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Abstract

Interface conditions are crucial in domain decomposition methods
and their design has been the subject of many works. We propose
in this paper a novel approach where only one or two real parameters
have to be chosen for the entire interface. The method relies on van der
Sluis’ result on a quasi optimal diagonal preconditioner for a symmet-
ric positive definite matrix, see [38]. It is then possible to design Robin
interface conditions using only one real parameter for the entire inter-
face. By adding a second real parameter and more general interface
conditions, it is possible to take into account highly heterogeneous me-
dia. A first analysis is made at the semi-discrete level (i.e. the equation
is kept continuous in the direction normal to the interface). A second
analysis is made at the “fully” discrete level. Numerical results are
given for both analyses and are compared with other approaches. The
first analysis was already given in a previous preprint (CMAP-514)
and is recalled here for sake of simplicity.
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1 Introduction

The classical Schwarz method is based on Dirichlet boundary conditions.
Overlapping subdomains are necessary to ensure convergence. It has been
proposed independently in [20] and [25] to use more general interface condi-
tions in order to accelerate the convergence and to allow for non overlapping
decomposition. In [20], exact absorbing conditions are used in domain de-
composition methods. They are optimal in terms of iteration counts [31]
but are practically very difficult to compute or even use. In [25], Robin
interface conditions are proposed. These seminal papers have been the basis
for many other works: [8], [9], [7], [3], [4], [5], [6] or [15] for Helmholtz and
Maxwell problems. The idea to design the interface conditions by solving
an optimization problem related to the convergence rate of the domain de-
composition method was apparently first raised in [36]. This optimization
proved to be difficult. By using the relation between interface conditions
in Domain Decomposition Methods (DDM) and exact absorbing boundary
conditions, the optimization becomes tractable and has been the subject of
many works: see e.g. [22], [41], [11], [1], [26], [14], [2] or [13]. Such trans-
mission conditions are essential for evolution equations [12] and for systems
of equations, for the Euler equations, see [10] .

The approach in these papers consist in choosing a frozen coefficients
approach either at the continuous level and then discretized (see e.g. [15],
[13], [30] ), or at the discrete level (see e.g. or [16]). See also [37] and [26],
[32] for other approaches. In any case, parameters have to be computed at
each interface node.

We propose in this paper to use a novel approach where only one or
two real parameters have to be chosen for the entire interface. The method
relies on van der Sluis’ result on a quasi optimal diagonal preconditioner
for a symmetric positive definite matrix, see [38]. It is then possible to
design Robin interface conditions using only one real parameter for the entire
interface, see Theorem 4.1. By adding a second real parameter and more
general interface conditions (similar to the optimized of order two interface
conditions [22], [1]), it is possible to take into account highly heterogeneous
media.

The typical equation we have in mind is

α

∆t
P − div(κ∇P ) = f

with κ a possibly highly heterogeneous and anisotropic tensor. As an exam-
ple, this equation arises in porous media flow simulations through Darcy’s
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law. Typically, P is the pressure,α is the compressibility of the porous
medium, ∆t is the time step in an implicit scheme, κ is the intrinsic per-
meability tensor of the porous media and depends heavily on the lithology
under consideration. The contrast in the lithologies can induce a disconti-
nuity of the permeability tensor of several orders of magnitude.

More precisely, in § 2 we define the semi-discrete model problem under
study. In § 3 we substructure the domain decomposition method. In § 4 we
introduce the Robin interface condition. In § 5, we optimize a two parameter
family of interface conditions. In § 6 we show numerical results for the semi-
discrete problem. Then, we consider the same problem at the discrete level.
We define the fully discrete equations in § 7. The substructured problem is
introduced in § 8. Robin and second order interface conditions are designed
in § 9 and § 10. Numerical results are shown in § 11 . We conclude in § 12.

2 Setting of the semi-discrete problem

We consider a model problem set in an infinite tube Ω = R× ω where ω is
some bounded open set of Rp for some p ≥ 1. A point in Ω will be denoted
by (x,y). Let

L := − ∂

∂x
c(y)

∂

∂x
+ B(y) (1)

where c is a positive real valued function and B is a symmetric positive
definite operator independent of the variable x. For instance, if p = 2 one
might think of

B := η(y, z)−
(

∂

∂y
κy(y, z)

∂

∂y
+

∂

∂z
κz(y, z)

∂

∂z

)
(2)

with homogeneous Dirichlet boundary conditions and η ≥ 0, c, κy, κz > 0
are given real-valued functions and (y, z) ∈ ω.
We want to solve the following problem

L(u) = f in Ω
u = 0 on ∂Ω

by a domain decomposition method. The domain is decomposed into two
non overlapping half tubes Ω1 = (−∞, 0) × ω and Ω2 = (0,∞) × ω. The
problem can be considered at the continuous level and then discretized (see
e.g. [15], [13], [30] ), or at the discrete level (see e.g. [26], [32] or [16]). We
choose here a semi-discrete approach where only the tangential directions
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to the interface x = 0 are discretized whereas the normal direction x is kept
continuous.

We therefore consider a discretization in the tangential directions which
leads to

Lh := − ∂

∂x
C

∂

∂x
+ B (3)

where B and C are symmetric positive matrices of order n where n is the
number of discretization points of the open set ω ⊂ Rp. For instance if we
take B to be defined as in (2), B may be obtained via a finite volume or finite
element discretization of (2) on a given mesh or triangulation of ω ⊂ R2.

We consider a domain decomposition method based on arbitrary inter-
face conditions Q1 and Q2. The corresponding additive Schwarz method
(ASM) reads:

Lh(un+1
1 ) = f in Ω1

Q1(un+1
1 ) = Q1(un

2 ) on Γ

Lh(un+1
2 ) = f in Ω2

Q2(un+1
2 ) = Q2(un

1 ) on Γ
(4)

where Γ is the interface x = 0. It is possible to both increase the robust-
ness of the method and its convergence speed by replacing the above fixed
point iterative solver by a Krylov type method. This is made possible by
substructuring the algorithm in terms of interface unknowns

H1 = Q1(u2)(0, .) and H2 = Q2(u1)(0, .)

Let us define the operator

T : H1, H2, f −→ (Q2(v1) Q1(v2))

where vi, i = 1, 2 solves

Lh(vi) = f in Ωi

Qi(vi) = Hi on Γ
(5)

The substructured problem is obtained by matching the interface conditions
on the interface and reads(

H1

H2

)
−ΠT (H1, H2, 0) = ΠT (0, 0, f) (6)

where Π is the swap operator on the interfaces:

Π((H1 H2)T ) = (H2 H1)T

or in block matrix form

Π =
(

0 1
1 0

)
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3 The substructured problem

The convergence rate of (4) and the spectra of (6) depend on the choice
of the interface conditions Q1,2. In order to design an efficient method, we
need to have a formula for the substructured problem and so first for the
solution to (5) with f = 0. An essential tool will the Dirichlet to Neumann
map whose symbol is obtained here via a factorization of the operator Lh.

3.1 Semi-continuous factorization

The factorization can be sought in this form where Λ is a SPD matrix of
order n.

Lh = (− ∂

∂x
C. + Λ)C−1(C

∂

∂x
. + Λ)

= − ∂

∂x
C

∂

∂x
− ∂

∂x
Λ + Λ

∂

∂x
+ ΛC−1Λ

= − ∂

∂x
C

∂

∂x
+ ΛC−1Λ

It is thus necessary to have

ΛC−1Λ = B

This equation can be solved easily in the form

C−1/2ΛC−1/2C−1/2ΛC−1/2 = C−1/2BC−1/2

We have thus
Λ = C1/2(C−1/2BC−1/2)1/2C1/2

so that
Λ = C1/2A1/2C1/2 (7)

where
A := C−1/2BC−1/2 (8)

Finally, we have the double equality

Lh = (− ∂

∂x
C. + Λ)C−1(C

∂

∂x
. + Λ) = (

∂

∂x
C. + Λ)C−1(−C

∂

∂x
. + Λ) (9)
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3.2 Spectra of the substructured problem

Taking

Q1 = (C
∂

∂x
+ Λ) and Q2 = (−C

∂

∂x
+ Λ)

leads to a convergence in two steps of (4), see [31] or [29]. This result is op-
timal in terms of iteration counts. But, the matrix Λ is a priori a full matrix
of order n costly to compute and use. Instead, we will use approximations
to it in terms of sparse matrices denoted Λap. We substructure in terms of(

H1

H2

)
=
(

(C ∂
∂x + Λap)(u)

(−C ∂
∂x + Λap)(u)

)
We need to compute T(H1, H2, 0) for arbitrary vectors H1, H2 ∈ Rn. From
(9), the solution v2 to problem (5) has the general following form

v2 = exp(− 1
C

Λx)(α) + exp(
1
C

Λx)(β)

for some α, β ∈ Rn. Since the solution has to be bounded as x goes to
infinity, we have β ≡ 0. The boundary condition on Γ yields

(Λ + Λap)(α) = H2

so that
v2 = exp(− 1

C
Λx)(Λ + Λap)−1(H2)

It is then easy to check that the substructured problem (6) has the following
form

(I−ΠT(., ., 0))
(

H1

H2

)
= G (10)

where T(., ., 0) has the following expression

T(., ., 0) =
(

(Λ− Λap)(Λ + Λap)−1 0
0 (Λ− Λap)(Λ + Λap)−1

)
(11)

and
G = ΠT(0, 0, f)

We have a first result relating the spectra of the substructured problem to
the convergence rate of the additive Schwarz method:
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Lemma 3.1 We assume that Λap is a SPD matrix of order n.
Let ρ(Λap) be the convergence rate of the Schwarz algorithm, i.e. ρSc(Λap) =
max{|µ| \µ ∈ Sp((Λ− Λap)(Λ + Λap)−1)}.
We have that

ρSc(Λap) < 1

Moreover, the matrix Sub(Λap) := I−ΠT(., ., 0) has real eigenvalues in
(0, 2) symmetric w.r.t one and

κ(Sub(Λap)) =
1 + ρSc(Λap)
1− ρSc(Λap)

Proof It is then easy to check that any eigenvalue of (Λ−Λap)(Λ+Λap)−1

is real and belongs to (−1, 1).
As for the second part of the proof, let (v, µ) be an eigenvector, eigenvalue
of (Λ− Λap)(Λ + Λap)−1, then (

v
v

)
, 1− µ

and (
v
− v

)
, 1 + µ

are eigenmodes of Sub(Λap). Let us notice that a very similar result may be
found in [16].
Minimizing the condition number is thus equivalent to minimizing the con-
vergence rate of the Schwarz algorithm.

We now give a partial optimality result:

Lemma 3.2 Let Λap be a SPD matrix. Then,

min
β∈R

κ(Sub(βΛap)) = κ(Sub(βoptΛap)) = κ(Λ−1
ap Λ)1/2

where
βopt = (λmin(Λ−1

ap Λ)λmax(Λ−1
ap Λ))1/2

Proof We have

ρSc(βΛap) = max
λ∈Sp((βΛap)−1Λ)

∣∣∣∣1− λ

1 + λ

∣∣∣∣
= max(

∣∣∣∣1− λmin((βΛap)−1Λ)
1 + λmin((βΛap)−1Λ)

∣∣∣∣ , ∣∣∣∣1− λmax((βΛap)−1Λ)
1 + λmax((βΛap)−1Λ)

∣∣∣∣)
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This expression is minimized by taking β = βopt as defined in Lemma 3.2.
In that case, we get

ρSc(βoptΛap) =
1− γ

1 + γ

where
γ :=

√
λmin(Λ−1

ap Λ)/λmax(Λ−1
ap Λ) = κ(Λ−1

ap Λ)−1/2

Thus, we have (recalling that minimizing the convergence rate of the Schwarz
method is equivalent to minimizing the condition number of the symmetrized
substructured problem)

min
β∈R

κ(Sub(βΛap)) = κ(Sub(βoptΛap)) = 1/γ = κ(Λ−1
ap Λ)1/2

4 Robin interface conditions

Notation: Consider the largest (resp. smallest) eigenvalue denoted by λMax(M)
(resp. λmin(M)) for any matrix M .

1We consider the case where Λap is a diagonal matrix. We prove a
condition number estimate for the following choice:

Λq−opt
ap := βopt0 C1/2diag(A)1/2C1/2 (12)

where
βopt0 = (λmin(diag(A)−1A) λMax(diag(A)−1A))1/4. (13)

More precisely, we have

Theorem 4.1

κ(Sub(Λq−opt
ap ) ≤ m1/4 . min

D∈D
κ(D−1AD−1)1/4

where D = {positive definite diagonal matrices} and m is the maximum
number of nonzeros in any row of A.

1The authors thank Olivier Dubois, McGill University for his kind contribution to this
section
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As an example, for a standard finite volume discretization for a three di-
mensional problem m = 5 and m1/4 = 1.49...

The sequel of the section is devoted to the proof of the theorem. We
first give a series of results of linear algebra. The basis for the proof is

Theorem 4.2 (van der Sluis) If F is SPD matrix, then

min
D∈D

κ(D−1/2FD−1/2) ≤ κ(diag(F )−1/2Fdiag(F )−1/2) ≤ m . min
D∈D

κ(D−1/2FD−1/2)

where D = {positive definite diagonal matrices} and m is the maximum
number of nonzeros in any row of F .

see [38] and for further references [19].

Lemma 4.1 Let L be a non singular matrix with positive real eigenvalues,
then

κ(L) = κ(LT L)1/2 ≥ λMax(L)
λmin(L)

Proof see [17]

Lemma 4.2 Let E and F be SPD matrices. Then,

κ(E−1/4F 1/2E−1/4)2 ≤ κ(E−1/2FE−1/2)

Proof Let E and F be any symmetric positive definite matrices. Let us
define L := F 1/2E−1/2. We have by Lemma 4.1,

κ(E−1/2FE−1/2) ≥ λMax(F 1/2E−1/2)2

λmin(F 1/2E−1/2)2

The spectrum of F 1/2E−1/2 is the same as the spectrum of F 1/4E−1/2F 1/4

which is symmetric

κ(E−1/2FE−1/2) ≥ λMax(E−1/4F 1/2E−1/4)2

λmin(E−1/4F 1/2E−1/4)2)2
= κ(E−1/4F 1/2E−1/4)2

The proof of theorem 4.1 is now easy. Indeed, by applying successively
Lemma 3.2, Lemma 4.2, Theorem 4.2, we have

κ(Sub(Λq−opt
ap ))

= κ((Λq−opt
ap )−1Λ)1/2

≤ κ(diag(A)−1/2Adiag(A)−1/2)−1/4

≤ m1/4 minD∈D κ(D−1/2A D−1/2)1/4
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5 Two parameters interface condition

In the previous section, the interface condition is a Robin interface condition
which reads for domain Ω1:

C
∂

∂x
+ βoptC

1/2DC1/2

where and D = diag(A)1/2, see (12). In this section, we want to design more
efficient interface conditions by considering more general interface conditions
than Robin interface conditions.

Inspired by Higdon’s trick for absorbing boundary conditions [21] (see
also [15]), we first consider an interface condition of the form

Q := (C
∂

∂x
+ β1C

1/2DC1/2)(C
∂

∂x
+ β2C

1/2DC1/2)

for some positive parameters β1, β2 and D is an invertible matrix not nec-
essarily equal to diag(A)1/2. This product yields a second order derivative
w.r.t x the normal tangential direction:

Q := C
∂

∂x
(C

∂

∂x
) + (β1 + β2)C1/2DC1/2C

∂

∂x
+ β1β2C

1/2DCDC1/2

By using the operator Lh this second order can be replaced by

CB

so that condition Q is equivalent to

Q := CB + (β1 + β2)C1/2DC1/2C
∂

∂x
+ β1β2C

1/2DCDC1/2.

We still have to write this condition in the form

C
∂

∂x
+ Λap,2

for some operator Λap,2. Since interface conditions are equivalent up to the
left composition with any invertible operator acting along the interface, we
obtain an equivalent condition R by left multiplying Q by the inverse of
(β1 + β2)C1/2DC1/2:

R := C
∂

∂x
+ C1/2 D−1A + β1β2D

β1 + β2
C1/2 (14)

11



In other words, we choose to approximate Λ by

Λap,β1,β2 := C1/2 D−1A + β1β2D

β1 + β2
C1/2 (15)

with β1, β2 > 0 . Let us notice that

1. If D = diag(A)1/2, D−1/2AD−1/2 is another approximation to A1/2

that is consistant with approximating A1/2 by D. Indeed, from D '
A1/2, we have D2 ' A, i.e. D ' D−1/2AD−1/2, but A1/2 ' D

2. The form (15) is preferred to the simpler form

C1/2(βD−1A + δD)C1/2

because definition (15) makes optimization easier.

3. If D is any diagonal operator then operators D and D−1/2AD−1/2 are
linearly independent. Indeed, suppose there exists a ∈ R such that

D−1/2AD−1/2 = aD

then A = aD2. But A is not a diagonal operator.

4. The matrix A may be seen as a discretization matrix of a second
order partial differential operator in the tangential directions to the
interface. It is thus related to the optimized of order two interface
conditions [22], [1].

As in § 4, we have to find the best parameters β1, β2 in (15).

Theorem 5.1 Suppose matrices D and A1/2 commute. Let λm := λmin(D−1A1/2)
and λM := λmax(D−1A1/2). The choice

β1,optβ2,opt = λm λM (16)

β1,opt + β2,opt =
(

min
λ∈Sp(D−1A1/2)

(λ +
λmλM

λ
) (λm + λM )

)1/2

(17)

is optimal in the sense that:

min
β1∈R+,β2∈R+

κ(Sub(Λap,β1,β2)) = κ(Sub(Λap,β1,opt,β2,opt))

We have a bound on the condition number

κ(Sub(Λap,β1,opt,β2,opt)) ≤
1√
2

(√
λM

λm
+
√

λm

λM

)1/2
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Remark 1 The spectrum of the matrix D−1A1/2 is discrete. If it is replaced
in the above optimization problem by the segment [λm, λM ], it can be shown,
see [15], that it can be reduced to the optimization solved by Wachspress
for ADI methods [40] and whose solution is the same than in theorem with
Sp(D−1A1/2) replaced by [λm, λM ].

Proof By Lemma 3.2, we have to minimize

κ(Λ−1
ap,β1,β2

Λ) = κ(Λap,β1,β2Λ
−1)

Since D and A1/2 are supposed to commute, all powers of each of these
matrices commute. Therefore, we have

Λ−1Λap,β1,β2 = C−1/2 D−1A1/2 + β1β2DA−1/2

β1 + β2
C1/2

whose condition number is independent of β1 + β2 and reads

κ(Λap,β1,β2Λ
−1) =

maxλ∈Sp(D−1A1/2) λ + β1β2

λ

minλ∈Sp(D−1A1/2) λ + β1β2

λ

We prove

Lemma 5.1 A necessary optimality condition is that

λm +
β1,optβ2,opt

λm
= λM +

β1,optβ2,opt

λM

or equivalently that
β1,optβ2,opt = λm λM

Proof [lemma] Suppose this is not the case, for instance that

λm +
β1β2

λm
< λM +

β1β2

λM

The function x → x + β1β2

x being convex, its maximum over [λm, λM ] is
reached at λm or λM which belong both to Sp(D−1A1/2). In our case, it
has to be at λM . The minimum of x + β1β2

x over Sp(D−1A1/2) is reached at
some eigenvalue y 6= λM . Let us introduce f : R+ → R+ with

f(β) =
λM +

β

λM

y +
β

y

13



For small enough variations of β1 and of β2, λM and y are still the location of
the extremal values of x + β1β2

x over Sp(D−1A1/2) which is a discrete space.
The condition number is thus given by f(β1β2) for small enough variations
of β1 and of β2. Moreover, we have

sgn(
df

dβ
) = sgn(1/λM (y +

β

y
)− 1/y(λM +

β

λM
)) = sgn(λ2

M − y2) > 0

Then, decreasing β1β2, would improve the condition number.
Let us notice that we have then

max
λ∈Sp(D−1A1/2)

λ +
β1β2

λ
= λm + λM

Now that the optimal value for β1β2 has been found, we know the opti-
mal approximation to Λ up to the multiplicative constant (β1 + β2)−1. By
applying Lemma 3.2, we have

β1,opt + β2,opt = ( min
λ∈Sp(D−1A1/2)

(λ +
β1,optβ2,opt

λ
) (λm + λM ))1/2

and

κ(Sub(Λap,β1,opt,β2,opt)) =

 λm + λM

min
λ∈Sp(D−1A1/2)

λ +
β1β2

λ


1/2

The denominator depends on the repartition of the eigenvalues of D−1A1/2.
It can be estimated from below since the function x → x+β1,optβ2,opt/x ad-
mits 2

√
λmλM for minimal value over [λm, λM ]. We have thus the following

bound

κ(Sub(Λap,β1,opt,β2,opt)) ≤
(

λm + λM

2
√

λmλM

)1/2

=
1√
2

(√
λM

λm
+
√

λm

λM

)1/2

6 Numerical results for the semi-discrete problem

In this section, we test various interface conditions and algorithms in the
semi-continuous framework of the previous sections. More precisely, we work
in 2D on the infinite tube Ω = R× (0, 1) and consider the operator

L = − ∂

∂x
c(y)

∂

∂x
+ η(y)− ∂

∂y
κ(y)

∂

∂y
(18)
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along with Dirichlet boundary condition at the bottom and a Neumann
boundary condition at the top. We use a finite volume discretization of the
operator in the y direction which yields a tridiagonal matrix B of order ny.
It is then possible to form the matrices of the substructured problems (10)
for various interface conditions and study their spectra. We either plot the
spectra or give in the tables the ratio of the largest norm of the eigenvalues
of the substructured matrix over its smallest real part. We also give iteration
counts ( #iter in the tables) corresponding to the solving of equation (10)
by a gmres algorithm [34] with a random right hand-side G. The stopping
criterion is a reduction of the residual by a factor 10−6. Although we don’t
consider a discretization in the x direction, the results are a good indication
of what would happen in the corresponding fully discrete computations.

We now define more precisely the names written in the tables and cor-
responding to the various domain decomposition methods which have been
tested: opt0, opt2, noprec, diagprec

opt0 The interface condition is the one studied in section 4.

opt2 The interface condition is given by formula (14) where D = diag(A)1/2

and β1, β2 are given by formulas (16) and

β1 + β2 = (2
√

λmλM (λm + λM ))1/2 (19)

This last formula corresponds to formula (17) where the discrete spectrum
of D

−1Λ is replaced by the segment of its extremal values. Moreover, by
Lemma 4.2, λm and λM are easily computed by taking the square root of
the extremal eigenvalues of diag(A)−1A. It should be noted that although
matrices D and Λ do not commute in general, the computation of the pa-
rameters β1, β2 is based on Theorem 5.1.

noprec The conjugate gradient is applied to the substructured system

Λ(u) = G

which corresponds to a Schur type method without preconditioner.

diagprec The above system is preconditioned by its diagonal.
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6.1 Constant coefficients

The operator L is the Laplace operator. The diagonal of the matrix Λ is
constant (except for the entries corresponding to y = 0 or y = 1). Pre-
conditioning by the diagonal is hardly efficient. Therefore iterations counts
corresponding to diagprec and noprec are given in the same line.

Table 1: Results for constant coefficients problems

ny 10 20 40 80 160

(opt0) #iter 10 13 16 20 24

|λ|max/real(λ)min 3.2 4.5 6.5 9.24 13.1

(opt2) #iter 6 7 8 9 10

|λ|max/real(λ)min 1.4 1.7 2.0 2.4 2.88

(diag/no prec) #iter 10 15 23 35 50

λmax/λmin 10.2 21.0 42.7 86.4 1.74e+02

6.2 Rapidly varying coefficients

For this series of tests, η = 1.e−9, c = exp(−2y2) and κ = 5sin(2y2). Except
for noprec, iterations counts are very similar to the constant coefficient case.

16



Table 2: Results for rapidly varying coefficients

ny 10 20 40 80 160

(opt0) #iter 10 12 15 18 22

|λ|max/real(λ)min 2.6 3.8 5.3 7.5 10.6

(opt2) #iter 6 7 8 9 10

|λ|max/real(λ)min 1.2 1.4 1.6 1.9 2.3

(noprec) #iter 10 20 34 55 82

λmax/λmin 13.4 28.4 5.8e+01 1.2e+02 2.4e+02

(diagprec) #iter 10 15 23 34 48

λmax/λmin 6.5 13.3 2.6e+01 5.3e+01 1.1e+02

6.3 Highly heterogeneous problems

The diffusion coefficients are highly heterogeneous: c(y) = κ(y) = val([10y])
where [ ] is the integer part function and val is the vector
val=[a d a b a b a b a b] where a = 1.e4, b = 1.e0 and d = 1.e2. We have
η = 1e− 9. Iteration counts are larger than in the previous cases.

Table 3: Results for highly heterogeneous problems

ny 10 20 40 80 160

(opt0) #iter 11 17 22 28 37

|λ|max/real(λ)min 6.8 31.4 48.8 71.9 1.1e+02

(opt2) #iter 9 11 15 17 18

|λ|max/real(λ)min 1.8 3.8 4.9 5.9 7.2

(noprec) #iter 10 22 61 136 320

λmax/λmin 7.3e+02 1.1e+04 2.5e+04 5.3e+04 1.1e+05

(diagprec) #iter 7 17 27 42 64

λmax/λmin 42.7 1.1e+03 2.4e+03 5.1e+03 1.1e+04

17



6.4 Different Subdomains

In the above cases, by symmetry of the problem w.r.t. the interface, a
Neumann-Neumann or FETI algorithm would give convergence in one it-
eration. In this section, we compare the optimized interface conditions ap-
proach developed so far to these algorithms when the operators in domains
Ω1 and Ω2 are not the same. The model problem reads:

L1,h(u) = f in Ω1

C1
∂u1

∂x
= C2

∂u2

∂x
on Γ

L2,h(u2) = f in Ω2

u2 = u1 on Γ
(20)

where Li,h, i = 1, 2 is a finite volume discretization of

Li,h = − ∂

∂x
ci(y)

∂

∂x
+ ηi(y)− ∂

∂y
κi(y)

∂

∂y
(21)

This problem is solved by a domain decomposition method. The additive
Schwarz method is

L1,h(un+1
1 ) = f in Ω1

(C1
∂

∂x
+ Λap,2)(un+1

1 ) = (C2
∂

∂x
+ Λap,2)(un

2 ) on Γ
(22)

Lh(un+1
2 ) = f in Ω2

(−C2
∂

∂x
+ Λap,1)(un+1

2 ) = (−C1
∂

∂x
+ Λap,1)(un

1 ) on Γ
(23)

where Λap,i, i = 1, 2 are matrices approximating the discrete Dirichlet to
Neumann map of domain Ωi

Λi = C
1/2
i (C−1/2

i BiC
−1/2
i )1/2C

1/2
i

where Bi is the finite volume discretization matrix of

Bi = ηi(y)− ∂

∂y
κi(y)

∂

∂y

As explained in § 3, the ASM is a fixed point method that can be accelerated
by substructuring the problem and using a Krylov method. In our case, we
use the gmres algorithm.

We now define more precisely the names written in the tables and cor-
responding to the various domain decomposition methods which have been
tested: opt0, opt2, NeumannKappa and NeumannMatKappa
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opt0 and opt2 in both cases, matrices Λap,i, i = 1, 2 are built separately
as in section 6. These approximations don’t take into account the fact they
are used in a domain decomposition in which now operators vary from one
domain to the other. Numerical results show that for opt2 iteration counts
are still good.

NeumannKappa This corresponds to a a Neumann-Neumann algo-
rithm. The conjugate gradient algorithm is applied to the substructured
problem

Λ1 + Λ2(u) = G

preconditioned by
w1Λ−1

1 w1 + w2Λ−1
2 w2

with wi = C1
C1+C2

, i = 1, 2.

NeumannMatKappa The same as above except that the weights in
the preconditioner come from the discretization matrix wi is the diagonal of
the discretization matrix of the problem.

For these last two methods, one iteration consists in solving a Dirichlet
and a Neumann boundary value problem in each subdomain. In the tables,
we report the number of subdomain solves, one per iteration for opt0 or
opt2 and two per iteration for NeumannKappa and NeumannMatKappa.
In table 4, η1 = 1e + 4, η2 = c1 = c2 = κ1 = κ2 = 1.

Table 4: Results for highly heterogeneous problems

ny 10 20 40 80 160 320

(opt0) #subdom. solves 4 5 7 9 12 15

(opt2) #subdom. solves 2 3 3 5 6 7

(NeumannKappa) #subdom. solves 16 20 22 22 22 22

(NeumannMatKappa) #subdom. solves 8 10 14 20 22 22

In Table 5, we consider a highly heterogeneous case: η1,2 = 1.e − 9,
c1(y) = val1([10y]) and val1 is the vector
val1=[b d b a b a b b d b] where a = 1.e4, b = 1.e0 and d = 1.e2, κ1(y) =
val2([10y]) and val2 is the vector
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val2=[b a b a d a b b e b] where a = 1.e4, b = 1.e0, d = 1.e2 and e = 1.e3,
c2(y) = val3([10y]) and val3 is the vector
val3=[a b a g b b a g a b] where a = 1.e4, b = 1.e0 and g = 1.e2 and
κ2(y) = val4([10y]) and val4 is the vector
val4=[b a d a b a a a d b] where a = 1.e0, b = 1.e4 and d = 1.e2

Table 5: Results for highly heterogeneous problems

ny 10 20 40 80 160 320

(opt0) #subdom. solves 8 22 32 40 48 56

|λ|max/real(λ)min 1.9 25.6 43.5 65.1 94.1 1.3e+2

(opt2) #subdom. solves 8 11 13 15 15 16

|λ|max/real(λ)min 7.6 3.6 4.6 5.7 6.8 8.2

(diagprec) #subdom. solves 9 20 33 51 77 111

λmax/λmin 3.5 8.5e+2 2.0e+3 4.4e+3 9.1e+3 1.8e+4

(Neumann– #subdom. solves 12 18 24 28 32 32

Kappa) λmax/λmin 22.1 31.9 35.6 40.7 47.8 59.7

(Neumann– #subdom. solves 10 18 24 24 24 28

MatKappa) λmax/λmin 1.9 2.2e+2 3.0e+2 4.2e+2 6.2e+2 9.6e+2

Iteration counts for opt0 are significantly higher than in Table 3. Whereas,
the interface conditions opt2 are quite insensitive to the fact that opera-
tors are not the same in the subdomains. As expected from the theory for
Neumann-Neumann or FETI method (see [27], [24] or [23] and references
herein), the iteration counts are bounded from above as the mesh size goes
to zero.

6.5 Playing with the parameters in the interface conditions

In this section, both subdomains have the same equations. We investigate
the influence of the parameters β for interface conditions

C
∂

∂n
+ β0C

1/2diag(A)1/2C1/2 (24)
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(see 12) and for the ones of the form (14). In both cases, a key factor is the
eigenvalues eigM of M := D−1A1/2 where D = diag(A)1/2. As an example,
we take ny = 40, η = 0 and

c(y) = κ(y) =


1 for 0 ≤ y ≤ 0.3
1.e + 4 for 0.3 ≤ y ≤ 0.6
1 for 0.6 ≤ y ≤ 1

(25)

The eigenvalues of M are given in Table 6

Table 6: Eigenvalues of matrix M : eigM

5.329469058781055e-04 9.648973328110511e-02
1.385298394166431e-01 2.012580286542583e-01
2.752235067980078e-01 2.871934245780574e-01
3.983838575345311e-01 4.082391320897262e-01
4.710395757370086e-01 5.355974308332332e-01
5.874669548248144e-01 6.433877730503701e-01
6.555459008079766e-01 7.643136997314994e-01
7.665800132401215e-01 7.998197268509604e-01
8.669683088526792e-01 9.260333944553774e-01
9.377196074715888e-01 9.577729169492986e-01
1.040514795453881e+00 1.058622660707454e+00
1.068860211792659e+00 1.117302981041904e+00
1.166314024840675e+00 1.188425463923074e+00
1.189884266810325e+00 1.253099984811212e+00
1.259385633350359e+00 1.286422394468029e+00
1.308867981151973e+00 1.333462304712622e+00
1.354009162092570e+00 1.356941524921361e+00
1.384745441183732e+00 1.387174113550929e+00
1.399819704784228e+00 1.407412336023526e+00
1.410918045589941e+00 1.414213461952472e+00

Applying formula (13) for interface conditions opt0, we get β0,opt =
2.74e − 02. Applying formulas (16) and (19) for interface conditions opt2,
we have β1 = 3.8e − 01 and β2 = 1.9e − 03. Other choices are possible.
Indeed, looking at Table 6, we see that the eigenvalues are regularly spaced
between 1.41 and 9.648e-02 except for the smallest one 5.329e − 04. This
is in agreement with results on the number of very small eigenvalues of a
diagonal ([18]) or of an Incomplete Choleski (IC) preconditioner ([39]) for
such problems with extreme contrasts in the coefficients. It seems then of
interest to use a Robin interface condition that will take into account all
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the eigenvalues of M except for the smallest one. The interface condition
will be better than opt0 except for the smallest eigenvalue that will be left
to the Krylov method. This yields β0 =

√
eigM(2)eigM(ny) = 3.6e − 1

in (24). This choice will be referred to as bid0. Using the two parameters
approach as defined in (19), we can improve over bid0 and hopefully over
opt2 by taking β1 = β0 and β2 = eigM(1) = 9.648e − 02 in order to have
a uniform approximation to Λ. This choice will be referred to as bid2. The
performances are given in Table 7 and on figure 1 of the eigenvalues of the
corresponding substructured problems. This figure corresponds well to the
motivation for the choice of the parameter β. The eigenvalues for bid0 are
close to one except for two which are close to 0 and 2 respectively. The fact
that we have two (and not one) such eigenvalues correspond to the symme-
try of the spectrum as stated in Lemma 3.1. The eigenvalues for bid2 are
closer to one than for opt2. This does not contradict Theorem 5.1 which
assumes that A1/2 and D commute which is not the case here.
This kind of optimization is impossible using a frozen coefficients approach
where a discontinuity can not be taken into account. Another way to ad-
dress the problem of the few very small eigenvalues is to use deflation, see
[16] or [28] in the context of domain decomposition method. The drawback
is that all small eigenvalues and corresponding eigenvectors are then needed.

Table 7: Results for highly heterogeneous problems

Interface Cond. opt0 opt2 bid0 bid2

#iterations 28 14 18 12

|λ|max/real(λ)min 51.4 5.0 6.97e+2 3.8

The convergence curves of the gmres algorithm for the various interface
conditions are given in figure 2. The interface condition bid0 yields a plateau
in the convergence curve corresponding to the smallest eigenvalue which is
not taken into account. The iteration count is better than for opt0 although
the convergence of the latter is more regular. Interface conditions opt2 and
bid2 perform similarly well.
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Figure 1: Eigenvalues of the substructured problem for various interface
conditions: star: opt0, triangle: opt2, circle: bid0, cross: bid2

7 Setting of the discrete problem

We still consider a problem set on an infinite tube Ω = R × ω where ω is
some bounded open set of Rp. The operator is given by equation (1) and is
invariant by translation in the x direction. Compared to § 3, the equation is
discretized in the normal direction (x) to the interface as well. Discretizing
the elliptic operator with a finite element or finite difference method on a
structured mesh in both the x and tangential directions, we obtain a large
system of linear equations

K V = F (26)

We assume that the grid is obtained by first meshing domain ω with ny grid
points and then translating this mesh in the x direction with a mesh size
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Figure 2: Relative residual vs. iteration number for the gmres algorithm
and various interface conditions

denoted by hx. We number the unknowns lexicographically, so the vector
V is a collection of sub-vectors of size ny:

V = (Vi)i∈Z

where Vi ∈ Rny, i ∈ Z. The sub-vectors Vi contains the unknowns located
in the ith cross section of the grid. It follows that the matrix K has a
block-tridiagonal structure

K =


. . . . . .
. . . D LT

L D
. . .

. . . . . .


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As an example, if a finite volume or finite difference discretization in the x
discretization is used, we have

D = B +
2C

hx2
, L = LT = − C

hx2
.

where matrices B and C are the same as in formula (3).
The computational domain is decomposed into two half tubes with one com-
mon cross-section of unknowns corresponding to a decomposition without
overlap of Ω. The decomposed problem reads:
Find U1 ∈ RZ−×ny and U2 ∈ RZ+×ny such that

LU1,i−1 + DU1,i + LT U1,i+1 = Fi, i < 0 (27)
LU2,i−1 + DU2,i + LT U2,i+1 = Fi, i > 0 (28)

with interface conditions

LU1,−1 + (
D

2
+ Λh,ap) U1,0 = (−D

2
+ Λh,ap) U2,0 − LT U2,1 + F0 (29)

(
D

2
+ Λh,ap) U2,0 + LT U2,1 = −LU1,−1 + (−D

2
+ Λh,ap) U1,0 + F0 (30)

where Λh,ap is a matrix to be chosen.
We prove in the following lemma that problems (26) and (27)-(28)-(29)-

(30) are equivalent.

Lemma 7.1 Assume that Λh,ap is an invertible matrix. Then,
Let V be a solution to (26), then U1 = (Vi)i≤0 and U2 = (Vi)i≥0 are solutions
to (27)-(28)-(29)-(30).
Conversely, let (U1, U2) be a solution to (27)-(28)-(29)-(30), then V defined
by

Vi =
{

U1,i for i < 0
U2,i for i ≥ 0

is a solution to (26).

Proof The first part of the Lemma is obvious. Let us prove the second
statement. By subtracting (29) to (30), we get

2 Λh,ap (U1,0 − U2,0) = 0

so that U1,0 = U2,0. Then, from (29) or (30), we have (K V )0 = F0. From
(27) and (28), we have (K V )i = Fi, for i 6= 0.
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The iterative method

LUn+1
1,i−1 + DUn+1

1,i + LT Un+1
1,i+1 = Fi, i < 0 (31)

LUn+1
2,i−1 + DUn+1

2,i + LT Un+1
2,i+1 = Fi, i > 0 (32)

with interface conditions

LUn+1
1,−1 + (

D

2
+ Λh,ap) Un+1

1,0 = (−D

2
+ Λh,ap) Un

2,0 − LT Un
2,1 + F0 (33)

(
D

2
+ Λh,ap) Un+1

2,0 + LT Un+1
2,1 = −LUn

1,−1 + (−D

2
+ Λh,ap) Un

1,0 + F0 (34)

is associated to (27)-(28)-(29)-(30)

8 Substructuring at the discrete level

As in § 3, we substructure problem (27)-(28)-(29)-(30) in order to enable
the use of a Krylov type method and speed up the convergence of algorithm
(31)-(32)-(33)-(34). This is made possible by substructuring the algorithm
in terms of interface unknowns

H1 = (−D

2
+Λh,ap)(U2,0)−LT U2,1 and H2 = −LU1,−1+(−D

2
+Λh,ap)(U1,0)

Let us define the operator

Th : (H1, H2, F ) −→
(−LV1,−1 + (−D

2 + Λh,ap)(V1,0) , (−D
2 + Λh,ap)(V2,0)− LT V2,1)

where F = (Fi)−∞≤i≤∞ and Vi, i = 1, 2 solves

LV1,i−1 + DV1,i + LT V1,i+1 = Fi, i < 0 (35)
LV2,i−1 + DV2,i + LT V2,i+1 = Fi, i > 0 (36)

with interface conditions

LV1,−1 + (
D

2
+ Λh,ap) V1,0 = H1 + F0 (37)

(
D

2
+ Λh,ap) V2,0 + LT V2,1 = H2 + F0 (38)

The substructured problem is obtained by matching the interface conditions
on the interface and reads(

H1

H2

)
−ΠTh(H1, H2, 0) = ΠTh(0, 0, F ) (39)
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where Π is the swap operator on the interfaces:

Π((H1 H2)T ) = (H2 H1)T

or in block matrix form

Π =
(

0 1
1 0

)
8.1 Spectra of the substructured problem

From now on, we make the following assumption: L = LT .
To find a formula for the convergence rate of (31)-(32)-(33)-(34) or study the
spectra of problem (39), we need the discrete counterpart to the factorization
(9).

Lemma 8.1 Assume that − L = −LT and K are SPD matrices. Then,

T =
1
2
D + Λh (40)

where

Λh = (−L)1/2

√
1
4
(−L)−1/2D(−L)−1D(−L)−1/2 − Id (−L)1/2 (41)

is a SPD matrix and we have the following factorization

K =


. . .
. . . T

L T
. . . . . .




. . .
T−1

T−1

. . .




. . . . . .
T L

T
. . .
. . .

 (42)

Proof First of all, since K is a SPD, both D and D+2L are SPD matrices.
Let

T̃ = (−L)−1/2T (−L)−1/2 and D̃ = (−L)−1/2D(−L)−1/2.

We have that D̃ ≥ 2 Id and then D̃2 ≥ 4 Id. With these notations, we have

1
4
(−L)−1/2D(−L)−1D(−L)−1/2 − Id =

1
4
D̃2 − Id

Therefore, 1
4D̃2 − Id is a SPD matrix and formula (40) makes sense. From

(40), we have

T̃ =
1
2
D̃ +

√
1
4
D̃2 − Id
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Therefore, we get

T̃ 2 − 1
2
(D̃T̃ + T̃ D̃) +

1
4
D̃2 =

1
4
D̃2 − Id

Using that D̃ and T̃ commute, we have

T̃ 2 − D̃T̃ = −Id

or equivalently,
D̃ = T̃ + T̃−1

It means that T is a solution to the matrix equation

D = T + LT−1 L

It is then easy to check formula (42).
We need to compute Th(H1, H2, 0) for arbitrary vectors H1, H2 ∈ Rny.
From (42), the solution V1 to problem (35) satisfies

TV1,i + LV1,i+1 = 0

and similarly V2 solution to problem (36) satisfies

TV2,i + LV2,i−1 = 0.

It is then easy to check that the substructured problem (39) has the following
form

(I−ΠTh(., ., 0))
(

H1

H2

)
= G (43)

where Th(., ., 0) has the following expression

Th(., ., 0) =
(

(Λh − Λh,ap)(Λh + Λh,ap)−1 0
0 (Λh − Λh,ap)(Λh + Λh,ap)−1

)
(44)

and
G = ΠTh(0, 0, f)

9 Robin Interface Conditions at the discrete level

The structure of Th is identical to that of T, see formula (11) and formula
for Λh is similar to that of Λ, see (7). Therefore, Lemmas 3.1 and 3.2 and

28



Theorem 4.1 apply and we have that the diagonal choice for Λh,ap is given
by

Λh,ap,opt0d = βoptd0(−L)1/2diag(Ah)1/2(−L)1/2 (45)

where
Ah =

1
4
(−L)−1/2D(−L)−1D(−L)−1/2 − Id

and
βoptd0 = (λmin(diag(Ah)−1Ah) λMax(diag(Ah)−1Ah))1/4.

10 Two parameters discrete interface condition

Similarly to section 5, we want to design more efficient interface conditions
by blending together two diagonal approximations to Λh.
Using a standard stencil notation, we denote the interface condition of the
previous section in the form

[L
D

2
+ βoptd0P ]

where
P = (−L)1/2diag(Ah)1/2(−L)1/2

We consider now two interface conditions

[L
D

2
+ β1P ] and [L

D

2
+ β2P ]

where β1 and β2 are two parameters to be chosen.
We have to find a discrete equivalent to Higdon’s trick of section 5. We
consider the product of the interface conditions

Qh = [L
D

2
+ β1P ]× [L

D

2
+ β2P ]

The product is a three column stencil:

Qh = [L2 L(
D

2
+ β2P ) + (

D

2
+ β1P )L

(
D

2
+ β1P )(

D

2
+ β2P )]

The three column stencil may be reduced to a two a two column stencil
using the interior equations (27) or (28) i.e. the three column stencil

[L D L]
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Left multiplying this last stencil by L and subtracting it to Qh, we get

[M−1 M0]

where
M−1 =

1
2
(DL− LD) + β2LP + β1PL

and
M0 = (

D

2
+ β1P )(

D

2
+ β2P )− L2

We assume that M−1 is invertible and we left multiply by LM−1
−1 to get an

equivalent interface condition

[L LM−1
−1 M0]

This amounts to approximate Λh by

Λh,ap,opt2 = LM−1
−1 M0 −

D

2
(46)

11 Numerical Results for the discrete equations

In this section, we test various interface conditions and algorithms in the
discrete framework of the two previous sections. More precisely, we work in
2D on the infinite tube Ω = R× (0, 1) and consider the operator

L = − ∂

∂x
c(y)

∂

∂x
+ η(y)− ∂

∂y
κ(y)

∂

∂y
(47)

along with Dirichlet boundary condition at the bottom and a Neumann
boundary condition at the top. We use a finite volume discretization of the
operator in both the x and y. It is then possible to form the matrices of the
substructured problems (10) for various interface conditions and study their
spectra. We either plot the spectra or give in the tables the ratio of the
largest norm of the eigenvalues of the substructured matrix over its smallest
real part. We also give iteration counts ( #iter in the tables) corresponding
to the solving of equation (43) by a bicgstab algorithm [35] with a random
right hand-side G. The stopping criterion is a reduction of the residual by
a factor 10−6.

We now define more precisely the names written in the tables corre-
sponding to the various domain decomposition methods which have been
tested: opt0c, opt2c, opt0d, opt2d, patch and opt2c+overlap.
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opt0c The interface condition is the one denoted opt0 in section 6 used
in the present discrete equations.

opt2c The interface condition is the one denoted opt2 in section 6 used
in the present discrete equations.

opt0d, opt2d The interface conditions are defined in section 9 by formula
(45) and (46).

patch The interface conditions are built by computing the exact Schur
complement for a small patch around each interface node. Here, the depth
of the patch is infinite and its width is 3 which gives the same bandwith
than second order interface conditions, see [33].

IC+overlap Condition “IC” with an overlap of one mesh size.
Figure 3, displays convergence curve for the bicgstab algorithm and var-

ious interface conditions. The corresponding partial differential equation is
given by (25). The convergence for the Patch interface conditions is irregu-
lar at its beginning and very fast at its end. The convergence for the Opt2c
IC is fast at its beginning and plateaus a little before the end. The curves
for Opt2d and Opt2c+overlap never stagnate.

Definition of the case for Table 8
We consider the following coefficients: eta = 0, c(y) = κ(y) = val([10y])
and val is the vector

val=[b b b a a a b b b b] where a = 3.e− 4, b = 3.
Results for the ’continuous’ interface conditions opt0c and opt2c are very

similar to the ones of the ’discrete’ interface conditions opt0d and opt2d.
The condition numbers of the patch interface conditions are very high due
to a few very low eigenvalues in the substructured problem.
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Figure 3: Relative residual vs. iteration number for the bicgstab algorithm
and various interface conditions, test cases defined by equation (25)

32



Table 8: Results with no zeroth order term

ny 10 20 40 80 160

opt0c #iter 19 28 35 43 52

|λ|max/real(λ)min 67.3 78.9 89.1 102 124

opt2c #iter 5 5.5 7 8 10

|λ|max/real(λ)min 3.2 3.9 4.8 5.7 6.9

opt0d #iter 17 27 34 43 52

|λ|max/real(λ)min 36.7 49.8 64.5 83.4 109

opt2d #iter 3.5 4.5 6.5 7.5 9

|λ|max/real(λ)min 3.27 4.37 5.4 6.7 8.2

patch #iter 3.5 5 7.5 12 17.5

|λ|max/real(λ)min 51.3 184 455 1.e+3 2.3e+3

patch+overlap #iter 2.5 4.5 6 9.5 15.5

|λ|max/real(λ)min 33.2 109 284 707 1.7e+3

opt2c+overlap #iter 3 3.5 6 7 9

|λ|max/real(λ)min 3.23 4.02 4.87 5.8 6.9

Definition of the case for Table 9
As in Table 8 except that eta = 60.
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Table 9: Results for a “large” zeroth order term

ny 10 20 40 80 160

opt0c #iter 18 23 26 25 21

|λ|max/real(λ)min 100.9 51.4 26.7 14.9 10.9

opt2c #iter 14 10.5 8 5 4.5

|λ|max/real(λ)min 73.8 25.1 8.2 2.7 2.3

opt0d #iter 10 13 15 17 20

|λ|max/real(λ)min 2.9 4.3 5.5 7.2 9.4

opt2d #iter 1.5 2 3 3.5 4.5

|λ|max/real(λ)min 1.01 1.1 1.4 1.8 2.3

patch #iter 2 3 5.5 8.5 13.5

|λ|max/real(λ)min 1.04 1.6 3.5 7.9 17.6

patch+overlap #iter 1 2.5 4 6.5 10

|λ|max/real(λ)min 1.01 1.2 2.27 5.33 12.5

opt2c+overlap #iter 1.5 2 2.5 3 4

|λ|max/real(λ)min 1.01 1.1 1.3 1.6 1.9

The test reported in Table 9 should be easier than the previous one
since the zeroth order term is positive. In fact, we see that the condition
number for the interface conditions issued from the semi-continuous analysis,
namely Opt0c and Opt2c ICs, are quite high for large mesh size and improve
as ny increases (or equivalently, as hx and hy tend to zero). The initial bad
figures may be due to the fact when the mesh is coarse, the continuous
partial differential equation is not well discretized. A simple remedy is to
add a one mesh size overlap, see opt2c+overlap. The other conditions which
are derived from a discrete analysis have the expected behaviour, condition
numbers are small and worsen slightly as the mesh is refined. Multiplying
by 16 the number of interface nodes, the condition number is multiplied by
2 for opt2d and opt2c+overlap whereas the condition number is multiplied
roughly by 16 for the patch method. For fine meshes, boundary conditions
issued from a continuous analysis and their purely algebraic counterparts
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give very close results.

11.1 Finite size effect

Previous results correspond to an infinite tube decomposed into two half
tubes. Here, we give results for a finite volume simulation performed on a
domain bounded in both x and y directions. We have only tested Robin and
optimized of order 2 (opt2) interface conditions. The global computational
domain is the rectangle [0, 8000]×[0, 2000] with 160×40 discretization points.
On figure 6, we plot the corresponding eigenvalues of the substructured
system for the opt2 interface conditions for the computational domain and
for a smaller one ([0, 4000]×[0, 2000] with 80×40 discretization points). The
domain is composed of multiple layers with two lithologies: κ = 0.00788918
and κ = 3.15567, see Figure 5. Compared to Figure 1, we now see, for the
opt2 interface conditions, two isolated eigenvalues. The larger the domain is,
the closer to the other eigenvalues they are. We can thus conclude that this
phenomena is due to a finite size effect. It should be noticed that the effect
is not severe and reduces as the domain is enlarged or similarly if absorbing
boundary conditions would be used on the lateral boundaries. The iteration
counts are: 11 iterations for the opt2 interface conditions and 21 for Robin
interface conditions.

Run: startFile.cere

Age: -2 Ma

X: Length in m
Y: Depth in m

Lithology

Fault
Seal
Shale
Sand
Source

startFile.cere - SnapShot #1 - Lithology - -2 Ma - ( m , m ) 

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

0

400

800

1200

1600

2000

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

0

400

800

1200

1600

2000

Figure 4: Lithology for a bounded domain simulation
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Run: startFile.cere

Age: -2 Ma

X: Length in m
Y: Depth in m

Lithology
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MEAN WATER FLOW
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Figure 5: Lithology and fluxes for a bounded domain simulation These
results have been obtainded with a prototype code developped at IFP

12 Conclusion

We propose a way to compute optimized interface conditions for domain
decomposition methods for symmetric positive definite equations. Numeri-
cal results show that the approach is efficient and robust even with highly
discontinuous coefficients both across and inside subdomains. The non-
symmetric case is under study.
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