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Abstract

We discuss the behaviour of a model of ferroelectric material represented by a thin cylinder
with small thickness v > 0. This model is described by a couple of Maxwell equations satis-
fied by the electromagnetic field (H, E) and electric polarization field P. We give a complete
description of the limit model as v — 0 in the linear case when (E, H) and P satisfy a Silver-
Miiller type boundary condition. When the potential is nonlinear and P satisfies the boundary
condition P x n = 0 we prove the strong convergence of the polarization field which allows to
give the description of the behaviour of the nonlinear problem when the thickness v tends to
0. We observe that the behaviour is very sensitive to the choice of the boundary conditions
satisfied by the different fields.
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1 Introduction

We shall discuss the model equations of ferroelectric materials introduced by Greenberg et al.
see [8] and also [7]. The characteristic feature of ferroelectric cristal is the appearance of a
spontaneous electric dipole. It can be reversed, with no net change in magnitude, by an applied
electric field. The current density j of the ferroelectric domain (2 is driven by the difference
between the electric equilibrium field E(P) and the electric field E where P is the spontaneous
electric polarization). If one denotes by m the internal magnetic field then the model equations
introduced in [8] takes the form in Rt x Q

(P +0 j)=curlm
w(Oym + 6a m) = —curl P (1)
8ij +0a j =0(E(P) — E).

This set of equations is completed by initial conditions P(0) = P°, m(0) = m?, j(0) = j° and
boundary conditions which will be discussed later. Eliminating the variables j and m we get
the following Maxwell equation satisfied by P

2P + (ep) *curl®P + ad, P = —0(E(P) — E) (2)



where a = fa. We set curl?P = curl (curl P). The parameters € > 0 and p > 0 are the
permititivity and the magnetic permeabilty of the vaccum and the others ones are some physical
constants. The equilibrium electric field is given by E(P) = ¢/(|P|?)P where ¢ is a two wells
potential satisfying some hypotheses given later. The electric displacement D is linked to the
electric and polarization fields E and P by the law D = €(E + P). Hence the electromagnetic
field (H, E) satisfies in RT x Q the Maxwell equations

wotH —curl E =0, €0y(E+ P)+curl H +0FE =0 (3)

where o > 0 is the constant conductivity of Q. The initial contitions are E(0) = E°, H(0) = H°.
The boundary conditions satisfied by E and P take an important place in the characterization
of the thin limit behaviour of the model. If m satisfies the boundary condition m x n = 0 on 0f2
where n is the unit outward normal to €2, one deduces by using (1) that P satisfies the boundary
condition

curl P x n = 0. (4)

This condition was proposed in [8]. If more generally m satisfies a Silver-Miiller type boundary
condition like n x m+ p n x (P xn) = 0 with p > 0 is a function defined on 92 then,we obtain
directly from (1) the boundary condition for P

curl P x n+ ppun x (0 + a)P x n) = 0. (5)

Formally, we have the Green formula

Jo curl>P - 9, Pdx = %%(fg |curl P|2dx+

6
+ pa foq p|P x nfPda) + p [0 pl0 P x nf?da (6)

This boundary condition will be used in our work only for the linear case when ¢ is given by
#(|P|?) = k|P|?/2 . For the nonlinear case, we will use the boundary condition

Pxn=0 (7)

instead of (5). It can be deduced from the boundary condition curlm x n = 65 x n. The reason
we use (7) is that we can prove the H!-regularity of the polarization field P which allow to

control the nonlinear term E(P). We refer to the work of [1] where the boundary condition (5)
is considered. For the linear as well as the nonlinear case we use for the electric field E, the
Silver-Miiller boundary condition

Hxn+p8nx(Exn)=0, Pxn=0 (8)

where § > 0 is some function defined on 02. We have formally the Green formula

/(curlH-E—curlE-H)dac: H><n~Eda:6/ |E x n|?da. (9)
Q a0

o0

The equilibrium electric field E(P) is given by E(P) = ¢/(|P|?)P where ¢ : R — R is a 2
potential function, defined in [8], such that ¢(0) = 0, r3 > 0 with ¢(r3) < 0 is the location of
the unique minimum of ¢(r?) and ¢(r?) > 0 for 72 > 7?2 and ¢ satisfies the following hypotheses

¢(s) ~ Cos for s — +00, |¢'(s)| < C1, 6P (s) < Cy for s > 0. (10)

where Cp,C7; > 0 and C3 > 0 are constants depending only of ¢. It follows that there exists
C, > 0 depending only of C and C such that



(¢ (s%))'] < C. for s > 0. (11)
Using (11) we get

|A¢'(JA]?) — B¢/(|BJ*)| < C.|A - BJ. (12)
for all A, B € R3.

Let us precise the models we shall discuss. To simplify the presentation we equate to 1 all the
parameters appearing in the model except a > 0 and o to measure the size of the dissipation
process. Let v > 0 be fixed representing the thickness of the cylinder Q¥ = Q x (0,v) with
cross section  C R? assumed to be an open bounded and regular domain. We denote by n
the outward unit normal to Q”. The generic point € Q" is denoted by = = (Z,x3) where
7 = (z1,32) € Q and 0 < 25 < v. The electromagnetic field (H”, E¥) satisfies in Rt x Q¥ the
problem

O HY —curl EY =0, 0(E” + P")+ curl HY + cE¥ =0
HY(0) = H°, E*(0) = E° in Q¥ (13)
H” x n+ B%(xz3)n x (EY xn) =0in Rt x 9O

coupled to the polarization equation

92P" + cwrl2P” +a 8, P" + ¢/ (|PY|2)P¥ = B¥ in R x O
P¥(0) = P°, 9,P*(0) = P in Q¥ (14)
P" xn=0in Rt x 0Q".

For the linear case we have ¢/(|P|?) = k where k > 0 is a constant. The polarization P satisfies
the equation

D?PY 4 curl P + a 9, P” + kP” = E¥ in Rt x Q¥
PY(0) = P°, 8,P¥(0) = P' in Q" (15)
curl PY x n+ p¥(z3)n x ((0; + a)P” x n) =0 in Rt x 9O

where ¥ and p¥ are two functions depending of the variable x5 and the thickness parameter v.

Let O be an open, bounded and regular domain of R® or R2. We denote by L?(O) the
Lebesgues space (L?(0))? equipped with the usual norm denoted by |- | and the scalar product
(-5 +). The norm of the Sobolev space H!(Q) is denoted by |- |[1. Let H(curl,O) be the usual
Hilbert space used in the theory of Maxwell equations equipped with the norm |- |x. We also
use the Banach space LP(RT;L?(0)) for p > 1, p # 2 and the Hilbert space L*(R*;L%(0)) with
norms denoted respectively by || - ||, and || - ||

The existence and regularity of solutions (H", E¥, P¥) to problem (13)-(14) as well as to (13)-
(15) has been proved in [2] and [9] in the nonlinear case with the boundary conditions E¥ xn = 0
and either curl P¥ xn = 0 or P¥ x n = 0. The Silver-Muller boundary condition satisfied by E"
and H" is usual in the existence theory of solutions to Maxwell equations. Following the lines of
the proof given in [2] we way prove the same results in the case of Silver-Miiller type boundary
conditions used in our problem (13)-(15). We have for the linear problem (13)-(15) the result,

Theorem 1.1 (The linear case.) Let p¥,5” € L*™(0,v) be fized such that p¥(z3) > 0 and
BY(x3) > 0 a.e. We assume that the initial data are such that



{ H° E° P' € L2(Q¥), P° e H(curl, Q") 16)

PO x n € L2(0Q").
Then, there exists a unique weak solution (HY, EY, P") to problem (13)-(15) such that HY ,E
€ L®(RT;L%(Q")) and P¥ € L>®(R*;H(curl,Q")). The tangential traces H” x n, E” x n,
;P x n belong to L*(RT;L2(99Q")) and P x n € L= (R*;1L2(0Q")). Moreover for all t > 0,
we have the energy inequality

E¥(t) +2 [ (alg,P* (5)[? + o E¥ (s)[>+

17
[VBYE"” x n|? + |\/p" 0, P"(s) x n|?)ds < ¥ (17)
where the energy at the time t is defined by
EV(t) = |0y PY (1)|? + k|PY (t)|* + |curl P (¢)]? (18)
+ alVp" P (t) x nf? + |[HY (1) + |E” (1)
and the initial energy E§ is given by
& = |P* + k|P°)? + |curl P°)? + a|/p"PY x n|* + |H°|* + |EY)2. (19)

For the nonlinear problem (13)-(14) we have

Theorem 1.2 (The nonlinear case) We assume that ¢ satisfies hypotheses (10) and the
initial data are such that

H° E° P! ¢ L2(Q"), P° € H(curl, Q") (20)

Then, there exists a unique weak solution (HY, EY, P") to problem (13)-(14) such that HY ,E
€ L®(RT;L2(QY)) and P¥ € L= (R™; H(curl,Q")). The tangential traces H xn, E¥ xn belong
to L?(R*;1L2(02)). Moreover for all t > 0, we have the energy inequality

E7(t) + 2/(:(a3tp”(5)2 +alEY(s)]* + [V/BYEY x nf*)ds < & (21)
where the energy at the time t is defined by
E¥(t) = o P" (t)* + /Q S(|PY(1)*)dz + |eurl PY(£)* + [H” (t)]* + | B (1) (22)
and the initial energy E§ is given by
& =P+ i o(|P°1?)dx + |eurl P°)? + |HO|? + |E°P. (23)
Using hypotheses (10)- (11) satisfied by ¢, we get for all ¢ > 0
[P (1) < C(/Qy S(|P”(1)[*)dz +12"]) (24)

where C' > 0 depends only of ¢ and, |Q”| = v|Q)| is the Lebesgue measure of Q2. Finally we
have the regularity result



Lemma 1.1 (Regularity) Let (H”, E”, P¥) be a weak solution of either problem (13)-(14) or
problem (13)-(15). If in both cases (H°, E°, P°, P') satisfies

H° E° P! curl P’ € H(curl,Q"), P° x n € L?(00"), (25)

and moreover for the linear case we have P' x n € L?(9Q) then O;H", O, E¥ and 0?PV €
L (R*;1L2(QY)). Further, H”, E¥ belong to L>(R™; H(curl, Q")) and curl P*, 9, P" € L>(R™; H(curl,Q")).

The following regularity result is devoted to the nonlinear problem (13)-(14).

Proposition 1.1 (H!-regularity) We assume that the open and bounded domain Q is convez,
the data (H°, E°, P°) are independent of the variable x3 satisfying (20) with (Ti;HO, (i;EO,
(Ti;PO, div P! are in LQ(Q). Then, for all fixed T > 0 there exists Cp > 0 such that for all
v > 0 the solution (H",EY, P") of problem (13)-(14) satisties for all T > 0, the uniform bound

1Pl o, ooy + v B2+ [Jdiv E¥|2 < vCr (26)

Proof. Let (HY,EY,P") associated with the initial data satisfying the hypotheses stated in
the proposition. The initial energy &£} of the system satisfies

&Y = 0(®). (27)

Using the estimate |P¥(¢)[* < C( [, ¢(|P”(t)|*)dz 4 |Q”|) and the energy inequality we deduce
that |PY(t)|? + [curl P¥(¢)|> = O(v), |H"(t)|? + |E¥(t)|?> = O(v). To prove the proposition, we
follow the lines of the proof given in [2] and [9] and we use a classical result of the regularity of
Maxwell fields [3]. For v fixed, let (H€, E€, P€) be the solution of the problem (13)-(14) when
we replace ¢'(|P|?)P by ¢'(|pe x P|*)(pe x P) where p. is a nonnegative regularizing sequence
with unit mass in R3. We shall prove the estimate (26) for P¢ (indeed P€) then we deduce
the whished result by letting € — 0. Of course (H¢, E€, P¢) satisfies the same energy estimate
as (H",E"”,P"). Moreover the initial energy estimate satisfies also &§ = O(v) and we have
|p¢ x P<(t)|*> = O(v) uniformly with respect e. Let us consider the compatibility equations
associated with the regularized problem of (13)-(14). Setting u¢ = div H¢, v¢ = div E€ and
w® = div P we get
atue S 0,

O (v +we) +ovc =0 (28)

2w + adyw® — v¢ = F*

with F< = div (¢/((p. % P**)(pe % P°)) = &' (|p.  PP)p # div P* + 26®)(|p, % PP)Y, (pe »
PE)(pe x Pf)(pe x Op P€). Setting W€ = (v, we, dw®) we get the equation

W + CW* = S(P°), W(0) =W, (29)
where Wy = (div E°, div P?, div P!) and

o 0 1 0
C=120 0 -1 |,SWP)=1]0 (30)
-1 0 a Fe

Notice that we have |[IW°| = O(v). Using the hypotheses (10)-(11), there exists C' > 0 which is
independent of v and € such that

[S(PE(1))] < CIVP(2)| (31)



for all ¢ > 0. Consequently W€ satisfies the estimate

WE@)* < ™ (IWol* + C/ [VP<(s)[*ds) (32)
0

where the constant ¢ > 0 and C > 0 depend only of ¢ (but not of v and €). Recall that we have
[Wol|? = v|[Wy|? 2@ Since Q¥ is a cylinder with convex cross section, then using the estimate

given in lemma 2.17 of [3] we get

|V P(t)|? < |curl PE(¢)|? + |div P<(t)|? (33)
for all t > 0. Let T > 0 be fixed. For t € [0,7], we deduce (by using |we(t)|? < [W€¢(t)[*) the

estimate

|Wet)|? <vCr + Ceét/o (|curl PE(s)|? + [W*(s)|?)ds (34)

where C7 > 0 is independent of v and e. Finally the estimate of ||curl P¢||> < vC implies the
inequality |W€¢(t)|*> < vCr + Cr fot |W€(s)|?ds and finally we obtain

|VPe(t)? + |div PE(t)[* + |div 0, P*(t)|* < vCrp. (35)

Since P¢ — P¥ strongly in L= (R*;1L2(Q)) as € — 0 see [2], [9] then, using the convexity of the
L?-norm we deduce that (E, P") satisfies the estimate |V P¥ (¢)|2+|div E” (t)|?+|div 0, P¥ (t)|* <
vCr and |PY(t)|? = O(v) on [0, T]. This concludes the proof of the proposition.

The content of this work is the following. In the next section we introduce the change
of variable and the new problems (linear and nonlinear) setted in the fixed cylinder Q! with
thickness 1 which is denoted 2 in the sequel. We prove uniform bounds with respect to the
parameter v for the scaled solution (h”,e”,p”) of the new problems. In section 3, we discuss
the behaviour of the solution of the linear problem and section 5, we give the behaviour of the
solutions of the nonlinear problem.

2 Uniform bounds for the scaled solutions

In the sequel 2 denotes the cylinder with thickness v = 1. Let (u1,us, us) be the canonical basis
of R3. The generic point z of Q¥ is denoted by = = (Z,z3) € { x (0,v) and T = (z1,z,). For a
vector valued function we set f = (jA’, f3) with f: (f1, f2) and f3 = f-us. The partial derivative
of a function g with respect to the variable x; is denoted d;g. The curl operator of a vector
valued function f in R? or in R? is defined by curl f = (92 f3 — 03 f2, 03 f1 — O1f3, 01 f2 — D2 f1) or

curl f: O fa — D2 f1 = div (f x u3z) and the curl of a scalar function is defined by Curl (f - us3) =
(02 f3,—01 f3,0). The div operator of a vector valued function in R3 or in R? is defined by

div f = 81 f1+ 0o fs + 03 f3 or by div f O1f1 + 02 f2. Finally the gradlent operator is written
as V=V + Oz,u3. Notice that curl f is a vector of R® and curl f uz = curl f Moreover we
have f x n € R® and (f x 1) - u 5= fxn=finy— fani € R.

Since this work concerns the reduction of the dimension of problems (13)-(15) and (13)-(14)
then we assume that the initial data H?, E°, P°, P! are independent of the variable z5. Hence,
for the linear problem we assume that

H° = H°(%), E° = E°(@), P° = P"(&), P* = P'(%)
PO curl P°, P, H? E° € H(curl, Q) (36)
PYx 7, P! xnel2(0)

6



Notice for example that we have curl P® = Curl P{ + (cu/r\l P%)ug. The generic point z of  is
denoted by x = (7,2) with 0 < z < 1. Weset Q = RT xQ, Q = R" x Q and for T' > 0 fixed we
set Qr = Q x (0,7) and Qr = Q x (0, 7). We introduce the change of variable z = x3/v. For a
vector valued function F¥(Z, x3) defined in Q¥ we introduce the scaled function f¥(Z, z) defined
in Q associated with F¥ by setting F*(Z,x3) = f¥(Z,x3/v). Notice that we have VF" = V f
and O3 F" = %82 f¥. More generally we get
curl F” = =20, (f” x ug) + Curl (f* - uz) + (@f”)ug
div F¥ = div f* + 1o, f1.
In the sequel we use the notations
curl, f = (6",01 f5 — 02 f7)
0" = (Oof — LO-f5, LO-fY — Ouf§) (38)
div, f* = div f* + Lo, f1.
Notice that 6% - (01 f§ — 02 f7 )us = 0.
Let (HY, E”, P") be the global solution of either problem (13)-(15) or (13)-(14) associated
with the initial data (H?, E°, P°, P1) satisfying the hypotheses (20)-(36). Let h¥(t,7,2) =

HY(t,z,vz), e’ (t,2,z) = EY(t,T,vz) and p¥(t, %, z) = P¥(t,Z,vz) be the scaled solution defined
in RT x  and associated with (H”, E¥, P").

2.1 The linear problem
The scaled solution (h”,e”,p”) satisfies in R x Q the problem
OhY —curl ,e¥ =0in RT x Q
(e +p”) +curl ,h¥ +0e¥ =0 in RT x Q
h¥(0) = H°(Z), e”(0) = E°(Z) in
R xn+B"n x (e” xn) =0in RT x 9Q
coupled to the polarization equation
O2p¥ + curl 2p¥ +a dp” + k p¥ =e” in RT x Q
p(0) = PO(@), 8 (0) = P1(3) in © (40)
curl ,p” x n+4 pn x ((0y + a)p” x n) =0 in RT x 9.

The energy inequality becomes

t
£ (t) +/ (alowp” (s)* + ale” (s)]* + [/ Bve” x nf? + [Vp 0" (s) x n|*)ds < & (41)
0
where the energy at the time ¢ is given by

EV(t) = |0w” (O)* + klp” (£ + [curl ,p” (¢)|?
+ aly/p"p" () x nf* + [h" () + [e” (1)

and the initial energy &£}, by using hypotheses (20)-(36), becomes

(42)



&Y = |PY2 + k|P°[2 4 |curl P°|2 + |Curl PY|?
+ aly/p"P? x n|* + [H°|? + |E°|2.

Notice that the initial energy &) is uniformly bounded with respect to the parameter v if p* is
bounded uniformly in L°(0,1).

(43)

We assume that the functions 5% and p” are given by

BU(z)=B>0if 0<z<1, °(0) =vf >0, f(1) =vp >0 i
p'(z)=p=0if 0<z<1, p(0) =vpy >0, p"(1) =vp1 >0 )

Then, the energy inequality implies the following uniform bounds

Lemma 2.1 Under hypotheses (20)-(36) and (44) there exists C' > 0 which is independent of v
such that the solution (h,e”,p") of problem (39)-(40) satisfies the nestimates

[R7113 + lle”]1% + 17112 + 1le”[]? + [|ow” | < C (45)
100" |2 + 102pY — 015 |12, + 16712, < C
moreover we have
2
{ o rerna@y T X A e 0ae o) < C (46)
12" > us))2=0 1HL2 ®12@) = OV 17 Az 2 gt 22 00 0,11 < C
and
||(p X US)\Z 0 1||LOC(R+ ]LQ(Q)) + Hp X n||L°°(]R+ LQ(Z’)QX(O 1)) S C (47)
||(atp X u3)|22071||L2(R+;L2(Q)) + ||8tp X nHLZ(RJr;LZ(BQx(O,l))) <C

Notice that from the boundary condition satisfied by p” and the previous estimates we deduce
that
|[(curl ,p” X u3)|,= 01|| (RHL2@®)) < Cv. (48)

We assume that the initial data are as in lemma 1.1. We get

Lemma 2.2 Under hypotheses (25) the solution has a time regularity property (see theorem 1)
which implies the following estimates

Oh )% + ||0ce” |5, + [102pY |12, < C
{|t 15 + 110ee” |15 + 1107l (49)

leurl ¥ |12, + [[eurl e[ |2, + [lewrl 27|12 + [Jeurl ,ap* |12, < C

where C' is independent of v.

2.2 The nonlinear problem

The scaled solution (h”,e”,p”) satisfies in R x 2 the problem (39) coupled to the polarization
equation
2p¥ + curl 2p” + a Byp” + ¢ (Jp*|2)p” = €” in R x Q
p"(0) = P°(3), d,p”(0) = PX(z) in Q (50)
p’ xn=0in RT x 9Q.

The energy inequality becomes



t

&) +2 [ (o (o) +ole” (s) + [V/Fe” xnf? < 51
0
where the energy at the time t is given by
EV(t) = 0" (D) + /Q ¢(|p” (1) |*)dz + [eurl ,p” (1)[* + [h” (8)[* + [ (t)]? (52)
and the initial energy &£, by using hypotheses (20)-(36), becomes
&Y =|PY? +/ O(|P°?)dz + |curl P°)? + |Curl PY)2 + |HOJ? + | E°|2. (53)
Q

Notice that the initial energy &¥ is uniformly bounded if 8% is bounded uniformly in L°°(0,1).
From the energy inequality we deduce the following uniform bounds

Lemma 2.3 If 3" is given as in (44) then, under hypotheses (20)-(36), there exists C > 0 which
is independent of v such that the solution (h¥,e”,p¥) of problem (39)-(50) satisfies the estimates

1P7115 + e 13 + 1lp¥ 113 + [le”I* + |0 |1 < C (54)
100" |36 + 1102pY — O1p8 |5, + 10712, < C
moreover we have the bounds
v 2 =112
{ 10" X us) =01l 72 s w2 @y + 1€ X Plla s 2000, S € (55)
v 2 N =112
H(h X u?’)‘ZZO’lHLQ(R‘*;LQ(ﬁ)) < CV? ||h’ X nHLQ(R‘*‘;LQ(@ﬁX(O,I))) < C.
Assuming the initial data to be more regular as in lemma 1.1 then we have
Lemma 2.4 Under hypotheses (25) the solution of (39)-(50) satisfies estimates
10eh” (1%, + [10ve” |13, + 107p” I3, < € (56)
[lewrl, 5|3, + [leurl e ||, + llewl3p ||, + llewl, dpp” |3, < C

where C' is independent of v.

2.3 Weak convergences

For a subsequence still denoted (h”,e”,p”), where (h”,e”,p") is either the solution of the linear
problem (39)-(40) or the nonlinear problem (39)-(50), the following convergences hold.

(h,e”,p") — (h,e,p) in L (R*;L2(Q)) weakly — x,
(e”,0ip”) = (e,0rp) in L*(R*;1L*(Q)) weakly, (57)
Op” — Oyp in L=®(RT;1L2(Q)) weakly —

The estimate in L (R*;1L2(Q)) of the curl, of the solution gives the weak-x convergences

curl p¥ — curlp, 0¥ — 0
{ 7 P (58)

— e —
curl h¥ — curlh, curle” — curle

where 6 € L (R*;1L%(Q)) is some vector valued function. Since we have curl h, curle, curlp €

L>(RT; L2(R2)) we deduce that the traces hx7, ex7i and px7 are well defined in L (R+; H=1/2(9Qx

(0,1)). Hence the weak-+ convergence of that traces holds at least in L (R+; H=Y/2(dx (0,1)).



Now let us consider the bounds of the traces of €”, h¥ and p”. First of all, using estimate
(49) we deduce that h”, e”, p* and d;p” are uniformly bounded in W>°(R*;1L%(Q2)). Hence, h,
e, p and O;p belong to W (R*;L2(€)). Finally we get

Lemma 2.5 (Initial data) The traces of h, e, p and O;p at t = 0 make sense in L2() and
we have

h(0) = H, e(0) = E°, p(0) = P°, 9;p(0) = P! (59)
Next, from (46) we get the convergences

Lemma 2.6 (Convergence of the traces) The traces of the solutions (h¥,e") of either (39)-
(40) or (39)-(50) satisfy
(€” X uz)|.=0,1 — Ao,1 N LQ(R"‘;]LQ(Q)) weak

~ 60
(h” X ug)|2=0,1 — 0 in L*(RT;1L2(Q)) strong. (60)

The tangential traces of the polarization p¥ for the linear problem (39)-(40) satisfy

(P X ug)|z=0,1 — Bo,1 n L®(RT;1L2(Q)) weak — *,
(09" % us)|zzo,1 — 0Boy in L2(R*;L2(Q)) weak (61)
(curl ,p¥ X u3)|;—01 — 0 in L?OC(R+;L2(§AZ)) strong

where Ag, A1, By and By are some vector valued functions belonging to the spaces defined by
the weak convergences.

Before we pass to the limit in problem (39)-(40) and (39)-(50) let us give the remark

Remark 2.1 Assume that the function ¥ and p” are independent of v say ¥ = > 0 and
p¥ = p >0 then the energy inequality (41) and (51) imply, in particular, the following bounds

{ ||(pl/ X u3)‘2:0’1||i°°(]R+;]L2(§)) + H(atpy X u3)\z:0,1||iz(R+;L2(§)) < Cv (62)

1 % )l ey < O
and then A071 = BO71 =0.

We shall use for the solution (h”,e”,p") of (39)-(40) as well as for (39)-(50) the following
convergence results. We dedote by v” one of the fields h”, e¥, p” or . : rot,p".

Proposition 2.1 Let v” be a uniformly bounded sequence in L (RT;H(curl,,Q) such that
the tangential trace v¥ X n is uniformly bounded in LP(R*;1L%(09Q)) with p = co or p = 2.
Then there exists a subsequence such that vV — u, curlv” — curlv weakly-x in L>=°(RT;L%(Q)),
DY X N — T X N = ving — vang weakly in LP(RT;H ~Y/2(0Q x (0,1)) satisfying the properties

¥ is independent of z, © € L>®(R*; H(rot,Q))

(v X ug) =01 — (v X ug) 20,1 weakly in LP(R*;1L2(Q)) (63)

fol(U” X A) - ugdz — (v X R) - ug weakly in LP(RT;1L2(00))

where (v X M) - ug = ving — veny (which is independent of z).
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We use the following Green formula

Jo curlyv” - pdwdt = [, v” - curlyodwdt — [o. ) 6. 0.0y (V7 X 1) - pdadzdt

v ~ » . (64)
f% f@(v X U3)|2=1 * P|z=1dTdl + %f@(v X U3)|2=0 * P|z—0dTdl

for all test function ¢ € D(RT x Q x [0,1]). Choosing ¢ = (ve1,ves,0) with ¢; € D(RT x

—

Q x (0,1)) for j = 1,2. We have curl ,o = —0,(¢p x uz) + vCurl 3 + v(curl P)us. Passing to
the limit in the Green formula we obtain fQ(—vlangQ + v20,p1)dxdt = 0 and then 9,0 = 0 in

the sense of distributions. Next let V; € LP(R*:1L2(Q)) be the weak limit of (v” x u3)|.—; for
j = 1,2. Next, we choose in the Green formula ¢ = (vzp1(t,Z), vzea(t,T),0) and pass to the
limit we get f@(*’UlQDQ + voipy )dTdt — f@ V1 - pdzdt = 0 which implies that V1 = u x u3. Finally
with the test function ¢ = (v(1 — 2)p1(t,Z), v(1 — 2)p2(t,Z),0) we get f@(vlch — vap1)dTdt —
f@ Vo - @dZdt = 0 and then Vo = —v X us. Let g € LP(R*; L2(RT x 80 x (0,1)) be the weak
limit of the sequence (v” x n) - uz. We choose in the Green formula ¢ = (0,0, ¢3(¢, 7)) with
3 € D(RT x ﬁ) We have curl ,p = Curlgs. Then passing to the limit in the Green formula
we get f@(@lvg — Oov1)p3dTdt = f@(vlaggog — 21 p3)dTdt — [py . o5 fol gdzpsdadt. Since we
have v € L>®(R™; H((;l—ﬁ , SA)) then we deduce that fol gdz = ving — vang.

Remark 2.2 Notice (/ﬁ,é\, D) is independent of z. For v¥ = e¥ we have e X ug = Ag = Ay, for

v¥ = hY we have h x uz = 0 and then h=0. Forv’ = p¥ we have p X ug = By = B1. Moreover
we have curl ,p”, curl , (curl ,p*) € L= (R*;1L2(Q)) and (curl ,p” x n),—91 = O(v). Let 6 be the

weak-x limit of ¥ defined by curl ,p” = 0" + (;r\lﬁ”ug then 0 is independent of z and 0 = 0.

Proposition 2.2 Let v¥ be a uniformly bounded sequence in L>®°(R*;H(curl,,Q)) satisfying
v/ xn =0 onR"Y x 00. Then 0 satisfies fol 0dz = fol Curlvsdz in RT x Q and fol vzdz =0 on
R+ x 9Q. Moreover we have v = 0

Proof. Since we have curl ,v” = 0¥ + curl v”us, the Green formula gives

Jo 0" Pdwdt + [, (0105 — DovY)psdzdt = [, vY(Datps — 10.9)dxdt

65
+ Jo v5(50:01 — Ovps)dadt + [, v§ (0102 — Bapr)dudt (95)

for all test function ¢ € D(R' x Qx (0,1]). Passing to the limit we get with ¢ = ($(¢, %), 0) we
get

fQ 0 - (/ﬁdﬂ?dt = fQ ’Ug(algﬁg - 6'2@1)dxdt (66)
integrating by parts we get fQ 0-pdzdt = fQ Curl vs-pdxdt— [, % 80% (0,1) v3(n1pa—nopr )dadzdt.
It follows that fol Curlvgdz = fol fdz which belongs to L®(RT;1L2(Q)). The trace of vs on
90 makes sense in L>(RT; H~1/2(9)) and we have fol vsdz = 0 on R x 09). Next writ-
ting rot,v” = —19,(v” x u3) + Curlvf + curl9”us and using the Green formulation with
v = vy we get O(v) = fQ(—vgaquz + v§0.1)dxdt + O(v). Passing to the limit we get
fQ(—ulazwg + 020,41 )dzdt = 0. Tt follows that ¥ is independent of the variable z and us-

ing the previous proposition and the boundary condition (v” x n)|,—o; = 0 we deduce that
v =0.
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3 Convergence of the linear problem
We shall prove the following result.

Theorem 3.1 Let (H°, E°, P°, PY) be initial data which are independent of the variable z and
satisfying the hypotheses (36). We assume that the functions Y, p¥ are as in lemma 2.1. Let
(h¥,e”,p¥) be the solution of problem (39)-(40) associated with the initial data (H°, E°, P°, P').
Then there exists a subsequence still denoted (h¥,e”,p¥) converging weakly-x in L>=(R*;1L2(Q))

to (h,e,p) which is independent of the variable z and h = 0. The weak star limit (h,e,p) is the
solution in R x Q of the problem

8,5}13 —c/uﬁéz 0, at(/e\‘i‘l/?\) —|—Curlh3 + (O'—Fﬁl +ﬂ0)/€\: 0

(0F + ads + K)p+ Curlewrlp+ (p1 + po)(8; +a)p = é -
e(0) = E°, p(0) = P°, 9:p(0) = p*, h3(0) = HY in Q,
hs = B(e1ns — eany), c/uﬁﬁz p(0; + a)(ping — pany) on RT x o0
and the system of o.d.e
{ Oi(es +p3) +oe3 =0, (02 4+ ady + k)ps = s (©8)
e3(0) = E3, ps3(0) = P5, 9p3(0) = P5 in Q.

Moreover, we have hy € L¥(RT; H(Q)), € € LOO(R"’;H(C/uH,ﬁ)), p € LR L%(Q)) and
curlp € L>=; HT(Q)).
Let (h¥,e”,p”) be the solution associated with (H°, E°, P°, P!) satisfying the hypotheses of
the theorem and let (h, e, p) be the weak- limit of a subsequence. Applying proposition 2.1 to
h”, e” and p” we deduce that (h,e,p) satisfies the conclusions of the proposition. The weak
formulations associated with problem (39)-(40) take the forms

- fQ hY - Oypdxdt — fQ e’ - curl ,odvdt 4 fR+x8§x(0,l) e’ xn - pdadzdt

+% Joe (€ X us)|zm1 - @a=1dTdt — %f]}wxﬁ(e” X U3)|2=0 - P|z=odTdl (69)

=— Jo H(0)dx

and,
- fQ(e” +p¥) - Oppdadt + fQ hY - curl ,¢pdxdt

+8 fRJrXaﬁX(O’l) e’ X - ¢ x ndadzdt

+51 fR+X§(€V X ug)|z=1 - (¢ X ug),=1d2dt (70)
—B0 Jp+ w5 (€” X u3) 2= - (¢ X u3)|.—odZdt + JfQ e’ - pdxdt =

— Jo(E° + P%)¢(0)dz.

for all regular test functions ¢, ¢ defined on Q. Here we used the boundary condition h” x n +
BYn x (e¥ x n) = 0. The polarization field p” satisfies

fQ p¥ - (0% — ad; + k)dadt + fQ curl ,p” - curl ,Ydzdt — fQ e¥ - pdxdt

+p fR+x8§x(o,1)<at +a)p¥ x 0 - x ndadzdt

+01 Jp+ 0 (O + a)p” X uz)jo=1 - (Y X ug)|.=1dTdt (71)
=00 Jps x50 + a)p” X uz) .o - (¢ X ug)|.—odTdl

== Jo(P' - 4(0) = P° - (314(0) — app(0))da-
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for all test function v defined in Q. Here we used the boundary condition curl ,p¥ x b+ p¥n x
((0y + a)p” x n) = 0. We have the convergences

fR+ x 00 h” xn” - pdadt — 3 fR+ %88 (0,1) © X 1 - ¢ X ndadzdt (72)
+01 Jpt g A1 - Gz=1 X usdZdt — Bo [p4 5 Ao - Plz=0 X usdZdt
appearing in the weak formulation (70) and
Jot xaq curlup” x ¥ - dpdadt — p [5. «0tx(0,1) (O +a)p” x 1 - 1p X ndadzdt (73)
+ fR+X§(p1(5t + (Z)Bl . 1/12:1 X ug — po(at + (I)BQ . 1/)2:0 X U3)d./’fdt

appearing in the third weak formulation (71).

The compatibilty conditions for problem (39)- (40) (obtained by using div, (curl,) = 0) can
be written as

O (divh” + La.hy) =0
Du(div (& + 1Y) + L0.(e5 +p¥)) + o(dive + La.hg) = 0 (74)
(02 + ady + k) (divp” + La.py) — (dive” + La.ef) = o.

passing to the limit in the sense of distributions we get the result

Lemma 3.1 The functions hsz, es and p3 are independent of the variable z

Let us consider in (69) and (70) test functions of the form ¢ = (3, ¢3) and ¢ = (&, ¢3) respec-
tively which are independent of the variable z. One observes that curl ,p = (923, —01¢3, 012 —
Oap1). Hence, we obtain

— fQ hY - Oppdxdt — fQ e’ - (Curl 3 + &H@ue,)dxdt
+ fR+xa§x(o,1) e’ x n - pdadzdt+

N R (75)
L i€’ X ug) ey - plamrd@dt — L [0, 5(€7 X ug)|amo - PamodTdl =
— [a H? - o(0)dz
and .
- fQ(e” +p?) - Ordpdadt + fQ h¥ - (Curl ¢3 + curl gus)dxdt
+8 Jor xonix (o) € X T - ¢ x Ndadzdt (76)

— Jorsa(Br(e” X us)jo=1 - @l2=1 X uz + Bo(€” X u3)|=0 - P|z=0 X us)dZdt
+o [ge” - ¢dwdt = — [ (E® + P°) - ¢(0)dz.
Recalling that 7 = 0 then we choose ¢ = (0,0, ¢3) in (75) we get = Jo W5 0kpsdadt — [, ev -
Curl psdzdt + fR+x8§x(0 1y (n2ef — nief)psdadzdt = — [5 HY¢3(0)dZ and passing to the limit
we get — f@ h3Oppsdadt — f@ € Curl pgdZdt + [, og(noer — niea)psdadt = — [ HYp3(0)dz.

Hence, the magnetic field h = (6, h3) satisfies in the sense of distributions the problem

dhs — curlé = 0 in RT x O
(77)

h3(0) = HY in Q,

Next, we pass to the limit in (76) with test function ¢ which are independent of z and use the
result Ag = A1 = e x uz. We get
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— J5(e +p) - dupdidt + [ hs - curl pdzdt
8 Jat o0y € X 1 - ¢ X Nidadt

. . (78)
+(B1 4+ Bo) Jar e X us - ¢ X ugdzdt + af@e - pdzdt
= — [5(E° + P%)p(0)dz.
Integrating by parts we get (notice that ks € L (RT; H(Q)))
Oi(€+p) +Curlhg + (6 + 1 — Bo)e=0
Oi(e3 +p3) +oe3 =0 (79)

hs + 6(617?,2 — 62’/1171) =0
e(0) + p(0) = E® + P% in Q
Let us consider the weak formulation (71) associated with the polarization equation (40).
Let us recall the notation used curl ,p¥ = ¥ + curl p*us where 6 = —%82 (p” X ug) + Curl pj.

Using proposition 2.1 and lemma 2.1 we deduce that p x u3 = By = By and we have that ps is
independent of z). Passing to the limit we get

f@p (02 — ady + k)pdxdt + fQ 0 - Curl Y3dzdzdt+
J(curlp)(curl )dzdt — [, e - pdzdt

+0 [a+ w05 (0 + a)p X - 1p X Ndodt

—p1 fRJrXﬁ((')t + a)Bl -1 X usdzdt

+po fRJrXQ(@t + CL)BO . 7,/) X Ugdfdt

= — Ja(P!-(0) = P°- (9:1(0) — ath(0))dz.

In proposition 2.1 and remark 2.1 we have shown that § = 0. Integrating by parts in (80), we
get in Rt x Q

(02 + ady + k)p + Curleurl p+ (p1 + po) (0 + a)p =€
curl p = p((d; + a)(pinz — pani1)) on R x 99 (81)
p(0) = PY, 8,p(0) = P! in Q

and

{ (8,52 + a@t + k‘)pg = e3 in R+ X Q (82)

p3(0) = PY, 9yps(0) = P in Q.

Hence the main theorem is proved.

4 Convergence of the nonlinear problem

In the sequel we assume that Qisa bounded, regular and convex domain of R? and the initial
data H?, E°, P° and P! which are independent of the variable x3 satisfy the hypothesis

{ H° = (0,0,HY), E° = (E°, EY), P° = (0,0, PY), P' = (0,0, P}) (53

HY, PY, Pl e HY(Q), divE® € L*(Q)
We shall prove the following result
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Theorem 4.1 Under hypotheses (83)-(44), there exists a subsequence (h¥,e”,p") of solutions
to the nonlinear problem (39)-(50) such that h¥ — (0,h3), e — e, p¥ — (0,p3) weakly-x
mn L“(R*;]LQ((AZ)) and (hs,e,p3) is independent of the variable z. Moreover p* — p strongly
in L2(0,T;L2(Q)), divh” — 8.hs and dive’ — dive weakly-+ in L>®(RT; L%(Q)). Further,
(hs, e, p3) satisfies in RT x Q the limit problem

Bths — curle = 0,

oe+ Curlhg + (0 — 51 + Bo)e= 0,

O¢(es +p3) +0e3 =0

92ps + adps — Aps + ¢/ (|ps|*)ps = €3

hs(0) = HY, 2(0) = E°, e3(0) = EY, p3(0) = F{, 0ips(0) = P3
p3 =0, hg = B(n1es — nge1) on R x 9.

(84)

The proof of the theorem is essentially proved in section 3, at the end of the proof of theorem 3.1
and by the strong convergence result given in proposition 1.1. Let us precise tha convergences
we obtain in this case.

Let (h¥,e”,p”) be the associated scalled solution of (39)-(50). Proposition 1.1 implies the
following uniform bound in L*(0, T, L*(Q2)),

IVup” 1% + IV0 0”112 + lldiv 2|2, + |ldivve”|[3, < O (85)

combining this bound, the results of propositions 2.1 and 2.2 and the energy inequality associated
with problem (39)-(50) we get

Lemma 4.1 For a subsequence (still denoted (h¥,e”,p”)) we have (k¥ e, p”) — (h, e, p) weakly-
x in L= (R*;1L2(Q)) where (h, e, p) is independent of the variable z. Moreover

p” =, &' (Ip"P)p” — ¢'(Ip|*)p in L>(0,T;1L%(Q)) strong

= o — —_ 86
Vp¥ — Vp, divh? — 0, dive” — dive in L>=(0,T;1L?(Q)) weakly—* (86)

for all T > 0. Furthermore, we have
E:o, p=0, 8 =Curlps and p3 =0 on R* x 9. (87)

Let us consider problem (39)-(50) with the boundary condition p¥ x n = 0 on R* x 9. The
convergence for the Maxwell equation follows the lines of the proof given in theorem 2.1. The
weak formulation of the polarization equation becomes

fQ p¥ - (0?7 — ady)ydxdt + fQ curl ,p” - curl ,Ydzdt — fQ e’ - pdrdt =
== Jo @' (" ®)*)p” - pdadt — [ (P - (0) — P° - (0:(0) — arp(0))da.
for all test function 1) satisfying the boundary condition ¥ x n = 0 on RT x 9. Since p = 0

we use test functions of the form ¥ = (0,0,3) which are independent of the variable z. Then
passing to the limit by using lemma 4.1 we get the result stated in theorem 4.1.

(88)

Remark 4.1 If we consider problem (39)-(50) with the Silver-Miller boundary condition curl ,p” x
n+p'nx (p¥ xn) =0 on RT x 90 then all the results obtained for problem (39)-(40) remain true.
The main point we have to prove is that ¢'(|p”|*)p” — ¢'(|p|?)p weakly star in L°°(IR+;]L2(§)),
Of course the weak-x convergence follows from the bounds given by the energy inequality but, to
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identify the weak-x limit the energy inequality is not sufficient to do that. In [1], it is proved an
uniform bound (with respect to v) in L= (0, T; H/2(Q)) for p* which allows to pass to the limit
in the nonlinear term and to identify the zero thickness limit of the problem.
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