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SENSITIVITY ANALYSIS USING ITO-MALLIAVIN CALCULUS
AND MARTINGALES.
NUMERICAL IMPLEMENTATION.

EMMANUEL GOBET* AND REMI MUNOST

Abstract. This note is a guide to numerical implementation of several methods introduced
in the companion paper Gobet and Munos, Sensitivity Analysis using Ité-Malliavin Calculus and
Martingales, Application to Stochastic Optimal Control, namely the computation of the sensitivity
of a cost function with respect to parameters of the process dynamics. Four methods are described
based on Path-wise, Malliavin calculus, adjoint and martingale approaches.
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1. Introduction. We refer the reader to [GMO02] for all notations, hypotheses,
and theoretical results. Consider the stochastic differential equation

t q ot
X, =z +/ b(s, Xs,a) ds + Z/ oj(s, Xs,0) dW? (1.1)
0 =Jo

where X; € R?, a is a parameter (taking values in A C R™) and (Wi)o<i<r is a
standard Brownian motion in R?. In this note, we restrict the study to the case ¢ =d
and o being invertible.

Our goal is to evaluate the sensitivity w.r.t. a of the cost function

T
J(a) =E (/0 f(Xy)dt + g(XT)> ; (1.2)

which depends on instantaneous and terminal costs f and g.

We recall the notation for differentiation. The derivative w.r.t. « is denoted
with a dOt, for example Xt = vaXt = (aalXt,...,Bath) = (Xl,ta---;Xm,t)
is considered as a d x m matrix. The derivative w.r.t. the state (i.e. the gra-
dient) is denoted with a prime, for example, b, = Vb, = (0,bs,...,0,,bs) =
(0, b(s, X5, ), ..., 0,,b(s, Xs,0)).

2. Path-wise approach. To the diffusion X, we associate the path-wise deriva-
tive of X; with respect to «, which we denote X;. This process solves

¢ d .t
o= [ b+ ¥, X) dst Y [ (6504 0, X.) awd. 2.1)
0 j=1 0

Proposition 1.1 in [GMO02] provides the sensitivity of J w.r.t. a using the path-
wise approach:

T
J(a) = E( /0 FI(X)Xodt + g/ (X7)Xr). (2.2)
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2 E. GOBET AND R. MUNOS

3. Malliavin calculus approach in the elliptic case. To the diffusion X, we
associate its flow, i.e. the Jacobian matrix Y; := V,X; and the inverse of its flow
Z; = Y; !, These processes solve

Yt_Id-i-/bYds-i-Z/ LY, dWi, (3.1)

t d
thId_/ L= (0, ds—Z/Za“dWJ. (3.2)

Jj=1

Then, from Proposition 2.5, one has

T
604,6 J(a) = ]E( / f(Xt)Hk’tdt + g(XT)Hk,T)
0
with
1 .
Hk,t = ¥(5([0'_1 Y Zt Xk,t]*)

where Xy ; = O, X; is the k" column of X;.

Let us write us, = 0; 'Y, and Fj; = Z; Xy 4. Call u;, the i** column of u, (thus
u;,s = 0,1Y; s where Y; ; stands for the i*" column of Y;). Thus usFjs =Y, ui s Fi ke
where Fj j,; is the i*" component of Fy ;. Hence,

d

d t
1 1
Hye =5 D 6(ui Figg) = n > [6(us ) Fige — / DsFiuisds].  (3.3)
i=1 0

i=1

Since u is a square integrable adapted process, we have

t
d(uj.) :/ u; AW
0

thus

3> 0(uE ) Fiea = ZFM/ .. 34

3.1. Computation of DF. In this paragraph, t is fixed and for simplicity we
omit to indicate this dependency.

We make use of the following result: let A be a p; X p, matrix and b a vector of
size ps, then

P2

D(Ab) = Y D(Ay)by + ADb
k=1
where A, is the k" column of A.
Since
. d . .
DF, = D(ZX}) = Y_D(Z;)Xjx + ZD(Xy), (3.5)

=1
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where Xjj, = 0,, X; is the (j, k)" element of matrix X and Z; is the j** column of
Z, we need to compute DZ and DX.

Since YZ = I, we have Y Z; = e/ where e/ is a vector with Os except for the j
component which is 1. From the above result,

DY) = 3 D) Zy + YD(Z;) =0

=1

hence

d
(Z;)=—-2)_ DY) Z

which, replaced in (3.5), gives

d
DFy =-2 Y D(Yi)Zi;Xjr + ZD(Xy)
i,j=1
ZD N ZXy)i +D(Xy)). (3.6)

We need to compute the Malliavin derivative of ¥ and X. We know that the
Malliavin derivative of X is

D; Xy = Kﬁzsaslsst-

We now describe how to compute the Malliavin derivative of a process relative to
X and apply this to compute DY and DX.

3.2. Malliavin derivative of a process related to X. Let X € R? be a
process satisfying

t d t
X, =% +/ b(s, X,, X,)ds + Z/ (s, X5, X;)dW?I (3.7)

0 — Jo

For simplicity we write bs = b(s, XS,X' ) and &3 =6(s, X, X,).
Call Yt Vs Xt its Jacobian and Zt ! jts inverse, which solve
A~ t A A d t A .
V=1, +/ V:bsVyds + Z/ V6 YsdW, (3.8)
0 — Jo

t
Zt:Id—/ Zva,s ds—/ Zva“dw'. (3.9)
0 :

X
Consider the column vector (of size 2d) ( Xt ), which solves the system
¢

(2) () [ G )aes [ (5)ame
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Then, its Jacobian ( Vo VX ) = ( Y

V. X, ViX,

Y, 0 _ b/ Vb O Y, 0

(Vt fft)‘b‘”/o (vwi)s WBS)(VS ffs)ds
Va0j,s 0 Y, 0 i

S (v o ) (32 )

This system is equivalent to the SDEs (3.1), (3.8) and

0 . 5
Vi }A/;i ) with V; := V,X; solves

t d t
Vi = / (VabsYs + Vib,V)ds + / (VabsYy + V36,Ve)dW5. (3.10)
0 0

Y; Z
Note also that the inverse of the Jacobian above ( V: 12} ) is ( _ ZAtIt/t 7, Z(A)t )

Thus, the Malliavin derivative of ( § ) is
t

D, Xe\_(Y% O Zs 0 s ) ¢
X ) \ Vi Y ~ZVsZs  Zs 6, ) oSt

from which we deduce the Malliavin derivative of X;:
Dy(Xy) = [(Vi = ViZVy) Zs0s + Vi ZyGs | 1ot (3.11)

In order to compute D,(X;) we thus need to solve the system (1.1), (3.1), (3.2),
(3.7), (3.8), (3.9), and (3.10).

3.3. Malliavin derivative of Y. Now, consider Y;; the ith column of Y; and
apply the results of previous section to X, = Yi:. From (3.1) we have 138 = b’sX's
and 6;, = a;-’sXs. We observe that Vb, = b, and V36, = = 0} 5, thus the dynamics
on Y and Z are the same as those on Y and Z respectively, and since their initial
conditions are the same (Yo =Yy = Iy and Zy = Zy = I4), we have for all 5, Y, =Y}
and Z; = Z,. Thus, in order to compute the Malliavin derivative of Y; ;, we just need
to introduce the process V; = V,Y;; and solve (1.1), (3.1), (3.2) and (3.10), which
reads (noticing that Vb = Vm(b'f() = >, Yi;V,b, where b) = 0,,b and Yj; is the
(1,i)" element of Y, and V,6; = 3, ¥1;V,0/ ;, where o} ; = 8;,0;):

t d d t d
V= / (D Yii,s Vb )Y + B,V ]ds + ) / [(Q_ Y1:,:Ve015,0)Ya + 03 V1AW
0 =1 =170 =1

(3.12)
Then we deduce from (3.11) that the Malliavin derivative of Y; is

DY) = (Vi = Vi Z, V) Zsos + Vi Zs0i] 1<y (3.13)

with ¢} the matrix whose j** columns are o} Y ,.
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3.4. Malliavin derivative of X. Since X, solves equation (2.1), we apply the
results of section 3.2 with Xt X kot the kt" column of X; (1ts derivative w.r.t. to the

parameter ay). Thus by = bk s+ 0L X, and 6 Gj,s = Ok,j,s + a Xs, where bk s = O, bs
thus the
dynamics on Y and Z are the same as those on Y and Z and we have, for all s,
Y YandZ_Z Write, for all k = 1. mUt Vth

In order to compute the Malliavin derivative of X} ;, we just need to solve (1.1),
(3.1), (3.2) and

. _ ! —
and 0,5, = 6ak0'j3 Here again we have Vb, = b, and V Gjs = Oj g

Ut —/ (Ve bks+ZXlk sV bls)Ys-l-b'sUf]ds

=1

t
+ Z /0 (Voo + Z Xt s Vool )Ys + 0 UKW (3.14)

where Xji s = O, X1, is the (I, k)" element of X,.
Then, the Malliavin derivative of X}, is

Dys(Xiy) = [(UF = Vi Z,UF) Zy05 + Y, 2,6%]1,<y (3.15)
with ¥ the matrix whose j** columns are 6% ;s + 0} Xk 5.
3.5. Computation of % > fot D, Fi 1 tuisds. We have

d
> DyFigstiis = tr(usDs Frp) = tr(o; ' YoDy Fiy)

i=1
and from (3.6), we deduce

d

d t t
Z/ Dy Fj ui,sds =/ tr(0y Vo Ze [ = D Ds(Yi) (ZeXkt)i + Ds(Xiye)]) ds.
i=1 70 0

i=1

Using equations (3.13) and (3.15) and the property of the trace function tr(AB) =
tr(BA), it follows that

d
o7\, 7, ZD N(Zi X1 p)i) = Z(Zth 1)i[tr(o5 Y5 ZeVi Za)
i=1
—tr(o; 'V} Zs0o5) + tr(o; tol)]
d
=Y (Z X))t (Z V] — Z,Vi + 07" o)
i=1

and

tr(0;' Y ZiDs (X1 ) = tr(o; Y, ZUF Zsos) — tr(0; Uk Zso5) + tr(o;t6%)
=tr(Z,UF — Z,U* + 0, 16%).
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Thus we have

d t d t
1 ) ) 1 ) L
n Z/ D Fi g pus,,ds = Z(Zth,t)i [—tr(ZtW) + E/ tr(Z,V) — o, ol)ds
i=1 70 i=1 0
1 [t
+tr(Z,UF) + Z /0 tr(—Z,UF + o, 15")ds. (3.16)

3.6. In short .... We solve the following system: for all ¢ € [0,T],

t d t
X,=z +/ byds + Z/ 0j,sdW?
0 =170

t d t
yt:1d+/ b’ssts+Z/ o}, Yy dWi
0 =170

d

t d t
Z, =1, _/ Zy(by =Y (05,,)%) ds — Z/ Zy0' o AW}

j=1
. t . - d t . .
%, = / (b + 8, X,) ds + Z/ (650 + 0%, X,) AW
0 j=170 ’
. t d ;
foralli=1...d, V! = / [(Z Vi s Vaby ;) Ye + b,V ]ds
0 =1
d t d . )
+30 [ Yiaa Va0 1 )Ya + 0}, ViAW
j=170 =1
t . d .
forall k=1...m, UF= / [(Vabr,s + Y Xik,s Vabi,)Ys + b,UF)ds
0

=1

d t d
+3 / (Yot + 3 Xib,eVao] ;)Y + 0} UFIAW.
j=170 =1

All these processes are simulated using the Euler scheme with N time steps, which
gives a global discretization error of order %, as proved in the main paper.
Then we compute (3.16) and (3.4) and deduce Hy; from (3.3).

4. Adjoint approach. From Lemma 2.9 and Theorem 2.11 we have

T t
7 _ _ b o A
J(a)—ﬂa[ / / [F(X0) — F(X)) (Y, + HY )dsdt

T
4 /0 [9(Xr) = (X)) (Hp., + HF,,)dt
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with
t
Z. .
b _ * _—1 s
HY, = (/S Wiy V) 7= b,
d * 26j t 1 e'i H-Ts 1
Hgszi; 061,54 (E 2; /H;(ou Y)W x 25 (2 / (0, 'Y dW,]
i =
+——{V. [Z;‘/ (aulYu)*qu]Zsej}) .

For an efficient computation of Hf’s and H{, for all 0 < s <t <T, we memorize
along a trajectory discretized at times {to = 0 < t; < --- < ty = T} the following
data:

{f(Xs),Zs, ViZs, bs; [00.*]5,

I * _—1 o * -1
I, .—/0 dWio, Yy, Jis .—/0 dW 0z, [0, Yu]} s € {t,ta, ..., tn ),

ke{l,...,d}
Then, after some computations, we derive Hf, s and HY for all discrete times:
L-1I,, .
g),s = z — SS Zsbs
. 2
8= 3 ol { g = T 2l = 1) 2

1
+t —3 (Z Z"’j7s I:Jk,H'TS - ths - (IH'T“’ - IS)Zsakas]> Zi,s} .
k

As mentioned in [GMO02], if there is no instantaneous cost (i.e. f = 0) then it is
not necessary to compute Hy, and H¢, for all ¢ and s: only H%,t and Hf,, for all ¢,
are required and may be computed directly.

5. Martingale approach. From Theorem 2.12 we have

J(a) = ]E[ /0 ’ ( FX)H, + /0 T — f(Xs)]Ht,sds> dat

+f(Xp)Hy + /0 [F(Xz) f(Xt)]HT,tdt]
with

1t .
H, = —/ dWro 1 X,
tJo

1
Heo =G=op

Here, we memorize the following data along the trajectory:

t
/ AWio; (X, — YuZs Xs).

{f(Xs),ZSXS, I, :=/ dWro, 'Y, K, = dW*a‘lXu}
0 0 s€{t1,t2,....tN}
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from which we compute H; and H; ;s for all ¢, s.
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