate of the domain de-
composition method was apparently first raised in [33]. This optimization
proved to be difficult. By using the relation between interface conditions in
DDM and exact absorbing boundary conditions, the optimization becomes
tractable and has been the subject of many works: see e.g. [21], [38], [11],
[1], [25], [14], [2] or [13]. Such transmission conditions are essential for evo-
lution equations [12] and for systems of equations, for the Euler equations,
see [10] .

The approach in these papers consist in choosing a frozen coefficients
approach either at the continuous level and then discretized (see e.g. [15],
[13], [29] ), or at the discrete level (see e.g. or [16]). See also [34] and [25],
[31] for other approaches. In any case, parameters have to be computed at
each interface node.

We propose in this paper to use a novel approach where only one or
two real parameters have to be chosen for the entire interface. The method
relies on van der Sluis’ result on a quasi optimal diagonal preconditioner for
a symmetric positive definite matrix, see [35]. It is then possible to prove a
similar quasi optimality theorem in the class of Robin interface conditions
using only one real parameter for the entire interface, see Theorem 4.1.
By adding a second real parameter and more general interface conditions
(similar to the optimized of order two interface conditions [21], [1]), it is
possible to take into account highly heterogeneous media.

More precisely, in § 2 we define the semi-discrete model problem under
study. In § 3 we substructure the domain decomposition method. In § 4 we
give the quasi optimality result. In § 5, we optimize a two parameter family
of interface conditions. In § 6 we show numerical results and we conclude in
§ 7.
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2 Setting of the semi-discrete problem

We consider a model problem set in an infinite tube Ω = R× ω where ω is
some bounded open set of Rp for some p ≥ 1. A point in Ω will be denoted
by (x,y). Let

L := − ∂

∂x
c(y)

∂

∂x
+ B(y) (1)

where c is a positive real valued function and B is a symmetric positive
definite operator independent of the variable x. For instance, if p = 2 one
might think of

B := η(y, z)−
(

∂

∂y
κy(y, z)

∂

∂y
+

∂

∂z
κz(y, z)

∂

∂z

)
(2)

with homogeneous Dirichlet boundary conditions and η ≥ 0, c, κy, κz > 0
are given real-valued functions and (y, z) ∈ ω.
We want to solve the following problem

L(u) = f in Ω
u = 0 on ∂Ω

by a domain decomposition method. The domain is decomposed into two
non overlapping half tubes Ω1 = (−∞, 0) × ω and Ω2 = (0,∞) × ω. The
problem can be considered at the continuous level and then discretized (see
e.g. [15], [13], [29] ), or at the discrete level (see e.g. [25], [31] or [16]). We
choose here a semi-discrete approach where only the tangential directions
to the interface x = 0 are discretized whereas the normal direction x is kept
continuous.

We therefore consider a discretization in the tangential directions which
leads to

Lh := − ∂

∂x
C

∂

∂x
+ B (3)

where B and C are symmetric positive matrices of order n where n is the
number of discretization points of the open set ω ⊂ Rp. For instance if we
take B to be defined as in (2), B may be obtained via a finite volume or finite
element discretization of (2) on a given mesh or triangulation of ω ⊂ R2.

We consider a domain decomposition method based on arbitrary inter-
face conditions Q1 and Q2. The corresponding additive Schwarz method
(ASM) reads:

Lh(un+1
1 ) = f in Ω1

Q1(un+1
1 ) = Q1(un

2 ) on Γ

Lh(un+1
2 ) = f in Ω2

Q2(un+1
2 ) = Q2(un

1 ) on Γ
(4)
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where Γ is the interface x = 0. It is possible to both increase the robust-
ness of the method and its convergence speed by replacing the above fixed
point iterative solver by a Krylov type method. This is made possible by
substructuring the algorithm in terms of interface unknowns

H1 = Q1(u2)(0, .) and H2 = Q2(u1)(0, .)

Let us define the operator

T : H1, H2, f −→ (Q2(v1) Q1(v2))T

where vi, i = 1, 2 solves

Lh(vi) = f in Ωi

Qi(vi) = Hi on Γ
(5)

The substructured problem is obtained by matching the interface conditions
on the interface and reads(

H1

H2

)
−ΠT (H1, H2, 0) = ΠT (0, 0, f) (6)

where Π is the swap operator on the interfaces:

Π((H1 H2)T ) = (H2 H1)T

or in block matrix form

Π =
(

0 1
1 0

)

3 The substructured problem

The convergence rate of (4) and the spectra of (6) depend on the choice
of the interface conditions Q1,2. In order to design an efficient method, we
need to have a formula for the substructured problem and so first for the
solution to (5) with f = 0. An essential tool will the Dirichlet to Neumann
map whose symbol is obtained here via a factorization of the operator Lh.

3.1 Semi-continuous factorization

The factorization can be sought in this form where Λ is a SPD matrix of
order n.

Lh = (− ∂

∂x
C. + Λ)C−1(C

∂

∂x
. + Λ)

= − ∂

∂x
C

∂

∂x
− ∂

∂x
Λ + Λ

∂

∂x
+ ΛC−1Λ

= − ∂

∂x
C

∂

∂x
+ ΛC−1Λ
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It is thus necessary to have

ΛC−1Λ = B

This equation can be solved easily in the form

C−1/2ΛC−1/2C−1/2ΛC−1/2 = C−1/2BC−1/2

We have thus
Λ = C1/2(C−1/2BC−1/2)1/2C1/2

so that
Λ = C1/2A1/2C1/2

where
A := C−1/2BC−1/2 (7)

Finally, we have the double equality

Lh = (− ∂

∂x
C. + Λ)C−1(C

∂

∂x
. + Λ) = (

∂

∂x
C. + Λ)C−1(−C

∂

∂x
. + Λ) (8)

3.2 Spectra of the substructured problem

Taking

Q1 = (C
∂

∂x
+ Λ) and Q2 = (−C

∂

∂x
+ Λ)

leads to a convergence in two steps of (4), see [30] or [28]. This result is op-
timal in terms of iteration counts. But, the matrix Λ is a priori a full matrix
of order n costly to compute and use. Instead, we will use approximations
to it in terms of sparse matrices denoted Λap. We substructure in terms of(

H1

H2

)
=
(

(C ∂
∂x + Λap)(u)

(−C ∂
∂x + Λap)(u)

)
We need to compute T(H1, H2, 0) for arbitrary vectors H1, H2 ∈ Rn. From
(8), the solution v2 to problem (5) has the general following form

v2 = exp(− 1
C

Λx)(α) + exp(
1
C

Λx)(β)

for some α, β ∈ Rn. Since the solution has to be bounded as x goes to
infinity, we have β ≡ 0. The boundary condition on Γ yields

(Λ + Λap)(α) = H2
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so that
v2 = exp(− 1

C
Λx)(Λ + Λap)−1(H2)

It is then easy to check that the substructured problem (6) has the following
form

(I−ΠT(., ., 0))
(

H1

H2

)
= G (9)

where T(., ., 0) has the following expression

T(., ., 0) =
(

(Λ− Λap)(Λ + Λap)−1 0
0 (Λ− Λap)(Λ + Λap)−1

)
and

G = ΠT(0, 0, f)

We have a first result relating the spectra of the substructured problem to
the convergence rate of the additive Schwarz method:

Lemma 3.1 We assume that Λap is a SPD matrix of order n.
Let ρ(Λap) be the convergence rate of the Schwarz algorithm, i.e. ρSc(Λap) =
max{|µ| \µ ∈ Sp((Λ− Λap)(Λ + Λap)−1)}.
We have that

ρSc(Λap) < 1

Moreover, the matrix Sub(Λap) := I−ΠT(., ., 0) has real eigenvalues in
(0, 2) symmetric w.r.t one and

κ(Sub(Λap)) =
1 + ρSc(Λap)
1− ρSc(Λap)

Proof It is then easy to check that any eigenvalue of (Λ−Λap)(Λ+Λap)−1

is real and belongs to (−1, 1).
As for the second part of the proof, let (v, µ) be an eigenvector, eigenvalue
of (Λ− Λap)(Λ + Λap)−1, then (

v
v

)
, 1− µ

and (
v
−v

)
, 1 + µ

are eigenmodes of Sub(Λap). Let us notice that a very similar result may be
found in [16].
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Minimizing the condition number is thus equivalent to minimizing the con-
vergence rate of the Schwarz algorithm.

We now give a partial optimality result:

Lemma 3.2 Let Λap be a SPD matrix. Then,

min
β∈R

κ(Sub(βΛap)) = κ(Sub(βoptΛap)) = κ(Λ−1
ap Λ)1/2

where
βopt = (λmin(Λ−1

ap Λ)λmax(Λ−1
ap Λ))1/2

Proof We have

ρSc(βΛap) = max
λ∈Sp((βΛap)−1Λ)

∣∣∣∣1− λ

1 + λ

∣∣∣∣ = max(
∣∣∣∣1− λmin((βΛap)−1Λ)
1 + λmin((βΛap)−1Λ)

∣∣∣∣ , ∣∣∣∣1− λmax((βΛap)−1Λ)
1 + λmax((βΛap)−1Λ)

∣∣∣∣)
This expression is minimized by taking β = βopt as defined in Lemma 3.2.
In that case, we get

ρSc(βoptΛap) =
1− γ

1 + γ

where
γ :=

√
λmin(Λ−1

ap Λ)/λmax(Λ−1
ap Λ) = κ(Λ−1

ap Λ)−1/2

Thus, we have (recalling that minimizing the convergence rate of the Schwarz
method is equivalent to minimizing the condition number of the symmetrized
substructured problem)

min
β∈R

κ(Sub(βΛap)) = κ(Sub(βoptΛap)) = 1/γ = κ(Λ−1
ap Λ)1/2

4 Quasi optimal Robin interface conditions

We consider the case where Λap is a diagonal matrix. We prove a quasi
optimality result for the following choice:

Λq−opt
ap := βopt0 C1/2diag(A)1/2C1/2 (10)

where
βopt0 = (λmin(diag(A)−1A) λMax(diag(A)−1A))1/4. (11)

More precisely, we have
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Theorem 4.1

min
D∈D

κ(Sub(D)) ≤ κ(Sub(Λq−opt
ap ) ≤ m1/4 . min

D∈D
κ(Sub(D))

where D = {positive definite diagonal matrices} and m is the maximum
number of nonzeros in any row of A.
Moreover,

κ(Sub(Λq−opt
ap ) =

√
λMax(diag(A)−1A))1/2

λmin(diag(A)−1A))1/2

As an example, for a standard finite volume discretization for a three di-
mensional problem m = 5 and m1/4 = 1.49...

The sequel of the section is devoted to the proof of the theorem. We
first give a series of results of linear algebra. The basis for the proof is

Theorem 4.2 (van der Sluis) If F is SPD matrix, then

min
D∈D

κ(D−1/2FD−1/2) ≤ κ(diag(F )−1/2Fdiag(F )−1/2) ≤ m . min
D∈D

κ(D−1/2FD−1/2)

where D = {positive definite diagonal matrices} and m is the maximum
number of nonzeros in any row of F .

see [35] and for further references [18].

Lemma 4.1 Let L be a non singular matrix with positive real eigenvalues,
then L and (LT L)1/2 have the same extremal eigenvalues.

Proof We have using the symmetry of the matrix LT L and of its square
root:

‖L‖2 = sup
x 6=0

(Lx, Lx)
(x, x)

= sup
x 6=0

(LT Lx, x)
(x, x)

= sup
x 6=0

((LT L)1/2x, (LT L)1/2x)
(x, x)

= ‖(LT L)1/2‖2

Since we have : ‖LT ‖ = ‖L‖, we also have

‖L‖ = ‖LT ‖ = ‖(LT L)1/2‖ = ‖(LLT )1/2‖

Therefore L and (LT L)1/2 have the same maximal eigenvalue. It is then
easy to check that

‖L−1‖ = ‖LT−1‖ = ‖(LT L)−1/2‖ = ‖(LLT )−1/2‖

so that L and (LT L)1/2 have the same minimal eigenvalue.
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Lemma 4.2 Let E and F be SPD matrices. Then, the extremal eigenvalues
of the matrix E−1/4F 1/2E−1/4 are the square root of the extremal eigenvalues
of the matrix E−1/2FE−1/2.

Proof Consider the largest eigenvalue denoted by λM (M) for any matrix
M . Let E and F be any symmetric positive definite matrices. Let us define
L := F 1/2E−1/2. We have

λM (LT L) = λM (E−1/2FE−1/2) = λM (E1/2F−1/2)2

Since F 1/2E−1/2 = E1/4(E−1/4F 1/2E−1/4)E−1/4, we have

λM (F 1/2E−1/2) = λM (E−1/4F 1/2E−1/4)

Altogether, we have

λM (E−1/4F 1/2E−1/4) = λM (E−1/2FE−1/2)1/2

The smallest eigenvalue is treated in the same manner.

Corrollary 4.1 Let F be a SPD matrix, then

κ(diag(F )−1/4F 1/2diag(F )−1/4) ≤
√

m . min
D∈D

κ(D−1/2F 1/2D−1/2)

where D = {positive definite diagonal matrices} and m is the maximum
number of nonzeros in any row of F .

Proof The proof follows from Theorem 4.2 and Lemma 4.2.

The proof of theorem 4.1 is now easy. Indeed, by applying successively
Lemma 3.2, Lemma 4.2, Theorem 4.2, and again Lemma 4.2 and Lemma 3.2
we have

κ(Sub(Λq−opt
ap ))

= κ((Λq−opt
ap )−1Λ)1/2

= κ(diag(A)−1/2Adiag(A)−1/2)−1/4

≤ m1/4 minD∈D κ(D−1/2A D−1/2)1/4

= m1/4 minD∈D κ(D−1/2Λ D−1/2)1/2

= m1/4 minD∈D κ(Sub(D))

The estimate on the condition number follows in the same way.
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5 Two parameters interface condition

In the previous section, the interface condition is a Robin interface condition
which reads for domain Ω1:

C
∂

∂x
+ βoptC

1/2DC1/2

where and D = diag(A)1/2, see (10). In this section, we want to design more
efficient interface conditions by considering more general interface conditions
than Robin interface conditions.

Inspired by Higdon’s trick for absorbing boundary conditions [20] (see
also [15]), we first consider an interface condition of the form

Q := (C
∂

∂x
+ β1C

1/2DC1/2)(C
∂

∂x
+ β2C

1/2DC1/2)

for some positive parameters β1, β2 and D is an invertible matrix not nec-
essarily equal to diag(A)1/2. This product yields a second order derivative
w.r.t x the normal tangential direction:

Q := C
∂

∂x
(C

∂

∂x
) + (β1 + β2)C1/2DC1/2C

∂

∂x
+ β1β2C

1/2DCDC1/2

By using the operator Lh this second order can be replaced by

CB

so that condition Q is equivalent to

Q := CB + (β1 + β2)C1/2DC1/2C
∂

∂x
+ β1β2C

1/2DCDC1/2.

We still have to write this condition in the form

C
∂

∂x
+ Λap,2

for some operator Λap,2. Since interface conditions are equivalent up to the
left composition with any invertible operator acting along the interface, we
obtain an equivalent condition R by left multiplying Q by the inverse of
(β1 + β2)C1/2DC1/2:

R := C
∂

∂x
+ C1/2 D−1A + β1β2D

β1 + β2
C1/2 (12)
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In other words, we choose to approximate Λ by

Λap,β1,β2 := C1/2 D−1A + β1β2D

β1 + β2
C1/2 (13)

with β1, β2 > 0 . Let us notice that

1. If D = diag(A)1/2, D−1/2AD−1/2 is another approximation to A1/2

that is consistant with approximating A1/2 by D. Indeed, from D '
A1/2, we have D2 ' A, i.e. D ' D−1/2AD−1/2, but A1/2 ' D

2. The form (13) is preferred to the simpler form

C1/2(βD−1A + δD)C1/2

because definition (13) makes optimization easier.

3. If D is any diagonal operator then operators D and D−1/2AD−1/2 are
linearly independent. Indeed, suppose there exists a ∈ R such that

D−1/2AD−1/2 = aD

then A = aD2. But A is not a diagonal operator.

4. The matrix A may be seen as a discretization matrix of a second
order partial differential operator in the tangential directions to the
interface. It is thus related to the optimized of order two interface
conditions [21], [1].

As in § 4, we have to find the best parameters β1, β2 in (13).

Theorem 5.1 Suppose matrices D and A1/2 commute. Let λm := λmin(D−1A1/2)
and λM := λmax(D−1A1/2). The choice

β1,optβ2,opt = λm λM (14)

β1,opt + β2,opt =
(

min
λ∈Sp(D−1A1/2)

(λ +
λmλM

λ
) (λm + λM )

)−1/2

(15)

is optimal in the sense that:

min
β1∈R+,β2∈R+

κ(Sub(Λap,β1,β2)) = κ(Sub(Λap,β1,opt,β2,opt))

We have a bound on the condition number

κ(Sub(Λap,β1,opt,β2,opt)) ≤
1√
2

(√
λM

λm
+
√

λm

λM

)1/2
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Remark 1 The spectrum of the matrix D−1A1/2 is discrete. If it is replaced
in the above optimization problem by the segment [λm, λM ], it can be shown,
see [15], that it can be reduced to the optimization solved by Wachspress
for ADI methods [37] and whose solution is the same than in theorem with
Sp(D−1A1/2) replaced by [λm, λM ].

Proof By Lemma 3.2, we have to minimize

κ(Λ−1
ap,β1,β2

Λ) = κ(Λap,β1,β2Λ
−1)

Since D and A1/2 are supposed to commute, all powers of each of these
matrices commute. Therefore, we have

Λ−1Λap,β1,β2 = C−1/2 D−1A1/2 + β1β2DA−1/2

β1 + β2
C1/2

whose condition number is independent of β1 + β2 and reads

κ(Λap,β1,β2Λ
−1) =

maxλ∈Sp(D−1A1/2) λ + β1β2

λ

minλ∈Sp(D−1A1/2) λ + β1β2

λ

We prove

Lemma 5.1 A necessary optimality condition is that

λm +
β1,optβ2,opt

λm
= λM +

β1,optβ2,opt

λM

or equivalently that
β1,optβ2,opt = λm λM

Proof [lemma] Suppose this is not the case, for instance that

λm +
β1β2

λm
< λM +

β1β2

λM

The function x → x + β1β2

x being convex, its maximum over [λm, λM ] is
reached at λm or λM which belong both to Sp(D−1A1/2). In our case, it
has to be at λM . The minimum of x + β1β2

x over Sp(D−1A1/2) is reached at
some eigenvalue y 6= λM . Let us introduce f : R+ → R+ with

f(β) =
λM +

β

λM

y +
β

y

13



For small enough variations of β1 and of β2, λM and y are still the location of
the extremal values of x + β1β2

x over Sp(D−1A1/2) which is a discrete space.
The condition number is thus given by f(β1β2) for small enough variations
of β1 and of β2. Moreover, we have

sgn(
df

dβ
) = sgn(1/λM (y +

β

y
)− 1/y(λM +

β

λM
)) = sgn(λ2

M − y2) > 0

Then, decreasing β1β2, would improve the condition number.
Let us notice that we have then

max
λ∈Sp(D−1A1/2)

λ +
β1β2

λ
= λm + λM

Now that the optimal value for β1β2 has been found, we know the opti-
mal approximation to Λ up to the multiplicative constant (β1 + β2)−1. By
applying Lemma 3.2, we have

(β1,opt + β2,opt)−1 = ( min
λ∈Sp(D−1A1/2)

(λ +
β1,optβ2,opt

λ
) (λm + λM ))1/2

and

κ(Sub(Λap,β1,opt,β2,opt)) =

 λm + λM

min
λ∈Sp(D−1A1/2)

λ +
β1β2

λ


1/2

The denominator depends on the repartition of the eigenvalues of D−1A1/2.
It can be estimated from below since the function x → x+β1,optβ2,opt/x ad-
mits 2

√
λmλM for minimal value over [λm, λM ]. We have thus the following

bound

κ(Sub(Λap,β1,opt,β2,opt)) ≤
(

λm + λM

2
√

λmλM

)1/2

=
1√
2

(√
λM

λm
+
√

λm

λM

)1/2

6 Numerical results

In this section, we test various interface conditions and algorithms in the
semi-continuous framework of the previous sections. More precisely, we work
in 2D on the infinite tube Ω = R× (0, 1) and consider the operator

L = − ∂

∂x
c(y)

∂

∂x
+ η(y)− ∂

∂y
κ(y)

∂

∂y
(16)
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along with Dirichlet boundary condition at the bottom and a Neumann
boundary condition at the top. We use a finite volume discretization of the
operator in the y direction which yields a tridiagonal matrix B of order ny.
It is then possible to form the matrices of the substructured problems (9)
for various interface conditions and study their spectra. We either plot the
spectra or give in the tables the ratio of the largest norm of the eigenvalues
of the substructured matrix over its smallest real part. We also give iteration
counts ( #iter in the tables) corresponding to the solving of equation (9)
by a gmres algorithm [32] with a random right hand-side G. The stopping
criterion is a reduction of the residual by a factor 10−6. Although we don’t
consider a discretization in the x direction, the results are a good indica-
tion of what would happen in the corresponding fully discrete computations.

We now define more precisely the names written in the tables and cor-
responding to the various domain decomposition methods which have been
tested: opt0, opt2, noprec, diagprec

opt0 The interface condition is the one studied in section 4.

opt2 The interface condition is given by formula (12) where D = diag(A)1/2

and β1, β2 are given by formulas (14) and

β1 + β2 = (2
√

λmλM (λm + λM ))−1/2 (17)

This last formula corresponds to formula (15) where the discrete spectrum
of D

−1Λ is replaced by the segment of its extremal values. Moreover, by
Lemma 4.2, λm and λM are easily computed by taking the square root of
the extremal eigenvalues of diag(A)−1A. It should be noted that although
matrices D and Λ do not commute in general, the computation of the pa-
rameters β1, β2 is based on Theorem 5.1.

noprec The conjugate gradient is applied to the substructured system

Λ(u) = G

which corresponds to a Schur type method without preconditioner.

diagprec The above system is preconditioned by its diagonal.
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6.1 Constant coefficients

The operator L is the Laplace operator. The diagonal of the matrix Λ is
constant (except for the entries corresponding to y = 0 or y = 1). Pre-
conditioning by the diagonal is hardly efficient. Therefore iterations counts
corresponding to diagprec and noprec are given in the same line.

Table 1: Results for constant coefficients problems

ny 10 20 40 80 160

(opt0) #iter 10 13 16 20 24

|λ|max/real(λ)min 3.2 4.5 6.5 9.24 13.1

(opt2) #iter 6 7 8 9 10

|λ|max/real(λ)min 1.4 1.7 2.0 2.4 2.88

(diag/no prec) #iter 10 15 23 35 50

λmax/λmin 10.2 21.0 42.7 86.4 1.74e+02

6.2 Rapidly varying coefficients

For this series of tests, η = 1.e−9, c = exp(−2y2) and κ = 5sin(2y2). Except
for noprec, iterations counts are very similar to the constant coefficient case.
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Table 2: Results for rapidly varying coefficients

ny 10 20 40 80 160

(opt0) #iter 10 12 15 18 22

|λ|max/real(λ)min 2.6 3.8 5.3 7.5 10.6

(opt2) #iter 6 7 8 9 10

|λ|max/real(λ)min 1.2 1.4 1.6 1.9 2.3

(noprec) #iter 10 20 34 55 82

λmax/λmin 13.4 28.4 5.8e+01 1.2e+02 2.4e+02

(diagprec) #iter 10 15 23 34 48

λmax/λmin 6.5 13.3 2.6e+01 5.3e+01 1.1e+02

6.3 Highly heterogeneous problems

The diffusion coefficients are highly heterogeneous: c(y) = κ(y) = val([10y])
where [ ] is the integer part function and val is the vector
val=[a d a b a b a b a b] where a = 1.e4, b = 1.e0 and d = 1.e2. We have
η = 1e− 9. Iteration counts are larger than in the previous cases.

Table 3: Results for highly heterogeneous problems

ny 10 20 40 80 160

(opt0) #iter 11 17 22 28 37

|λ|max/real(λ)min 6.8 31.4 48.8 71.9 1.1e+02

(opt2) #iter 9 11 15 17 18

|λ|max/real(λ)min 1.8 3.8 4.9 5.9 7.2

(noprec) #iter 10 22 61 136 320

λmax/λmin 7.3e+02 1.1e+04 2.5e+04 5.3e+04 1.1e+05

(diagprec) #iter 7 17 27 42 64

λmax/λmin 42.7 1.1e+03 2.4e+03 5.1e+03 1.1e+04
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6.4 Different Subdomains

In the above cases, by symmetry of the problem w.r.t. the interface, a
Neumann-Neumann or FETI algorithm would give convergence in one it-
eration. In this section, we compare the optimized interface conditions ap-
proach developed so far to these algorithms when the operators in domains
Ω1 and Ω2 are not the same. The model problem reads:

L1,h(u) = f in Ω1

C1
∂u1

∂x
= C2

∂u2

∂x
on Γ

L2,h(u2) = f in Ω2

u2 = u1 on Γ
(18)

where Li,h, i = 1, 2 is a finite volume discretization of

Li,h = − ∂

∂x
ci(y)

∂

∂x
+ ηi(y)− ∂

∂y
κi(y)

∂

∂y
(19)

This problem is solved by a domain decomposition method. The additive
Schwarz method is

L1,h(un+1
1 ) = f in Ω1

(C1
∂

∂x
+ Λap,2)(un+1

1 ) = (C2
∂

∂x
+ Λap,2)(un

2 ) on Γ
(20)

Lh(un+1
2 ) = f in Ω2

(−C2
∂

∂x
+ Λap,1)(un+1

2 ) = (−C2
∂

∂x
+ Λap,1)(un

1 ) on Γ
(21)

where Λap,i, i = 1, 2 are matrices approximating the discrete Dirichlet to
Neumann map of domain Ωi

Λi = C
1/2
i (C−1/2

i BiC
−1/2
i )1/2C

1/2
i

where Bi is the finite volume discretization matrix of

Bi = ηi(y)− ∂

∂y
κi(y)

∂

∂y

As explained in § 3, the ASM is a fixed point method that can be accelerated
by substructuring the problem and using a Krylov method. In our case, we
use the gmres algorithm.

We now define more precisely the names written in the tables and cor-
responding to the various domain decomposition methods which have been
tested: opt0, opt2, NeumannKappa and NeumannMatKappa
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opt0 and opt2 in both cases, matrices Λap,i, i = 1, 2 are built separately
as in section 6. These approximations don’t take into account the fact they
are used in a domain decomposition in which now operators vary from one
domain to the other. Numerical results show that for opt2 iteration counts
are still good.

NeumannKappa This corresponds to a a Neumann-Neumann algo-
rithm. The conjugate gradient algorithm is applied to the substructured
problem

Λ1 + Λ2(u) = G

preconditioned by
w1Λ−1

1 w1 + w2Λ−1
2 w2

with wi = C1
C1+C2

, i = 1, 2.

NeumannMatKappa The same as above except that the weights in
the preconditioner come from the discretization matrix wi is the diagonal of
the discretization matrix of the problem.

For these last two methods, one iteration consists in solving a Dirichlet
and a Neumann boundary value problem in each subdomain. In the tables,
we report the number of subdomain solves, one per iteration for opt0 or
opt2 and two per iteration for NeumannKappa and NeumannMatKappa.
In table 4, η1 = 1e + 4, η2 = c1 = c2 = κ1 = κ2 = 1.

Table 4: Results for highly heterogeneous problems

ny 10 20 40 80 160 320

(opt0) #subdom. solves 4 5 7 9 12 15

(opt2) #subdom. solves 2 3 3 5 6 7

(NeumannKappa) #subdom. solves 16 20 22 22 22 22

(NeumannMatKappa) #subdom. solves 8 10 14 20 22 22

In Table 5, we consider a highly heterogeneous case: η1,2 = 1.e − 9,
c1(y) = val1([10y]) and val1 is the vector
val1=[b d b a b a b b d b] where a = 1.e4, b = 1.e0 and d = 1.e2, κ1(y) =
val2([10y]) and val2 is the vector
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val2=[b a b a d a b b e b] where a = 1.e4, b = 1.e0, d = 1.e2 and e = 1.e3,
c2(y) = val3([10y]) and val3 is the vector
val3=[a b a g b b a g a b] where a = 1.e4, b = 1.e0 and g = 1.e2 and
κ2(y) = val4([10y]) and val4 is the vector
val4=[b a d a b a a a d b] where a = 1.e0, b = 1.e4 and d = 1.e2

Table 5: Results for highly heterogeneous problems

ny 10 20 40 80 160 320

(opt0) #subdom. solves 8 22 32 40 48 56

|λ|max/real(λ)min 1.9 25.6 43.5 65.1 94.1 1.3e+2

(opt2) #subdom. solves 8 11 13 15 15 16

|λ|max/real(λ)min 7.6 3.6 4.6 5.7 6.8 8.2

(diagprec) #subdom. solves 9 20 33 51 77 111

λmax/λmin 3.5 8.5e+2 2.0e+3 4.4e+3 9.1e+3 1.8e+4

(NeumannKappa) #subdom. solves 12 18 24 28 32 32

λmax/λmin 22.1 31.9 35.6 40.7 47.8 59.7

(NeumannMatKappa) #subdom. solves 10 18 24 24 24 28

λmax/λmin 1.9 2.2e+2 3.0e+2 4.2e+2 6.2e+2 9.6e+2

Iteration counts for opt0 are significantly higher than in Table 3. Whereas,
the interface conditions opt2 are quite insensitive to the fact that opera-
tors are not the same in the subdomains. As expected from the theory for
Neumann-Neumann or FETI method (see [26], [23] or [22] and references
herein), the iteration counts are bounded from above as the mesh size goes
to zero.

6.5 Playing with the parameters in the interface conditions

In this section, both subdomains have the same equations. We investigate
the influence of the parameters β for interface conditions

C
∂

∂n
+ β0C

1/2diag(A)1/2C1/2 (22)
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(see 10) and for the ones of the form (12). In both cases, a key factor is the
eigenvalues eigM of M := D−1A1/2 where D = diag(A)1/2. As an example,
we take ny = 40, η = 0 and

c(y) = κ(y) =


1 for 0 ≤ y ≤ 0.3
1.e + 4 for 0.3 ≤ y ≤ 0.6
1 for 0.6 ≤ y ≤ 1

(23)

The eigenvalues of M are given in Table 6

Table 6: Eigenvalues of matrix M : eigM

5.329469058781055e-04 9.648973328110511e-02
1.385298394166431e-01 2.012580286542583e-01
2.752235067980078e-01 2.871934245780574e-01
3.983838575345311e-01 4.082391320897262e-01
4.710395757370086e-01 5.355974308332332e-01
5.874669548248144e-01 6.433877730503701e-01
6.555459008079766e-01 7.643136997314994e-01
7.665800132401215e-01 7.998197268509604e-01
8.669683088526792e-01 9.260333944553774e-01
9.377196074715888e-01 9.577729169492986e-01
1.040514795453881e+00 1.058622660707454e+00
1.068860211792659e+00 1.117302981041904e+00
1.166314024840675e+00 1.188425463923074e+00
1.189884266810325e+00 1.253099984811212e+00
1.259385633350359e+00 1.286422394468029e+00
1.308867981151973e+00 1.333462304712622e+00
1.354009162092570e+00 1.356941524921361e+00
1.384745441183732e+00 1.387174113550929e+00
1.399819704784228e+00 1.407412336023526e+00
1.410918045589941e+00 1.414213461952472e+00

Applying formula (11) for interface conditions opt0, we get β0,opt =
2.74e − 02. Applying formulas (14) and (17) for interface conditions opt2,
we have β1 = 3.8e − 01 and β2 = 1.9e − 03. Other choices are possible.
Indeed, looking at Table 6, we see that the eigenvalues are regularly spaced
between 1.41 and 9.648e-02 except for the smallest one 5.329e − 04. This
is in agreement with results on the number of very small eigenvalues of a
diagonal ([17]) or of an Incomplete Choleski (IC) preconditioner ([36]) for
such problems with extreme contrasts in the coefficients. It seems then of
interest to use a Robin interface condition that will take into account all
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the eigenvalues of M except for the smallest one. The interface condition
will be better than opt0 except for the smallest eigenvalue that will be left
to the Krylov method. This yields β0 =

√
eigM(2)eigM(ny) = 3.6e − 1

in (22). This choice will be referred to as bid0. Using the two parameters
approach as defined in (17), we can improve over bid0 and hopefully over
opt2 by taking β1 = β0 and β2 = eigM(1) = 9.648e − 02 in order to have
a uniform approximation to Λ. This choice will be referred to as bid2. The
performances are given in Table 7 and on figure 1 of the eigenvalues of the
corresponding substructured problems. This figure corresponds well to the
motivation for the choice of the parameter β. The eigenvalues for bid0 are
close to one except for two which are close to 0 and 2 respectively. The fact
that we have two (and not one) such eigenvalues correspond to the symme-
try of the spectrum as stated in Lemma 3.1. The eigenvalues for bid2 are
closer to one than for opt2. This does not contradict Theorem 5.1 which
assumes that A1/2 and D commute which is not the case here.
This kind of optimization is impossible using a frozen coefficients approach
where a discontinuity can not be taken into account. Another way to ad-
dress the problem of the few very small eigenvalues is to use deflation, see
[16] or [27] in the context of domain decomposition method. The drawback
is that all small eigenvalues and corresponding eigenvectors are then needed.

Table 7: Results for highly heterogeneous problems

Interface Cond. opt0 opt2 bid0 bid2

#iterations 28 14 18 12

|λ|max/real(λ)min 51.4 5.0 6.97e+2 3.8

The convergence curves of the gmres algorithm for the various interface
conditions are given in figure 2. The interface condition bid0 yields a plateau
in the convergence curve corresponding to the smallest eigenvalue which is
not taken into account. The iteration count is better than for opt0 although
the convergence of the latter is more regular. Interface conditions opt2 and
bid2 perform similarly well.
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Figure 1: Eigenvalues of the substructured problem for various interface
conditions: star: opt0, triangle: opt2, circle: bid0, cross: bid2

7 Conclusion

We proposed a way to compute quasi optimal interface conditions for domain
decomposition methods for symmetric positive definite equations. Numer-
ical results in the two-subdomains case and at the semi-continuous level
show that the approach is efficient and robust even with highly discontin-
uous coefficients both across and inside subdomains. Numerical tests for
arbitrary decompositions and at the discrete level are necessary to fully as-
sess the method. The extension of this work to a purely algebraic setting is
in preparation. The non-symmetric case is under study.
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Figure 2: Relative residual vs. iteration number for the gmres algorithm
and various interface conditions
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