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ABSTRACT. Using a sequential Monte Carlo algorithm, we compute a spectral approximation of the
solution of the Poisson equation in dimension 1 and 2. The Feyman-Kac computation of the pointwise
solution is achieved using either an integral representation or a modified walk on spheres method. The
variances decrease geometrically with the number of steps. A global solution is obtained, accurate up to
the interpolation error. Surprisingly, the accuracy depends very little on the absorption layer thickness of
the walk on spheres.

KEYWORDS: Spectral method, Sequential Monte Carlo, Poisson equation, Variance reduction, Mo-
dified walk on spheres, Feyman-Kac formula.

1 Introduction

The Feynman-Kac formula is a very powerful tool to achieve stochastic representations of the point-
wise solution of numerous patrtial differential equations like, for instance, diffusion or transport equations
[Fri76][Fre85][CDL*89][LPS98]. Consider the Dirichlet boundary value problem in a domain R¢ :

_1 - i
sAu=f inD, (1)
U=y ondD.

Under some assumptions, we hatee D

ulw) = Ba(o(Bry) + | " H(Bds), @)

where B = (By):>¢ is a standardi-dimensional Brownian motion and wherg is the exit time of

this process from the domaih. The Monte Carlo computation of this pointwise solution leads to two
kinds of numerical errors. The first one is due to the simulation error of the Brownian mitidvif-

ferent approximation schemes can be used [Bal95][Gob01], even for more general stochastic processes,
but for the Brownian case, the most efficient ones are the walk on spheres (WOS) methods. We refer
to [Mul56][Sab91] and to the recent work by Hwang et al.[HMGO3], which allows to keep the advan-
tages of the original method even with a source térrithe second kind of error is the standard Monte
Carlo error usingV simulations, that is”—N , Whereo is the standard deviation of the approximation of

i
Q(BTD> + foTD f(Bs)ds.
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Our goal here is to try to reduce the Monte Carlo error, using an adaptive Monte Carlo algorithm
based on the ideas of sequential Monte Carlo methods [Hal62]. These methods have been used for Mar-
kov chains [BCPO0O], transport equations [Boo85] and recently for numerical integration [Mai03]. They
rely on an intelligent use of the random drawings from a step to another which allows to reduce geo-
metrically the variance up to an approximation error. We intend to use the same idea here to compute a
spectral approximation [CHQZ88][BM92] of the solution of the Poisson equation.

We will perform this method on square domains in dimension one and two, using Tchebychef poly-
nomials in the approximation algorithm. On an interval, we can make the simulation using an integral
representation. This allows to get totally rid of the discretization error. In dimension 2, we will use the
modified WOS method developed in [HMGO3]. Its accuracy depends on the absorption layer thickness
¢ which can be taken very small without increasing too much the CPU times.

We will see that variances decrease geometrically with the number of iterations, and surprisingly, the
bias due to the discretization error behaves analogously. Finally, this will lead to a global and accurate
Monte Carlo approximation of the solution of the Poisson equation.

2 Description of the approximation algorithm

Consider the Poisson equation (1). We can compute approximate véh)mf the solution of this
equation at some points; using a Monte Carlo method based on the representation (2). Using this
information, we can then build a global and regular approximaﬁéhx) of the Poisson equation. This
can be achieved, for example, by a simple polynomial interpolation or by fitting the data to a polynomial
model. In sections 3.2 and 4.2 below, we will mainly use global Tchebychef polynomial interpolations
built from pointwise computations of the solution at the Tchebychef abscissag-dvei?, in dimension
one or two. We can now use the control variate method withas an approximation af. We put

Yy=u-— u®)
which solves the new Poisson equation

—%Ay = —%A(u —uM) = f+ %Au(l) in D,
y=g—ull ondD.

A global solutiony®) can be computed using the same method than the one used to cartipuifewe
now approximate the solution of the initial equation by

(@) = V(@) + 4V (a),
we can expect this solution to be more accurate than the previous one. We can then iterate this method to
achieve an approximatios™ (x) at thenth step of the relevant algorithm.
A basic example

We aim at illustrating how fast the convergence of the sequential algorithm above can be. For this,
we consider the most simple Poisson equation, that is

{ u'(z) =0, z €]0,1],
w(0) = 0, u(l) = 1.



The solution beingi(z) = P,(B;, = 1) = z, we chose to compute it at two points (say = i and
To = % for instance) and use a linear interpolation to get the values elsewhere.
At the nth step, we assume that unbiased estimqtg?‘r)sindpg") of Py, (B;, =1)andP,,(B;, =
1) are computed usingy simulations of Bernoulli variables. Moreover, all simulations are independently
drawn. In particular, we have

: 3)

z21Q

E(pg )) =7 E(pg )) =1 Var(pg )) < N Var(pg )) <

Step 1.We start withugl) = pgl) anduél) = pgl). Then, we compute a global approximatiof () as

uM(z) = 2ugl)(3: - i) - 2u§1)($ - z)

It is easy to check!) () is unbiased and has a variance of magnitt}g;de

Step 2.We now put

and we have to solve

—30y=—3A(u— uM) =0,
{ y(0) = u(0) = uM(0) = —uM(0),  y(1) = u(l) —uM(1) =1 —uD(1).

We still compute the solution at; andx, using the previous method and we now have

5(7) = 1= O Wlp? — )1 - p),
5 =1 - u @ —u® ) - p?),
YD (@) = 25 = 3+ 20— .

The approximation at step two is
u? (@) = uM (@) + y D (2).

To study the performances of the algorithm, we only have to loak®t0) and«(?) (1) because the
approximation at the next step will only depend on these values. After some computations, we obtain

3 1
u®(0) = [3p1? = 5p? L+ ul(0) —u (D))
It comesE(u?(0)) = 0 and Var(u?(0)) < <. Similarly, we haveE(u?(1)) = 1 and
Var(u(? (1)) < 5. Then, because of the linear interpolation, it follows that

E(w®(z)) =z and Var(u(Q)(x))gﬁ;.

This shows that the variance goes to zero geometrically with the number of steps if we take sufficiently
many random drawings in the computation of the solution at the psintdx,. Indeed, the error is



multiplied by% at each step of the algorithm. We have observed exactly the same phenomenon in
[Mai03] where the same ideas where used to compute iteratively the approximation

f(z) = Z ager(x) + r(x)
k=1

of a function f on an orthonormal basig; ). If the function f is in the approximation space, that is

r(z) = 0, then the variance of the Monte Carlo estimators of the coefficigngoes to zero geometri-

cally with the number of steps. In the general case, the approximation of these coefficients is accurate
up to the truncation error. We will see in the numerical experiments that the approximate solution of
the Poisson equation will verify the same property. We will reach exactly the same accuracy than the
interpolation polynomial of the exact solution at the Tchebychef abscissae.

3 The monodimensional case

We address the evaluation of the solution of the Poisson equation

—%u” = fon]—1,1] (4)

with boundary conditiong(—1) = a andu(1) = b, using the method described before.

3.1 Monte-Carlo computation of the pointwise solution using an integral representation

The probabilistic solution is given by

(@) = aPy(Byy, = —1) + b(1 — Pu(By, = —1)) + Ex(/OTD £(By)ds).

AsP,(B,, = —1) = I‘T‘T, the contribution of the boundary conditions to the solution can be easily
simulated. To make the Monte Carlo simulation of the source term possible, we note that
D
Eo( [ £(Bds) = (1= (V) ©)

0
whereY, is a random variable with density

147 1 + 1—r 1

1tz —1<r<z 1_2 z<r<l-

Indeed, an easy computation shows that the r.h.s. of (5) solves the Poisson equatiosa-with 0. To
simulateY,, first consider the Bernoulli variablg, such that

T1+7r 1
P(Z, = 0) = dr = =(1 + ).
( 0) /11+xT 51+ 7)

Then, define the random variablds and B, which have for density respectively
2(1+7) 2(1—7")1
(1+2)2 (1— )2 "=r=t

Using the inverse of their cumulative distribution function, they can be simulated respectively by
(z + 1)U and1 + (z — 1)/U whereU is uniform on|0, 1]. We finally set

Yy = (1= Zy)As + Z4Ba.

1—1S7’§$ and



3.2 Tchebychef interpolation

Tchebychef polynomials are the orthogonal polynomial$-eh 1] with respect to the inner product
< P,Q >= f )dx Their expressions are given By, (x) = cos(n arccos(z)). We define

Pn([—1,1]) as the Imear space of the polynomials of degre®” on [—1, 1]. The orthogonal projection
N (u) of a functionu € L?([-1,1]) on this space is

WN(u):iMT with g, = / @) 4y
=0 Tl J-1 V1= 2?

If we assume that: € C*™([—1,1]), the coefficientss,, decrease very quickly an% If we replace
7 (u) by the interpolation polynomiaPy (u) of the functionu at the Tchebychef abscissae

the approximation is still as good [BM92]. Moreover, this interpolation has optimal properties with
respect to the sup norm. We have [Bj696]

N N
Py (u) = a,T, with o, = u(
2 TP o

We will use this approximation for the solution of the Poisson equation. We also need to compute the
second derivative Py (u) to built the new Poisson equation. We have [CHQZ88]

N

(Py(u ZﬂnT with 3, = S p0® - K)oy
p=k+2,p+k even
3.3 Numerical results

The initial global approximation of the solution of the Poisson equation is given by

N
= S @,
n=0

where the coefficients,, are built using the Monte Carlo approximatiaq%) of u(xy). We also have

N

u)” Z BT, with Bo= > p(p’—k)a.

p=k+2,p+k even

The algorithm is efficient if the Monte Carlo computation of the correction
y(x) = u(z) —u (@)

is more accurate than the direct computation:0f). This computation is achieved by solving a new
Poisson equation where the source term becomes

1 1 N2
- My = - E
[+ 2A(u )=[f+ 5 2 BT,



and where the boundary conditions are

N N
y(—l) =a— Z@Tn(_l)a y(l) =b— ZainTn(l)
n=0 n=0

This shows that the boundary conditions will be close to zero even if the computationsgf éne not

very accurate. Because of the derivation of the interpolation polynomial, a rather accurate approximation
of the 3, could not be achieved unless the approximations ofithare accurate enough. This is espe-
cially true when increases. We will need a lot more sample values to make the algorithm converge in
this case. We now give a numerical example to show the efficiency of the algorithm.

Example. We study the equation (4), with = % andb = e, so that the solution of this equation is
u(z) = exp(x). We give in the following table the error

e(j) = sup_||u(ar) — uP ()|
0<k<N
as a function of the numberof steps and of the numb@éi of sample values to compute the pointwise
approximation at the;.. The accuracy of the crude Monte Carlo method withsample values is given
by e(0). For a given value o/, L is the number of steps unfi(j)];>o stabilize. We give the CPU time
until convergence in seconds.

N| M | L e(0) e(5) e(L) CPU
51 100 [ 15[ 8x1072[2x107% | 1x10~* | 0.01
71 300[24[9%x102[4x10%| 4x10°% | 0.1
10 [ 1000| 72| 5x 1072 |2x 103 | 6x 10719 | 0.9
13 [5000|63|4x1072[2x103 |8x107" | 6.8

M has to be chosen large enough with respecYto make the algorithm converge. For example,
if we take onlyM = 100 in the caseV = 7, the algorithm diverges. We have checked that the error at
convergence(L) corresponds exactly to the interpolation error of the interpolation polynaRajél:)
of the exact solution at the Tchebychef abscissae. This accuracy is obviously out of reach of the standard
Monte Carlo method. The interpolation polynomial at convergence

N
P (w) =Y alPT,
n=0

already gives an accurate pointwise approximation of the solutianany point of the domain. If one
wants to achieve an even more accurate approximation at a given point, one can use once more the control
variate method after convergence.

3.4 Quasi-Monte Carlo acceleration

In order to speed up the convergence of the algorithm, we will now replace the random drawings in
the numerical computation of the correction on the source term by low-discrepancy sequences. Indeed,

. . N)p(d—1) . . . .
these quasi-random sequences achieve a rate of converge%gi}%for numerical integration in

dimensiond instead of\%ﬁ for crude Monte Carlo integration [Nie92][KU98]. This mean that we can

6



expect that the accuracy on this correction will be a lot better using these sequences. We now give the

numerical results on the previous example based on Halton sequences.

N| M | L e(0) e(5) e(L)

51100 |10 9x1072[2x1073 | 3x107°
7130020 5x102[6x10"*| 1x10°©
10]1000| 38| 5x1072[6x1073 | 7x 10~
1315000[ 40| 3x1072|[1x1073 | 5x 10~

We can see, on this example, that the number of steps until convergence has been divided by around
two. This can be heuristically explained because the accuracy on the correction at each step is multiplied
by aO(+) instead of a0(—) for the Monte Carlo method. This also explains why we obtain a better

VN
accuracy ore(L).

4 The bidimensional case oD =] — 1, 1[?

4.1 Description of the modified WOS

Even if we only focus on the Poisson equation, we should make our approach as global as possible.
We can not use the Green function for any dom&itbecause it is usually unknown. In order to be as
fast and as accurate as possible in the simulation of

9(Bry) + /0 " H(Bs,

we will replace this Green function by a modified WOS method [HMGO03] which can take into account
the source ternf. In the original WOS method [Boo82][Sab91], we walk franto the boundarng D
from a sphere to another until the motion reachesctadsorption layer (which occurs im random
steps). The spheres are built so that the jumps are as large as possible. The radius of the next sphere
from a starting pointz,, is d(z,,9D). The next point is chosen uniformly on this sphere because of
the isotropy of the Brownian motion. To compute the contribution of the source term in this walk for a
problem in dimension two, it is proposed in [HMGO03] to compute this contribution in each of the balls
from the passage to their centers to the boundary, conditioned by the exit point. This is achieved using
the explicit expression of the Green function conditioned by the exit point

For the centered unit bal = B, we can write

B( /0  F(BJ)ds|Bo = 0, By = =) = B(f(Y))

whereY = (Rcos(f), Rsin()) with (R, §) having some appropriate distributions. Namely, the cumu-
lative radial distribution function is

fR(T‘) = 7‘2(1 -2 ID(T))logrgl

and the cumulative conditional angular distribution function is

1 1 1 tan(d — 6
for=r(0) = 5 + — arctan( + 7 ten(f ~ fo)

1771' s
2 7 Ty g lomees



whereexp(ity) = z. More generally, for a bal = B; of radiusr; centered afz;, y;), we have
2

B[ BB = (207). B = 2) = FE() ©)

with Y; = (rjRcos(f) + xj,7;Rsin(f) + y;). The Monte Carlo computation dE,(g(B-,) +
J7P f(By)ds) is then achieved ag - | Z; where

g ©12
(0 1Ry
BY) + Z A
J=1
using one simulation to evaluate the expectation (6).

4.2 Description of the approximation

The Tchebychef approximation of a functioenc L?([—1,1]?) is built using the same process than
in dimension one. We give directly the interpolation polynonital(«) at the points of the Tchebychef
grid of this function :

N N
= Z Z an,anTm

n=0m=0

where thew,, ., are defined by

Qo = T, T T (x5).
| IITHHTH ;}Z@ o Il ()
The quality of this approximation is studied very precisely in [BM92]. We have
N N
APy(u) =YY" o)) T, Ty
n=0m=0
with
N N
o= Y p® —nPopm+ Yo (P —mP)an,.
p=n+2,p+neven p=m-+2,p+m even

4.3 Numerical results

We still study a Poisson equation where the solution is very regular. The complexity of our method
increases compared to the one-dimensional case. The pointwise solution will have to be computed at
(N + 1)? points instead ofV + 1 and the source term will be constituted aDa/N?) terms instead of a
O(N). The WOS method is obviously more consuming than the method based on the integral represen-
tation. Nevertheless, we will see that the number of sample valiés make the algorithm converge,
remains approximately the same.

Example. Consider the equation

1
—5u(z,y) = —exp(z +y)

with Dirichlet boundary conditions chosen so that the solution of this equatiofxig/) = exp(z + y).
We takes = 109 to make sure that only the Monte Carlo error remain.



100 | 8 | 0.15| 6 x 10~° 6
300 [25] 017 | 4x1077 | 112
10 | 1000| 40| 0.15 | 7 x 10~ | 1720

N M | LJe0)] elL) |CPU
5
7

We still achieve an accuracy on the solution of this equation corresponding exactly to the interpola-
tion error. Moreover, we observe that we obtain an accuragyof0~—!! whenN = 10 withe = 1076 :
this means that the final error is significantly smaller than the discretization error. It seems to show that
we both reduce the variance and the bias. The valsel 0~2 seems to be the upper limit, for which we
observe such a nice convergence. Beyond this limit, the algorithm diverges. Faking)—2, we have
the following results.

M | L |e(0) e(L) CPU
100 | 8 [0.21 | 7x10™° | 1.8
300 [25[023| 3x107" | 34
10 | 1000] 40 0.15 | 8 x 10~ | 540

N
)
7

The numerical accuracy on the solution is exactly the same tharrwith0—6. The CPU times have
been divided by about three, which is really significant. We could certainly also use a quasi-Monte Carlo
version of this algorithm.

5 Conclusion

We have developed and studied a Monte Carlo algorithm to compute a spectral approximation of the
solution of the Poisson equation in dimension one and two over simple domains. The numerical examples
have shown that we have simultaneously drastically reduced the Monte Carlo error and the error due to
the simulation of the Brownian trajectories using the modified WOS method. Moreover, a global solution
is obtained up to the interpolation error. We have nevertheless only proved the geometric convergence of
the method in a very simple case. This work was the first step to check the efficiency of this method. Our
future work [GMon] will consist in proving the convergence of the algorithm on the studied example of
the Poisson equation and in extending this approach to general elliptic and even parabolic operators.
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