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Abstract

The present paper is particularly devoted to the damping effect in ferromagnetic
materials. We are interested in determining the sensitivity of the LLG method so-
lution to the phenomenological damping parameter α. We discuss the behaviour of
the global weak solutions with finite energy of the Landau-Lifshitz equations when the
damping parameter α tends either to 0 (underdamped case) or +∞ (overdamped case).
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1 Introduction

The magnetization dynamics in thin magnetic films and microstructures is technolog-
ically relevant for, e.g., magnetic recording applications at high bit densities. Over
recent years the investigations of the magnetic switching behaviour of ferromagnetic
elements has become more advanced due to improvements in numerical micromagnetic
methods and high accuracy fabrication methods. Central problems are the calculation
of the switching time and the stability of the switching process as a function of the
time structure of the external field, and the detailed influence of magnetic damping.
Most of the parameters required in micromagnetic equations are well characterized
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directly using conventional techniques [4]. However, the damping cannot be derived
rigorously from basic principles, it is just added by a phenomenological term. In re-
ality it is caused by a complex interaction of the conduction electrons in the magnet
and its magnetization. For information we report the values of damping parameter
of some particulate magnetic recording materials. α = 0.051 for CrO2, α = 0.066 for
γ-Fe2O3, α = 0.13 for Co-γ-Fe2O3, α = 0.92 for MP (metal particle), and α = 0.007 for
permalloy. Damping has many effects for example micromagnetic experiments reveals
that small values of α (≤ 0.1) lead to shorter switching times at small field strength.
Damping has also a large effect on the dynamic character of domain walls in bubble
garnet material with structure within the walls.

Let us now describe the mathematical problem. We consider Ω ⊂ R3 a bounded and
regular domain representing a ferromagnetic material. The boundary of Ω is denoted
by ∂Ω and n is the unit outward normal to Ω. In Q = R+×Ω, the magnetization field
M(t, x) of the ferromagnet satisfies the Landau-Lifshitz equations (LL) ∂tM = −γM ×H(M)− αM × (M ×H(M)) in Q

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on R+ × ∂Ω
(1)

coupled to the stray field equation satisfied by magnetic potential ϕ

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3. (2)

The gyromagnetic parameter is denoted by γ > 0. The damping is given in terms of
the paramater α > 0, which is and its implications are the main object of our attention.
The effective magnetic field H is given by

H(M) = A∆M +∇ϕ+ (∇Mψ)(M). (3)

where A > 0 is the exchange constant, ψ : R3 → R+ is a regular function with bounded
second derivatives representing the volume anisotropy energy. The LL equations are
equivalent to the Landau-Lifshitz-Gilbert equations (LLG) given by (when γ = 1) ∂tM = αM × ∂tM − (1 + α2)M ×H(M) in Q

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on R+ × ∂Ω.
(4)

As usually the term M ×∆M is understood in the weak sense ∇ · (M ×∇M). Note
that the motion conserves |M |. The parameter α plays a crucial role in the existence
theory of global weak solutions with finite energy see [16], [1]. Our aims is to un-
derstand the behaviour of the solutions of LLG equation for small values of damping
i.e., α → 0. If we set α = 0 in the LL equation we get the so called gyromagnetic
equation (GLL) that describes the undamped precession of the magnetization vector
M about the effective field. When, H is reduced to the exchange term A∆M equation
(4) describe the symplectic flow of harmonic maps see [14], [13]. In the same time, we
want to discuss the behaviour of the global solutions when α→∞. The precession is
negligible compared with the damping parameter. Even if this question is academic,
this behaviour is not clear as we shall show. We introduce a new time scaling for the
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solutions of LL changing its dependency with respect to α. For this new equation
the behaviour when the damping parameter is large corresponds to the study of the
initial layer of the original solutions. The system in this case is said to be overdamped.
The limit equation involves the damping equation (DLL) known as the heat flow for
harmonic maps see [3], [2], [5], [6] for example.

Let Mo ∈ H 1(Ω) satisfying the saturation condition |Mo(x)|2 = 1 a.e in Ω and ϕo

be the solution of the equation (2) associated with Mo. Let Eo be the initial energy

E(Mo) = A|∇Mo|2L2(Ω) + |∇ϕo|2L2(R3) +
∫

Ω
ψ(Mo) dx (5)

It is easy to see that
∫

R3 |∇ϕo|2 dx = −
∫
ΩMo · ∇ϕo dx and then 0 ≤ E(Mo) <

∞. Following Visintin [16] and Alouges-Soyeur [1], let (Mα, ϕα) be a global weak
solution of LLG, with finite energy, associated with the initial data Mo. That is
Mα ∈ L∞(R+; H 1(Ω)), ∂tM

α ∈ L2(R+; L2(Ω)), ∇ϕα ∈ L∞(R+; L2(R3)), Mα satisfies
the saturation condition

|Mα(t, x)|2 = 1 a.e (6)

and for all t ≥ 0 the energy inequality

E(Mα(t)) + 2κ(α)
∫ t

0
|∂tM

α(s)|2L2(Ω) ds ≤ E(Mo). (7)

The energy of the system at the time t is defined by (see for example [8])

E(Mα(t)) = A|∇Mα(t)|2L2(Ω) + |∇ϕα(t)|2L2(R3) +
∫

Ω
ψ(Mα(t)) dx (8)

and the constant κ(α) is given by

κ(α) =
α

1 + α2
· (9)

The solutions (Mα, ϕα) satisfy the LLG and stray field equations in the sense of dis-
tributions. The coefficient κ(α) gives the strenght of the decay of the energy. One
observes that κ(α) → 0 for either α→ 0 or α→ +∞. We have in fact, α

2 ≤ κ(α) ≤ α
for α ≤ 1, 1

2α ≤ κ(α) ≤ 1
α for α > 1. The loss of the bound of ∂tM

α may induce a lack
of compactness of the sequence (Mα)α when either α→ 0 or α→ +∞. The following
uniform estimates hold for global weak solutions

Lemma 1.1 There exists C > 0 which is independent of α such that
|Mα(t, x)|2 = 1 a.e

|∇Mα|L∞(R+;L2(Ω)) + |∇ϕα|L∞(R+;L2(R3)) ≤ C√
κ(α)|∂tM

α|L2(R+;L2(Ω)) ≤ C.

(10)
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The rest of paper is organized as follows. Section 2 is devoted to overdamped
behaviour that is the damping equation. We give convergence results when α → +∞
and identify the limiting problem. The underdamped case which correspond to α→ 0
is studied in Section 3. We present in Section 4 our next results. We give direct proofs
for the global existence, both for DLL and for a particular case of GLL equations
corresponding to the case where H = ∇ϕ (see [11] for the full LLG equation in that
case). The first result is established via an approximated problem of the semilinear
heat equation and the second one via an iterative scheme. We conclude in Section 5
by some remarks and perspectives.

2 The overdamped case

We discuss in this section the behaviour of the global weak solutions of the LLG
equations when α→ +∞. We call damping equation (DLL) the following equation ∂tM = −αM × (M ×H(M)) in Q

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on R+ × ∂Ω
(11)

It is important to precise the sense of the right hand side of (11) when M is a
weak solution of the problem that is M ∈ L∞(R+;H1(Ω)), ∂tM ∈ L2(R+;L2(Ω))
and |M(t, x)|2 = 1. We have then M × (M × ∆M) ∈ L2(R+;L2(Ω)) since ∂tM ∈
L2(R+;L2(Ω)). Moreover we may write M ×∆M = ∇ · (M × ∇M) then for all test
function φ we have∫

Q
M × (M ×∆M) · φ dxdt = −

∫
Q
M ×∇M · ∇(M × φ) dxdt.

Hence, the weak form of (11) is M × ∂tM = αM ×H(M).
Let (αn)n be a sequence such that αn → +∞ when n → +∞. We denote by

(Mn, ϕn) the solutions of LLG equations (4) associated with αn and the initial data
Mo. Using lemma 1.1 and LLG equations (4) it is easy to obtain the convergence result

Mn ×H(Mn) → 0 strongly in L2(R+; L2(Ω)). (12)

Since, for a subsequence still denoted (Mn, ϕn) we have that Mn ⇀ M weakly-? in
L∞(R+; H 1(Ω)) but not strongly in L2

loc(R+; L2(Ω)), then Mn×∇Mn ⇀M×∇M+ξ
and Mn ×∇ϕn ⇀ M ×∇ϕ + µ weakly-? in L∞(R+; L2(Ω)) with ξ 6= 0 and µ 6= 0 in
general. It is not clear to show that ξ = 0 and µ = 0 or not and in this case how to
characterize ξ, µ in term of M .

We shall introduce a usefull time scaling of the solutions to obtain the strong
convergence of the sequence of solutions. Let us consider LLG equations (4) satisfied
by (Mα, ϕα). We set

β(α) = νκ(α) (13)

4



where ν > 0 is a fixed constant. We introduce the couple (mα(t), φα(t)) by setting for
all t ≥ 0 and a.e x ∈ Ω

mα(t, x) = Mα(β(α)t, x), φα(t, x) = ϕα(β(α)t, x). (14)

We easily verify that (mα, φα) satisfies the new LLG equation labelled (NLLG) ∂tm
α = α(mα × ∂tm

α − νmα ×H(mα))

mα(0) = Mo in Ω, mα × (A∇ · n)mα = 0 on R+ × ∂Ω
(15)

coupled to the stray field equation (2) satisfied by φα. The solutions (mα, φα) is such
that the saturation condition (6) is satisfied by mα and the following energy inequality
holds

E(mα(t)) + 2ν
∫ t

0
|∂tm

α(s)|2L2(Ω) ds ≤ E(Mo). (16)

The LL equation associated to the NLLG equation (15) takes the form

∂tm
α = ν(− α

1 + α2
mα ×H(mα)− α2

1 + α2
mα × (mα ×H(mα))). (17)

As for lemma 1.1 we have the bounds

Lemma 2.1 There exists C > 0 which is independent of α such that |∇mα|L∞(R+;L2(Ω)) + |∇φα|L∞(R+;L2(R3)) ≤ C

|∂tm
α|L2(R+;L2(Ω)) ≤ C.

(18)

We denote by (mn, φn) the solutions associated with αn. Lemma 2.1 implies the fol-
lowing convergences

Lemma 2.2 There exists a subsequence still denoted (mn, φn) such that it holds that

mn ⇀m weakly− ? in L∞(R+; H 1(Ω))

∂tm
n ⇀ ∂tm weakly in L2(R+; L2(Ω))

mn → m strongly in L2
loc(R+; L2(Ω))

∇φn ⇀ ∇φ weakly− ? in L∞(R+; L2(R3)).

(19)

Moreover, using once more lemma 2.1, we get the result

Lemma 2.3 The sequence (mn, φn) satisfies the strong convergence

mn × ∂tm
n − νmn ×H(mn) → 0 strongly in L2(R+; L2(Ω)) (20)
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Now, we are able to pass to the limit in the weak formulation of the NLLG equation
(15) associated with αn. Let g be a regular test function defined in R+ × Ω. Then mn

satisfies the weak formulation

1
αn

(−
∫

Q
mn · ∂tg dxdt+

∫
Ω
Mo · g(0) dx) =∫

Q
mn × ∂tm

n · g dxdt+A

∫
Q
mn ×∇mn · ∇g dxdt−∫

Q
mn ×∇φn · g dxdt−

∫
Q
mn × (∇Mψ)(mn) · g dxdt

(21)

Passing to the limit in the weak formulation by using lemma 2.2 and lemma 2.3 it
follows that m satisfies the equation

∫
Q
m× ∂tm · g dxdt+A

∫
Q
m×∇m · ∇g dxdt−∫

Q
m×∇φ · g dxdt−

∫
Q
m× (∇Mψ)(m) · g dxdt = 0

(22)

where φ satisfies, in the sense of distributions, the stray field equation

∇ · (∇φ+ χ(Ω)m) = 0 in R+ × R3. (23)

It remains to precise the sense of the initial data verified by m. Since we have mn ∈
L∞(R+; H 1(Ω)) and ∂tm

n ∈ L2(R+; L2(Ω)) then m satisfies the same properties and
m ∈ H1(0, T ; L2(Ω)) for all T > 0. Hence m(0) is well defined in L2(Ω). Using the
inequality

|mn(0)−m(0)|2L2(Ω) ≤ 2
∫ t
0 |m

n(s)−m(s)|L2(Ω)|∂tm
n(s)− ∂tm(s)|L2(Ω) ds

+|mn(t)−m(t)|2L2(Ω)

(24)

we deduce that

|mn(0)−m(0)|2L2(Ω) ≤ cT |mn −m|L2(0,T ;L2(Ω)) + |mn −m|2L2(0,T ;L2(Ω)).

Finally, since we have mn(0) = Mo and mn converges strongly in L2(0, T ; L2(Ω)) to m,
we get that m(0) = Mo in L2(Ω). We proved the following result

Theorem 2.1 Let (m,φ) be the limit of a subsequence of (mn, φn). Then (m,φ) is a
global weak solution of the damping equation

m× ∂tm = νm×H(m) in R+ × Ω

m(0) = Mo in Ω, m× (A∇ · n)m = 0 on R+ × ∂Ω

∇ · (∇φ+ χ(Ω)m) = 0 in R+ × R3.

(25)

Moreover m satisfies the saturation condition (6) and for all t ≥ 0, the energy estimate

E(m(t)) + 2ν
∫ t

0
|∂tm(s)|2L2(Ω) ds ≤ E(Mo). (26)
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Proof. The strong convergence of the subsequencemn implies the saturation condition
for m. To prove the energy inequality we proceed as follows. We consider the energy
estimate (16) satisfied by mn. We multiply the inequality by θ(t)2 where θ is a regular
function, and integrate over (0, T ). Using the convexity of the L2 norm and the weak
convergences we get

A|∇(mθ)|2L2(0,T ;L2(Ω)) ≤ lim inf A|∇(mnθ)|2L2(0,T ;L2(Ω)),

and
|∇(φθ)|2L2(0,T ;L2(R3)) ≤ lim inf |∇(φnθ)|2L2(0,T ;L2(R3)).

Next the strong convergence of mn gives

|ψ(m)θ2|2L1(0,T ;L1(Ω)) = lim |ψ(mn)θ2|2L1(0,T ;L1(Ω)).

Consider the damping term we have
∫
∆ |θ(t)∂tm

n(s)|2L2(Ω) dsdt where ∆ = {(t, s), 0 <
t < T, 0 < s < t}. We conclude by using the weak convergence in L2(∆; L2(Ω)) of the
sequence θ(s)∂tm

n(t). The proof of the theorem is then complete.

Remark 2.1 The term m×H(m) is understood in its weak form ∇· (m×∇m)+m×
∇φ+m×(∇Mψ)(m). From equation (25) it follows that m×H(m) ∈ L2(R+; L2(Ω)) and
then m×(m×H(m)) is well defined in the same space. Next, m×∂tm ∈ L2(R+; L2(Ω))
and then m×(m×∂tm) belongs to the same space. Finally since we have |m(t, x)|2 = 1
then ∂tm = −m × (m × ∂tm). Consequently from equation DLL (25), m satisfies in
L2(R+; L2(Ω)) the equation

∂tm = −νm× (m×H(m)). (27)

Remark 2.2 We conclude that at high damping the magnetization rotates more or
less directly towards the effective field direction without any precession.

3 The underdamped case

We discuss in this section the behaviour of the solutions of the LLG equations (4)
when α→ 0. We call gyromagnetic equation (GLL) the LL equations (1) where we set
α = 0.

Let (αn)n be a sequence of R+ such that αn → 0 when n → +∞. We denote by
(Mn, ϕn) a global weak solution of the LLG equations satisfying the energy inequality
(7). We have the estimates

Lemma 3.1 There exists C > 0, independent of n such that the sequence (Mn, ϕn)
satisfies the estimates

|Mn(t, x)|2 = 1 a.e

|∇Mn|L∞(R+;L2(Ω)) + |∇ϕn|L∞(R+;L2(R3)) ≤ C

√
αn|∂tM

n|L2(R+;L2(Ω)) ≤ C.

(28)
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We have also

Lemma 3.2 The sequence (Mn) is compact in L2
loc(R+; L2(Ω)).

Proof. From lemma 3.1, the sequence (Mn) is uniformly bounded in L∞(R+; H 1(Ω))
and αn∂tM

n → 0 strongly in L2(R+; L2(Ω)). Then Mn × αn∂tM
n → 0 strongly in

L2(R+; L2(Ω)). Moreover, Mn × H(Mn) is uniformly bounded in L∞(R+; H−1(Ω)).
Here, we used the weak form Mn × ∆Mn = ∇ · (Mn × ∇Mn). Hence, using the
LLG equations (4), ∂tM

n = Mn × αn∂tM
n + α2

nM
n × H(Mn) + Mn × H(Mn) we

deduce that ∂tM
n is uniformly bounded in

√
αnL

2(R+; L2(Ω))+α2
nL
∞(R+; H−1(Ω))+

L∞(R+; H−1(Ω)). Consequently, for T > 0 fixed, we deduce that ∂tM
n is uniformly

bounded in L2(0, T ; H−1(Ω)). Using the compactness of the embedding of H 1(Ω) into
L2(Ω) and Aubin’s compactness lemma, it follows that the sequence (Mn) is a compact
sequence in L2(0, T ; L2(Ω)).

Lemmas 3.1 and 3.2 imply the following convergence results

Lemma 3.3 There exists a subsequence still denoted (Mn, ϕn) such that

Mn ⇀M weakly− ? in L∞(R+; H 1(Ω))

∂tM
n ⇀ ∂tM weakly in L2(R+; H−1(Ω))

αn∂tM
n → 0 strongly in L2(R+; L2(Ω))

Mn →M strongly in L2
loc(R+; L2(Ω))

∇ϕn ⇀ ∇ϕ weakly− ? in L∞(R+; L2(R3)).

(29)

Moreover M satisfies the saturation condition (6).

Now, we are able to pass to the limit in the weak formulation of the LLG equations



−
∫

Q
Mn · ∂tg dxdt+

∫
Ω
Mo · g(0) dx =

√
αn

∫
Q
Mn ×

√
αn∂tM

n · g dxdt

+(1 + α2
n)

{∫
Q
Mn ×∇Mn · ∇g dxdt−

∫
Q
Mn ×∇ϕn · g dxdt

−
∫

Q
Mn ×∇Mψ(Mn) · g dxdt

}
.

(30)

We obtain the result

Theorem 3.1 Let (M,ϕ) be the limit of a subsequence of (Mn, ϕn). Then, (M,ϕ) is
a global weak solution of the gyromagnetic equations

∂tM = −M ×H(M) in R+ × Ω

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on ∂Ω

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3.

(31)

8



Moreover, M satisfies the saturation condition (6) and, for all t ≥ 0, the energy in-
equality

E(M(t)) ≤ E(Mo). (32)

Proof. Passing to the limit in the weak formulation (30) we deduce that M satisfies
the equation 

−
∫

Q
M · ∂tg dxdt+

∫
Ω
Mo · g(0) dx =∫

Q
M ×∇M · ∇g dxdt−

∫
Q
M ×∇ϕ · g dxdt

−
∫

Q
M ×∇Mψ(M) · g dxdt

(33)

where ϕ satisfies the stray field equation (2) associated toM . SinceM ∈ L∞(R+; H 1(Ω))
and ∂tM ∈ L2(R+; H−1(Ω)) then M ∈ C0([0, T ]; L2(Ω)) for all T > 0 fixed. It follows
that M(0) is well defined in L2(Ω). Integrating by part in the equation satisfied by
M we deduce that M satisfies the gyromagnetic equation (31) with the initial and
boundary condition. It remains to prove the energy inequality. The sequence Mn

satisfies (7) and then we have E(Mn(t)) ≤ E(Mo) for all t ≥ 0. Using the convexity of
the L2(0, T ; L2(Ω))-norm and the strong convergence of Mn, we get the wished result.
This complete the proof of the theorem.

Remark 3.1 From equation (31) we can say that for lower values of α, the magnetic
damping vanishes and the precession continues for ever. In other words, the mag-
netization precesses several times around the effective field direction before it reach
equilibrium.

4 The DLL and GLL equations

We adress in this section the question of a direct proof of global weak solutions of the
GLL equation and the DLL equations. Let us first consider the DLL equations

∂tM = −νM × (M ×H(M)) in R+ × Ω

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on R+ × ∂Ω

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3

(34)

where Mo ∈ H 1(Ω), |Mo(x)|2 = 1 a.e and for simplicity H(M) = A∆M +∇ϕ. Since
the weak solutions satisfy the saturation condition |M(t, x)|2 = 1 a.e then M satisfies
formally

M × ∂tM = −νM × (M · H(M)M −H(M)) = νM ×H(M)

that is
M × ∂tM = νM ×H(M).
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We are interested in the global weak solution of the following weak form of the DLL
equations 

M × ∂tM = νM ×H(M) in R+ × Ω

M(0) = Mo in Ω, M × (A∇ · n)M = 0 on R+ × ∂Ω

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3

(35)

We will say thatM is a global weak solution of the DLL equation ifM satisfies the satu-
ration condition, M ∈ L∞(R+; H 1(Ω)), ∂tM ∈ L2(R+; L2(Ω)), ∇ϕ ∈ L∞(R+; L2(R3)),
has a finite energy and satisfies the weak formulation

∫
Q
∂tM ·M × φ dxdt+ νA

∫
Q
∇M ·M ×∇φ dxdt = ν

∫
Q
∇ϕ ·M × φ dxdt, (36)

for all test functions φ.

In this proof we shall employ the method proposed by Hamdache [7]. We introduce
the approximated solutions U ε of the semilinear heat equation. ∂tU

ε − νA∆U ε + λU ε = λU ε + ν∇ϕε − 1
ε
Γ(U ε)

U ε(0) = Mo in Ω, (A∇ · n)U ε = 0 in R+ × ∂Ω
(37)

where λ > 0 is fixed, Γ(U) = ∇(γ(|U |)) and γ(U) = |(1 + |U |2)1/2 − 21/2|2. We have
Γ(U) × U = 0. We set Rε(U) = λU + ν∇ϕ − 1

εΓ(|U |) for U ∈ L2(Ω) and ϕ is the
solution of the stray field equation associated with U . Thus, there exists Cε > 0 such
that for all U, V ∈ L2(Ω) we have

|Rε(U)−Rε(V )|L2(Ω) ≤ Cε|U − V |L2(Ω). (38)

Consequently, Rε is a Lipchitz perturbation in L2(Ω) of the operator (−A∆ + λ) with
Neumann boundary condition then, by the classical existence theory of solutions to
the semilinear heat equation we get the result see Mizohata [10], Pazy [12] for example

Lemma 4.1 Let Mo ∈ H 1(Ω) and T > 0 be fixed. Then there exists a global weak
solution U ε of (37) such that U ε ∈ C0([0, T ]; H 1(Ω)). Moreover if Mo ∈ H 2(Ω)
with (A∇ · n)Mo = 0 on R+ × ∂Ω that is Mo belongs to the domain of the Lapla-
cian operator with the Neumann boundary condition and |Mo(x)|2 = 1 a.e then U ε ∈
C0([0, T ]; H 2(Ω))∩C1(]0, T [; H 1(Ω)) and satisfies for all t ∈ [0, T ], the energy inequal-
ity

νE(U ε(t)) +
1
ε
|γ(|U ε(t)|)|L1(Ω) + 2

∫ t

0
|∂tU

ε(s)|2L2(Ω) ds ≤ νE(Mo) (39)

where E(U ε(t)) = A|∇U ε(t)|2L2(Ω) + |∇ϕε(t)|2L2(R3) for t ≥ 0. Notice that γ(|Mo|) = 0
and |U ε(t)|L2(Ω) ≤ CT for t ∈ [0, T ] where CT is independent of ε.
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Let (εn) be a sequence such that εn → 0 as n→∞. We denote by Un and ϕn the
solution associated to the sequence εn. We deduce the convergence results

Lemma 4.2 Assume Mo as in lemma 4.1. Then there exists a subsequence still de-
noted (Un, ϕn) such that


Un ⇀M weakly− ? in L∞(0, T ; H 1(Ω)), ∂tU

n ⇀ ∂tM weakly in L2(0, T ; L2(Ω))

Un →M strongly in L2(0, T ; L2(Ω)), γ(|Un|) → 0 strongly in L∞(0, T ; L1(Ω))

|M(t, x)|2 = 1 a.e, ∇ϕn ⇀ ∇ϕ weakly− ? in L∞(0, T ; L2(R3)).
(40)

We are able to prove the global existence of weak solutions to DLL equations. We
have the result

Theorem 4.1 Let Mo ∈ H 1(Ω) satisfying the saturation condition |Mo(x)|2 = 1 a.e.
Then there exists a global weak solution (M,ϕ) to the DLL equation (35) with finite
energy.

Proof. First, assume that Mo is more regular in order that the energy inequality
satisfied by Un holds. Then by lemma 4.2, let (M,ϕ) be the limit of a subsequence
of (Un, ϕn). Let φ be a regular test function, then multiplying (37) by Un × φ and
integrate by parts we get the weak formulation (observes that Γn(Un) · Un × φ = 0)

∫
Q
∂tU

n · Un × φ dxdt+ νA

∫
Q
∇Un · Un ×∇φ dxdt = ν

∫
Q
∇ϕn · Un × φ dxdt (41)

we pass to the limit by using the convergences stated in lemma 4.2 to get

∫
Q
∂tM ·M × φ dxdt+ νA

∫
Q
∇M ·M ×∇φ dxdt = ν

∫
Q
∇ϕ ·M × φ dxdt (42)

which shows that M satisfies in the sense of distributions the equation

M × ∂tM = ν(∇ · (M ×A∇M) +M ×∇ϕ)

and the Neumann boundary condition

M × (A∇ · n)M = 0.

Moreover M satisfies the saturation condition |M(t, x)|2 = 1 a.e and we have M ∈
L∞(0, T ; H 1(Ω)), ∇ϕ ∈ L∞(0, T ; L2(R3)) and ∂tM ∈ L2(0, T ; L2(Ω)). The initial
condition is obtained as follows. We have

|Un(0)−M(0)|2L2(Ω) ≤ 2
∫ t

0
|Un(s)−M(s)|L2(Ω)|∂tU

n(s)− ∂tM(s)|L2(Ω) ds

+|Un(t)−M(t)|2L2(Ω)

(43)
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which implies the estimate

|Un(0)−M(0)|2L2(Ω) ≤ 2TC|Un −M |L2(0,T ;L2(Ω)) + |Un −M |2L2(0,T ;L2(Ω)).

Using the strong convergence of Un to M in L2(0, T ; L2(Ω)) and Un(0) = Mo we
deduce that M satisfies the initial condition M(0) = Mo in L2(Ω). Hence the theorem
is proved for regular initial data. Now let Mo satisfying the hypothesis of the theorem.
Let Mp

o be a regular sequence such that Mp
o →Mo in H 1(Ω). For ε fixed, let Up be the

solution of the problem (37) satisfying the energy inequality (39). Since operator Rε is
Lipchitz then (Up)p is a Cauchy sequence in the space defined by the energy inequality
(39). Setting U ε the strong limit of Up in that space we deduce that U ε is a global
solution of the approximated problem associated to the initial data Mo satisfying the
energy inequality (39). The remainder of the proof follows.

Now we discuss the global existence of weak solutions to GLL equations (31) in a
particular case; see Moser [11] for the LL equation for example. For weak solutions
satisfying the saturation condition we have ∂tM = −M×(M×∂tM) and the equations
may be written as M × (M × ∂tM − H(M)) = 0. This equation is degenerated with
respect to ∂tM . We shall discuss only the simplest case where the exhange constant
A = 0 given by 

∂tM = −M ×∇ϕ in R+ × Ω

M(0) = Mo in Ω

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3

(44)

where Mo ∈ L2(Ω) with |Mo(x)|2 = 1 a.e. For a discussion on the case A 6= 0 without
any coupling with the stray field equation, we refer to [15]. The map M ∈ L2(Ω) →
∇ϕ ∈ L2(Ω) is linear and continuous and satisfies the estimate |∇ϕ|L2(R3) ≤ |M |L2(Ω).

To solve this equation we introduce the following iterative scheme. Let M0 ∈
W 1,∞(0, T ;L2(Ω)) such that |M0(t, x)|2 = 1 a.e and consider the sequence (Mn)n

defined for n ≥ 0 by 
∂tM

n+1 = −Mn+1 ×∇ϕn in R+ × Ω

Mn+1(0) = Mo in Ω

∇ · (∇ϕn + χ(Ω)Mn) = 0 in R+ × R3.

(45)

For given Mn ∈W 1,∞(0, T ;L2(Ω)) Mn+1 satisfies a linear system of differential equa-
tions. Hence Mn+1 exists in W 1,∞(0, T ;L2(Ω)) and satisfies the saturation condition
|Mn+1(t, x)|2 = 1 for a.e. Moreover we have

∂t(Mn+1 −Mn) = −(Mn+1 −Mn)×∇ϕn −Mn × (∇ϕn −∇ϕn−1)

which implies the estimate

1
2
d

dt
|Mn+1(t)−Mn(t)|2L2(Ω) ≤ |Mn(t)−Mn−1(t)|L2(Ω)|Mn+1(t)−Mn(t)|L2(Ω) (46)
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since we have |Mn(t, x)|2 = 1 a.e and |∇ϕn(t)−∇ϕn−1(t)|L2(Ω) ≤ |Mn(t)−Mn−1(t)|L2(Ω).
Setting V n(t) = exp(−t)|Mn(t)−Mn−1(t)|L2(Ω) we get V n+1(t) ≤

∫ t
0 V

n(s) ds and fi-
nally, V n+1(t) ≤ tn

n! |V
1|L∞(0,T ). Using this estimate we deduce that for all n and p we

have

|V n+p(t)− V n(t)| ≤ |V 1|L∞(0,T )
Tn

n!
(47)

where we used n!
(n+p−1)! ≤

1
(n+1)p if p ≥ 2 and

∑p−1
k=1

T k

(n+1)k ≤ 1
1− T

n+1

≤ 1 for n large.

Finally we obtain that (V n)n is a Cauchy sequence in L2(0, T ) and then Mn → M
strongly in L2(0, T ; L2(Ω)). We proved the result

Theorem 4.2 Let Mo ∈ L2(Ω) be such that |Mo(x)|2 = 1 a.e. Then for all T > 0
fixed there exists a global weak solution M ∈ W 1,∞(0, T ; L2(Ω)) of the problem (44)
satisfying the saturation condition.

Remark 4.1 The existence proof of weak solutions to the general GLL equation is not
proved in this work.

5 Concluding remarks

Understanding magnetization damping in magnetic films is of paramount importance,
both from a fundamental scientific and from a practical point of view. As has been
presented in this paper we have taken a significant step towards understanding mag-
netization damping and have shown that the dynamic character of the ferromagnetic
structure is greatly affected by the material damping factor. This means also that the
switching strongly depends on the damping parameter. For lower values of α, the rota-
tion of magnetic moment is almost entirely precessional. Note that at high damping the
magnetization rotates more or less directly towards the effective field direction. Study
of α in bulk metallic ferromagnets has drawn a significant interest but the damping
mechanism in bulk ferromagnets is not yet fully understood. Recent interest on the
basic physics community in this topic is motivated by the following fact. Viewing the
magnetization damping as a function of the thickness of samples reveals that for thick
samples the damping parameter remains constant, equal to the “bulk” value. However,
as the film thickness decreases the damping parameter increases rapidly [9]. It would
be very interesting to take into account the dependence of α on film thickness. The
results of this paper will stimulate further interest in the magnetic dynamics of thin
film magnetics especially in connection with the aspect above.
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