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Abstract

We discuss the behaviour of a model of ferroelectric material represented by a thin cylinder
with small thickness ν > 0. This model is described by a couple of Maxwell equations satis-
fied by the electromagnetic field (H,E) and electric polarization field P . We give a complete
description of the limit model as ν → 0 in the linear case when (E,H) and P satisfy a Silver-
Müller type boundary condition. When the potential is nonlinear and P satisfies the boundary
condition P × n = 0 we prove the strong convergence of the polarization field which allows to
give the description of the behaviour of the nonlinear problem when the thickness ν tends to
0. We observe that the behaviour is very sensitive to the choice of the boundary conditions
satisfied by the different fields.
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1 Introduction

We shall discuss the model equations of ferroelectric materials introduced by Greenberg et al.
see [8] and also [7]. The characteristic feature of ferroelectric cristal is the appearance of a
spontaneous electric dipole. It can be reversed, with no net change in magnitude, by an applied
electric field. The current density j of the ferroelectric domain Ω is driven by the difference
between the electric equilibrium field Ê(P ) and the electric field E where P is the spontaneous
electric polarization). If one denotes by m the internal magnetic field then the model equations
introduced in [8] takes the form in R+ × Ω

ε(∂tP + θ j) = curlm

µ(∂tm+ θα m) = −curlP

∂tj + θα j = γθ(Ê(P )− E).

(1)

This set of equations is completed by initial conditions P (0) = P 0, m(0) = m0, j(0) = j0 and
boundary conditions which will be discussed later. Eliminating the variables j and m we get
the following Maxwell equation satisfied by P

∂2
t P + (εµ)−1curl 2P + a∂tP = −γθ(Ê(P )− E) (2)
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where a = θα. We set curl 2P = curl (curlP ). The parameters ε > 0 and µ > 0 are the
permititivity and the magnetic permeabilty of the vaccum and the others ones are some physical
constants. The equilibrium electric field is given by Ê(P ) = φ′(|P |2)P where φ is a two wells
potential satisfying some hypotheses given later. The electric displacement D is linked to the
electric and polarization fields E and P by the law D = ε(E + P ). Hence the electromagnetic
field (H,E) satisfies in R+ × Ω the Maxwell equations

µ∂tH − curlE = 0, ε∂t(E + P ) + curlH + σE = 0 (3)

where σ > 0 is the constant conductivity of Ω. The initial contitions are E(0) = E0, H(0) = H0.
The boundary conditions satisfied by E and P take an important place in the characterization
of the thin limit behaviour of the model. If m satisfies the boundary condition m×n = 0 on ∂Ω
where n is the unit outward normal to Ω, one deduces by using (1) that P satisfies the boundary
condition

curlP × n = 0. (4)

This condition was proposed in [8]. If more generally m satisfies a Silver-Müller type boundary
condition like n×m+ ρ n× (P × n) = 0 with ρ ≥ 0 is a function defined on ∂Ω then,we obtain
directly from (1) the boundary condition for P

curlP × n+ ρµ n× ((∂t + a)P × n) = 0. (5)

Formally, we have the Green formula∫
Ω

curl 2P · ∂tPdx = 1
2

d
dt (

∫
Ω
|curlP |2dx+

+ µa
∫

∂Ω
ρ|P × n|2dα) + µ

∫
∂Ω
ρ|∂tP × n|2dα

(6)

This boundary condition will be used in our work only for the linear case when φ is given by
φ(|P |2) = k|P |2/2 . For the nonlinear case, we will use the boundary condition

P × n = 0 (7)

instead of (5). It can be deduced from the boundary condition curlm×n = θj×n. The reason
we use (7) is that we can prove the H 1-regularity of the polarization field P which allow to
control the nonlinear term Ê(P ). We refer to the work of [1] where the boundary condition (5)
is considered. For the linear as well as the nonlinear case we use for the electric field E, the
Silver-Müller boundary condition

H × n+ β n× (E × n) = 0, P × n = 0 (8)

where β ≥ 0 is some function defined on ∂Ω. We have formally the Green formula∫
Ω

(curlH · E − curlE ·H)dx =
∫

∂Ω

H × n · Edα = β

∫
∂Ω

|E × n|2dα. (9)

The equilibrium electric field Ê(P ) is given by Ê(P ) = φ′(|P |2)P where φ : R → R is a C2

potential function, defined in [8], such that φ(0) = 0, r20 > 0 with φ(r20) < 0 is the location of
the unique minimum of φ(r2) and φ(r2) > 0 for r2 ≥ r21 and φ satisfies the following hypotheses

φ(s) ∼ C0s for s→ +∞, |φ′(s)| ≤ C1, sφ
(2)(s) ≤ C2 for s ≥ 0. (10)

where C0, C1 > 0 and C2 > 0 are constants depending only of φ. It follows that there exists
C∗ > 0 depending only of C1 and C2 such that
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|(sφ(2)(s2))′| ≤ C∗ for s ≥ 0. (11)

Using (11) we get

|Aφ′(|A|2)−Bφ′(|B|2)| ≤ C∗|A−B|. (12)

for all A,B ∈ R3.

Let us precise the models we shall discuss. To simplify the presentation we equate to 1 all the
parameters appearing in the model except a > 0 and σ to measure the size of the dissipation
process. Let ν > 0 be fixed representing the thickness of the cylinder Ων = Ω̂ × (0, ν) with
cross section Ω̂ ⊂ R2 assumed to be an open bounded and regular domain. We denote by n
the outward unit normal to Ων . The generic point x ∈ Ων is denoted by x = (x̂, x3) where
x̂ = (x1, x2) ∈ Ω̂ and 0 < x3 < ν. The electromagnetic field (Hν , Eν) satisfies in R+ × Ων the
problem 

∂tH
ν − curlEν = 0, ∂t(Eν + P ν) + curlHν + σEν = 0

Hν(0) = H0, Eν(0) = E0 in Ων

Hν × n+ βν(x3)n× (Eν × n) = 0 in R+ × ∂Ων

(13)

coupled to the polarization equation
∂2

t P
ν + curl 2P ν + a ∂tP

ν + φ′(|P ν |2)P ν = Eν in R+ × Ων

P ν(0) = P 0, ∂tP
ν(0) = P 1 in Ων

P ν × n = 0 in R+ × ∂Ων .

(14)

For the linear case we have φ′(|P |2) = k where k > 0 is a constant. The polarization P satisfies
the equation 

∂2
t P

ν + curl 2P ν + a ∂tP
ν + kP ν = Eν in R+ × Ων

P ν(0) = P 0, ∂tP
ν(0) = P 1 in Ων

curlP ν × n+ ρν(x3)n× ((∂t + a)P ν × n) = 0 in R+ × ∂Ων

(15)

where βν and ρν are two functions depending of the variable x3 and the thickness parameter ν.

Let O be an open, bounded and regular domain of R3 or R2. We denote by L2(O) the
Lebesgues space (L2(O))3 equipped with the usual norm denoted by | · | and the scalar product
(· ; ·). The norm of the Sobolev space H 1(O) is denoted by | · |H 1 . Let H(curl ,O) be the usual
Hilbert space used in the theory of Maxwell equations equipped with the norm | · |H. We also
use the Banach space Lp(R+; L2(O)) for p ≥ 1, p 6= 2 and the Hilbert space L2(R+; L2(O)) with
norms denoted respectively by || · ||p and || · ||.

The existence and regularity of solutions (Hν , Eν , P ν) to problem (13)-(14) as well as to (13)-
(15) has been proved in [2] and [9] in the nonlinear case with the boundary conditions Eν×n = 0
and either curlP ν ×n = 0 or P ν ×n = 0. The Silver-Muller boundary condition satisfied by Eν

and Hν is usual in the existence theory of solutions to Maxwell equations. Following the lines of
the proof given in [2] we way prove the same results in the case of Silver-Müller type boundary
conditions used in our problem (13)-(15). We have for the linear problem (13)-(15) the result,

Theorem 1.1 (The linear case.) Let ρν , βν ∈ L∞(0, ν) be fixed such that ρν(x3) ≥ 0 and
βν(x3) ≥ 0 a.e. We assume that the initial data are such that
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{
H0, E0, P 1 ∈ L2(Ων), P 0 ∈ H(curl ,Ων)

P 0 × n ∈ L2(∂Ων).
(16)

Then, there exists a unique weak solution (Hν , Eν , P ν) to problem (13)-(15) such that Hν ,Eν

∈ L∞(R+; L2(Ων)) and P ν ∈ L∞(R+;H(curl ,Ων)). The tangential traces Hν × n, Eν × n,
∂tP

ν × n belong to L2(R+; L2(∂Ων)) and P ν × n ∈ L∞(R+; L2(∂Ων)). Moreover for all t ≥ 0,
we have the energy inequality

Eν(t) + 2
∫ t

0
(a|∂tP

ν(s)|2 + σ|Eν(s)|2+
|
√
βνEν × n|2 + |

√
ρν∂tP

ν(s)× n|2)ds ≤ Eν
0

(17)

where the energy at the time t is defined by

Eν(t) = |∂tP
ν(t)|2 + k|P ν(t)|2 + |curlP ν(t)|2

+ a|
√
ρνP ν(t)× n|2 + |Hν(t)|2 + |Eν(t)|2

(18)

and the initial energy Eν
0 is given by

Eν
0 = |P 1|2 + k|P 0|2 + |curlP 0|2 + a|

√
ρνP 0 × n|2 + |H0|2 + |E0|2. (19)

For the nonlinear problem (13)-(14) we have

Theorem 1.2 (The nonlinear case) We assume that φ satisfies hypotheses (10) and the
initial data are such that

H0, E0, P 1 ∈ L2(Ων), P 0 ∈ H(curl ,Ων) (20)

Then, there exists a unique weak solution (Hν , Eν , P ν) to problem (13)-(14) such that Hν ,Eν

∈ L∞(R+; L2(Ων)) and P ν ∈ L∞(R+;H(curl ,Ων)). The tangential traces Hν×n, Eν×n belong
to L2(R+; L2(∂Ων)). Moreover for all t ≥ 0, we have the energy inequality

Eν(t) + 2
∫ t

0

(a|∂tP
ν(s)|2 + σ|Eν(s)|2 + |

√
βνEν × n|2)ds ≤ Eν

0 (21)

where the energy at the time t is defined by

Eν(t) = |∂tP
ν(t)|2 +

∫
Ων

φ(|P ν(t)|2)dx+ |curlP ν(t)|2 + |Hν(t)|2 + |Eν(t)|2 (22)

and the initial energy Eν
0 is given by

Eν
0 = |P 1|2 +

∫
Ων

φ(|P 0|2)dx+ |curlP 0|2 + |H0|2 + |E0|2. (23)

Using hypotheses (10)- (11) satisfied by φ, we get for all t ≥ 0

|P ν(t)|2 ≤ C(
∫

Ων

φ(|P ν(t)|2)dx+ |Ων |) (24)

where C > 0 depends only of φ and, |Ων | = ν|Ω̂| is the Lebesgue measure of Ων . Finally we
have the regularity result
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Lemma 1.1 (Regularity) Let (Hν , Eν , P ν) be a weak solution of either problem (13)-(14) or
problem (13)-(15). If in both cases (H0, E0, P 0, P 1) satisfies

H0, E0, P 1, curlP 0 ∈ H(curl ,Ων), P 0 × n ∈ L2(∂Ων), (25)

and moreover for the linear case we have P 1 × n ∈ L2(∂Ων) then ∂tH
ν , ∂tE

ν and ∂2
t P

ν ∈
L∞(R+; L2(Ων)). Further, Hν , Eν belong to L∞(R+;H(curl ,Ων)) and curlP ν , ∂tP

ν ∈ L∞(R+;H(curl ,Ων)).

The following regularity result is devoted to the nonlinear problem (13)-(14).

Proposition 1.1 (H 1-regularity) We assume that the open and bounded domain Ω̂ is convex,
the data (H0, E0, P 0) are independent of the variable x3 satisfying (20) with d̂ivH0, d̂ivE0,
d̂ivP 0, d̂ivP 1 are in L2(Ω̂). Then, for all fixed T > 0 there exists CT > 0 such that for all
ν > 0 the solution (Hν , Eν , P ν) of problem (13)-(14) satisties for all T > 0, the uniform bound

||P ν ||W 1,∞ (0,T ;H 1(Ων)) + ||divHν ||2 + ||divEν ||2 ≤ νCT . (26)

Proof. Let (Hν , Eν , P ν) associated with the initial data satisfying the hypotheses stated in
the proposition. The initial energy Eν

0 of the system satisfies

Eν
0 = O(ν). (27)

Using the estimate |P ν(t)|2 ≤ C(
∫
Ων φ(|P ν(t)|2)dx+ |Ων |) and the energy inequality we deduce

that |P ν(t)|2 + |curlP ν(t)|2 = O(ν), |Hν(t)|2 + |Eν(t)|2 = O(ν). To prove the proposition, we
follow the lines of the proof given in [2] and [9] and we use a classical result of the regularity of
Maxwell fields [3]. For ν fixed, let (Hε, Eε, P ε) be the solution of the problem (13)-(14) when
we replace φ′(|P |2)P by φ′(|ρε ? P |2)(ρε ? P ) where ρε is a nonnegative regularizing sequence
with unit mass in R3. We shall prove the estimate (26) for P ε (indeed P ν,ε) then we deduce
the whished result by letting ε → 0. Of course (Hε, Eε, P ε) satisfies the same energy estimate
as (Hν , Eν , P ν). Moreover the initial energy estimate satisfies also Eν

0 = O(ν) and we have
|ρε ? P ε(t)|2 = O(ν) uniformly with respect ε. Let us consider the compatibility equations
associated with the regularized problem of (13)-(14). Setting uε = divHε, vε = divEε and
wε = divP ε we get 

∂tu
ε = 0,

∂t(vε + wε) + σvε = 0

∂2
tw

ε + a∂tw
ε − vε = F ε

(28)

with F ε = div (φ′(|ρε ? P
ε|2)(ρε ? P

ε)) = φ′(|ρε ? P
ε|2)ρε ? divP ε + 2φ(2)(|ρε ? P

ε|2)
∑

k,j(ρε ?
P ε

k)(ρε ? P
ε
j )(ρε ? ∂kP

ε). Setting W ε = (vε, wε, ∂tw
ε) we get the equation

∂tW
ε + CW ε = Sε(P ε), W ε(0) = W0 (29)

where W0 = (d̂ivE0, d̂ivP 0, d̂ivP 1) and

C =

 σ 0 1

0 0 −1

−1 0 a

 , Sε(P ε) =

 0

0

F ε

 (30)

Notice that we have |W 0| = O(ν). Using the hypotheses (10)-(11), there exists C > 0 which is
independent of ν and ε such that

|Sε(P ε(t))| ≤ C|∇P ε(t)| (31)
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for all t ≥ 0. Consequently W ε satisfies the estimate

|W ε(t)|2 ≤ eδt(|W0|2 + C

∫ t

0

|∇P ε(s)|2ds) (32)

where the constant δ > 0 and C > 0 depend only of φ (but not of ν and ε). Recall that we have
|W0|2 = ν|W0|2L2(bΩ)

. Since Ων is a cylinder with convex cross section, then using the estimate
given in lemma 2.17 of [3] we get

|∇P ε(t)|2 ≤ |curlP ε(t)|2 + |divP ε(t)|2 (33)

for all t ≥ 0. Let T > 0 be fixed. For t ∈ [0, T ], we deduce (by using |wε(t)|2 ≤ |W ε(t)|2) the
estimate

|W ε(t)|2 ≤ νCT + Ceδt

∫ t

0

(|curlP ε(s)|2 + |W ε(s)|2)ds (34)

where CT > 0 is independent of ν and ε. Finally the estimate of ||curlP ε||2 ≤ νC implies the
inequality |W ε(t)|2 ≤ νCT + CT

∫ t

0
|W ε(s)|2ds and finally we obtain

|∇P ε(t)|2 + |divP ε(t)|2 + |div ∂tP
ε(t)|2 ≤ νCT . (35)

Since P ε → P ν strongly in L∞(R+; L2(Ων)) as ε→ 0 see [2], [9] then, using the convexity of the
L2-norm we deduce that (Eν , P ν) satisfies the estimate |∇P ν(t)|2+|divEν(t)|2+|div ∂tP

ν(t)|2 ≤
νCT and |P ν(t)|2 = O(ν) on [0, T ]. This concludes the proof of the proposition.

The content of this work is the following. In the next section we introduce the change
of variable and the new problems (linear and nonlinear) setted in the fixed cylinder Ω1 with
thickness 1 which is denoted Ω in the sequel. We prove uniform bounds with respect to the
parameter ν for the scaled solution (hν , eν , pν) of the new problems. In section 3, we discuss
the behaviour of the solution of the linear problem and section 5, we give the behaviour of the
solutions of the nonlinear problem.

2 Uniform bounds for the scaled solutions

In the sequel Ω denotes the cylinder with thickness ν = 1. Let (u1, u2, u3) be the canonical basis
of R3. The generic point x of Ων is denoted by x = (x̂, x3) ∈ Ω̂× (0, ν) and x̂ = (x1, x2). For a
vector valued function we set f = (f̂ , f3) with f̂ = (f1, f2) and f3 = f ·u3. The partial derivative
of a function g with respect to the variable xj is denoted ∂jg. The curl operator of a vector
valued function f in R3 or in R2 is defined by curl f = (∂2f3− ∂3f2, ∂3f1− ∂1f3, ∂1f2− ∂2f1) or
ĉurl f̂ = ∂1f2−∂2f1 = div (f ×u3) and the curl of a scalar function is defined by Curl (f ·u3) =
(∂2f3,−∂1f3, 0). The div operator of a vector valued function in R3 or in R2 is defined by
div f = ∂1f1 + ∂2f2 + ∂3f3 or by d̂iv f̂ = ∂1f1 + ∂2f2. Finally the gradient operator is written
as ∇ = ∇̂ + ∂x3u3. Notice that curl f̂ is a vector of R3 and curl f̂ · u3 = ĉurl f̂ . Moreover we
have f × n̂ ∈ R3 and (f × n̂) · u3 = f̂ × n̂ = f1n2 − f2n1 ∈ R.

Since this work concerns the reduction of the dimension of problems (13)-(15) and (13)-(14)
then we assume that the initial data H0, E0, P 0, P 1 are independent of the variable x3. Hence,
for the linear problem we assume that

H0 = H0(x̂), E0 = E0(x̂), P 0 = P 0(x̂), P 1 = P 1(x̂)

P 0, curlP 0, P 1,H0, E0 ∈ H(curl ,Ω)

P 0 × n̂, P 1 × n̂ ∈ L2(∂Ω̂)

(36)
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Notice for example that we have curlP 0 = CurlP 0
3 + (ĉurl P̂ 0)u3. The generic point x of Ω is

denoted by x = (x̂, z) with 0 < z < 1. We set Q = R+×Ω, Q̂ = R+× Ω̂ and for T > 0 fixed we
set ΩT = Ω× (0, T ) and Ω̂T = Ω̂× (0, T ). We introduce the change of variable z = x3/ν. For a
vector valued function F ν(x̂, x3) defined in Ων we introduce the scaled function fν(x̂, z) defined
in Ω associated with F ν by setting F ν(x̂, x3) = fν(x̂, x3/ν). Notice that we have ∇̂F ν = ∇̂fν

and ∂3F
ν = 1

ν ∂zf
ν . More generally we get{

curlF ν = − 1
ν ∂z(fν × u3) + Curl (fν · u3) + (ĉurl f̂ν)u3

divF ν = d̂iv f̂ν + 1
ν ∂zf

ν
3 .

(37)

In the sequel we use the notations
curl νf

ν = (θν , ∂1f
ν
2 − ∂2f

ν
1 )

θν = (∂2f
ν
3 − 1

ν ∂zf
ν
2 ,

1
ν ∂zf

ν
1 − ∂1f

ν
3 )

div νf
ν = d̂iv f̂ν + 1

ν ∂zf
ν
3 .

(38)

Notice that θν · (∂1f
ν
2 − ∂2f

ν
1 )u3 = 0.

Let (Hν , Eν , P ν) be the global solution of either problem (13)-(15) or (13)-(14) associated
with the initial data (H0, E0, P 0, P 1) satisfying the hypotheses (20)-(36). Let hν(t, x̂, z) =
Hν(t, x̂, νz), eν(t, x̂, z) = Eν(t, x̂, νz) and pν(t, x̂, z) = P ν(t, x̂, νz) be the scaled solution defined
in R+ × Ω and associated with (Hν , Eν , P ν).

2.1 The linear problem

The scaled solution (hν , eν , pν) satisfies in R+ × Ω the problem
∂th

ν − curl νe
ν = 0 in R+ × Ω

∂t(eν + pν) + curl νh
ν + σeν = 0 in R+ × Ω

hν(0) = H0(x̂), eν(0) = E0(x̂) in Ω

hν × n+ βνn× (eν × n) = 0 in R+ × ∂Ω

(39)

coupled to the polarization equation
∂2

t p
ν + curl 2

νp
ν + a ∂tp

ν + k pν = eν in R+ × Ω

pν(0) = P 0(x̂), ∂tp
ν(0) = P 1(x̂) in Ω

curl νp
ν × n+ ρνn× ((∂t + a)pν × n) = 0 in R+ × ∂Ω.

(40)

The energy inequality becomes

Eν(t) +
∫ t

0

(a|∂tp
ν(s)|2 + σ|eν(s)|2 + |

√
βνeν × n|2 + |

√
ρν∂tp

ν(s)× n|2)ds ≤ Eν
0 (41)

where the energy at the time t is given by

Eν(t) = |∂tp
ν(t)|2 + k|pν(t)|2 + |curl νp

ν(t)|2

+ a|
√
ρνpν(t)× n|2 + |hν(t)|2 + |eν(t)|2

(42)

and the initial energy Eν
0 , by using hypotheses (20)-(36), becomes
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Eν
0 = |P 1|2 + k|P 0|2 + |ĉurl P̂ 0|2 + |CurlP 0

3 |2

+ a|
√
ρνP 0 × n|2 + |H0|2 + |E0|2.

(43)

Notice that the initial energy Eν
0 is uniformly bounded with respect to the parameter ν if ρν is

bounded uniformly in L∞(0, 1).

We assume that the functions βν and ρν are given by{
βν(z) = β ≥ 0 if 0 < z < 1, βν(0) = νβ0 > 0, βν(1) = νβ1 > 0

ρν(z) = ρ ≥ 0 if 0 < z < 1, ρν(0) = νρ0 > 0, ρν(1) = νρ1 > 0
(44)

Then, the energy inequality implies the following uniform bounds

Lemma 2.1 Under hypotheses (20)-(36) and (44) there exists C > 0 which is independent of ν
such that the solution (hν , eν , pν) of problem (39)-(40) satisfies the nestimates{

||hν ||2∞ + ||eν ||2∞ + ||pν ||2∞ + ||eν ||2 + ||∂tp
ν ||2 ≤ C

||∂tp
ν ||2∞ + ||∂2p

ν
1 − ∂1p

ν
2 ||2∞ + ||θν ||2∞ ≤ C

(45)

moreover we have{ ||(eν × u3)z=0,1||2L2(R+;L2(bΩ))
+ ||êν × n̂||2

L2(R+;L2(∂ bΩ×(0,1)))
≤ C

||(hν × u3)|z=0,1||2L2(R+;L2(bΩ))
≤ Cν, ||ĥν × n̂||2

L2(R+;L2(∂ bΩ×(0,1)))
≤ C.

(46)

and {
||(pν × u3)|z=0,1||2L∞(R+;L2(bΩ))

+ ||p̂ν × n̂||2
L∞(R+;L2(∂ bΩ×(0,1)))

≤ C

||(∂tp
ν × u3)|z=0,1||2L2(R+;L2(bΩ))

+ ||∂tp̂
ν × n̂||2

L2(R+;L2(∂ bΩ×(0,1)))
≤ C

(47)

Notice that from the boundary condition satisfied by pν and the previous estimates we deduce
that

||(curl νp
ν × u3)|z=0,1||2L2

loc(R+;L2(bΩ))
≤ Cν. (48)

We assume that the initial data are as in lemma 1.1. We get

Lemma 2.2 Under hypotheses (25) the solution has a time regularity property (see theorem 1)
which implies the following estimates{

||∂th
ν ||2∞ + ||∂te

ν ||2∞ + ||∂2
t p

ν ||2∞ ≤ C

||curl νh
ν ||2∞ + ||curl νe

ν ||2∞ + ||curl 2
νp

ν ||2∞ + ||curl ν∂tp
ν ||2∞ ≤ C

(49)

where C is independent of ν.

2.2 The nonlinear problem

The scaled solution (hν , eν , pν) satisfies in R+×Ω the problem (39) coupled to the polarization
equation 

∂2
t p

ν + curl 2
νp

ν + a ∂tp
ν + φ′(|pν |2)pν = eν in R+ × Ω

pν(0) = P 0(x̂), ∂tp
ν(0) = P̂ 1(x̂) in Ω

pν × n = 0 in R+ × ∂Ω.

(50)

The energy inequality becomes
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Eν(t) + 2
∫ t

0

(a|∂tp
ν(s)|2 + σ|eν(s)|2 + |

√
βνeν × n|2 ≤ Eν

0 (51)

where the energy at the time t is given by

Eν(t) = |∂tp
ν(t)|2 +

∫
Ω

φ(|pν(t)|2)dx+ |curl νp
ν(t)|2 + |hν(t)|2 + |eν(t)|2 (52)

and the initial energy Eν
0 , by using hypotheses (20)-(36), becomes

Eν
0 = |P 1|2 +

∫
Ω

φ(|P 0|2)dx+ |ĉurl P̂ 0|2 + |CurlP 0
3 |2 + |H0|2 + |E0|2. (53)

Notice that the initial energy Eν
0 is uniformly bounded if βν is bounded uniformly in L∞(0, 1).

From the energy inequality we deduce the following uniform bounds

Lemma 2.3 If βν is given as in (44) then, under hypotheses (20)-(36), there exists C > 0 which
is independent of ν such that the solution (hν , eν , pν) of problem (39)-(50) satisfies the estimates{

||hν ||2∞ + ||eν ||2∞ + ||pν ||2∞ + ||eν ||2 + ||∂tp
ν ||2 ≤ C

||∂tp
ν ||2∞ + ||∂2p

ν
1 − ∂1p

ν
2 ||2∞ + ||θν ||2∞ ≤ C

(54)

moreover we have the bounds{ ||(eν × u3)|z=0,1||2L2(R+;L2(bΩ))
+ ||êν × n̂||2

L2(R+;L2(∂ bΩ×(0,1)))
≤ C

||(hν × u3)|z=0,1||2L2(R+;L2(bΩ))
≤ Cν, ||ĥν × n̂||2

L2(R+;L2(∂ bΩ×(0,1)))
≤ C.

(55)

Assuming the initial data to be more regular as in lemma 1.1 then we have

Lemma 2.4 Under hypotheses (25) the solution of (39)-(50) satisfies estimates{
||∂th

ν ||2∞ + ||∂te
ν ||2∞ + ||∂2

t p
ν ||2∞ ≤ C

||curl νh
ν ||2∞ + ||curl νe

ν ||2∞ + ||curl 2
νp

ν ||2∞ + ||curl ν∂tp
ν ||2∞ ≤ C

(56)

where C is independent of ν.

2.3 Weak convergences

For a subsequence still denoted (hν , eν , pν), where (hν , eν , pν) is either the solution of the linear
problem (39)-(40) or the nonlinear problem (39)-(50), the following convergences hold.

(hν , eν , pν) ⇀ (h, e, p) in L∞(R+; L2(Ω)) weakly − ?,

(eν , ∂tp
ν) ⇀ (e, ∂tp) in L2(R+; L2(Ω)) weakly,

∂tp
ν ⇀ ∂tp in L∞(R+; L2(Ω)) weakly − ?

(57)

The estimate in L∞(R+; L2(Ω)) of the curl ν of the solution gives the weak-? convergences{
ĉurl p̂ν ⇀ ĉurl p̂, θν ⇀ θ

ĉurl ĥν ⇀ ĉurl ĥ, ĉurl êν ⇀ ĉurl ê
(58)

where θ ∈ L∞(R+; L2(Ω)) is some vector valued function. Since we have ĉurl ĥ, ĉurl ê, ĉurl p̂ ∈
L∞(R+;L2(Ω)) we deduce that the traces ĥ×n̂, ê×n̂ and p̂×n̂ are well defined in L∞(R+;H−1/2(∂Ω̂×
(0, 1)). Hence the weak-? convergence of that traces holds at least in L∞(R+;H−1/2(∂Ω̂×(0, 1)).
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Now let us consider the bounds of the traces of eν , hν and pν . First of all, using estimate
(49) we deduce that hν , eν , pν and ∂tp

ν are uniformly bounded in W 1,∞(R+; L2(Ω)). Hence, h,
e, p and ∂tp belong to W 1,∞(R+; L2(Ω)). Finally we get

Lemma 2.5 (Initial data) The traces of h, e, p and ∂tp at t = 0 make sense in L2(Ω) and
we have

h(0) = H0, e(0) = E0, p(0) = P 0, ∂tp(0) = P 1 (59)

Next, from (46) we get the convergences

Lemma 2.6 (Convergence of the traces) The traces of the solutions (hν , eν) of either (39)-
(40) or (39)-(50) satisfy (eν × u3)|z=0,1 ⇀ A0,1 in L2(R+; L2(Ω̂)) weak

(hν × u3)|z=0,1 → 0 in L2(R+; L2(Ω̂)) strong.
(60)

The tangential traces of the polarization pν for the linear problem (39)-(40) satisfy
(pν × u3)|z=0,1 ⇀ B0,1 in L∞(R+; L2(Ω̂)) weak − ?,

(∂tp
ν × u3)|z=0,1 ⇀ ∂tB0,1 in L2(R+; L2(Ω̂)) weak

(curl νp
ν × u3)|z=0,1 → 0 in L2

loc(R+; L2(Ω̂)) strong

(61)

where A0, A1, B0 and B1 are some vector valued functions belonging to the spaces defined by
the weak convergences.

Before we pass to the limit in problem (39)-(40) and (39)-(50) let us give the remark

Remark 2.1 Assume that the function βν and ρν are independent of ν say βν = β > 0 and
ρν = ρ > 0 then the energy inequality (41) and (51) imply, in particular, the following bounds{

||(pν × u3)|z=0,1||2L∞(R+;L2(bΩ))
+ ||(∂tp

ν × u3)|z=0,1||2L2(R+;L2(bΩ))
≤ Cν

||(eν × u3)|z=0,1||2L∞(R+;L2(bΩ))
≤ Cν.

(62)

and then A0,1 = B0,1 = 0.

We shall use for the solution (hν , eν , pν) of (39)-(40) as well as for (39)-(50) the following
convergence results. We dedote by vν one of the fields hν , eν , pν or . : rotνpν .

Proposition 2.1 Let vν be a uniformly bounded sequence in L∞(R+;H(curl ν ,Ω) such that
the tangential trace vν × n is uniformly bounded in Lp(R+; L2(∂Ω)) with p = ∞ or p = 2.
Then there exists a subsequence such that vν ⇀ u, ĉurl vν ⇀ ĉurl v weakly-? in L∞(R+; L2(Ω)),
v̂ν × n̂ ⇀ v̂ × n̂ = v1n2 − v2n1 weakly in Lp(R+; H−1/2(∂Ω̂× (0, 1)) satisfying the properties

v̂ is independent of z, v̂ ∈ L∞(R+;H(r̂ot, Ω̂))

(vν × u3)|z=0,1 ⇀ (v × u3)|z=0,1 weakly in Lp(R+; L2(Ω̂))∫ 1

0
(vν × n̂) · u3dz ⇀ (v × n̂) · u3 weakly in Lp(R+; L2(∂Ω̂))

(63)

where (v × n̂) · u3 = v1n2 − v2n1 (which is independent of z).
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We use the following Green formula∫
Q

curl νv
ν · ϕdxdt =

∫
Q
vν · curl νϕdxdt−

∫
R+×∂ bΩ×(0,1)

(vν × n̂) · ϕdαdzdt
− 1

ν

∫ bQ(vν × u3)|z=1 · ϕ|z=1dx̂dt+ 1
ν

∫ bQ(vν × u3)|z=0 · ϕ|z=0dx̂dt
(64)

for all test function ϕ ∈ D(R+ × Ω̂ × [0, 1]). Choosing ϕ = (νϕ1, νϕ2, 0) with ϕj ∈ D(R+ ×
Ω̂ × (0, 1)) for j = 1, 2. We have curl νϕ = −∂z(ϕ × u3) + νCurlϕ3 + ν(ĉurl ϕ̂)u3. Passing to
the limit in the Green formula we obtain

∫
Q

(−v1∂zϕ2 + v2∂zϕ1)dxdt = 0 and then ∂z v̂ = 0 in

the sense of distributions. Next let Vj ∈ Lp(R+; L2(Q̂)) be the weak limit of (vν × u3)|z=j for
j = 1, 2. Next, we choose in the Green formula ϕ = (νzϕ1(t, x̂), νzϕ2(t, x̂), 0) and pass to the
limit we get

∫ bQ(−v1ϕ2 + v2ϕ1)dx̂dt−
∫ bQ V1 ·ϕdx̂dt = 0 which implies that V1 = u× u3. Finally

with the test function ϕ = (ν(1− z)ϕ1(t, x̂), ν(1− z)ϕ2(t, x̂), 0) we get
∫ bQ(v1ϕ2 − v2ϕ1)dx̂dt−∫ bQ V0 · ϕdx̂dt = 0 and then V0 = −v × u3. Let g ∈ Lp(R+;L2(R+ × ∂Ω̂ × (0, 1)) be the weak

limit of the sequence (vν × n̂) · u3. We choose in the Green formula ϕ = (0, 0, ϕ3(t, x̂)) with

ϕ3 ∈ D(R+ × Ω̂). We have curl νϕ = Curlϕ3. Then passing to the limit in the Green formula
we get

∫ bQ(∂1v2 − ∂2v1)ϕ3dx̂dt =
∫ bQ(v1∂2ϕ3 − v2∂1ϕ3)dx̂dt −

∫
R+×∂ bΩ ∫ 1

0
gdzϕ3dαdt. Since we

have v̂ ∈ L∞(R+;H(ĉurl , Ω̂) then we deduce that
∫ 1

0
gdz = v1n2 − v2n1.

Remark 2.2 Notice (ĥ, ê, p̂) is independent of z. For vν = eν we have e× u3 = A0 = A1, for
vν = hν we have h× u3 = 0 and then ĥ = 0. For vν = pν we have p× u3 = B0 = B1. Moreover
we have curl νp

ν , curl ν(curl νp
ν) ∈ L∞(R+; L2(Ω)) and (curl νp

ν ×n)|z=0,1 = O(ν). Let θ be the
weak-? limit of θν defined by curl νp

ν = θν + ĉurl p̂νu3 then θ is independent of z and θ = 0.

Proposition 2.2 Let vν be a uniformly bounded sequence in L∞(R+;H(curl ν ,Ω)) satisfying
vν × n = 0 on R+ × ∂Ω. Then θ satisfies

∫ 1

0
θdz =

∫ 1

0
Curl v3dz in R+ × Ω̂ and

∫ 1

0
v3dz = 0 on

R+ × ∂Ω̂. Moreover we have v̂ = 0

Proof. Since we have curl νv
ν = θν + ĉurl v̂νu3, the Green formula gives∫

Q
θν · ϕ̂dxdt+

∫
Q

(∂1v
ν
2 − ∂2v

ν
1 )ϕ3dxdt =

∫
Q
vν
1 (∂2ϕ3 − 1

ν ∂zϕ2)dxdt

+
∫

Q
vν
2 ( 1

ν ∂zϕ1 − ∂1ϕ3)dxdt+
∫

Q
vν
3 (∂1ϕ2 − ∂2ϕ1)dxdt

(65)

for all test function ϕ ∈ D(R+× Ω̂× (0, 1]). Passing to the limit we get with ϕ = (ϕ̂(t, x̂), 0) we
get ∫

Q
θ · ϕ̂dxdt =

∫
Q
v3(∂1ϕ2 − ∂2ϕ1)dxdt (66)

integrating by parts we get
∫

Q
θ·ϕ̂dxdt =

∫
Q

Curl v3·ϕ̂dxdt−
∫

R+×∂ bΩ×(0,1)
v3(n1ϕ2−n2ϕ1)dαdzdt.

It follows that
∫ 1

0
Curl v3dz =

∫ 1

0
θdz which belongs to L∞(R+; L2(Ω̂)). The trace of v3 on

∂Ω̂ makes sense in L∞(R+; H−1/2(∂Ω̂)) and we have
∫ 1

0
v3dz = 0 on R+ × ∂Ω̂. Next writ-

ting rotνv
ν = − 1

ν ∂z(vν × u3) + Curl vν
3 + ĉurl v̂νu3 and using the Green formulation with

ϕ = νψ we get O(ν) =
∫

Q
(−vν

1∂zψ2 + vν
2∂zψ1)dxdt + O(ν). Passing to the limit we get∫

Q
(−v1∂zψ2 + v2∂zψ1)dxdt = 0. It follows that v̂ is independent of the variable z and us-

ing the previous proposition and the boundary condition (vν × n)|z=0,1 = 0 we deduce that
v̂ = 0.
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3 Convergence of the linear problem

We shall prove the following result.

Theorem 3.1 Let (H0, E0, P 0, P 1) be initial data which are independent of the variable z and
satisfying the hypotheses (36). We assume that the functions βν , ρν are as in lemma 2.1. Let
(hν , eν , pν) be the solution of problem (39)-(40) associated with the initial data (H0, E0, P 0, P 1).
Then there exists a subsequence still denoted (hν , eν , pν) converging weakly-? in L∞(R+; L2(Ω))
to (h, e, p) which is independent of the variable z and ĥ = 0. The weak star limit (h, e, p) is the
solution in R+ × Ω̂ of the problem

∂th3 − ĉurl ê = 0, ∂t(ê+ p̂) + Curlh3 + (σ + β1 + β0)ê = 0

(∂2
t + a∂t + k)p̂+ Curl ĉurl p̂+ (ρ1 + ρ0)(∂t + a)p = ê

ê(0) = Ê0, p̂(0) = P 0, ∂tp̂(0) = p̂1, h3(0) = H0
3 in Ω̂,

h3 = β(e1n2 − e2n1), ĉurl p̂ = ρ(∂t + a)(p1n2 − p2n1) on R+ × ∂Ω̂

(67)

and the system of o.d.e{
∂t(e3 + p3) + σe3 = 0, (∂2

t + a∂t + k)p3 = e3

e3(0) = E0
3 , p3(0) = P 0

3 , ∂tp3(0) = P 1
3 in Ω̂.

(68)

Moreover, we have h3 ∈ L∞(R+;H1(Ω)), ê ∈ L∞(R+;H(ĉurl , Ω̂)), p ∈ L∞(R+; L2(Ω̂)) and
ĉurl p̂ ∈ L∞;H+(Ω̂)).

Let (hν , eν , pν) be the solution associated with (H0, E0, P 0, P 1) satisfying the hypotheses of
the theorem and let (h, e, p) be the weak-? limit of a subsequence. Applying proposition 2.1 to
hν , eν and pν we deduce that (h, e, p) satisfies the conclusions of the proposition. The weak
formulations associated with problem (39)-(40) take the forms

−
∫

Q
hν · ∂tϕdxdt−

∫
Q
eν · curl νϕdxdt+

∫
R+×∂ bΩ×(0,1)

eν × n̂ · ϕdαdzdt
+ 1

ν

∫
R+×bΩ(eν × u3)|z=1 · ϕ|z=1dx̂dt− 1

ν

∫
R+×bΩ(eν × u3)|z=0 · ϕ|z=0dx̂dt

= −
∫
Ω
H0ϕ(0)dx

(69)

and, 

−
∫

Q
(eν + pν) · ∂tφdxdt+

∫
Q
hν · curl νφdxdt

+β
∫

R+×∂ bΩ×(0,1)
eν × n̂ · φ× n̂dαdzdt

+β1

∫
R+×bΩ(eν × u3)|z=1 · (φ× u3)|z=1dx̂dt

−β0

∫
R+×bΩ(eν × u3)|z=0 · (φ× u3)|z=0dx̂dt+ σ

∫
Q
eν · φdxdt =

−
∫
Ω
(E0 + P 0)φ(0)dx.

(70)

for all regular test functions ϕ, φ defined on Q. Here we used the boundary condition hν × n+
βνn× (eν × n) = 0. The polarization field pν satisfies

∫
Q
pν · (∂2

t − a∂t + k)ψdxdt+
∫

Q
curl νp

ν · curl νψdxdt−
∫

Q
eν · ψdxdt

+ρ
∫

R+×∂ bΩ×(0,1)
(∂t + a)pν × n̂ · ψ × n̂dαdzdt

+ρ1

∫
R+×bΩ((∂t + a)pν × u3)|z=1 · (ψ × u3)|z=1dx̂dt

−ρ0

∫
R+×bΩ((∂t + a)pν × u3)|z=0 · (ψ × u3)|z=0dx̂dt

= −
∫
Ω
(P 1 · ψ(0)− P 0 · (∂tψ(0)− aψ(0))dx.

(71)
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for all test function ψ defined in Q. Here we used the boundary condition curl νp
ν × b+ ρνn×

((∂t + a)pν × n) = 0. We have the convergences{ ∫
R+×∂Ω

hν × nν · φdαdt→ β
∫

R+×∂ bΩ×(0,1)
e× n̂ · φ× n̂dαdzdt

+β1

∫
R+×bΩA1 · φ|z=1 × u3dx̂dt− β0

∫
R+×bΩA0 · φ|z=0 × u3dx̂dt

(72)

appearing in the weak formulation (70) and

{ ∫
R+×∂Ω

curl νp
ν × nν · ψdαdt→ ρ

∫
R+×∂ bΩ×(0,1)

(∂t + a)pν × n̂ · ψ × n̂dαdzdt

+
∫

R+×bΩ(ρ1(∂t + a)B1 · ψz=1 × u3 − ρ0(∂t + a)B0 · ψz=0 × u3)dx̂dt.
(73)

appearing in the third weak formulation (71).

The compatibilty conditions for problem (39)- (40) (obtained by using div ν(curl ν) = 0) can
be written as 

∂t(d̂iv ĥν + 1
ν ∂zh

ν
3) = 0

∂t(d̂iv (êν + p̂ν) + 1
ν ∂z(eν

3 + pν
3)) + σ(d̂iv êν + 1

ν ∂zh
ν
3) = 0

(∂2
t + a∂t + k)(d̂iv p̂ν + 1

ν ∂zp
ν
3)− (d̂iv êν + 1

ν ∂ze
ν
3) = 0.

(74)

passing to the limit in the sense of distributions we get the result

Lemma 3.1 The functions h3, e3 and p3 are independent of the variable z

Let us consider in (69) and (70) test functions of the form ϕ = (ϕ̂, ϕ3) and φ = (φ̂, φ3) respec-
tively which are independent of the variable z. One observes that curl νϕ = (∂2ϕ3,−∂1ϕ3, ∂1ϕ2−
∂2ϕ1). Hence, we obtain

−
∫

Q
hν · ∂tϕdxdt−

∫
Q
eν · (Curlϕ3 + ĉurl ϕ̂u3)dxdt

+
∫

R+×∂ bΩ×(0,1)
eν × n̂ · ϕdαdzdt+

1
ν

∫
R+ bΩ(eν × u3)|z=1 · ϕ|z=1dx̂dt− 1

ν

∫
R+ bΩ(eν × u3)|z=0 · ϕ|z=0dx̂dt =

−
∫bΩH0 · ϕ(0)dx̂

(75)

and 
−

∫
Q

(eν + pν) · ∂tφdxdt+
∫

Q
hν · (Curlφ3 + ĉurl φ̂u3)dxdt

+β
∫

R+×∂ bΩ×(0,1)
eν × n̂ · φ× n̂dαdzdt

−
∫

R+×bΩ(β1(eν × u3)|z=1 · φ|z=1 × u3 + β0(eν × u3)|z=0 · φ|z=0 × u3)dx̂dt

+σ
∫

Q
eν · φdxdt = −

∫
Ω
(E0 + P 0) · φ(0)dx̂.

(76)

Recalling that ĥ = 0 then we choose ϕ = (0, 0, ϕ3) in (75) we get −
∫

Q
hν

3∂tϕ3dxdt −
∫

Q
êν ·

Curlϕ3dxdt +
∫

R+×∂ bΩ×(0,1)
(n2e

ν
1 − n1e

ν
2)ϕ3dαdzdt = −

∫bΩH0
3ϕ3(0)dx̂ and passing to the limit

we get −
∫ bQ h3∂tϕ3dx̂dt−

∫ bQ ê · Curlϕ3dx̂dt+
∫

R+×∂ bΩ(n2e1 − n1e2)ϕ3dαdt = −
∫bΩH0

3ϕ3(0)dx̂.

Hence, the magnetic field h = (0̂, h3) satisfies in the sense of distributions the problem{
∂th3 − ĉurl ê = 0 in R+ × Ω̂

h3(0) = H0
3 in Ω̂,

(77)

Next, we pass to the limit in (76) with test function φ which are independent of z and use the
result A0 = A1 = e× u3. We get
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
−

∫ bQ(e+ p) · ∂tφdx̂dt+
∫ bQ h3 · ĉurl φ̂dx̂dt

+β
∫

R+×∂ bΩ× e× n̂ · φ× n̂dαdt

+(β1 + β0)
∫

R+×bΩ e× u3 · φ× u3dx̂dt+ σ
∫ bQ e · φdx̂dt

= −
∫bΩ(E0 + P 0)φ(0)dx̂.

(78)

Integrating by parts we get (notice that h3 ∈ L∞(R+;H1(Ω̂)))
∂t(ê+ p̂) + Curlh3 + (σ + β1 − β0)ê = 0

∂t(e3 + p3) + σe3 = 0

h3 + β(e1n2 − e2n1n) = 0

e(0) + p(0) = E0 + P 0 in Ω̂

(79)

Let us consider the weak formulation (71) associated with the polarization equation (40).
Let us recall the notation used curl νp

ν = θν + ĉurl p̂νu3 where θν = − 1
ν ∂z(pν × u3) + Curl pν

3 .
Using proposition 2.1 and lemma 2.1 we deduce that p× u3 = B0 = B1 and we have that p3 is
independent of z). Passing to the limit we get

∫ bQ p · (∂2
t − a∂t + k)ψdxdt+

∫
Q
θ · Curlψ3dx̂dzdt+∫ bQ(ĉurl p̂)(ĉurl ψ̂)dxdt−

∫
Q
e · ψdx̂dt

+ρ
∫

R+×∂ bΩ(∂t + a)p× n̂ · ψ × n̂dαdt

−ρ1

∫
R+×bΩ(∂t + a)B1 · ψ × u3dx̂dt

+ρ0

∫
R+×bΩ(∂t + a)B0 · ψ × u3dx̂dt

= −
∫bΩ(P 1 · ψ(0)− P 0 · (∂tψ(0)− aψ(0))dx.

(80)

In proposition 2.1 and remark 2.1 we have shown that θ = 0. Integrating by parts in (80), we
get in R+ × Ω̂ 

(∂2
t + a∂t + k)p̂+ Curl ĉurl p̂+ (ρ1 + ρ0)(∂t + a)p̂ = ê

ĉurl p̂ = ρ((∂t + a)(p1n2 − p2n1)) on R+ × ∂Ω̂

p̂(0) = P̂ 0, ∂tp̂(0) = P̂ 1 in Ω̂

(81)

and {
(∂2

t + a∂t + k)p3 = e3 in R+ × Ω̂

p3(0) = P 0
3 , ∂tp3(0) = P 1

3 in Ω̂.
(82)

Hence the main theorem is proved.

4 Convergence of the nonlinear problem

In the sequel we assume that Ω̂ is a bounded, regular and convex domain of R2 and the initial
data H0, E0, P 0 and P 1 which are independent of the variable x3 satisfy the hypothesis{

H0 = (0, 0,H0
3 ), E0 = (Ê0, E0

3), P 0 = (0, 0, P 0
3 ), P 1 = (0, 0, P 1

3 )

H0
3 , P

0
3 , P

1
3 ∈ H1(Ω̂), d̂ivE0 ∈ L2(Ω̂)

(83)

We shall prove the following result
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Theorem 4.1 Under hypotheses (83)-(44), there exists a subsequence (hν , eν , pν) of solutions
to the nonlinear problem (39)-(50) such that hν ⇀ (0, h3), eν ⇀ e, pν ⇀ (0, p3) weakly-?
in L∞(R+; L2(Ω̂)) and (h3, e, p3) is independent of the variable z. Moreover pν → p strongly
in L2(0, T ; L2(Ω̂)), div hν ⇀ ∂zh3 and div eν ⇀ div e weakly-? in L∞(R+;L2(Ω̂)). Further,
(h3, e, p3) satisfies in R+ × Ω̂ the limit problem

∂th3 − ĉurl ê = 0,

∂tê+ Curlh3 + (σ − β1 + β0)ê = 0,

∂t(e3 + p3) + σe3 = 0

∂2
t p3 + a∂tp3 − ∆̂p3 + φ′(|p3|2)p3 = e3

h3(0) = H0
3 , ê(0) = Ê0, e3(0) = E0

3 , p3(0) = P 0
3 , ∂tp3(0) = P 1

3

p3 = 0, h3 = β(n1e2 − n2e1) on R+ × ∂Ω.

(84)

The proof of the theorem is essentially proved in section 3, at the end of the proof of theorem 3.1
and by the strong convergence result given in proposition 1.1. Let us precise tha convergences
we obtain in this case.
Let (hν , eν , pν) be the associated scalled solution of (39)-(50). Proposition 1.1 implies the
following uniform bound in L∞(0, T, L2(Ω)),

||∇νp
ν ||2∞ + ||∇ν∂tp

ν ||2∞ + ||div νh
ν ||2∞ + ||div νe

ν ||2∞ ≤ CT . (85)

combining this bound, the results of propositions 2.1 and 2.2 and the energy inequality associated
with problem (39)-(50) we get

Lemma 4.1 For a subsequence (still denoted (hν , eν , pν)) we have (hν , eν , pν) → (h, e, p) weakly-
? in L∞(R+; L2(Ω)) where (h, e, p) is independent of the variable z. Moreover pν → p, φ′(|pν |2)pν → φ′(|p|2)p in L∞(0, T ; L2(Ω)) strong

∇̂p̂ν ⇀ ∇̂p̂, d̂iv ĥν ⇀ 0, d̂iv êν ⇀ d̂iv ê in L∞(0, T ; L2(Ω)) weakly−? (86)

for all T > 0. Furthermore, we have

ĥ = 0, p̂ = 0, θ = Curl p3 and p3 = 0 on R+ × ∂Ω̂. (87)

,

Let us consider problem (39)-(50) with the boundary condition pν ×n = 0 on R+×∂Ω. The
convergence for the Maxwell equation follows the lines of the proof given in theorem 2.1. The
weak formulation of the polarization equation becomes{ ∫

Q
pν · (∂2

t − a∂t)ψdxdt+
∫

Q
curl νp

ν · curl νψdxdt−
∫

Q
eν · ψdxdt =

= −
∫

Q
φ′(|pν(t)|2)pν · ψdxdt−

∫
Ω
(P 1 · ψ(0)− P 0 · (∂tψ(0)− aψ(0))dx.

(88)

for all test function ψ satisfying the boundary condition ψ × n = 0 on R+ × ∂Ω. Since p̂ = 0
we use test functions of the form ψ = (0, 0, ψ3) which are independent of the variable z. Then
passing to the limit by using lemma 4.1 we get the result stated in theorem 4.1.

Remark 4.1 If we consider problem (39)-(50) with the Silver-Müller boundary condition curl νp
ν×

n+ρνn×(pν×n) = 0 on R+×∂Ω then all the results obtained for problem (39)-(40) remain true.
The main point we have to prove is that φ′(|pν |2)pν ⇀ φ′(|p|2)p weakly star in L∞(R+; L2(Ω̂)).
Of course the weak-? convergence follows from the bounds given by the energy inequality but, to
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identify the weak-? limit the energy inequality is not sufficient to do that. In [1], it is proved an
uniform bound (with respect to ν) in L∞(0, T ; H 1/2(Ω)) for pν which allows to pass to the limit
in the nonlinear term and to identify the zero thickness limit of the problem.

References

[1] N. Aı̈ssa . Regularity of vector fields and behaviour of thin ferroelectric materials with
nonlinear potential. In preparation.

[2] H. Ammari and K. Hamdache. Global existence and regularity of solutions to a system of
nonlinear Maxwell equations. J. Math. Anal. Appl., 286, 51–63, (2003)

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault Vector potentials in three nonsmoth
domains, Math. Meth. Apl. Sci. Vol. 21, 823–864 (1998)

[4] F. Chaput. Matériaux céramiques et ferroélectriques. Fascicule de l’Ecole Polytechnique,
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