
ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES
UMR CNRS 7641

91128 PALAISEAU CEDEX (FRANCE). Tél: 01 69 33 41 50. Fax: 01 69 33 30 11

http://www.cmap.polytechnique.fr/

A Cholesky algorithm for some

complex symmetric systems.

Natacha Béreux

R.I. N0 515 October 2003

A Cholesky algorithm for some complex symmetric

systems.

Natacha Béreux

28th October 2003

Abstract

Complex symmetric systems do not in general admit a Cholesky
factorization without pivoting, as would be the case for hermitian sys-
tems. Nevertheless, for some complex symmetric systems, as those
coming from the discretization of boundary integral formulations, piv-
oting can be avoided. We present a Cholesky factorization algorithm
for such complex symmetric systems. We propose a LAPACK-style
implementation and compare this algorithm to the symmetric LDLT

factorization with Bunch-Kauffman pivoting (LAPACK ZSYSV solver),
which is the standard method for complex symmetric systems. Nu-
merical experimental comparisons of this approach with ZSYSV solver
show considerable time performance improvement, with the same ac-
curacy. Finally, a parallel SCALAPACK-style implementation is given
and numerically evaluated.

1 Introduction

Our aim in this note is to develop, implement and evaluate a LAPACK-style
direct solver for the linear system of equations:

AX = B, (1)

where A is a symmetric (AT = A) matrix of size n×n with complex entries,
with the property that no pivoting is required during its factorization.
Complex symmetric systems arise naturally in many applications, for in-
stance when boundary integral equations are discretized, and are thus of a
wide importance. But, they do not in general admit simple methods like
Cholesky factorization without pivoting, as would be the case for A complex
hermitian.

1

The standard method for solving (1) can be found in LAPACK [1]. It relies
on a symmetric factorization of (a permuted version of) A:

P A = LD LT

where L is complex, lower triangular and D symmetric block-diagonal with
blocks of size 1 or 2, and P the permutation matrix is obtained by Bunch
Kauffman diagonal pivoting method.
Nevertheless, recent advances have been achieved to exhibit classes of com-
plex matrices for which it is known to be safe not to pivot. N. Higham
identified in [4], the class of complex symmetric positive definite (CSPD)
matrices, which arise in calculations with Padé approximations to the expo-
nential. We refer to [8], [6], [5], [3] for additional references. Though some
BIE-based applications still use a pivoting (Bunch-Kauffman) algorithm [9],
it is also empirically known (though not yet fully justified) that a Cholesky
decomposition can be used, when the matrix comes from the discretization
of boundary integral equation formulations.
We propose here a modified version of Cholesky algorithm for complex sym-
metric matrices (when no pivoting is required), provide a LAPACK-style
implementation, and evaluate it.
In the first section, we recall the traditional Cholesky algorithm, for the
symmetric factorization of a real, symmetric, definite positive matrix, as
implemented in LAPACK. We then show how to formally extend the al-
gorithm to complex symmetric matrices, and deduce an implementation of
this algorithm based on LAPACK routines for real symmetric matrices.
We compare both the accuracy and the efficiency of the standard direct
method for complex symmetric systems, based on a symmetric factorization
with Bunch-Kauffman diagonal pivoting, with the method based on a com-
plex symmetric Cholesky factorization.
These numerical experiments use matrices arising from the numerical anal-
ysis of piezo-electric surface acoustic wave (SAW) components, by a coupled
integral equation/ finite element formulation [7]. We show a very significant
increase of timing performances, with the same accuracy as the standard
method.
We also propose a parallel, ScaLAPACK-style implementation of our algo-
rithm, deduced from ScaLAPACK routines for real positive definite matri-
ces, in the same way as we previously deduced a serial implementation based
on LAPACK routines, and we give some numerical experiments.

2

2 Cholesky Algorithm for a real, symmetric defi-

nite positive matrix

This section is devoted to a description of Cholesky factorization of A, a
real symmetric positive definite matrix (see e.g [3] p.142).

2.1 Basic version of Cholesky algorithm

There exists several variants of the algorithm, all requiring n3/3 operations
and all deduced from the equality

A = LLT , (2)

but featuring different orders of loops.
We recall here the gaxpy version implemented by LAPACK routine spotf2

(see [3] p.144 for a discussion of the outer product version).

Algorithm 2.1 (Gaxpy version of Cholesky algorithm). This algo-
rithm computes a lower triangular L ∈ R

n×n such that

A = LLT ,

and L overwrites the lower triangle of A:
for j = 1 : n
! Compute A(j,j)

1. Aj,j ← Aj,j −A1:j−1,j AT
1:j−1,j

! Test for non-positive-definiteness and compute L(j,j)
if Aj,j <= 0 then

stop
else

2. Aj,j ←
√

Aj,j

endif

! Compute elements j+1:n of column j
if (j < n) then

3. Aj+1:n,j ← Aj+1:n,j −Aj+1:n,1:j−1 AT
j,1:j−1

4. Aj+1:n,j ← Aj+1:n,j/Aj,j

endif

end

Remark 1. The name “gaxpy” version comes from the richness of the al-
gorithm in scaled “gaxpy” operations ([3] p.5). A “gaxpy” operation is a

3

generalized saxpy, that is a matrix-vector operation of the form:

y ← Ax + y

2.2 Block version of Cholesky algorithm

A block version of Cholesky algorithm operates on on blocks, or submatrices
of the original matrix and is therefore rich in matrix-matrix operations.
Since these operations (level 3 BLAS) are faster, block algorithms are usually
more efficient.
The original matrix A is partitioned in blocks of size nb. The block version
of algorithm 2.1, as implemented in LAPACK routine spotrf reads:

Algorithm 2.2 (Block version of Cholesky algorithm).
for j = 1 : (n/nb + 1)
s=(j-1).nb+1 ! start of block to factorize
e= min(j.nb,n) ! end of block to factorize
u=e+1 ! start position for update
! Update the current diagonal block
if j > 1 then

1. As:e,s:e← As:e,s:e −As:e,1:s−1 AT
s:e,1:s−1

endif

! Factorize the current diagonal block
2. As:e,s:e← G, with GGT = As:e,s:e

if 1 < j <= n/nb then

! Update the current block column
3. Au:n,s:e ← Au:n,s:e −Au:n,1:s−1 AT

s:e,1:s−1

endif

if j <= n/nb then

4. Au:n,s:e ← Au:n,s:e/A
T
s:e,s:e

endif

end

Remark 2. At step 2, the current block is factorized by algorithm 2.1.

This algorithm is also called block left-looking version of Cholesky algo-
rithm.
In this version A is factorized one block column at a time. For each j, step 3
is a rank s−1 update that accesses the previously factorized block columns,
hence the name.

4

3 Cholesky algorithm for complex symmetric ma-

trices

In this section, we consider a symmetric matrix A with complex entries.
We suppose that this matrix has the property that pivoting can be avoided
during its factorization. A Cholesky method can then be used to factorize
A in a stable way.

3.1 Derivation of the generalized Cholesky algorithms:

The complex extension of algorithm (2.2) can be described in the following
manner:

Algorithm 3.1 (Complex block version of Cholesky algorithm).
for j = 1 : (n/nb + 1)
s=(j-1).nb+1 ! start of block to factorize
e= min(j.nb,n) ! end of block to factorize
u=e+1 ! start position for update
! Update the current diagonal block
if j > 1 then

1. As:e,s:e← As:e,s:e −As:e,1:s−1 AT
s:e,1:s−1

endif

! Factorize the current diagonal block
2. As:e,s:e← G, with GGT = As:e,s:e

if 1 < j <= n/nb then

! Update the current block column
3. Au:n,s:e ← Au:n,s:e −Au:n,1:s−1 AT

s:e,1:s−1

endif

if j <= n/nb then

4. Au:n,s:e ← Au:n,s:e/A
T
s:e,s:e

endif

end

Note that the algorithm remains essentially the same as (2.2). The nota-
tion AT means “transpose”, as in the real case and not conjugate transpose
(as would be the case for a hermitian matrix).
Step 2 is achieved through a call to the level-2 following algorithm

Algorithm 3.2 (Complex gaxpy version of Cholesky algorithm).

5

pivmax = abs(
√

A11)
for j = 1 : n
! Update A(j,j)

1. Aj:j,j ← Aj,j −Aj,1:j−1 AT
j,1:j−1

! Compute L(j,j)

2. Aj,j ←
√

Aj,j

! Test
3. if abs(Aj,j)/pivmax <= tol then

stop
else

pivmax = max(pivmax, abs(Aj,j)
! Update A(j+1:n,j)

4. Aj+1:n,j ← Aj+1:n,j −Aj+1:n,1:j−1 AT
j+1,1:j−1

5. Aj+1:n,j ← Aj+1:n,j/Aj,j

endif end

Remark 3. The test step of algorithm 2.1 is modified: the square root is
complex and exists for every value of A(j, j). One tests instead that the
diagonal term is not too small (with a suitable value of tolerance parameter
tol).

3.2 Implementation details

The implementation heavily relies on LAPACK implementation of algo-
rithms 2.1 and 2.2 for real matrices, in routines DPOTF2 DPOTRF and DPOTRS

and DPOSV. The complex equivalent of these routines are:

• zlltf2 (based on DPOTF2): computes the Cholesky factorization of a
complex symmetric matrix A. The factorization has the form A =
UT U or A = LLT , where U is an upper triangular matrix and L is
lower triangular, depending of the value of UPLO argument. This is
the unblocked version of the algorithm, calling Level 2 BLAS.

• zlltf(based on DPOTRF): is the blocked version of zlltf2, calling
Level 3 BLAS.

• zllts (based on DPOTRS): solves a system of linear equations AX = B
with a symmetric matrix A using the Cholesky factorization A = U T U
or A = LLT computed by zlltf.

6

• zlltsv (based on DPOSV): is the associated driver routine.

4 Performance results

We report in this section experimental results comparing the double pre-
cision driver routine ZSYSV from LAPACK and our Cholesky-based solver
zlltsv. The test were carried out on a bi-processor Intel Pentium 4 XEON,
with 2 CPU at 2.00GHz, and a cache size of 512 KB, under Linux. In each
case, we employed the Intel-supplied BLAS in the Math Kernel Library (5.2
Service Pack 1) and Intel fortran compiler ifc (version 7.1.015).
We generated 5 complex symmetric matrices of size 1810, 3221, 7659, 9847,
10941 with the BEM-based code transd ([7]).

4.1 Accuracy results

A random exact solution xexact was generated, then multiplied by the matrix
A to generate a right hand side b. Then, the linear system:

Ax = b

was solved using Bunch Kauffman factorization or Cholesky factorization,
yielding two computed solution respectively denoted by xBK and xllt.
We compute the distance of both computed solutions to the exact solution
in 2-norm, i.e.

||xexact − xllt||2 =

(

n
∑

i=1

|xexact(i) − xllt(i)|
2

)1/2

and

||xexact − xBK ||2 =

(

n
∑

i=1

|xexact(i) − xBK(i)|2

)1/2

and normalize it by ||xexact||2 to get the forward relative error in 2-norm
for both methods (see [5] ch.1, or [1] ch.4 for definitions of backward and
forward errors). The results are shown in Table 1.
We computed the size of the residual Ax− b for both methods, in 2-norm,

to get the absolute backward error.
We normalize the residual by ||b||2, and obtain this way a relative backward
error, shown in Table 2. Tables 2 and 1 show that the same accuracy can
be expected for both methods, when applied to a matrix coming from a
boundary integral equation problem.

7

N ZLLTSV solver ZSYSV solver
no pivoting Bunch-Kauffman pivoting

1810 4.217D-013 2.728D-013
3221 1.684D-013 1.830D-013
7659 1.759D-012 2.031D-012
9847 1.354D-012 1.182D-012
10941 7.187D-013 1.533D-012

Table 1: Relative forward error, in 2-norm.

N ZLLTSV solver ZSYSV solver
no pivoting Bunch-Kauffman pivoting

1810 2.079D-013 1.649D-015
3221 3.876D-014 1.080D-015
7659 1.673D-014 1.704D-015
9847 4.347D-015 1.006D-014
10941 1.856D-014 4.073D-015

Table 2: Relative backward error, in 2-norm.

4.2 Timing results

The runtimes presented in Figures 1 and 2 confirm that when pivoting can
be avoided, the solver is faster. The computation time is divided by 2 on
our examples.

5 Parallel, Scalapack-style implementation

SCALAPACK library [2] provides a set of routines to perform the Cholesky
factorization of a distributed real symmetric dense matrix : PDPOTF2, PDPOTRF,
PDPOTRS and PDPOSV. These routines are the parallel equivalents of DPOTF2,
DPOTRF, DPOTRS and DPOSV.
We deduced from these SCALAPACK routines a parallel implementation of
Algorithm 3.1, consisting of routines pzlltf2, pzlltf, pzllts and pzlltsv,
and tested it on matrices of size N = 10941 to .
Numerical experiments were carried out on a Linux cluster, with ten nodes,
using a high-performance Scalable Coherent Interface (SCI) network. Each
node is a bi-processor Pentium 4 Xeon at 2GHz.

8

Matrix size

C
P

U
 t

im
e

(s
ec

on
ds

)

100005000

0

100

200

300

400

500

600 ZSYSV (Bunch Kauffman pivoting)
ZLLTSV (no pivoting)

Figure 1: Timing result

Matrix size

C
P

U
 t

im
e

(s
ec

on
ds

)

310 410

010

110

210

310 ZSYSV (Bunch Kauffman pivoting)
ZLLTSV (no pivoting)

Figure 2: Timing result, logarithmic scale

9

Number of nodes Maximum runtime Minimum runtime

4 132 (50) 106 (222)
6 98 (50) 80 (216)
8 80 (50) 69 (178)
9 70 (50) 58 (230)

Table 3: Maximum and minimum runtimes with respect to blocksize

5.1 Accuracy

We compared the accuracy of pzlltsv, with that of the serial solver zlltsv.
We computed the solution of

Ax = b

by zlltsv and by pzlltsv, yielding two computed solutions xseq and xpar.
The relative 2-norm of the difference is:

||xseq − xpar||2
||xseq||2

= 9.17e − 14.

for a problem of size N = 10941. So the accuracy of the parallel solver is
the same as the accuracy of the sequential solver.

5.2 Timing results

5.2.1 Blocksize

The global matrix is partitioned in small blocks of size blocksize and dealt
out to the processes, following the block-cyclic distribution scheme. The per-
formance of the solver depends on this parameter: Table 3 shows min and
max runtimes (in seconds) and corresponding blocksizes (between parenthe-
ses), for different number of nodes, for a problem of size 10941: In all the
following measurements, the blocksize is equal to 220.

5.2.2 Speedup and efficiency

The speed-up on p nodes, Sp is defined as the ratio

Sp =
T1

Tp
, (3)

where T1 is the time required to execute the algorithm on one node, and Tp

the time required to execute the algorithm on p nodes.

10

Number of nodes Runtime(seconds) Speedup Efficiency

1 = 1× 1 424.66 1 1
2 = 2× 1 193.37 2.19 1.09
4 = 2× 2 106.88 3.97 0.99
6 = 2× 3 79.41 5.35 0.89
8 = 2× 4 69.20 6.13 0.77
9 = 3× 3 58.22 7.29 0.81
10 = 5× 2 61.16 6.94 0.69

Table 4: Speedup and efficiency for N = 10941

Remark 4. There exists another definition for the speedup (see [2] p. 95):

Sp =
T seq

1

Tp
, (4)

where T seq
1

is the time required by the best possible algorithm on one node.
This definition takes into account the slowness of parallel algorithm on one
node, due to additional operations that may not be needed on a single node
(communications, synchronizations . . .). With this definition, we would
compare the time on p nodes with the time required by the serial routine
zlltsv, that is T seq = 300.29 seconds for the matrix of size 10941.
We prefer to use the first definition (3) since it normalizes the speedup to 1
on one node.

The efficiency is simply the speed-up divided by the number of nodes:

Ep =
Sp

p
(5)

Table 4 shows the runtimes (in seconds) for different number of nodes, and
the corresponding speedup and efficiency. The best efficiency is obtained for
2 nodes.

5.2.3 Timing results for different matriz sizes

We report on Figure 3 timing results, with respect to the number of nodes
used, for different matrix sizes. On Figure 4, we represented the time re-
quired to solve problems of different sizes on 10 nodes.

11

Nodes

T
im

e
(s

ec
on

ds
)

5 6 7 8 9 10 11

100

200

300

400

500 n=10941
n=21882

Figure 3: Timing results with respect to the number of nodes

Matrix size

T
im

e
(s

ec
on

ds
)

41039. 10 42. 10 43. 10 44. 10

210

310

Figure 4: Timing results with respect to the matrix size, on 10 nodes, loga-
rithmic scale

12

6 Conclusion

Numerical experiments suggest that Cholesky factorization should be used
whenever possible, in particular for linear systems coming from the dis-
cretization of boundary integral equations. It namely achieves the same
accuracy as the traditional LDLT factorization with Bunch Kauffman diag-
onal pivoting, and is faster.
Thanks to the availability of LAPACK and ScaLAPACK sources, and thanks
to their ease of use, we were able to obtain a serial and a parallel imple-
mentation of Algorithm 3.1 with a small amount of work. Moreover, this
implementation benefits from the performances of LAPACK algorithms on
vector machines and of ScaLAPACK design on distributed machines.

References

[1] E. Anderson, Z. Bai, C.Bischof, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. SIAM, third edition, 1999.

[2] L. Blackford, J. Choi, A. Ceary, E. D’Azevedo, J. Demmel, I. Dhilon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[3] G. H. Golub and C. F. V. Loan. Matrix computations. John Hopkins
University Press, third edition, 1996.

[4] N. J.Higham. Factorizing complex symmetric matrices with posi-
tive definite real and imaginary parts. Mathematics of computation,
67(224):1591–1599, 1998.

[5] N. J.Higham. Accuracy and stability of Numerical Algorithms. SIAM,
second edition, 2002.

[6] R. Mathias. Matrices with positive definite Hermitian part: Inequalities
and linear systems. SIAM Journal on Matrix Analysis and Applications,
13(2):640–654, 1992.

[7] J. Ribbe. On the coupling of integral equations and finite ele-
ments/Fourier modes for the simulation of piezoelectric surface acoustic
wave components. Thèse de doctorat, École Polytechnique, France, 2002.

[8] S. M. Serbin. On factoring a class of complex symmetric matrices without
pivoting. Mathematics of Computation, 35(152):1231–1234, 1980.

13

[9] P. E. Strazdins. A dense complex symmetric indefinite solver for the
Fujitsu AP3000. Technical Report TR-CS-99-01, Canberra 0200 ACT,
Australia, 1999.

14

