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In this paper, we address the problem of the Greeks’ evaluation for European and Amer-
ican options, when the model is defined by a general stochastic differential equation. We
represent the Greeks as expectations, in order to allow their computations using Monte
Carlo simulations. We avoid the use of Malliavin calculus techniques since in general, it
leads to random variables whose simulations are costly in terms of computational time.
We take advantage of the Markovian structure to derive simple formulas in a great gen-
erality. Moreover, they appear to be efficient in practice.

First version: November 1, 2003. This version: March 5, 2004.

1. Statement of the problem

A main issue related to the option pricing is the determination of sensitivities of the
option price with respect to the parameters defining the model of the underlying
asset. These quantities are called the Greeks and they are computed as appropriate
derivatives of the option price. The purpose of this work is to revisit some classic
issues on the subject, using a point of view which differs from the previous ones.
Firstly, we rederive known formulas with a simplified proof, that is without Malliavin
calculus techniques, but with only the standard Itô’s calculus. Secondly, we establish
new representations for the Greeks, still by using simple arguments.

Now, let us specify our model. We consider a frictionless financial market, where
we can trade d risky assets, with price process [St = (S1

t , · · · , Sd
t )∗]0≤t≤T , and a

non risky asset (S0
t )0≤t≤T . We assume S0

t = 1, which is still possible using a change
of numéraire MR98.

The log-price process [Xt = (log(S1
t ), · · · , log(Sd

t ))∗]0≤t≤T is assumed to be the
solution of the stochastic differential equation

Xt = x+
∫ t

0

b(s,Xs)ds+
d∑

i=1

∫ t

0

σi(s,Xs)dW i
s . (1)

∗The material of this work was presented at the International Symposium on Stochastic Processes

and Mathematical Finance at Ritsumeikan University, Kusatsu, Japan, in March 2003.
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In the equation above, W = (W 1, · · · ,W d)∗ is a standard d-dimensional Brownian
motion defined on a filtered probability space (Ω,F , (Ft)t≥0,P): we assume that
the filtration is the one generated by W augmented by the null sets. Smoothness
conditions on b and σ = (σ1, · · · , σd) will be stated later on. Moreover, we will
assume the uniform ellipticity of σ. As a consequence, the market is complete and
we suppose that the dynamics (1) is directly given under the risk-neutral probability.

The price at time 0 of an European option with maturity T and payoffa F , is
thus given by P (0, S0) = E(F |S0). Essentiallyb, the hedging strategy ∆0 at time
0 is given by ∂S0P (0, S0). A Monte Carlo approach to evaluate E(F ) is usual. In
particular, it is more efficient compared to a PDE approach, either because the
dimension d is not small (more than 2), either because the payoff F is highly path-
dependent and simulations are more suitable. In that case, it is useful to also
evaluate ∆0 using simulations. Three approaches are possible.

1. The re-sampling method or finite difference method GY 92 LP94 is based on
the computation of P (0, S) for different values of S close to S0. Then,
appropriate differences are formed in order to approximate the gradient
by a discrete derivative. Unfortunately, it provides biased estimators and
moreover, it is costly when d is large.

2. The path-wise method BG96 consists in putting the differentiation inside the
expectation. It gives ∆0 = E(∂S0F ) provided that ∂S0F is meaningful, and
direct Monte Carlo simulations can be performed to complete the evaluation
of ∆0. The limitation of this method is due to the possible lack of regularity
of F : for instance, it cannot be applied to digital or barrier options.

3. The likelihood method or score method (introduced by Glynn Gly86,Gly87,
Reiman et al.RW86, and later in finance by Broadie et al.BG96) differenti-
ates the law of the payoff instead of the payoff itself. It writes ∆0 = E(F H)
for some random variablec H. When the underlying asset has an explicit
law (like in the geometric Brownian motion case), it is possible for some
payoff to get an explicit expression for H, using a finite-dimensional inte-
gration by parts formula BG96 (ibp in short). During the past five years,
a lot of attention has been paid to the derivation of suitable weights H
for various payoffs and for general models of type (1). The basic tool is
the Malliavin calculus, and in particular the ibp formula on the infinite-
dimensional Wiener space. For the case of vanilla, see FLLLT99; for Asian
options, see FLLLT99 and Ben00; for barrier and lookback options, see GKH03

and BGKH03.

Consequently, there is a lot of interest for the Malliavin calculus in finance (we refer

athe random variable F is square integrable and FT -measurable.
bthis is not a general result, but a common feature for usual options in a Markovian setting. For
a recent study on the ∆-hedging, see the paper by Bermin Ber03.
cH is not unique since any random variable orthogonal to F can be added.
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to KHMar for a nice expository work) but we may formulate two major criticisms
to the use of these tools. Firstly, it is difficult to control, and the non academics
may face some serious difficulties to correctly manipulate these concepts, with the
inherent risk to devise wrong numerical procedures. The second reason has to do
with the efficiency of the method. In general, the weights H are given by Skorohod
integrals, whose simulation is far to be easy. For log-normal dynamics, there are
many simplifications but for less specific models, it requires the simulation of many
auxiliary processes, which significantly increases the computational time.

This work is aimed at deriving representations forH, in terms of explicit stochas-
tic integrals. It leads to simple and efficient numerical procedures as experiments
will illustrate. For this, the Malliavin calculus techniques are replaced by more
standard tools, like martingales or Itô’s calculus. In fact, the usual ibp of Malliavin
calculus Nua95 is intrinsically a static operation, i.e. it focuses on the law of a
random variable such as XT for instance. Our alternative approach is different and
it leverages the dynamic structure of the process (Xt)0≤t≤T . This type of idea
dates back to Bismut Bis84. We do not assert that the Malliavin calculus is no more
useful for the Greeks, but it appears to be unnecessary in many situations.

The outline of the paper is the following. In section 2, we focus on the Delta
for European vanilla options: we obtain the same formula than in FLLLT99 but our
proof is different. This simple case enables us to introduce the methodology which
will be used later on. Then, we handle general European barrier and lookback
options, and also American vanilla options: the derived representations are new to
our knowledge. In section 3, we address the sensitivity w.r.t. the volatility (called
the Vega index), which is useful when the impact of a model misspecification needs
to be measured. The given formula has been already proved in GM02, but here we
provide a simplified proof. Actually, it appears to be a particular case of a nice ibp
formula, which has the advantage to use only the first derivatives of the coefficients
b and σ, whereas the usual ibp formula needs two derivatives. A recent study
related to the sensitivity analysis w.r.t. a boundary CKG03 is also reported and the
connection with American options is discussed. A numerical experiment illustrates
the efficiency of our approach. Finally, we conclude in section 4, by listing some
open problems.

To simplify the notations, sensitivities are computed relatively to the parameters
defining X in (1), that is we skip the influence of the logarithm change of variables
between X and S. For instance, for the ∆, we will compute ∂xE(F ) instead of
∂S0E(F ).

Notations and assumptions

In the sequel, we adopt the following usual convention on the gradients. If ψ :
(t, x) ∈ [0, T ]×Rd 7→ Rq is a differentiable function w.r.t. x, its gradient w.r.t. x is
denoted ψ′(t, x) = (∂x1ψ(t, x), · · · , ∂xd

ψ(t, x)) and it takes values in Rq⊗Rd. When
the function ψ is evaluated at the point (t,Xt), we may simply note ψt instead of
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ψ(t,Xt).
Throughout the paper, we will consider the following assumptions on the coef-

ficients defining X.

(H) the functions b and σ are bounded, continuous, continuously differen-
tiable w.r.t. x with uniformly bounded derivatives. The functions
b, b′, σ, (σ′i)1≤i≤d satisfy a Hölder continuity property: for some η > 0,
|b(t, x)− b(s, y)| ≤ C(|t− s|η/2 + |y − x|η) uniformly in s, t, x, y, and anal-
ogously for σ, b′, (σ′i)1≤i≤d.
Moreover, for some a0 > 0, one has ξ.[σσ∗](t, x)ξ ≥ a0|ξ|2 for any
(t, x, ξ) ∈ [0, T ]×Rd ×Rd.

Under the smoothness assumptions above, there is a unique strong solution to
(1). Let L be the infinitesimal generator of X, defined by

Lu(t, x) = u′(t, x)b(t, x) +
1
2
Tr(Hu(t, x)[σσ∗](t, x)),

where Hu is the Hessian matrix of u w.r.t. the space variable x. Besides, one has
for any c > 0

E(ec supt∈[0,T ] |Xt|) <∞. (2)

The payoffs under consideration in the sequel are supposed to satisfy

|F | ≤ cec supt∈[0,T ] |Xt| (3)

for a positive constant c. Consequently, owing to (2) they belong to any Lp, which
is a simplification in the arguments below but not a restriction in practice.

Finally, we associate to (Xt)t≥0 its flow, i.e. the Jacobian matrix Yt := ∂xXt,
and its inverse Zt = [Yt]−1 (see Kun84). They solve the equations

Yt = Id +
∫ t

0

b′sYs ds+
d∑

i=1

∫ t

0

σ′i,sYs dW
i
s , (4)

Zt = Id−
∫ t

0

Zs(b′s −
d∑

i=1

(b′sσ
′
i,s)

2) ds−
d∑

i=1

∫ t

0

Zsσ
′
i,s dW

i
s . (5)

Standard computations show that E(supt∈[0,T ](|Yt|+ |Zt|)p) <∞ for any p ≥ 1.

2. Computations of Delta

For an European option with payoff F satisfying (3), we can write using the pre-
dictable representation theorem

F = E(F ) +
∫ T

0

∆sσsdWs. (6)
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The R1 ⊗Rd-valued process (∆t)0≤t≤T gives, up to logarithm change of variables,
the hedging strategy of the option using the underlying asset S. For an Ameri-
can option with payoff (Ft)0≤t≤T , we can proceed analogously to get, under some
assumptions,

Fτ∗ = E(Fτ∗) +
∫ τ∗

0

∆sσsdWs, (7)

τ∗ being the optimal exercise time Kar88.

In this section, we aim at representing ∆0 for both option styles as an expectation
involving explicit terms, which simulations are easy. The key idea consists in using
a suitable martingale (see Lemmas 2.1 and 2.2 below), in order to involve in the
expected representation only Itô’s integrals. This approach has been introduced by
Bismut Bis84 (and intensively used by Thalmaier et al.TW98, Elworthy et al.EJL99,
Picard Pic02 and Delarue Del03 among others) to derive explicit ibp formulas.

2.1. European vanilla options

Consider first the case F = f(XT ) and define

u(t, y) = E[f(XT )|Xt = y]. (8)

We briefly recall that under (H), u is a C1,2([0, T [×Rd,R), satisfying the PDE ∂tu+
Lu = 0 in [0, T [×Rd with u(T, ·) = f(·) as a terminal condition (this directly follows
from the existence of a smooth transition density function for the Markov processX,
see Fri75). Under (H), there is even an additional regularity, namely (∂3

xi,xj ,xk
u)i,j,k

exist and are locally Hölder continuous (Theorem 10 p.72 in Fri64). Remember that
in general, derivatives of u explode when t → T . Besides, an application of Itô’s
formula to u(T,XT ) provides a more explicit form for the predictable representation
(6):

f(XT ) = u(0, x) +
∫ T

0

u′(s,Xs)σsdWs. (9)

Our main tool is the following.

Lemma 2.1. Assume (H) and define Mt = u′(t,Xt)Yt for t < T . Then M =
(Mt)0≤t<T is a R1 ⊗Rd-valued martingale.

Proof. We give two different arguments.
Proof 1. From the Markov property, note that [u(t,Xt) = E(F (XT )|Ft)]0≤t<T is
a martingale for any X0 ∈ Rd: differentiating w.r.t. X0 provides also a martingale.
This is our statement. For full details, see Lemma 2.10 in GM02.
Proof 2. This second proof is easily adaptable to other options as we will see later
on. First, M is a local martingale. Indeed, apply Ito’s formula to u′(t,Xt)Yt: the
key point is to note that the dt-terms cancel because of the PDE solved by u. It
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remains to prove the uniform integrability of M = (Mt)0≤t≤T−ε for any ε > 0 (the
presence of ε avoids t being too close to T ). But under (H), it is easy to prove that
E[sup0≤t≤T−ε |Mt|] <∞ and the uniform integrability follows.

We now are in a position to prove

Proposition 2.1. Assume (H). Then, one has

∆0 = E
(
f(XT )

1
T

[ ∫ T

0

[σ−1
s Ys]∗dWs

]∗)
.

Proof. The uniform ellipticity condition yields E(
∫ T

0
|u′(t,Xt)|2dt)

≤ CE(
∫ T

0
|u′(t,Xt)σt|2dt) = CE(f2(XT )) using the equation (9). Consequently,

E(
∫ T

0
|Mt|dt) ≤ [E(

∫ T

0
|u′(Xt)|2dt)]1/2[E(

∫ T

0
|Yt|2dt)]1/2 < ∞. Hence, it allows to

write, using the martingale property of M and the isometry of Itô’s integral, that
∆0 equals

u′(0, x) = E
( 1
T

∫ T

0

Ms ds
)

= E
( 1
T

[ ∫ T

0

u′(s,Xs)σsdWs

][ ∫ T

0

[σ−1
s Ys]∗dWs

]∗)
= E

(f(XT )− u(0, x)
T

[ ∫ T

0

[σ−1
s Ys]∗dWs

]∗) = E
(f(XT )

T

[ ∫ T

0

[σ−1
s Ys]∗dWs

]∗)
.

2.2. Some European path-dependent options

The analysis above can be immediately extended to the case of payoff of the form

F = f(Xs : t1 ≤ s ≤ T )

for a fixed time t1 > 0. It covers the situations considered in FLLLT99, where
F = f(Xt1 , · · · , Xti

, · · · , XtN
) with 0 < t1 < · · · < ti < · · · < tN = T , which

allows to deal with discrete monitored barrier and lookback options, discrete Asian
options... But it also enables us to consider more generally any option, which payoff
does not depend on the underlying assets on a short time period: here, we address
the case of forward start options Rub91. Some examples may be:

• Forward start put on maximum: F = (maxt∈[t1,T ] e
Xt − eXT );

• Forward start Asian call: F = (eXT − 1
T−t1

∫ T

t1
eXtdt)+.

Actually, this path-dependent case can be connected to the vanilla one. Indeed,
define f̃(Xt1) = E(F |Ft1) using the Markov property for X. Then, take the condi-
tional expectation in (6) to get

f̃(Xt1) = E(F ) +
∫ t1

0

∆sσsdWs. (10)

Consequently, the hedging strategy on the time interval [0, t1] equals the one used
for a vanilla option of maturity t1 and payoff f̃(Xt1). In terms of no-arbitrage,
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this is the well established principle that the fair price (Vt)0≤t≤T of an option of
maturity T coincides on [0, T ′] with the fair price of an option with maturity T ′ < T

and payoff VT ′ ; furthermore, both hedging strategies also coincide.
In particular, Proposition 2.1 gives ∆0 = E

(
f̃(Xt1)

1
t1

[ ∫ t1
0

[σ−1
s Ys]∗dWs

]∗). Using
the tower property for conditional expectations, we finally obtain:

Proposition 2.2. Assume (H). Then, one has

∆0 = E
(
f(Xs : t1 ≤ s ≤ T )

1
t1

[ ∫ t1

0

[σ−1
s Ys]∗dWs

]∗)
.

2.3. European barrier options

Now, we consider continuous time monitored barrier options, with payoff of the
form

F = f(τ0 ∧ T,Xτ0∧T ), τt = inf{s ≥ t : Xs /∈ D}

for some open set D ⊂ Rd containing X0 = x. The situation d = 1 has been
developed by Gobet et al.GKH03, while a multidimensional extension in the Black-
Scholes model (constant coefficients b and σ) has been carried out by Bernis et
al.BGKH03. Here, we cover general models, but unlike the cited references, we are
not able to deal with other Greeks than the Delta. Note also that the form of the
payoff allows wider situations, since the dependence through the state τ0 ∧ T was
not possible in the previous works. In this context, the technique of martingales is
borrowed to TW98 and Del03.

Analogously to (8), we set

v(t, y) = E[f(τt ∧ T,Xτt∧T )|Xt = y]. (11)

Note that we do not assume any regularity property on D, thus we cannot expect v
to be a smooth function up to the boundary. In particular, computations involving
derivatives on v have to be carefully performed. Our analysis below is only based
on the interior regularity, which can be formulated as follows. Take a such that
0 < a < d(x, ∂D), set D′ = {y : |y−x| < a} ⊂ D and put τ ′t = inf{s ≥ t : Xs /∈ D′}.
The strong Markov property easily yields v(t, y) = E(v(τ ′t ∧ T,Xτ ′t∧T )|Xt = y)
for any (t, y) ∈ [0, T [×D′. It enables us to deduce that the function v is of class
C1,2([0, T [×D′,R) and solves ∂tv+Lv = 0 in [0, T [×D′. Indeed, this is classic result
which may be obtained using the integral representation (see Mir70 among others)
of v with the Green function, which is smooth in (t, x) because the ball D′ is smooth
and coefficients satisfy (H). Moreover, an application of interior estimates (Theorem
5 p.64 Fri64) leads to uniform bounds for the derivatives of v on [0, T/2] × D̄′ (up
to taking a smaller) d. As for (8), (∂3

xi,xj ,xk
v)i,j,k exist and are Hölder continuous.

dactually, T/2 could be replaced by any time smaller than T .
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Now, write E(f(τ0∧T,Xτ0∧T )|Fτ ′0∧T/2) = v(τ ′0∧T/2, Xτ ′0∧T/2) using the Markov
property and apply Itô’s formula. Using the PDE solved by v in [0, T/2[×D′, we
obtain

E(f(τ0 ∧ T,Xτ0∧T )|Fτ ′0∧T/2) = v(0, x) +
∫ T/2

0

1s<τ ′0
v′(s,Xs)σsdWs. (12)

A comparison with the equation (6) leads to ∆0 = v′(0, x) as it was expected.
Lemma 2.1 in this new situation becomes

Lemma 2.2. Assume (H) and define Nt = v′(t,Xt)Yt for t ≤ T/2 and t ≤ τ ′0.
Then N = (Nτ ′0∧t)0≤t≤T/2 is a R1 ⊗Rd-valued martingale.

Proof. The first argument invoked in the proof of Lemma 2.1 cannot be applied
here since it is not clear how to differentiate the martingale [v(τ ′0 ∧ t,Xτ ′0∧t) =
E(f(τ0 ∧ T,Xτ0,∧T )|Fτ ′0∧t)]0≤t≤T/2 w.r.t. X0 (because of τ ′0). However, the second
argument is still valid. Indeed, v solves the PDE ∂tv + Lv = 0 in [0, T/2[×D′

and consequently, [v′(τ ′0 ∧ t,Xτ ′0∧t)Yτ ′0∧t]0≤t≤T/2 is a local martingale using Itô’s
formula as before. The uniform integrability is clear because v′(·, ·) is bounded on
[0, T/2]× D̄′.

To complete the localization, we introduce the adapted process h = (ht)0≤t≤T

defined by

ht =
1
λ

1t<τ

d2(Xt, ∂D′)(T/2− t)
(13)

with τ = inf
{
t ≥ 0 :

∫ t

0

ds

d2(Xs, ∂D′)(T/2− s)
= λ

}
.

The parameter λ above is a positive real number, that can be chosen arbitrarily.
From Del03, one has τ < τ ′0 ∧ T/2 a.s. and E(

∫ T

0
h2

tdt)
p < ∞ for any p ≥ 1. As a

consequence, one gets the crucial properties

ht = 0 for t ≥ τ ′0 ∧ T/2, and
∫ T

0

htdt = 1. (14)

Now, the representation for ∆0 can be stated as follows.

Theorem 2.1. Assume (H). Then, one has

∆0 = E
(
f(τ0 ∧ T,Xτ0∧T )

[ ∫ T

0

hs[σ−1
s Ys]∗dWs

]∗)
.

Proof. We proceed by verification. Because of the local property of h, one has
E

(
E[f(τ0 ∧ T,Xτ0∧T )|Fτ ′0∧T/2][

∫ τ ′0∧T/2

0
hs[σ−1

s Ys]∗dWs]∗
)
. Then, because of (12),
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it equals

E
( ∫ T/2

0

1s<τ ′0
hsv

′(s,Xs)Ys ds
)

=E
( ∫ T/2

0

hsNs ds
)

=E
( ∫ T/2

0

hsNτ ′0∧T/2 ds
)

= E
(
Nτ ′0∧T/2

)
= N0 = ∆0

using successively the property on the support of h, the martingale property of
N between times s and τ ′0 ∧ T/2 on the event {hs 6= 0} ⊂ {s < τ ′0 ∧ T/2}, the
normalized time integral of h and once again the martingale property of N .

2.4. European lookback options

The payoff of lookback options depends on the extrema M i = supt∈T Mi Xi
t , m

i =
inft∈T mi Xi

t of the underlying assets, computed on some subsets T Mi

and T mi

of
[0, T ]. These monitoring sets may be different for each maximum and minimum.
Put M = (M1, · · · ,Md)∗, m = (m1, · · · ,md)∗: the payoff is of the form

F = f(M,m,XT ).

Note that even in the case of smooth functions f , the pathwise approach cannot be
applied because in general, M and m are not differentiable w.r.t. X0. It strengthens
the necessity to develop a likelihood-type method.

We assume in the sequel the following structure of the payoff function f .

(S) There exists a0 > 0 such that for any i ∈ {1, · · · , d}, the payoff
f(M1, · · · ,Md,m1, · · · ,md, X1

T , · · · , Xd
T ) does not depend on M i (resp.

mi) if M i < Xi
0 + a0 (resp. mi > Xi

0 − a0).

As it is discussed in BGKH03, this restriction appears to be a necessary condition
to allow a representation of ∆0 as E(FH), for an appropriate square integrable
random variable H. However, in practice many payoffs fulfill (S) BGKH03.

Now, we make the connection between this framework about general lookback
options and the previous situation with barrier options, analogously to what we
have done in the paragraph 2.2. For this, put D = {y : |y − x| < a0} and set τ0 =
inf{t ≥ 0 : Xt /∈ D}. The strong Markov property for X, the definition of τ0 and the
assumption (S) enable us to write E(F |Fτ0∧T ) = f̃(τ0∧T,Xτ0∧T ) for some function
f̃ . With the arguments from paragraph 2.2, it readily follows that ∆0 equals the
Delta for the barrier option with payoff f̃(τ0∧T,Xτ0∧T ). By Theorem 2.1, it writes
∆0 = E

(
f̃(τ0∧T,Xτ0∧T )

[ ∫ T

0
hs[σ−1

s Ys]∗dWs

]∗) where h is defined in (13) with 0 <
a < a0. Because of the properties of h,

∫ T

0
hs[σ−1

s Ys]∗dWs =
∫ τ0∧T

0
hs[σ−1

s Ys]∗dWs

and an application of the tower property for conditional expectations completes the
proof of the following result.
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Theorem 2.2. Assume (H) and (S). Then, one has

∆0 = E
(
f(M,m,XT )

[ ∫ T

0

hs[σ−1
s Ys]∗dWs

]∗)
,

with h defined as above.

2.5. American vanilla options

In this paragraph, we focus on American contracts with payoff Ft = f(t,Xt). The
fair price is given by P (0, x) = supτ∈[0,T ] stopping times E(f(τ,Xτ )). The existence
of an optimal exercise time τ∗ such that P (0, x) = E(f(τ∗, Xτ∗)) has been handled
for years by El Karoui Kar81: the continuity of f and the uniform integrability of
(Ft)0≤t≤T are sufficient for this result. Furthermore, in our Markovian setting, τ∗

is the entrance time of the process (t,Xt)0≤t≤T in the so-called exercise region E
(which is unknown). For a recent work on these issues, see V il99.

Hence, from this point of view, the computation of ∆0 in (7) is a particular case of
the previous study on barrier options, except that it needs a minor adaptation since
E is not a cylindrical time-space domain. Namely, the radius a and the intermediate
time T ′ (equal to T/2 before) have to be such that [0, T ′]× {y : |y − x| ≤ a} ⊂ Ec,
everything else being unchanged.

Nevertheless, this argumentation assumes that E is known in a neighborhood
of (0, x), which might be unrealistic in practice. Besides, some numerical methods
based on Monte Carlo simulations build for each path the optimal exercise time;
see for instance LS01 Gar01 IZ02. Hence, deriving an estimator of ∆0 using the same
information is especially relevant for numerical procedures. It is the aim of this
section and we develop a pathwise approach.

To state our result, we assume that the price function

P (t, y) = sup
τ∈[t,T ] stopping times

E(f(τ,Xτ )|Xt = y) (15)

satisfies the smooth pasting condition, that is P ′(t, y) = f ′(t, y) for (t, y) ∈ ∂E . Suf-
ficient conditions for this are given in Fri76 Chapter 16 and extensions are discussed
by Brekke et al.BØ91. Here, we do not report a relevant set of hypotheses which
makes the smooth pasting condition valid, but we directly assume that it holds. For
instance, it is true for the American put Lam98.

(P) The function P (·, ·) is continuously differentiable w.r.t. y in a neighborhood
of the continuation region C = Ec and it satisfies supt∈[0,T ] E(|P ′(τ∗ ∧
t,Xτ∗∧t)|1+ε) <∞ for some ε > 0.
Moreover, in the neighborood of ∂C, f(·, ·) is also continuously differentiable
w.r.t. y and one has

P ′(τ∗, Xτ∗) = f ′(τ∗, Xτ∗) a.s. (16)
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Analogously to Lemma 2.2, we assert that [P ′(τ∗ ∧ t,Xτ∗∧t)Yτ∗∧t]0≤t≤T is a mar-
tingale. Indeed, in the open set C, the price satisfies ∂tP +LP = 0 (use the interior
regularity as we did for v(·)). Thus, an application of Itô’s formula proves the prop-
erty of local martingale as before. Under (P), this is a true martingale. To get a
representation for ∆0 as an expectation, write ∆0 = P ′(0, x) = E(P ′(τ∗, Xτ∗)Yτ∗)
and use the smooth pasting condition to conclude. We obtain

Theorem 2.3. Assume (H) and (P). One has

∆0 = E(f ′(τ∗, Xτ∗)Yτ∗).

Similar results have been obtained by Piterbarg Pit02 in the discrete time setting
of Bermuda options: his proof is based on the differentiation of the dynamic pro-
gramming equation.

3. Other greeks

The extension of previous arguments to the computation of Γ (second derivatives of
the price w.r.t. x) is possible for European vanilla options. Formulas still involving
only Itô’s integrals are proved in Theorem 2.12 GM02: we do not report them here.
For other path-dependent options, we have not been able to generalize this approach.

3.1. Vega index

An other relevant Greek is the so-called Vega index, which usually evaluates the
sensitivity of the price w.r.t. the volatility. This is an important index when one
needs to measure the impact of a model misspecification on the options’ prices.
We address the problem of its evaluation in the case of European vanilla options.
Using Malliavin calculus techniques, see FLLLT99. For the Asian case, see Ben00.
For barrier and lookback options, the problem is still open to our knowledge. Here,
we present some results proved in GM02.

We slightly modify the definition of Vega because of the logarithm change of
variables. For α ∈ R, consider the solution of the stochastic differentiable equation

Xα
t = x+

∫ t

0

[b(s,Xα
s ) + αb̄(s,Xα

s )]ds+
d∑

i=1

∫ t

0

[σi(s,Xα
s ) + ασ̄i(s,Xα

s )]dW i
s , (17)

with coefficients b+αb̄ and σ+ασ̄ satisfying (H) for α small enough. If no reference
to α is given, it means that α = 0, for instance Xt = X0

t . We aim at computing

Vega = E[f(Xα
T )]|α=0. (18)

Denote Ẋt = ∂αXt|α=0, which is solution of

Ẋt =
∫ t

0

(
b̄s + b′s Ẋs

)
ds+

d∑
i=1

∫ t

0

(
σ̄i,s + σ′i,s Ẋs

)
dW i

s . (19)
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When f is smooth, the pathwise approach leads to the representation

Vega = E[f ′(XT )ẊT ]. (20)

In GM02, two new approaches are developed. Firstly, the so-called adjoint method
uses the underlying PDE to write Vega as an expectation. Briefly, the option price
uα(t, x) = E(f(Xα

T )|Xα
t = x) is solution of ∂tu

α + Lαuα = 0 and consequently
the Vega index ∂αu

α solves ∂t[∂αu
α] + Lα[∂αu

α] = −[∂αL
α]uα. Then, after some

substantial work, one can represent the solution as an expectation with only explicit
quantities.

We prefer here to expose the second approach, which seems to be the most
efficient in practice.

Theorem 3.1. Assume (F):
∫ T

0

‖f(XT )− f(Xt)‖Lp0

T − t
dt < +∞ for some p0 > 1.

Then, under (H) one has

Vega = E
(f(XT )

T

∫ T

0

[σ−1
s Ẋs]∗dWs

+
∫ T

0

dr
[f(XT )− f(Xr)]

(T − r)2

∫ T

r

[σ−1
s (Ẋs − YsZrẊr)]∗dWs

)
.

Note that the random variable in the expectation above is integrable. Indeed, this
is clear for the first term. For the second one, the combination of the general-
ized Minkowski inequality, the Hölder inequality and standard estimates from the
stochastic calculus gives

‖
∫ T

0

dr
[f(XT )− f(Xr)]

(T − r)2

∫ T

r

[σ−1
s (Ẋs − YsZrẊr)]∗dWs‖L1

≤
∫ T

0

dr

(T − r)2
‖f(XT )− f(Xr)‖Lp0‖

∫ T

r

[σ−1
s (Ẋs − YsZrẊr)]∗dWs‖

L
p0

p0−1

≤C
∫ T

0

‖f(XT )− f(Xr)‖Lp0

T − r
dr <∞. (21)

Assumption (F) can be interpreted under (H) as a weak regularity condition on f
and it allows to consider discontinuous functions. To simplify, say that the support
of f is included in a bounded set D: then we assert that if f belongs to the Sobolev
space W ε

p0
(D) (ε ∈]0, 1[) equipped with the norm ‖f‖p0

Wε
p0

(D) =
∫

D
|f(y)|p0dy +∫

D×D
|f(y)−f(z)|p0

|y−z|d+p0ε dzdy (see LSU68), then f satisfies (F). Indeed, using standard
Gaussian upper bounds Fri64 for the transition density function of X, (F) is fulfilled
if the following quantity is finite:∫ T

T/2

dr

(T − r)
( ∫

D×D

e−c
|y−z|2

T−r

(T − r)d/2
|y − z|d+p0ε |f(z)− f(y)|p0

|y − z|d+p0ε
dydz

)1/p0

≤ C

∫ T

T/2

dr

(T − r)1−ε/2

( ∫
D×D

|f(z)− f(y)|p0

|y − z|d+p0ε
dydz

)1/p0 ≤ C
T ε/2

ε/2
‖f‖Wε

p0
(D).
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This approach is called the martingale method since Theorem 3.1 is obtained in
GM02 using cleverly the martingale

∂α

[
E(f(Xα

T )|Ft)
]

= ∂α

[
uα(t,Xα

t )
]

= [∂αu
α](t,Xα

t ) + [uα]′(t,Xα
t )∂αX

α
t .

We present here another proof, which extends the scope of the method. For this,
we show

Theorem 3.2. Consider

(1) a continuously differentiable function f satisfying (F) and ‖f ′(XT )‖Lp0 <

∞;
(2) a Rd⊗Rq-valued continuous semimartingale (Ut)0≤t≤T with ‖UT −Ut‖Lp ≤

C
√
T − t for any p ≥ 1.

Then, under (H), one has

E
(
f ′(XT )UT

)
= E

(f(XT )
T

[ ∫ T

0

[σ−1
s Us]∗dWs

]∗
+

∫ T

0

dr
[f(XT )− f(Xr)]

(T − r)2
[ ∫ T

r

[σ−1
s (Us − YsZrUr)]∗dWs

]∗)
.

The result above is an explicit ibp formula in an elliptic framework. We should
emphasize the fact that it uses only the first derivative of the coefficients defining
X, whereas the usual ibp requires two derivatives. At least for simulations, this is
a crucial advantage.

Note that Proposition 2.1 and Theorem 3.1 are a particular case of the result
above. Indeed,

a) one has ∂xE(f(XT )) = E(f ′(XT )YT ). Now, take UT = YT (q = d): the
second term in the representation cancels and Proposition 2.1 is proved.

b) Theorem 3.1 immediately follows by considering (20) and taking UT = ẊT .

Proof. (of Theorem 3.2.) We first justify the following integral representation, that
we have not previously found in the literature. If U is a continuous semimartingale
as above, then one has

UT =
1
T

∫ T

0

Utdt+
∫ T

0

dr

(T − r)2

∫ T

r

(Us − Ur)ds. (22)

Actually, this follows from three integration by parts formula w.r.t. time:∫ T

0

dr

(T − r)2

∫ T

r

(Us − Ur)ds =
∫ T

0

dr

(T − r)2

∫ T

r

(T − s)dUs

= − 1
T

∫ T

0

(T − r)dUr +
∫ T

0

dUs =
1
T

∫ T

0

rdUr

= UT −
1
T

∫ T

0

Urdr.
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We apply (22) to the semimartingale ZTUT , to obtain that E(f ′(XT )UT ) =
E(f ′(XT )YT ZTUT ) equals

E
( 1
T

∫ T

0

f ′(XT )YTZtUtdt+
∫ T

0

dr

(T − r)2

∫ T

r

f ′(XT )YT (ZsUs − ZrUr)ds
)
. (23)

Both terms can be handled in the same way: we only treat the second one, for
a fixed r. By Lemma 2.1, (u′(s,Xs)Ys)0≤t<T is a martingale which is closed by
f ′(XT )YT when f is smooth: hence, u′(s,Xs)Ys = E(f ′(XT )YT |Fs). It follows
that E

( ∫ T

r
f ′(XT )YT (ZsUs − ZrUr)ds

)
= E

( ∫ T

r
u′(s,Xs)Ys(ZsUs − ZrUr)ds

)
=

E
(
[f(XT ) − u(r,Xr)][

∫ T

r
[σ−1

s (Us − YsZrUr)]∗dWs]∗
)

using (9). In the last term,
u(r,Xr) can be replaced by any Fr-measurable random variable because the stochas-
tic integral is centered. The choice of f(Xr) is more convenient. It remains to plug
these expressions in (23), Fubini’s theorem completing the proof. Note that the
estimates on U help in justifying that all quantities that appear are well defined, as
we have done for example in (21).

3.2. Numerical experiment

The purpose of this paragraph is to illustrate how representations with Itô’s integrals
can be numerically efficient compared to the ones resulting from general Malliavin
calculus computations. We report here an example borrowed from GM02.

We consider a vanilla digital option with payoff e−rT 1X1
T≥X2

T
and maturity

T = 1, using the model{
dX1

t = [r − σ2(X1
t , λ1)]dt+ σ(X1

t , λ1)dW 1
t

dX2
t = [r − σ2(X2

t , λ2)]dt+ σ(X2
t , λ2)

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
.

The constant interest rate is defined by r = 0.04 and the volatility function is given
by σ(x, λ) = 0.25(1 + 1

1+e−λ exp(x) ). We focus on the Vega index, by evaluating the
sensitivity of the price w.r.t. λ1, λ2, ρ at the point λ1 = 2, λ2 = 2, and ρ = 0.6. We
take X1

0 = X2
0 = 0. In the table below, different estimators are compared in terms

of computational time and variance:

(1) the usual Malliavin calculus estimator FLLLT99, requiring the simulation of
Skorohod integrals.

(2) the pathwise estimator: since the payoff is not smooth, we approximate it
linearly using a regularization parameter ε close to 0.

(3) the martingale estimator from Theorem 3.1.

The measurements have been carried out with 1000 sample paths, on a Pentium III,
700Mhz processor. The process X and the stochastic integrals have been discretized
using the Euler scheme with time step h = 0.01. For the influence of the time step
in such procedures, we refer to GM02, where it is essentially proved that the error
is linear w.r.t. h.
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On the one hand, the pathwise method provides a very high variance because the
payoff is not smooth. On the other hand, the Malliavin calculus estimator leads to
a small confidence interval, but it is too costly to evaluate. Finally, the martingale
approach appears to be the most competitive on this example.

Variances Malliavin Martingale Pathwise ε = 10−3 ” ε = 10−4

λ1 0.0011 0.0012 0.0378 3.8951
λ2 0.0048 0.0018 0.0296 4.9427
ρ 1.5788 1.4323 14.923 100.86

CPU time 20.8s 7.31s 2.97s 2.97s
Variance of different estimators of the Vega index.

3.3. Sensitivity w.r.t. the boundary

We now open the discussion on a different type of sensitivity analysis, by briefly
reporting here a recent result by Costantini et al.CKG03. We refer to the cited paper
for full details.

Consider a time-space domain D ⊂ [0, T ] × Rd and the associated exit time
τD for the process X defined in (1). How to evaluate the sensitivity of u(t, x) =
E(g(τ,Xτ )e−

∫ τ
t

c(r,Xr)dr −
∫ τ

t
e−

∫ s
t

c(r,Xr)drf(s,Xs)ds|Xt = x) w.r.t. D?
This issue may be relevant to devise new algorithms for the pricing of American

options by optimizing the continuation region CKG04. The answer is the following.
Define the pertubation of the domain by Dε = {(t, x) : (t, x + εΘ(t, x)) ∈ D}, for
which the new exit time is given by τε. We are concerned by the regularity of the
map

ε 7→ J(ε)(t, x) = E(g(τε, Xτε
)e−

∫ τε
t

c(r,Xr)dr−
∫ τε

t

e−
∫ s

t
c(r,Xr)drf(s,Xs)ds

)
|Xt = x).

First, to ensure a global regularity to u, all the datas f, g, c, · · · are assumed to
be smooth enough, that is essentially a little more than continuously differentiable.
Then, the main result is the differentiability of J(ε)(t, x) at ε = 0, for any (t, x) ∈ D,
with

∂εJ(ε)(t, x)|ε=0 = E
[
e−

∫ τ
t

c(r,Xr)dr[(u′ − g′)Θ](τ,Xτ )|Xt = x
]
.

The expression of the gradient shows a nice connection with the smooth pasting
condition (P) from the paragraph 2.5. If it satisfies, the gradient above vanishes,
which is natural for the optimal domain.

4. Conclusion

In this paper, we have tackled the issue of the Greeks’ evaluation. Rather than using
the gear of Malliavin calculus techniques, we try hard to develop simple arguments
in order to get simple representations. Our arguments take strongly advantage of
the Markovian structure of the model. Firstly, it is interesting from the pedagogical
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point of view. Secondly, since only Itô’s integrals have to be sampled, the simulation
procedures are easy and quick. Finally, we have succeeded to cover new situations.
To conclude, here is a list of open problems:

(1) extension of the current approach to the case of Asian options;
(2) computation of the Vega index for barrier and lookback options;
(3) additional variance reduction for the Greeks’ evaluation: some answers are

given in KHP02.
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phisms. Ecole d’Eté de Probabilités de St-Flour XII, 1982 - Lecture Notes in
Math. 1097 - Springer Verlag, pages 144–305, 1984.

Lam98. D. Lamberton. American options. In D.J. Hand and S.D. Saul, editors, Statis-
tics in finance, chapter 10. Arnold Applications of Statistics Series. London:
Arnold., 1998.

LP94. P. L’Ecuyer and G. Perron. On the convergence rates of IPA and FDC deriva-
tive estimators. Oper. Res., 42(4):643–656, 1994.

LS01. F. Longstaff and E.S. Schwartz. Valuing american options by simulation: A
simple least squares approach. The Review of Financial Studies, 14:113–147,
2001.

LSU68. O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva. Linear and quasi-
linear equations of parabolic type. Vol.23 of Translations of Mathematical Mono-
graphs, American Mathematical Society, Providence, 1968.

Mir70. C. Miranda. Partial differential equations of elliptic type. New York : Springer,
1970.

MR98. M. Musiela and M. Rutkowski. Martingale methods in financial modelling.
Springer Verlag, 1998.

Nua95. D. Nualart. Malliavin calculus and related topics. Springer Verlag, 1995.
Pic02. J. Picard. Gradient estimates for some diffusion semigroups. Probab. Theory

Related Fields, 122:593–612, 2002.
Pit02. V.V. Piterbarg. Risk sensitivities of Bermuda options. Technical report, Bank

of America, http://ssrn.com/abstract=367920, 2002.



March 5, 2004 9:16 WSPC/Trim Size: 9.75in x 6.5in for Proceedings WSgreeks

18

Rub91. M. Rubinstein. Pay now, choose later. Risk, 4(2):13, 1991.
RW86. M.I. Reiman and A. Weiss. Sensitivity analysis via likelihood ratios. In J. Wil-

son, J. Henriksen, and S. Roberts, editors, Proceedings of the 1986 Winter
Simulation Conference, pages 285–289, 1986.

TW98. A. Thalmaier and F.Y. Wang. Gradient estimates for harmonic functions on
regular domains in Riemannian manifolds. J. Funct. Anal., 155(1):109–124,
1998.

Vil99. S. Villeneuve. Exercise regions of American option on several assets. Finance
and Stochastics, 3(3):295–322, 1999.


