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DOMINATING POINTS AND ENTROPIC PROJECTIONS

CHRISTIAN LÉONARD

Abstract. Some Conditional Laws of Large Numbers (CLLN) are related to minimiza-
tion problems: the limit of the CLLN is the minimizer of a large deviation rate function
on the limiting conditioning set. When the CLLN is concerned with empirical means,
the minimizer is called a dominating point; if it is concerned with empirical measures, it
is called an entropic projection.
CLLNs are obtained both for empirical means and measures with independent random
weights. By means of convex conjugate duality, one obtains dual equalities and dual
representations of the minimizers: the dominating points and the entropic projections.
For some convex conditioning events, it may happen that usual integral representations
of the dominating point fail: no entropic projection exists. This phenomenon is clarified
by introducing extended minimization problems the minimizers of which may not be
measures anymore. It appears that in some situations, the generalized entropic projec-
tions discovered by Csiszár are the measure component of these extended minimizers.
The important case of relative entropy is studied in details.

1. Introduction

Let {Xn}n≥1 be a sequence of random elements which obeys a Large Deviation Principle
(LDP) in a topological vector space X with rate function J. Let us consider the sequence
of conditioning events {Xn ∈ C} where C is a subset of X . Under some assumptions, one
can prove the following Conditional Law of Large Numbers (CLLN): P(Xn ∈ · | Xn ∈ C)
converges weakly as n tends to infinity to the Dirac unit mass δx̄ at x̄ ∈ C where x̄ is the
solution to the minimization problem

minimize J(x) subject to x ∈ C. (1.1)

In the situation where J is the rate function of Cramér’s theorem, Ney [25], [26] called x̄
a predominating point of C for the rate function J. A dominating point shares additional
properties, in particular it admits an integral representation in terms of a dual parameter,
see Definition 6.1 for more details.

Let {Ln} be a family of random measures on a measurable space Ω which obeys a
LDP with rate function I. Let us consider a sequence of conditoning events {Ln ∈ C}
where C is a subset of M(Ω) : the space of all signed measures on Ω. In this situation,
the predominating point ¯̀ of C for the rate function I is the solution of the minimization
problem

minimize I(`) subject to ` ∈ C
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2 CHRISTIAN LÉONARD

and one can expect that P(Ln ∈ · | Ln ∈ C) converges weakly as n tends to infinity to δ¯̀.
When Ln is the empirical measure of an iid sequence, then I is the relative entropy I(· | R)
with respect to the common law R of the sampled random variables. This minimization
problem is studied extensively by Csiszár in [6] and [7] where the minimizer ¯̀ is called the
I-projection of R on C. Csiszár also proves that when C is a convex set, any minimizing
sequence converges in variation to some probability measure `∗ which may not belong to
C, with I(`∗ | R) ≤ inf`∈C I(` | R) and possibly a strict inequality. Csiszár calls this `∗ the
generalized I-projection of R on C. Later in [8], he extends this notion to a larger class of
convex functionals I on M(Ω), which will be called entropic projections and generalized
entropic projections in the present paper, see Definition 4.2 below. The form of these
convex functionals is

I(`) =

∫
Ω

λ∗
(

d`

dR

)
dR (1.2)

if ` is absolutely continuous with respect to R and +∞ otherwise, where λ∗ : R → [0,∞]
is a convex function. Let us consider the empirical measures with random weights

Ln =
1

n

n∑
i=1

W n
i δωn

i
∈M(Ω), n ≥ 1

where the deterministic sequence of probability measures 1
n

∑n
i=1 δωn

i
∈ P(Ω) is assumed

to converge as n tends to infinity to the reference probability measure R and the random
weights W n

i are assumed to be iid. It is well known that if λ∗ is the Cramér transform
of the common law of the W n

i ’s, I is the rate function of the LDP for {Ln}, see for
instance the articles of Ellis, Gough and Puli [11] and Boucher, Ellis and Turkington
[3] for motivations in statistical physics and the article of Gamboa and Gassiat [14] for
motivations in statistics.

Suppose now that Xn and Ln are linked together by the relation Xn =
∫

Ω
θ(ω) Ln(dω)

where θ : Ω → X is a vector-valued measurable mapping. Under some regularity condi-
tions, the contraction principle allows us to derive the LDP for {Xn} from the LDP for
{Ln} and the corresponding rate functions satisfy: J(x) = inf{I(`); ` ∈M(Ω), 〈θ, `〉 = x}.
This suggests to consider the particular constraint set C = {` ∈ M(Ω); 〈θ, `〉 ∈ C} and
the minimization problem

minimize

∫
Ω

λ∗
(

d`

dR

)
dR subject to 〈θ, `〉 ∈ C, ` ∈M(Ω). (1.3)

From the previous arguments, one can expect that the empirical measures with random
weights satisfy the following CLLN

P

(
1

n

n∑
i=1

W n
i δωn

i
∈ ·

∣∣∣ 1

n

n∑
i=1

W n
i θ(ωn

i ) ∈ C

)
converges weakly to δ¯̀ (1.4)

where ¯̀ is the solution of the minimization problem (1.3).
Let us assume that C is a convex set, so that (1.1) and (1.3) are convex minimization

problems. Introducing a vector space Y in dual pairing with X allows us to state the
following unconstrained dual problem associated with the primal problem (1.3)

maximize inf
x∈C

〈y, x〉 −
∫

Ω

λ(〈y, θ〉) dR, y ∈ Y (1.5)
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where λ and λ∗ are convex conjugates, that is λ is the log-Laplace transform of W n
i . At

least formally, the classical approach to convex optimization as developped in the mono-
graph [30] by Rockafellar suggests that under some regularity assumptions, the following
dual equalities

inf{I(`); 〈θ, `〉 = x, ` ∈M(Ω)} = sup
y∈Y

{
〈y, x〉 −

∫
Ω

λ(〈y, θ〉) dR

}
, x ∈ X

inf{I(`); 〈θ, `〉 ∈ C, ` ∈M(Ω)} = sup
y∈Y

{
inf
x∈C

〈y, x〉 −
∫

Ω

λ(〈y, θ〉) dR

}
should hold (note that the contraction principle leads us to inf{I(`); 〈θ, `〉 = x, ` ∈
M(Ω)} = J(x) and inf{I(`); 〈θ, `〉 ∈ C, ` ∈ M(Ω)} = infx∈C J(x)) and the minimiz-
ers ¯̀ and x̄ of (1.3) and (1.1) should be represented as

¯̀(dω) = λ′(〈ȳ, θ(ω)〉) R(dω)

x̄ = 〈θ, ¯̀〉 =

∫
Ω

θ(ω)λ′(〈ȳ, θ(ω)〉) R(dω)

where ȳ is some maximizer of (1.5). These identities are called dual representations of
the minimizers.

1.1. Presentation of the results. The aim of this paper is to prove CLLNs of the type
of (1.4) and to obtain dual equalities together with dual representations of the dominating
points x̄ and the entropic projections ¯̀ as above.

A CLLN for empirical measures with random weights in the spirit of (1.4) is stated at
Theorem 2.19 in Section 2. To be more precise, our results hold for independent random
weights W n

i which may not be identically distributed. The log-Laplace λ(ω, ·) of W n
i de-

pends on ωn
i and the rate function of the LDP for {Ln} is I(`) =

∫
Ω

λ∗
(
ω, d`

dR
(ω)
)

R(dω).
Moreover, our assumptions allow us to consider conditioning sets C ⊂ X such that
P(〈θ, Ln〉 ∈ C) may vanish. The CLLNs are in terms of limδ→0 limn→∞ P(Ln ∈ · | 〈θ, Ln〉 ∈
Cδ) where Cδ is a blowup of C such that P(〈θ, Ln〉 ∈ Cδ) > 0 for all n and δ.

The proofs of the dual equalities and representations of the minimizers are based on the
classical conjugate duality approach applied in the convenient functional analysis frame-
work obtained by means of pertinent Orlicz spaces. These general results are obtained in
another article of the author [22].

It appears that if the constraint mapping θ is integrable enough (see the “good con-
straints” assumption (3.3)), the minimization problem (1.3) is attained in M(Ω) provided
that inf{I(`); `,

∫
Ω

θ d` ∈ C} < ∞. The corresponding results about dual equalities and

representations of x̄ and ¯̀ are collected at Theorem 3.7 and Proposition 4.3.
But it may happen that when θ isn’t integrable enough (see the “bad constraints”

assumption (3.6)), although inf{I(`); `,
∫

Ω
θ d` ∈ C} < ∞, the minimization problem (1.3)

is not attained in M(Ω) anymore. Nevertheless, as proved by Csiszár in [8], a generalized
entropic projection still exists in M(Ω). Considering an extended primal minimization
problem associated with the same maximization dual problem (see (P̄ ) at Section 4), one
is able to prove at Section 4 that the minimizer of the extended problem is the sum of
a measure ¯̀a which is absolutely continuous with respect to R and a singular element ¯̀s

which is not even a measure in the general case. It is also proved that if in addition the
constraint is finite dimensional, the absolutely continuous component ¯̀a of this minimizer
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is the generalized entropic projection `∗ = ¯̀a and that the singular component ¯̀s is
responsible for the possible gap: I(`∗) < inf{I(`); ` ∈ M(Ω), 〈θ, `〉 ∈ C} = I(`∗) + Ī(¯̀s),
where Ī is some extension of I. These results are collected at Theorems 4.5 and 4.7.

The case of the relative entropy is of special interest. It is associated with CLLNs
for the empirical measure of an R-iid sample. In this paper, we shall take advantage
of the fact that it also corresponds to CLLNs for empirical measures with Poisson(1)-
distributed random weights with an additional unit mass constraint: 〈1, `〉 = 1. In this
situation, λ(s) = es − 1 : the log-Laplace transform of a Poisson(1) law. It is studied in
details at Section 5. Our representation results are stated at Propositions 5.3 and 5.5.
The main result of Section 5 states at Theorem 5.9 that with X a Banach space, for a
quite general constraint mapping θ and under the “bad constraint” assumption that the
generalized I-projection is the common absolutely continuous part of the minimizers of
the extended relative entropy (see (5.1)). Together with Theorem 4.7, these results shed
light on the surprising phenomenon of generalized entropic projections.

At Section 6 it is shown that some predominating points may fail to be dominating when
the convex conjugate Λ∗(x) of Λ(y) =

∫
Ω

λ(ω, 〈y, θ(ω)〉) R(dω) admits a nondegenerate
recession function. This result is stated at Theorem 6.6.

1.2. About the literature. Conditional LLNs are well known. They already appear in
the fundamental works about Large Deviations of Freidlin and Wentzell [13] and Azencott
[2]. CLLNs for empirical measures of iid samples are obtained by Csiszár in [7]. In the
context of statistical physics, they are sometimes called Gibbs Conditoning Principle. One
can see for instance the paper [31] by Stroock and Zeitouni and more recently (Léonard and
Najim, [23]). In the present paper, the LDP for empirical measures with random weights
stated at Theorem 2.16 is obtained under “good” (i.e. strong) integrability assumptions.
Such a LDP with weaker integrability assumptions but stronger regularity requirements
is obtained by Najim in [24].

Functionals of the type of (1.2) are sometimes called λ∗-entropies, see for instance the
paper [32] by Teboulle and Vajda. They are studied in the spirit of the present paper
by Csiszár in [8] with other methods of proof. Theorem 3.7 and Proposition 4.3 extend
similar results of Csiszár ([8], Thm 3 and its corollary).

The dual equalities in Theorems 3.7 and 4.5 already appear in the author’s paper [20].
Generalized entropic projections have been discovered and studied by Csiszár in [7]

and [8]. Our representation of the generalized entropic projections under finitely many
constraints stated at Theorem 4.7 extends Csiszár’s result ([8], Theorem 4). The inter-
pretation of the generalized entropic projection as the absolutely continuous component
of the minimizers ¯̀ of an extended minimization problem is a new result.

The special case of the relative entropy has been extensively studied by Csiszár ([6],
[7]). The representation of the dominating points in Proposition 5.3 has already been
obtained for C with a nonempty topological interior in Rd by Ney in [26] and in a Ba-
nach space setting by Einmahl and Kuelbs in [10]. Proposition 5.3 extends these results.
Proposition 5.5 also extends corresponding results of (Kuelbs, [17]) which are obtained
in a Banach space setting with a “nonempty interior” assumption. The representation of
the I-projection is obtained by means of a very different proof by Csiszár in [6] and ([7],
Thm 3).
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Integral representations of dominating points rely essentially on the existence of a support-
ing hyperplane shared by C and some level set of J = Λ∗. This existence is a consequence
of Hahn-Banach theorem. In (Einmahl and Kuelbs, [10]) and (Kuelbs, [17]), the hypothe-
ses of Hahn-Banach theorem are fulfilled by assuming that C has a nonempty topological
interior in a Banach space. In order to get rid of this restrictive assumption in the present
paper, made-to-measure topologies are used to insure that the level sets of J = Λ∗ have
nonempty interiors in some sense. This strategy is developped in [22] by means of Orlicz
spaces naturally associated with λ and λ∗. The main results of [22] that will be used in
the present article are collected in Appendix B for the convenience of the reader.

In (Kuelbs, [17]) and [21], integral representations of dominating points are obtained
under bad integrability assumptions. Theorem 6.6 complements and extends these results.
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2. Conditional laws of large numbers for empirical measures with
random weights

A CLLN for empirical measures with random weights is stated at Theorem 2.19. Its
proof relies upon two results: a general result (Theorem 2.3) which allows us to derive
a CLLN from a LDP, and a LDP for empirical measures with random weights which is
stated at Theorem 2.16. Examples of interesting conditioning events are also described
at Section 2.2. They correspond to moment and marginal constraints.



6 CHRISTIAN LÉONARD

2.1. Conditional laws of large numbers. Let {Ln} be a sequence of random vectors
in some vector space L. Let T : L → X be a linear operator with values in another vector
space X . We are going to investigate the behavior of the conditional law P(Ln ∈ · | TLn ∈
C) of Ln as n tends to infinity, for some measurable set C in X . It appears that this type
of CLLN is connected with large deviations. We assume that {Ln} obeys the LDP in L
endowed with some topology and the associated Borel σ-field, with a good rate function
I. It is also clear that one should assume that P(TLn ∈ C) > 0 for all n, not to divide by
zero. To overcome this restriction, we look at P(Ln ∈ · | TLn ∈ Cδ) where Cδ is a blowup
that tends to C as δ tends to zero, with P(TLn ∈ Cδ) > 0 for all n and δ.

Let us assume that X is a topological vector space with its Borel σ-field and that
T : L → X is continuous. The contraction principle tells us that

Xn
M
= TLn

obeys the LDP in X with the rate function

J(x) = inf{I(`); ` ∈ L, T ` = x}.

Before stating a result about CLLNs at Theorem 2.3, we have to fix some assumptions
on {Ln} and the conditioning events.

Assumptions on {Ln}. The sequence {Ln} obeys the LDP in L with a good rate function
I. This means that I is inf-compact.

As a convention, one writes J(C) for infx∈C J(x).

Assumptions on the conditioning events. This framework is based on (Stroock and
Zeitouni, [31]) and (Dembo and Zeitouni, [9], Section 7.3).

(a) The linear operator T : L → X is continuous.
(b) J(C) < ∞.

(c) The set C is closed, it is the limit as δ decreases to 0: C
M
= ∩δcl Cδ, of the closures

of a nonincreasing family of Borel sets Cδ in X such that for all δ > 0 and all
n ≥ 1, P(Xn ∈ Cδ) > 0

(d) and one of the following statements
(1) Cδ = C for all δ > 0 and J(int C) = J(C), or
(2) C ⊂ int Cδ for all δ > 0.
is fulfilled.

Let G be the set of all solutions of the following minimization problem:

minimize I(`) subject to T` ∈ C, ` ∈ L. (2.1)

Similarly, let H be the set of all solutions of the following minimization problem:

minimize J(x) subject to x ∈ C, x ∈ X . (2.2)

We can now state a result about CLLNs.
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Theorem 2.3 (CLLN). For all open subset G of L such that G ⊂ G and all open subset
H of X such that H ⊂ H, we have

lim sup
δ→0

lim sup
n→∞

1

n
log P(Ln 6∈ G | TLn ∈ Cδ) < 0 and

lim sup
δ→0

lim sup
n→∞

1

n
log P(Xn 6∈ H | Xn ∈ Cδ) < 0.

In particular, if C is convex and the rate functions I is strictly convex, we have the CLLNs:

lim
δ

lim
n

P(Ln ∈ · | TLn ∈ Cδ) = δ¯̀

lim
δ

lim
n

P(Xn ∈ · | Xn ∈ Cδ) = δx̄

where the limits are understood with respect to the usual weak topologies of probability
measures and ¯̀ is the unique solution to the convex minimization problem (2.1) and x̄ = T ¯̀

is the unique solution to (2.2).

Let us note that if I is inf-compact and strictly convex, then J is also strictly convex.
The proof of this theorem is postponed to Section 7.

2.2. Random measures. Let Ω be a space endowed with a σ-field A. We denote P(Ω)
the set of all probability measures and M(Ω) the space of all signed measures on (Ω,A).
In this paper, a measure will always be a signed measure.
Let V be a space of measurable functions v : Ω → R. We shall consider the subspace of
its algebraic dual space: V], which consists of linear forms on V which act as measures:

MV M
= {` ∈ V];∃Q` ∈M(Ω), 〈`−Q`, v〉 = 0,∀v ∈ V

and

∫
Ω

v d|Q`| < ∞,∀v ∈ V , v ≥ 0} (2.4)

As a typical example, let us consider Ln = 1
n

∑n
i=1 δZi

∈ P(Ω) : the empirical measure
of an iid sequence (Zi) of Ω-valued random variables. Suppose in addition that Ω is a
vector space, take X := Ω and consider the operator T : ` ∈ MV 7→ “

∫
Ω

ω `(dω)” ∈ Ω
where MV ⊂M(Ω) is the space of all measures ` such that the integral

∫
Ω

ω `(dω) makes
sense. This corresponds to the space V of all “sublinear” measurable functions on Ω.
Then, TLn = Xn = 1

n

∑n
i=1 Zi is the empirical mean and the large deviations for {Ln}

and {Xn} are described by Sanov ’s and Cramér ’s theorems.

Constraint operators and moment functions. Let us go back to a general setting
for random measures. It is convenient to describe the constraint operator T by means of
some adjoint operator T T . To do it, one needs to introduce dual spaces. Clearly, V and
MV are in separating duality.
We also assume that X is in separating duality with another vector space Y .
For all y ∈ Y , we define

T T y(ω)
M
= 〈y, θ(ω)〉Y,X , ω ∈ Ω (2.5)

where θ : Ω → X is a function such that for all y ∈ Y , the function T T y : Ω → R is
measurable. The operator T is then defined for all ` ∈ MV and x ∈ X by T` = x if and
only if for all y ∈ Y , 〈`, T T y〉MV ,V = 〈y, x〉X ,Y . Note that one must assume that

T TY ⊂ V (2.6)
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for this definition to be meaningful. This means that for any ` ∈ MV , T ` ∈ X is
characterized by:

〈T`, y〉 =

∫
Ω

〈y, θ(ω)〉Q`(dω),∀y ∈ Y , (2.7)

where θ : Ω → X is a function as in (2.5) and Q` ∈ M(Ω) is such that 〈`, v〉 =
∫

Ω
v dQ`

for all v ∈ V .

Some examples of constraints. If one considers moment constraints such as TQ =
(
∫

Ω
θk dQ)1≤k≤K ∈ RK , Q ∈ M(Ω) then θ = (θk)1≤k≤K is a measurable function from Ω

to X = RK and Y = RK . For this reason, one may call θ a moment function even for
another kind of constraints.
Another example is the marginal constraints : Let Ω = Ωa × Ωb be a product space and
denote Qa = Q(· × Ωb) and Qb = Q(Ωa × ·) the marginal measures of the probability
measure Q on Ω. The constraint of prescribed marginal measures corresponds to TQ =
(Qa, Qb), θ(ωa, ωb) = (δωa , δωb

) ∈ X = P(Ωa) × P(Ωb) and one can choose Y = B(Ωa) ×
B(Ωb) where B(Ω) denotes the space of all bounded measurable functions on Ω.

2.3. Empirical measures with random weights. Let us consider a triangular array
{(ωn

i )1≤i≤n, n ≥ 1} of elements ωn
i in a measurable space Ω such that the empirical measure

Rn
M
= 1

n

∑n
i=1 δωn

i
tends to some probability measure R as n tends to infinity (in a weak

sense to be made precise at (2.9)). Although the ωn
i ’s may be the random outcomes of an

R-iid sequence, for the present purpose, one should better think of Rn as a deterministic
object. A random weight W n

i is attached to each ωn
i ∈ Ω : {W n

i ; i ≤ n, n ≥ 1} is a family
of independent real-valued random variables. In addition, the law of W n

i is assumed to
depend on ωn

i . We denote Wωn
i

a copy of W n
i : Law(W n

i ) = Law(Wωn
i
), where {Wω; ω ∈ Ω}

is a collection of independent random variables.
We are going to consider the large deviations as n tends to infinity of the sequence of
random signed measures on Ω :

Ln
M
=

1

n

n∑
i=1

W n
i δωn

i
∈M(Ω), n ≥ 1. (2.8)

Let R be a vector subspace of L1(Ω, R) : the space of R-integrable functions on Ω
(where R-almost everywhere equal functions are not identified). We assume that Rn

converges to R in the following weak sense

lim
n→∞

1

n

n∑
i=1

f(ωn
i ) =

∫
Ω

f dR, ∀f ∈ R ⊂ L1(Ω, R) (2.9)

As a consequence of assumption (2.11) below, the mean profile

ω ∈ Ω 7→ m(ω)
M
= EWω ∈ R (2.10)

is well defined. It is related to the law of large numbers. Indeed, it follows from the LDP
of Theorem 2.16 below together with Borel-Cantelli’s lemma that under our assumptions
Ln converges to the signed measure mR (whose Radon-Nikodym derivative with respect
to R is m) in the following sense: for all f ∈ R, limn→∞

∫
Ω

f dLn =
∫

Ω
fm dR, almost

surely.
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Let us assume that
∀ω ∈ Ω,∀s ∈ R, EesWω < ∞ (2.11)

and define the log-Laplace transform of Wω :

λ(ω, s)
M
= log EesWω , ω ∈ Ω, s ∈ R.

The expectation E refers to the integration with respect to the probability measure P (on
an unspecified space) which governs the randomness of the independent random variables
(Wω)ω∈Ω.

Let V be a vector space of measurable functions v : Ω → R which satisfies the following
condition

∀v ∈ V , λ ◦ v ∈ R ⊂ L1(Ω, R) (2.12)

where λ ◦ v is the function ω ∈ Ω 7→ λ(ω, v(ω)) ∈ R. Note that this is an integrability
requirement on V : it implies that V is included in some Orlicz space (with respect to the
measure R), see (2.17) below. Let MV be the space of linear forms on V which act on V
as signed measures, see (2.4). It is endowed with the weak topology σ(MV ,V) and the
related Borel σ-field.

Let us introduce the convex integral functional Iλ∗ which is defined for all signed mea-
sure Q on Ω by

Iλ∗(Q)
M
=

{ ∫
Ω

λ∗(ω, dQ
dR

(ω)) R(dω) if |Q| � R
+∞ otherwise

(2.13)

where λ∗(ω, t) = sups∈R{st− λ(ω, s)} for all ω ∈ Ω and t ∈ R, is the convex conjugate of
λ(ω, ·). Note that for all ω, λ∗(ω, ·) is [0,∞]-valued so that the above generalized integral
is meaningful.
The following functional I is the rate function of the LDP stated in Theorem 2.16 below.
It is defined for all ` ∈MV by

I(`)
M
= inf

Q`

Iλ∗(Q`)

where the inf is taken over all measures Q` on Ω that integrate the functions in V and
such that their restriction to V is `. We use the convention inf ∅ = +∞.
In particular, if V is large enough to determine the measures on Ω, MV is in one to
one correspondence with the space of all measures on Ω such that

∫
Ω

v d|`| < ∞ for all
nonnegative v ∈ V and we obtain for all ` ∈MV ,

I(`) = Iλ∗(`) (2.14)

up to some obvious identification.
We also assume that the mean profile satisfies

mv ∈ R,∀v ∈ V . (2.15)

This is a technical requirement, which should be implied by (2.12) in standard situations

since for any v ∈ V and all real t 6= 0, ω 7→ λ(ω,tv(ω))−λ(ω,0)
t

belongs to the vector space R
and its limit as t tends to 0 is mv. Note also that (2.15) is necessary to state the LLN:
{Ln} converges in law to mR in MV .

Theorem 2.16 (Large deviations for empirical measures with random weights). Under
the assumptions (2.9), (2.11), (2.12) and (2.15), {Ln} satisfies the LDP in MV for the
topology σ(MV ,V) with the rate function I.
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Proof. For similar results see (Ellis, Gough and Puli, [11]), (Gamboa and Gassiat, [14]),
(Cattiaux and Gamboa, [5]) and (Dembo and Zeitouni, [9], Theorem 7.2.3). Let us begin
with a simplifying remark.
Centering. Considering the centered measure Ln− 1

n

∑n
i=1 m(ωn

i )δωn
i

instead of Ln, without
loss of generality one may assume that m ≡ 0. This corresponds to the substitution
of λ(ω, s) by γ(ω, s) = λ(ω, s) − m(ω)s which is a nonnegative convex function which

vanishes at 0. In particular, γo(ω, s)
M
= max(γ(ω, s), γ(ω,−s)) (see (3.2)) is a Young

function and one can consider the Orlicz space Lγ∗o (Ω, R) which is the topological dual
space of the Orlicz space Mγo(Ω, R). For the definitions, notations and basic results about
Orlicz spaces, see Appendix A. Our assumption (2.12) implies that

V ⊂ Mγo(Ω, R). (2.17)

Without loss of generality, it is supposed during the proof that the Wω’s are centered,
so that λ = γ. As the W n

i ’s are independent random variables, for any v ∈ V , we have

Φn(v)
M
= 1

n
log E exp n〈v, Ln〉 = 1

n

∑n
i=1 γ(ωn

i , v(ωn
i )). Because of assumptions (2.9) and

(2.12), the limiting log-Laplace Φ(v)
M
= limn Φn(v) exists for every v in V and we have

Φ(v) =

∫
Ω

γ(ω, v(ω)) R(dω) ∈ [0,∞), v ∈ V .

By assumption (2.12), Φ is finite everywhere on V . Hence, it is a steep function. In particu-
lar, for all integer d ≥ 1, v1, . . . , vd in V , the Rd-valued random vector: (〈v1, Ln〉, . . . , 〈vd, Ln〉)
admits the limiting log-Laplace transform Φv1,...,vd

(λ1, . . . , λn) = Φ(
∑d

j=1 λjvj) which is

also a steep function on Rd. Thanks to the exponential Markov inequality, for all v ∈ V ,
there exists λ > 0 such that for all sufficiently large A ≥ 0, lim supn

1
n

log P(〈v, Ln〉 ≥
A) ≤ −λA + Φ(λv). A standard argument allows us to infer that the finite dimensional
random vector (〈v1, Ln〉, . . . , 〈vd, Ln〉) is exponentially tight. Applying Gärtner-Ellis the-
orem together with Dawson-Gärtner theorem on projective limits of LDP’s, one obtains
the LDP for {Ln} on the algebraic dual space V] with the topology σ(V],V) and the rate
function Φ∗.
By assumption (2.11), under the centering convention: m = 0, Φ fulfils the assumption
(HΦ) of Appendix B and thanks to ([22], Lemma 6.2-b), dom Φ∗ is included in the Orlicz
space Lγ∗o (Ω, R) which is the topological dual space of the Orlicz space Mγo(Ω, R). Define
Iγ(f) =

∫
Ω

γ(ω, f(ω)) R(dω) for f ∈ Lγo(Ω, R) and similarly Iγ∗(g) =
∫

Ω
γ∗(ω, g(ω)) R(dω)

for g ∈ Lγ∗o (Ω, R). One can apply (Rockafellar, [28], Thm 2) to obtain that Iγ∗ is the con-
vex conjugate of Iγ for the duality (Mγo , Lγ∗o ). But, Φ is the restriction of Iγ to V . By the
little dual equality (B.3) applied with T : V → Mγo being the canonical inclusion Tv = v,

Φ = Iγ and Γ = Φ : the restriction of Iγ to V , one gets Φ∗(`) = inf{Iγ∗(
d˜̀

dR
); ˜̀, ˜̀|V = `}.

We have just shown that

I(`) = Φ∗(`),∀` ∈MV and dom I = dom Φ∗. (2.18)

This completes the proof of the theorem. �

A similar LDP with weaker integrability assumptions but stronger regularity require-
ments is obtained by J. Najim in [24]. For instance, [24]’s LDP holds true for {Ln} with
iid W n

i ’s such that their common log-Laplace transform λ has a domain with a nonempty
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interior. The price to pay is an extended rate function on an extended state space possibly
larger than M(Ω).

With Theorem 2.16 in hand, we are going to investigate the asymptotic behavior of
Ln conditionally on some event TLn ∈ Cδ where the Cδ’s satisfy the assumptions stated
at the beginning of this section. The weak convergence in the set P(MV) of probability
measures on MV is related to the usual topology σ(P(MV), Cb(MV)). Loosely speaking,
the following theorem states that “conditionally on TLn ∈ Cδ, the random measure Ln

converges in law to the deterministic measure ¯̀ which is the unique solution of (2.21)”.
Let T : MV → X be a linear operator and let X be in separating duality with some

vector space Y . This allows to define T T : Y → (MV)] the adjoint operator of T, where
(MV)] is the algebraic dual space of MV .

Theorem 2.19 (CLLN for empirical measures with random weights). Let us assume that
the hypotheses of Theorem 2.16 are satisfied and that T satisfies the following regularity
condition:

T TY ⊂ V (2.20)

Let {Cδ} be a family of subsets of X which fulfills the assumptions (b), (c) and (d) on the
conditioning events at the beginning of this section with C a σ(X ,Y)-closed convex subset
of X which is endowed with the topology σ(X ,Y). Then,

lim
δ→0

lim
n→∞

P(Ln ∈ · | TLn ∈ Cδ) = δ¯̀ weakly in P(MV)

where ¯̀ is the unique solution to the convex minimization problem

minimize I(`) subject to T` ∈ C, ` ∈MV . (2.21)

Similarly, we have

lim
δ→0

lim
n→∞

P(Xn ∈ · | Xn ∈ Cδ) = δx̄ weakly in P(X )

where x̄ is the unique solution to the convex minimization problem

minimize J(x) subject to x ∈ C ⊂ X .

In the special case where T is specified by a moment function θ as in (2.5), the conditioning
events TLn ∈ Cδ are 1

n

∑n
i=1 W n

i θ(ωn
i ) ∈ Cδ and the assumption (2.20) is

〈y, θ(·)〉 ∈ V ,∀y ∈ Y (2.22)

Note that (2.20) is the consistency requirement (2.6).

Proof. This follows immediately from Theorems 2.3 and 2.16, since the operator T is con-
tinuous, I is σ(MV ,V)-inf-compact and strictly convex. Indeed, because of the assump-
tion T TY ⊂ V , T is continuous with respect to the topologies σ(MV ,V) and σ(X ,Y).
In addition, by (2.18) I = Φ∗ and dom I = dom Φ∗. But V ⊂ Mγo by (2.17) and
dom Φ∗ ⊂ Lγ∗o . It follows by ([18], Cor. 2.2) that Φ∗ is σ(Lγ∗o , Mγo)-inf-compact, so
that I is σ(MV ,V)-inf-compact . It is strictly convex since λ∗(ω, ·) is strictly convex as it
is the convex conjugate of a log-Laplace transform, and a Laplace transform is Gâteaux-
differentiable. �

The minimizer ¯̀ is the entropic projection of mR on the set of all measures ` such that
T` ∈ C. This terminology is borrowed from Csiszár [6], [8], see Definition 4.2 below.
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3. Good constraints

Because of Theorem 2.19, while deriving a CLLN for empirical measures with random
weights with conditioning events: {TLn ∈ Cδ}, one has to minimize an entropy functional
(the rate function of the underlying LDP) under the constraint T` ∈ C. Our aim in this
section is to apply some results of the author [22] to the minimization of an entropy
functional under the convex constraint: T` ∈ C. The relevant results of [22] are recalled
below in Appendix B.

3.1. An equivalent minimization problem. For the moment, we are concerned with
the minimization problem (2.21): the framework is Section 2.3’s one with constraints
defined by means of a moment function θ : Ω → X as in (2.5) where the vector space X
is in dual pairing with some vector space Y and θ is such that for all y ∈ Y , the function
ω ∈ Ω 7→ 〈y, θ(ω)〉Y,X ∈ R is measurable.
Let us first assume that V separates the measures on Ω so that by (2.14), I is the λ∗-
entropy Iλ∗ which is defined at (2.13). Therefore, problem (2.21) is

minimize I(Q) subject to

∫
Ω

θ dQ ∈ C, Q ∈MV . (3.1)

with

I(Q) = Iλ∗(Q) =

{ ∫
Ω

λ∗(ω, dQ
dR

(ω)) R(dω) if |Q| � R
+∞ otherwise

In order to state an equivalent minimization problem below at (3.4), one has to intro-
duce some relevant Orlicz spaces. Basic definitions and results about Orlicz spaces are
recalled at Appendix A. Let us consider the function

γ(ω, s) = λ(ω, s)−m(ω)s

where m(ω) is the mean profile (2.10). For all ω, s 7→ γ(ω, s) is a nonnegative convex
function and it vanishes at 0. In particular,

γo(ω, s)
M
= max(γ(ω, s), γ(ω,−s)) (3.2)

is a Young function and one can consider the Orlicz spaces

Mγo(Ω, R) = {u : Ω → R;∀α > 0,

∫
Ω

γo(ω, αu(ω)) R(dω) < ∞} and

Lγ∗o (Ω, R) = {f : Ω → R;∃α > 0,

∫
Ω

γ∗o(ω, αf(ω)) R(dω) < ∞}

where γ∗o(ω, ·) is the convex conjugate of γo(ω, ·). We identify the space of R-absolutely
continuous signed measures having a density in the Orlicz space Lγ∗o (Ω, R) with this Orlicz
space. We make use of the shortcuts Mγo and Lγ∗o .
We assume that V is a subspace of Mγo .
Beware, contrary to Mγo , V is not a set of R-a.e. equivalence classes. Our assumption is
equivalent to

∫
Ω

γ(ω, v(ω)) R(dω) < ∞ for all v ∈ V . Thanks to assumption (2.22), this
implies that

∀y ∈ Y ,

∫
Ω

γ(ω, 〈y, θ(ω)〉) R(dω) < ∞ (3.3)
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As V ⊂ Mγo , by Hölder’s inequality we obtain: Lγ∗o ⊂MV . Since in addition the effective
domain of I is a subset of Lγ∗o , we see that problem (3.1) is equivalent to

minimize I(Q) subject to

∫
Ω

θ dQ ∈ C, Q ∈ Lγ∗o (3.4)

under our assumptions which are: V separates M(Ω) and 〈Y , θ〉 ⊂ V ⊂ Mγo .

3.2. The assumptions. From now on, we drop the setting of the Empirical Measures
with Random Weights. This means that we consider the minimization problem (3.4)
without any spaces V or R and the function λ is not supposed to be a log-Laplace
transform as in Section 2.3.

Let (Ω,A, R) be a probability space where A is a σ-field which is supposed to be
R-complete in order to be able to apply the results of [22]. Let us make some

Assumptions on λ∗. We assume that λ∗(·, t) is ω-measurable for all t and that for R-
almost every ω ∈ Ω, λ∗(ω, ·) is a closed strictly convex [0, +∞]-valued function on R which
attains a unique minimum. Let m(ω) denote this argmin. It is also assumed that for R-
almost every ω ∈ Ω, the minimum value is λ∗(ω,m(ω)) = 0, that λ∗(ω, ·) is finite on a
neighborhood of m(ω), and that there exists A(ω) > 0 such that λ∗(ω,m(ω) + A(ω)) > 0
and λ∗(ω,m(ω)− A(ω)) > 0.

As a consequence, I uniquely achieves its minimum value at mR and I(mR) = 0. As a
closed strictly convex function, t 7→ λ∗(ω, t) is the convex conjugate of a closed differen-
tiable convex function s 7→ λ(ω, s). Using the notation λ′(ω, s) := ∂

∂s
λ(ω, s), one considers

the function
γ(ω, s) = λ(ω, s)−m(ω)s where m(ω) = λ′(ω, 0).

For all ω, s 7→ γ(ω, s) is a nonnegative convex function and it vanishes at 0.
Let us make a remark about measurability. As a convex function on R, λ∗ is continuous
on the interior of its domain. Under our assumptions, λ∗ is jointly measurable, and so are
λ and λ′. Hence, m is a measurable function and so is γ. Let us make some

Assumptions on θ. We assume that

∀y ∈ Y ,

∫
Ω

γ(ω, 〈y, θ(ω)〉) R(dω) < ∞ and

∀y ∈ Y , 〈y, θ(·)〉 = 0, R-a.e. ⇒ y = 0 (3.5)

The first assumption is (3.3). Since X and Y are in separating duality, the second re-
quirement (3.5) states that the vector space spanned by the range of θ “is essentially” X .
This is not an effective restriction. Let us make some

Assumptions on C. We assume that C is a σ(X ,Y)-closed convex subset of X .

3.3. What good and bad constraints are. If the Young function γo doesn’t satisfy
the ∆2-condition (see (A.1)), for instance if it has an exponential growth at infinity,
Mγo = {u : Ω → R;∀α > 0,

∫
Ω

γo(ω, αu(ω)) R(dω) < ∞} may be a proper subset of

Lγo = {u : Ω → R;∃α > 0,

∫
Ω

γo(ω, αu(ω)) R(dω) < ∞}.
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Consequently, for some moment functions θ, assumption (3.3) may not be satisfied while
the weaker property

∀y ∈ Y ,∃α > 0,

∫
Ω

γ(ω, α〈y, θ(ω)〉) R(dω) < ∞ (3.6)

may be shared. In this situation, analytical complications occur (see Section 4). This is
the reason why constraints satisfying (3.3) are called good constraints, while constraints
satisfying (3.6) but not (3.3) are called bad constraints.

3.4. Attainment and representation of the minimizers. Let us consider the follow-
ing couple of convex conjugates

Λ(y)
M
=

∫
Ω

λ(ω, 〈y, θ(ω)〉) R(dω), y ∈ Y

Λ∗(x)
M
= sup

y∈Y

{
〈y, x〉 −

∫
Ω

λ(ω, 〈y, θ(ω)〉) R(dω)

}
, x ∈ X

Let us denote

dom Λ∗ = {x ∈ X ; Λ∗(x) < ∞}
the effective domain of Λ∗ and icordom Λ∗ the intrisic core of dom Λ∗. That is

icordom Λ∗ = {x ∈ dom Λ∗;∀x′ ∈ affdom Λ∗,∃t > 0, [x, x + t(x′ − x)[∈ dom Λ∗}

where affdom Λ∗ is the affine space generated by dom Λ∗.
Applying Theorem B.2, we shall obtain the following

Theorem 3.7 (The minimizers of (3.4)). Under the assumptions on λ∗, θ and C which
are stated above (in particular the “good constraint” requirement (3.3) is assumed), we
have

inf

{
I(Q); Q ∈ Lγ∗o ,

∫
Ω

θ dQ ∈ C

}
= sup

y∈Y

{
inf
x∈C

〈y, x〉 −
∫

Ω

λ(ω, 〈y, θ(ω)〉) R(dω)

}
= inf

x∈C
Λ∗(x) ∈ [0,∞].

In particular, one has

J(x)
M
= inf{I(Q); Q ∈ Lγ∗o ,

∫
Ω

θ dQ = x} = Λ∗(x), x ∈ X .

If C∩dom Λ∗ is nonempty, then (3.4) is attained and any minimizing sequence σ(Lγ∗o , Mγo)-
converges to the unique solution Q̄ of (3.4).
Suppose that in addition, C ∩ icordom Λ∗ is nonempty, then there exists some linear form
ȳ on X such that 〈ȳ, θ(·)〉 is measurable and

(a) x̄
M
=
∫

Ω
θ dQ̄ ∈ C ∩ dom Λ∗

(b) 〈ȳ, x̄〉 ≤ 〈ȳ, x〉,∀x ∈ C ∩ dom Λ∗

(c) Q̄(dω) = λ′(ω, 〈ȳ, θ(ω)〉) R(dω).
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In this situation, x̄ minimizes Λ∗ on C, I(Q̄) = Λ∗(x̄) and because of (a) and (c), we have

x̄ =

∫
Ω

θ(ω)λ′(ω, 〈ȳ, θ(ω)〉) R(dω) (3.8)

in the weak sense.

Following the terminology of Ney [25], [26], as it shares the properties (a), (b) and (3.8),
the minimizer x̄ is called a dominating point of C for the rate function Λ∗ (see Definition
6.2 below).
Note that ȳ does not necessarily belong to Y . Therefore, the Young equality 〈x̄, ȳ〉 =
Λ∗(x̄) + Λ(ȳ) is meaningless. Nevertheless, there exists a natural extension Λ of Λ such
that 〈x̄, ȳ〉 = Λ∗(x̄) + Λ(ȳ) holds, see (B.4) at Appendix B.

Proof. During this proof, the notations and definitions of Appendix B will be used.
Let us first establish the connection with the framework of Appendix B. We introduce

the convex functional

Φ(u)
M
=

∫
Ω

γ(ω, u(ω)) R(dω), u ∈ U0

where U0 = Mγo . We have

I(Q) = Φ∗(Q−mR) (3.9)

where Φ∗ is the convex conjugate of Φ for the duality (L0,U0) with L0
M
= U ]

0 : the algebraic
dual space of U0. That is

Φ∗(`) = sup
u∈U0

{〈`, u〉 − Φ(u)} ∈ [0,∞], ` ∈ L0.

The identity (3.9) is a consequence of general results of Rockafellar on conjugate duality
for integral functionals [28]. More precisely, it is also proved in ([18], Proposition 6.2) that
Φ∗(`) =

∫
Ω

γ∗(ω, d`
dR

(ω)) R(dω) if ` is an R-absolutely continuous measure, and Φ∗(`) = ∞
otherwise. This implies that up to the transformation ` = Q−mR ∈ L0, the minimization
problem (3.4) becomes

minimize Φ∗(`) subject to 〈θ, `〉 ∈ Co, ` ∈ L0

where Co = C − 〈θ,mR〉 ⊂ X , (〈θ, `〉 is defined in the weak sense).
The hypothesis (HΦ) of Theorem B.2 is clearly satisfied under our assumptions on λ∗.
The hypothesis (HT1) is (3.3) while (HT2) is (3.5).

Now, a direct application of Theorem B.2 with Φ(u) =
∫

Ω
γ(u) dR, |u|Φ = ‖u‖γo ,

u ∈ U0 = U1 = Mγo , L1 = Lγ∗o and Γ(y)
M
=
∫

Ω
γ(ω, 〈y, θ(ω)〉) R(dω) ∈ [0,∞], y ∈ Y gives

us the dual equality and the statement about the minimizing sequence.
The uneasy remaining work is the computation of Φ̄. But this has been performed by
the author in ([18], Theorem 6.3). Being careless with annoying details, the result is
essentially

Φ̄(u) =

∫
Ω

γ(ua) dR + sup{〈us, f〉; f ∈ dom Φ∗}, u ∈ dom Φ̄ ⊂ U2

where u = ua + us is a unique decomposition of u into a measurable function ua and a
singular part us. This singular part will not play any role in the rest of the proof since
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one only needs to compute the subdifferential ∂Φ̄(u) and

∂Φ̄(u) = {γ′(ua).R} (3.10)

for any u in dom Φ̄. To make things easier, we have supposed that λ∗ is strictly convex,
so that γ is differentiable. To prove (3.10), note that for any h ∈ U0 = Mγo and any
u ∈ dom Φ̄, we have (u + h)a = ua + h and (u + h)s = us since hs = 0. Hence, Φ̄(u +
h)− Φ̄(u) = [

∫
Ω

γ(ua +h) dR+sup{〈us, f〉; f ∈ dom Φ∗}]− [
∫

Ω
γ(ua) dR+sup{〈us, f〉; f ∈

dom Φ∗}] =
∫

Ω
γ(ua + h) dR−

∫
Ω

γ(ua) dR.
As the transformation λ → γ corresponds to the transformation Q → ` = Q −mR, the
minimizer of (3.4) is Q̄ = λ′((T ∗y∗)

a) ·R for some y∗ ∈ Y2. �

4. Bad constraints

In this section, the minimization problem (3.4) is considered when the constraint func-
tion θ satisfies (3.6) but not necessarily (3.3). This means that the constraint is bad.
Note that this situation is of interest if Mγo is a proper subspace of Lγo since (3.3) is
equivalent to 〈Y , θ〉 ⊂ Mγo and (3.6) is equivalent to 〈Y , θ〉 ⊂ Lγo . This occurs if and only
if γo doesn’t share the ∆2 property, see (A.1). On the other hand, thanks to Hölder’s
inequality in Orlicz spaces, the constraint integrals

∫
Ω
〈y, θ〉 dQ, y ∈ Y are well defined for

all Q ∈ Lγ∗o whenever 〈Y , θ〉 ⊂ Lγo .
An important instance of this non-∆2 situation is encountered with the relative entropy

I(Q | R) of the probability measure Q with respect to the probability measure R. This
corresponds to λ∗(t) = t log t − t + 1 adding the mass constraint

∫
Ω
1 dQ = 1. Note that

the nonnegativity of Q is ensured by dom λ∗ = [0,∞). With this special choice of λ∗, one
obtains λ(s) = es− 1 and γo(s) = e|s|− |s| − 1 which doesn’t share the ∆2 property. This
special situation is developed in Section 5 below.

Under these assumptions, problem (3.4) may not be attained anymore. As will soon
be seen, this phenomenon is tightly linked to the notion of generalized entropic projection
introduced by Csiszár.

4.1. Generalized entropic projections. In [8], Csiszár has proved the following result.

Theorem 4.1 (Csiszár). Whenever dom λ∗ ⊂ [0,∞) and λ∗′(∞) = ∞, for any C convex
subset of the setM+(Ω) of all nonnegative measures on Ω such that C∩dom I is nonempty,
any minimizing sequence of

minimize I(Q) subject to Q ∈ C, Q ∈M+(Ω)

converges in variation norm to some Q∗ ∈M+(Ω).

Definition 4.2 (Csiszár). This Q∗ which is called the generalized entropic projection of
mR on C (with respect to I) may not belong to C. In case Q∗ is in C, it is called the
entropic projection of mR on C.

Let us first show that as a direct consequence of Theorems 3.7 and 4.1, if the constraints
are good, the generalized entropic projection is the entropic projection. We are concerned
with the special case where C = {Q ∈ M(Ω) ∩ dom T ; TQ :=

∫
Ω

θ dQ ∈ C} which leads
us to the minimization problem (3.4):

minimize I(Q) subject to

∫
Ω

θ dQ ∈ C, Q ∈ Lγ∗o (P )
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Proposition 4.3. Under the assumption of Theorem 3.7, if C ∩ dom Λ∗ is nonempty,
then the entropic projection Q∗ of mR on C = {Q ∈ M(Ω);

∫
Ω

θ dQ ∈ C} exists. It is
Q̄ ∈ C : the minimizer of (P )=(3.4) and it is described at Theorem 3.7.

Proof. At Theorem 3.7, it is proved that if C∩dom Λ∗ is nonempty, then (3.4) is attained
and any minimizing sequence σ(Lγ∗o , Mγo)-converges to the unique solution Q̄ of (3.4).
Therefore, any minimizing sequence is a fortiori convergent for the topology σ(L1, L∞).
By Theorem 4.1, it converges in variation to some Q∗. Hence, Q∗ = Q̄. �

Csiszár’s proof of Theorem 4.1 is based on a parallelogram identity which allows to show
that any minimizing sequence is a Cauchy sequence. This result is general but it doesn’t
tell much about the nature of Q∗. Our purpose in the present section is to bring details
on the generalized entropic projection in specific situations. To do so, let us introduce
new objects. We shall take advantage of the study of the following extended minimization
problem

minimize Ī(`) subject to 〈θ, `〉 ∈ C, ` ∈ L′
γo

(P̄ )

where L′
γo

is the topological dual space of the Orlicz space Lγo and Ī is the greatest convex
σ(L′

γo
, Lγo)-lower semi-continuous extension of I to L′

γo
⊃ Lγ∗o . The dual space L′

γo
admits

the representation L′
γo
' Lγ∗o ⊕Ls

γo
. This means that any ` ∈ L′

γo
is uniquely decomposed

as ` = `a + `s where `a ∈ Lγ∗o and `s ∈ Ls
γo

are respectively the absolutely continuous part

and the singular part of `. For more details, see Appendix A. The extension Ī has the
following form, see (Fougères and Giner, [12], Thm. 3.2),

Ī(`) = I(`a) + Is(`s), ` ∈ L′
γo

(4.4)

where ` = `a + `s is the above decomposition of ` and Is(`s) ≥ 0 is the recession function
of Ī :

Is(`s) = sup

{
〈`s, u〉; u ∈ Lγo ,

∫
Ω

γ(u) dR < ∞
}
∈ [0,∞].

For all ` ∈ L′
γo

and x ∈ X , we define

T` = 〈θ, `〉 = x if and only if
〈
〈y, θ〉, `

〉
Lγo ,L′

γo

,∀y ∈ Y .

Bad constraints assumptions. Let us assume that

- λ∗ satisfies the same assumptions as in Section 3,
- θ satisfies (3.5), but the “bad constraint” assumption (3.6) instead of the “good

constraint” assumption (3.3), and
- C is a σ(X ,Y)-closed convex subset of X .

Theorem 4.5. Suppose that the bad constraints assumptions hold. Then, the dual equality

inf{Ī(`); 〈θ, `〉 ∈ C, ` ∈ L′
γo
} = sup

y∈Y

{
inf
x∈C

〈y, x〉 −
∫

Ω

λ(〈y, θ〉) dR

}
∈ [0,∞] (4.6)

holds.
Suppose that in addition C ∩ dom Λ∗ is nonempty. Then, the minimization problem (P̄ )
is attained in L′

γo
and all its solutions share the same unique absolutely continuous part

Q∗ ∈ Lγ∗o . This means that for all `∗ solution to (P̄ ), we have `a
∗ = Q∗.
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Proof. This proof relies upon results which are stated and proved in the remainder of the
present section.

The dual equality (4.6) is a direct consequence of part (b) of Lemma 4.15 and part (c)
of Lemma 4.16.

The attainment in (P̄ ) and the statement about the absolutely continuous part of the
minimizers are proved in parts (b) and (d) of Lemma 4.9. �

Theorem 4.7. Suppose that the bad constraints assumptions hold. Let us assume in
addition that there are finitely many constraints, i.e. X is finite dimensional, and C ∩
icordom Λ∗ is nonempty. Then,

inf(P ) = inf(P̄ ) (4.8)

and any minimizing sequence (Qn) of (P ) converges in the sense of the σ(Lγ∗o , Mγo)-
topology to Q∗.
Therefore, if dom λ∗ ⊂ [0,∞) and λ∗′(∞) = ∞ as in Theorem 4.1, Q∗ is the generalized
entropic projection of mR on C = {Q ∈M+(Ω);

∫
Ω

θ dQ ∈ C}.

Proof. This proof relies upon results which are stated and proved in the remainder of the
present section.

It is shown at Proposition 4.10 that any minimizing sequence (Qn) of (P ) converges in
the sense of the σ(Lγ∗o , Mγo)-topology to Q∗, whenever inf(P ) = inf(P̄ ).
By part (a) of Lemma 4.15, for this equality to hold, it is enough that some value function
ϕM (see (4.12)) is lower semi-continuous at 0. This is true under our assumptions by part
(a) of Lemma 4.16. �

Theorem 4.7 extends Csiszár’s result ([8], Theorem 4).
As a consequence of Theorem 4.7, for any `∗ = `a

∗ + `s
∗ = Q∗ + `s

∗ minimizer of (P̄ ) and
any (Qn) minimizing sequence of (P ), one obtains

inf
n

I(Qn) = inf(P ) = inf(P̄ ) = Ī(`∗)

= I(Q∗) + Is(`s
∗)

≥ I(Q∗)

with a strict inequality if Is(`s
∗) > 0. This last quantity is precisely the gap of lower

σ(M ′, M)-semicontinuity of I : limn Qn = Q∗ and inf(P ) = lim infn I(Qn) ≥ I(limn Qn) =
I(Q∗).

4.2. Preliminary results. Preliminary results for the proof of Theorem 4.5 are stated
below at Lemma 4.9 and Proposition 4.10.
Notations. From now on, we shall denote M = Mγo and L = Lγo , so that M ⊂ L,
Lγ∗o = M ′ and L′ ' M ′ ⊕ Ls.

Lemma 4.9.

(a) Under the assumption (3.6): 〈Y , θ〉 ⊂ L, the constraint operator T : L′ → X is
σ(L′, L)-σ(X ,Y)-continuous.

(b) As λ∗ is strictly convex, if k∗ and `∗ are two solutions of (P̄ ), their absolutely
continuous parts match: ka

∗ = `a
∗.

(c) Under the assumptions on λ∗, Ī is σ(L′, L)-inf-compact.



DOMINATING POINTS AND ENTROPIC PROJECTIONS 19

(d) If in addition to these assumptions, C is supposed to be σ(X ,Y)-closed and dom Λ∗∩
C is nonempty, then (P̄ ) is attained.

Proof. Statement (a) is straightforward. For a proof of statement (c), see for instance
([18], Corollary 2.2) or ([22], Lemma 6.6). Statement (d) is a direct consequence of (a)
and (c).
Let us prove (b). Let k∗, `∗ be two solutions of (P̄ ). They are in the convex set C = {` ∈
L′; T` ∈ C} and inf(P̄ ) = Ī(k∗) = Ī(`∗). For all 0 ≤ p, q ≤ 1 such that p+ q = 1, as I and
Is are convex functions, we have

inf(P̄ ) ≤ Ī(pk∗ + q`∗)

= I(pka
∗ + q`a

∗) + Is(pks
∗ + q`s

∗)

≤ pI(ka
∗) + qI(`a

∗) + pIs(ks
∗) + qIs(`s

∗)

= pĪ(k∗) + qĪ(`∗) = inf(P̄ )

It follows that I(pka
∗+q`a

∗)+Is(pks
∗+q`s

∗) = pI(ka
∗)+qI(`a

∗)+pIs(ks
∗)+qIs(`s

∗). Suppose that
ka
∗ 6= `a

∗. As I is strictly convex, with 0 < p, q < 1, one gets: I(pka
∗ +q`a

∗) < pI(ka
∗)+qI(`a

∗)
and this implies that Is(pks

∗ + q`s
∗) > pIs(ks

∗) + qIs(`s
∗) which is impossible since Is is

convex. This proves (b). �

Proposition 4.10. Under the assumptions of Theorem 4.5, suppose that the identity
inf(P ) = inf(P̄ ) holds. Then, any minimizing sequence (Qn) of (P ) σ(M ′, M)-converges
to Q∗ ∈ M ′ : the absolutely continuous part shared by the solutions of (P̄ ) (see Lemma
4.9).
Under the additional assumptions of Theorem 4.1, the generalized entropic projection
exists, it is Q∗.

Proof. Since it is assumed that inf(P ) = inf P̄ ) holds, (Qn) is also a minimizing sequence
of (P̄ ). As Ī is σ(L′, L)-inf-compact by Lemma 4.9, one can extract a σ(L′, L)-convergent
subsequence (Q̃n) from (Qn). Let `∗ ∈ C denote its limit: we have limn

∫
Ω

u dQ̃n = 〈`∗, u〉
for all u ∈ L. As 〈`s

∗, u〉 = 0, for all u ∈ M (see Appendix A), we obtain: limn

∫
Ω

u dQ̃n =∫
Ω

u d`a
∗ for all u ∈ M. This proves that (Q̃n) σ(M ′, M)-converges to `a

∗. Let Q∗ be defined
as in Lemma 4.9. By this lemma, `∗ is a minimizer of (P̄ ) and `a

∗ = Q∗. Therefore, any
convergent subsequence of (Qn) converges to Q∗. As any subsequence of a minimizing
sequence is still a minimizing sequence, we have proved that from any subsequence of
(Qn), one can extract a sub-subsequence which converges to Q∗. This proves that (Qn)
σ(M ′, M)-converges to Q∗.
One proves the last statement as Proposition 4.3. �

4.3. Sufficient conditions for inf(P ) = inf(P̄ ). Our aim now is to obtain sufficient
conditions for the identity (4.8): inf(P ) = inf(P̄ ) to hold. Let us rewrite the problems
(P ) and (P̄ ) in order to emphasize their differences and analogies. As at (3.9), let us
consider the convex conjugates

Φ∗
M(`) = sup

u∈M
{〈`, u〉 − Φ(u)}, ` ∈ M ′

Φ∗
L(`) = sup

u∈L
{〈`, u〉 − Φ(u)}, ` ∈ L′
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of

Φ(u) = Iγ(u) =

∫
Ω

γ(u) dR, u ∈ L.

It has been proved in (Kozek, [16], Thm 2.6), that

I(`) = Φ∗
M(`−mR),∀` ∈ M ′,

Ī(`) = Φ∗
L(`−mR),∀` ∈ L′

Hence, considering the minimization problems

minimize Φ∗
M(`) subject to T` ∈ Co, ` ∈ M ′ (PM)

and

minimize Φ∗
L(`) subject to T` ∈ Co, ` ∈ L′ (PL)

with Co = C−T (mR), we see that `∗ is a solution of (P ) [resp. (P̄ )] if and only if `∗−mR
is a solution of (PM) [resp. (PL)]. The analogue of Λ∗(x) is Γ∗(x) = Λ∗(x − T (mR)) =
supy∈Y{〈y, x〉 − Γ(y)} with Γ(y) =

∫
Ω

γ(〈y, θ〉) dR.

Clearly, it will be enough to prove inf(PM) = inf(PL) to get inf(P ) = inf(P̄ ).

Basic facts about convex duality. Our proof will rely on usual convex duality con-
siderations. Let us recall some basic facts about this. Consider the primal minimization
problem

minimize f(a), a ∈ A (P)

where A is a vector space and f is a [−∞,∞]-valued function on A. Let us introduce the
family of perturbed problems

minimize F (a, x), a ∈ A (Px)

where x belongs to some vector space X and x = 0 corresponds to “no perturbation”:

F (·, 0) = f. Let us consider the value-function ϕ(x)
M
= inf(Px) = infa F (a, x), x ∈ X and

the concave conjugate of −F (a, ·) : K(a, y)
M
= infx{〈y, x〉 + F (a, x)} where y stands in

some vector space Y in separating duality with X . Let us define the dual maximization
problem

maximize g(y), y ∈ Y (D)

where g(y)
M
= infa K(a, y). For all y ∈ Y , we have g(y) = infa,x{〈y, x〉 + F (a, x)} =

infx{〈y, x〉+ ϕ(x)}. Hence, for all y ∈ Y , we have −g(−y) = supx{〈y, x〉 −ϕ(x)} = ϕ∗(y)
and for all x ∈ X , ϕ∗∗(x) = supy{〈y, x〉+g(−y)}, where ϕ∗ and ϕ∗∗ are the dual conjugate
and biconjugate of ϕ for the duality (X ,Y). In particular, with x = 0, one gets ϕ∗∗(0) =
sup(D). As ϕ(0) = inf(P), we have

sup(D) = ϕ∗∗(0) ≤ ϕ(0) = inf(P) (4.11)

If the perturbation F (a, x) is jointly convex in (a, x), the value function ϕ is also convex.
As ϕ∗∗ is the σ(X ,Y)-closed convex regularization of ϕ, we obtain that the dual equality:
inf(P) = sup(D) holds if and only ϕ is σ(X ,Y)-lower semicontinuous at x = 0.

In the situation where one wants to minimize the function h on A subject to the
constraint Ta ∈ C where T : A → X is a linear operator and C is a subset of the vector
space X , problem P is

minimize h(a) subject to Ta ∈ C, a ∈ A
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This corresponds to f(a) = h(a)+ δC(Ta) where δC(x) =

{
0 if x ∈ C
+∞ if x 6∈ C

is the convex

indicator of C. An interesting perturbation of this problem is given by F (a, x) = h(a) +
δC(Ta + x), a ∈ A, x ∈ X . If h is a convex function and C is a convex set, then F is a
convex function and so is

ϕ(x) = inf{h(a); a, Ta ∈ C − x}.
Let Y be in separating duality with X . The Lagrangian is K(a, y) = infx{〈y, x〉+ h(a) +
δC(Ta + x)} = infx∈C〈y, x〉 − 〈Ta, y〉 + h(a) and g(y) = infx∈C〈y, x〉 + infa{−〈a, T T y〉 +
h(a)}. This leads us to

g(y) = inf
x∈C

〈y, x〉 − h∗(T T y)

where T TY is a subspace of the algebraic dual space of A and h∗ is the convex conjugate
of h for the duality (A, T TY) : h∗(T T y) = supa{〈y, Ta〉 − h(a)}.
Back to our problem. Now, let us particularize this framework for the problems (PM)
and (PL). Assuming that m ≡ 0, one sees that (P ) = (PM), (P̄ ) = (PL), I = Φ∗

M , Ī = Φ∗
L,

λ = γ, C = Co and so on. This simplifying requirement will be assumed during the proof,
without loss of generality. Our assumption about the bad constraint is T TY ⊂ L.

Let us begin with (PM). This corresponds to A = M ′ and h = Φ∗
M . Let us denote ϕM

and gM the corresponding functions ϕ and g. We have

ϕM(x) = inf{Φ∗
M(`); T` ∈ C − x, ` ∈ M ′}, x ∈ X and (4.12)

gM(y) = inf
x∈C

〈y, x〉 − Iλ(T
T y), y ∈ Y (4.13)

where the last equality follows from (Φ∗
M)∗ = Iλ where the considered duality is (M ′, L),

see (Rockafellar, [28]). Hence, the dual problem to (PM) is

maximize inf
x∈C

〈y, x〉 − Iλ(T
T y), y ∈ Y (DM)

Let us go on with (PL). This corresponds to A = L′ and h = Φ∗
L. Let us denote ϕL and

gL the corresponding function ϕ and g. By ([21], Proposition 4.3), we obtain that the
convex biconjugate of ΦL for the duality (L′, L) is also Iλ, therefore we have gL = gM and
it follows that sup(DM) = sup(DL) since the dual problems (DM) and (DL) of (PM) and
(PL) match. As Φ∗

L and Φ∗
M match on M ′, we have inf(PL) ≤ inf(PM), so that

sup(DM) = sup(DL) ≤ inf(PL) ≤ inf(PM). (4.14)

Therefore, for the desired equality inf(PL) = inf(PM) to hold, it is enough that the dual
equality inf(PM) = sup(DM) holds. And this happens if and only if ϕM is σ(X ,Y)-lower
semicontinuous at x = 0. We have proved the following

Lemma 4.15. (a) If ϕM is σ(X ,Y)-lower semicontinuous at x = 0, then inf(PM) =
inf(PL).
(b) Similarly, if ϕL is σ(X ,Y)-lower semicontinuous at x = 0, then sup(DL) = inf(PL).

Let us now give a couple of simple criteria for this property to be realized.

Lemma 4.16.

(a) Suppose that there are finitely many constraints, i.e. X is finite dimensional. If
C ∩ icordom Λ∗ is nonempty, then ϕM is continuous at 0.
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(b) Suppose that (3.3) is satisfied and C is σ(X ,Y)-closed, then ϕM is σ(X ,Y)-lower
semicontinuous.

(c) Suppose that (3.6) is satisfied and C is σ(X ,Y)-closed, then ϕL is σ(X ,Y)-lower
semicontinuous.

Proof. To get (a), simply remark that a convex function on a finite dimensional space is
continuous on the interior of its effective domain. The assumption C ∩ icordom Λ∗ 6= ∅
implies that 0 belongs to icordom ϕM .

Let us show (b). Defining ϕ̃(x) := ϕ(−x) and J(x) := inf{Φ∗
M(`); T` = x}, x ∈ X , we

obtain that ϕ̃ is the inf-convolution of J and the convex indicator of −C : δ−C . That is
ϕ̃(x) = (J�δ−C)(x) = inf{J(y) + δ−C(z); y, z, y + z = x}.
The function Φ∗

M is σ(M ′, M)-inf-compact and under the assumption (3.3), T is σ(M ′, M)-
σ(X ,Y)-continuous. It follows that J is σ(X ,Y)-inf-compact. As C is assumed to be
σ(X ,Y)-closed, δ−C is lower semi-continuous. Finally, being the inf-convolution of an
inf-compact function and a lower semi-continuous function, ϕ̃ is lower semi-continuous,
and so is ϕM .

The proof of (c) is similar since Φ∗
L is σ(L′, L)-inf-compact and under the assumption

(3.6), T is σ(L′, L)-σ(X ,Y)-continuous. �

5. The special case of relative entropy

Using Poissonian random weights Wω one is able to convert the results of the previous
sections into statement about relative entropy. An almost straightforward translation
of Theorem 3.4, Proposition 4.3 and Theorem 4.5 is stated at Propositions 5.3 and 5.5
below. The main result of this section: Theorem 5.9, states that in a Banach space
setting, the generalized I-projection is the absolutely continuous part of the minimizers
of the extended relative entropy. This result is similar to Theorem 4.7, but this time no
finite dimensional constraint is assumed.

Recall that the relative entropy of the probability measure P with respect to the prob-
ability measure R is defined by

I(P | R) =

{ ∫
Ω

log
(

dP
dR

)
dP if P � R

+∞ otherwise.
.

The minimization problem of interest is

minimize I(P | R) subject to

∫
Ω

θ dP ∈ C, P ∈ P(Ω) (P )

Let (Zi)i≥1 be an R-iid sequence on Ω. Problem (P ) corresponds to the CLLN for the
empirical measures Ln = 1

n

∑n
i=1 δZi

∈ P(Ω) with a sequence of conditioning events

{ 1
n

∑n
i=1 θ(Zi) ∈ Cδ}.

Clearly,
∫

Ω
log
(

dP
dR

)
dP =

∫
Ω

λ∗
(

dP
dR

)
dR with λ∗(t) =

 t log t− t + 1 if t > 0
1 if t = 0
+∞ if t < 0

which

is the convex conjugate of λ(s) = es − 1. This corresponds to γ(s) = es − s − 1, γ∗(t) =

λ∗(t+1), γo = τ and (γo)
∗ = τ ∗ with τ(s)

M
= e|s|−|s|−1 and τ ∗(t)

M
= (|t|+1) log(|t|+1)−|t|.
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The corresponding Orlicz spaces are

Lτ∗ = {f : Ω → R;

∫
Ω

|f | log |f | dR < ∞}

Mτ = {u : Ω → R;∀α > 0,

∫
Ω

eα|u| dR < ∞}

Lτ = {u : Ω → R;∃α > 0,

∫
Ω

eα|u| dR < ∞}

with M ′
τ = Lτ∗ and L′

τ = Lτ∗ ⊕ Ls
τ . The extended entropy is defined by

Ī(` | R) = I(`a | R) + sup{〈`s, u〉; u,

∫
Ω

eu dR < ∞}, ` ∈ E(Ω) (5.1)

where ` = `a + `s is the decomposition into absolutely continuous and singular parts of `
in L′

τ = Lτ∗ ⊕ Ls
τ , and

E(Ω) = {` ∈ L′
τ ; ` ≥ 0, 〈`,1〉 = 1}.

The extended minimization problem is

minimize Ī(` | R) subject to 〈θ, `〉 ∈ C, ` ∈ E(Ω). (P̄ )

It is proved in (Léonard and Najim, [23]) that this minimization problem also corresponds
to the CLLN for the empirical measures Ln = 1

n

∑n
i=1 δZi

∈ E(Ω) with a sequence of

conditioning events { 1
n

∑n
i=1 θ(Zi) ∈ Cδ}. But (P ) arises when θ defines a good constraint

(see (5.4) below) while (P̄ ) arises when θ defines a bad constraint (see (5.6) below).
Note that E(Ω) depends on R and that for all ` ∈ E(Ω), `a ∈ P(Ω) ∩ Lτ∗ : it is a

probability measure which is absolutely continuous with respect to R with d`a

dR
in Lτ∗(Ω, R).

The constraint function θ is supposed to be such that for all y ∈ Y , 〈y, θ〉 is measurable
and 〈y, θ〉 = 0 R-a.e. if and only if y = 0.
We introduce the Cramér transform of the image law of R by θ on X :

Ξ(x) = sup
y∈Y

{
〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
∈ [0,∞], x ∈ X (5.2)

and consider its effective domain: dom Ξ = {x ∈ X ; Ξ(x) < ∞}.

Proposition 5.3 (Relative entropy subject to good constraints). Let us assume that θ
satisfies the“good constraint” assumption

∀y ∈ Y ,

∫
Ω

e〈y,θ(ω)〉 R(dω) < ∞ (5.4)

and that C is a σ(X ,Y)-closed convex subset of X .
Then, the following dual equality holds:

inf{I(P | R); 〈θ, P 〉 ∈ C, P ∈ P(Ω)} = sup
y∈Y

{
inf
x∈C

〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
∈ [0,∞]

Suppose that in addition C ∩ dom Ξ is nonempty. Then, the minimization problem
(P ) has a unique solution P∗ in P(Ω), P∗ is the entropic projection of R on {P ∈
P(Ω),

∫
Ω

θ dP ∈ C} and any minimizing sequence of (P ) σ(Lτ∗ , Mτ )-converges to P∗
Suppose that in addition, C ∩ icordom Ξ is nonempty, then there exists some linear

form y∗ on X such that 〈y∗, θ〉 is measurable and
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(a) x∗
M
=
∫

Ω
θ dP∗ ∈ C ∩ dom Ξ

(b) 〈y∗, x∗〉 ≤ 〈y∗, x〉,∀x ∈ C ∩ dom Ξ
(c) P∗(dω) = exp

(
〈y∗, θ(ω)〉 − log

∫
Ω

e〈y∗,θ〉 dR
)

R(dω).

In this situation, x∗ minimizes Ξ on C, I(P∗ | R) = Ξ(x∗) and because of (a) and (c), we
have

x∗ =

∫
Ω

θ(ω) exp

(
〈y∗, θ(ω)〉 − log

∫
Ω

e〈y∗,θ〉 dR

)
R(dω)

in the weak sense.

Proposition 5.5 (Relative entropy subject to bad constraints). Let us assume that θ
satisfies the “bad constraint” assumption

∀y ∈ Y ,∃α > 0,

∫
Ω

eα|〈y,θ(ω)〉| R(dω) < ∞ (5.6)

and that C is a σ(X ,Y)-closed convex subset of X .
Then, the following dual equality holds:

inf{Ī(` | R); 〈θ, `〉 ∈ C, ` ∈ E(Ω)} = sup
y∈Y

{
inf
x∈C

〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
∈ [0,∞]

Suppose that in addition C ∩ dom Ξ is nonempty. Then, the minimization problem
(P̄ ) is attained in E(Ω) : the set of minimizers is nonempty, convex and σ(L′

τ , Lτ )-
compact. Moreover, all the minimizers share the same unique absolutely continuous part
P∗ ∈ P(Ω) ∩ Lτ∗ .

Suppose that in addition C ∩ icordom Ξ is nonempty. Then , there exists a linear form
y∗ on X such that 〈y∗, θ〉 is measurable,

∫
Ω

e〈y∗,θ〉 dR < ∞ and

P∗(dω) = exp

(
〈y∗, θ(ω)〉 − log

∫
Ω

e〈y∗,θ〉 dR

)
R(dω).

In Proposition 5.3, x∗ is the dominating point in the sense of Ney (see Definition 6.1)
of C with respect to Ξ. The representation of x∗ has already been obtained for C with
a nonempty topological interior in Rd by Ney in [26] and in a Banach space setting
by Einmahl and Kuelbs in [10]. The representation of the I-projection P∗ is obtained
with a very different proof by Csiszár [6] and ([7], Thm 3). Proposition 5.5 also extends
corresponding results of Kuelbs [17] which are obtained in a Banach space setting.
For more details about the minimizers of (P̄ ), one can look at ([21], Theorem 3.4) where
a characterization is obtained under the weakest assumption: C ∩ dom Ξ is nonempty.

Proof of Propositions 5.3 and 5.5. They are direct consequences of Theorem 3.4, Propo-
sition 4.3, Theorem 4.5 and Lemma 5.7 below. Lemma 5.7 allows to apply our previous
results with λ(s) = es − 1 and the extended constraint 〈(1, θ), `〉 ∈ {1} × C : the first
component of the constraint insures the unit mass: 〈1, `〉 = 1.
The last statement of Proposition 5.5 is proved in ([21], Theorem 3.4). �

Lemma 5.7. For all x ∈ X ,

sup
y∈Y

{
〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
= sup

ỹ∈R×Y

{
〈ỹ, (1, x)〉 −

∫
Ω

(e〈ỹ,(1,θ)〉 − 1) dR

}
∈ (−∞, +∞].
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Proof. Using the identity: − log b = supa{a + 1− bea}, one gets:

sup
y∈Y

{
〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
= sup

a∈R,y∈Y

{
〈y, x〉+ a + 1− ea

∫
Ω

e〈y,θ〉 dR

}
= sup

a∈R,y∈Y

{
〈(a, y), (1, x)〉 −

∫
Ω

e〈y,θ〉+a dR + 1

}
= sup

ỹ∈R×Y

{
〈ỹ, (1, x)〉 −

∫
Ω

(e〈ỹ,(1,θ)〉 − 1) dR

}
.

�

To proceed one step further, we take advantage of a dual equality for the relative
entropy which is proved by Csiszár in [7]. At Theorem 5.9 below, the finite dimensional
constraint assumption of Theorem 4.7 is removed.
It is assumed that X is a Banach space. Let X ′ denote its topological dual space.

Proposition 5.8 (Csiszár). Let C be a convex subset of the Banach space X such that
int C ∩ dom Ξ 6= ∅. Then,

inf

{
I(P | R); P ∈ P(Ω),

∫
Ω

θ dP ∈ C

}
= sup

y∈X ′

{
inf
x∈C

〈y, x〉 − log

∫
Ω

e〈y,θ〉 dR

}
Proof. This result is a slight modification of (Csiszár, [7], (2.30)). �

Notice that the requirement int C∩dom Ξ 6= ∅ is more demanding than C∩icordom Ξ 6=
∅ since C is supposed to have a nonempty interior.

Theorem 5.9 (Generalized entropic projection for the relative entropy). We assume that
X is a Banach space, θ satisfies the “bad constraint” assumption

∀y ∈ X ′,∃α > 0,

∫
Ω

eα|〈y,θ(ω)〉| R(dω) < ∞

and C is a closed convex subset of X such that int C ∩ dom Ξ is nonempty.
Then, inf(P ) = inf(P̄ ) and any minimizing sequence of (P ) converges in the sense of the
σ(Lτ∗ , Mτ )-topology to P∗, the absolutely continuous part of the minimizers.
Therefore, P∗ is the generalized entropic projection of R on C = {P ∈ P(Ω);

∫
Ω

θ dP ∈ C}.

Proof. Because of Lemma 5.7, as in the proofs of Propositions 5.3 and 5.5, one can apply
the results of the previous sections with λ(s) = es − 1. In particular, one can apply
Proposition 4.10 since the requirement inf(P ) = inf(P̄ ) holds true, thanks to Propositions
5.8 and 5.5. �

Remark. Under the assumptions of Theorem 5.3 in the Banach space setting of Theorem
5.9, if int C ∩ dom Ξ is nonempty, then y∗ belongs to X ′. It is a consequence of Hahn-
Banach theorem since x∗ is a supporting point of the convex set C with a non-empty
topological interior.

In [7], Csiszár gives an interesting example where the generalized entropic projection P∗
can be explicitly computed in a situation where problem (P ) is not attained. A detailed
analysis of this example in terms of singular component is performed by Léonard and
Najim in [23].
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6. Dominating points

We are going to investigate some relations between dominating points and entropic
projections. In the case where the constraint is good, Theorem 3.7 and Proposition 4.3
state that the minimizer x̄ is the dominating point of C and that the generalized entropic
projection Q∗ = Q̄ and x̄ are related by the identity:

x̄ = 〈θ,Q∗〉.

We now look at the situation where the constraint is bad. As remarked in (Léonard
and Najim, [23]), an example of Csiszár [7] shows that the above equality may fail.
Nevertheless, one still keeps x̄ = 〈θ, ¯̀〉 where ¯̀ is any minimizer of (P̄ ). A necessary and
sufficient condition (in terms of the function Λ∗) for x̄ to satisfy x̄ = 〈θ,Q∗〉 is obtained
at Theorem 6.6.

Following Ney [25], [26], let us introduce the following definition.

Definition 6.1. The point x̄ in X is called a dominating point in the sense of Ney of the
convex and σ(X ,Y)-closed subset C of X with respect to the Cramér rate function Ξ (see
(5.2)) if

(a) x̄ ∈ C ∩ dom Ξ
(b) there exists some linear form ȳ on X such that 〈ȳ, x̄〉 ≤ 〈ȳ, x〉, for all x ∈ C∩dom Ξ

and

(c) x̄ =

∫
Ω

θ(ω)
exp(〈ȳ, θ(ω)〉)

Z(ȳ)
R(dω) where Z(ȳ) is the unit mass normalizing con-

stant.

Note that this definition is slightly different from the ones proposed by Ney [26] or
Einmahl and Kuelbs [10] since C is neither supposed to be an open set nor to have a
non-empty interior and x̄ is not assumed to be a boundary point of C. The above integral
representation (c) is the integral representation (c) of Proposition 5.3.

Let us call a point x̄ ∈ X sharing the properties (a), (b) and (3.8) of Theorem 3.7 a
dominating point.

Definition 6.2. The point x̄ in X is called a dominating point of the convex and σ(X ,Y)-
closed subset C of X with respect to the rate function Λ∗ if

(a) x̄ ∈ C ∩ dom Λ∗

(b) there exists some linear form ȳ on X such that 〈ȳ, x̄〉 ≤ 〈ȳ, x〉 for all x ∈ C ∩
dom Λ∗,

(c) 〈ȳ, θ(·)〉 is measurable and x̄ =
∫

Ω
θ(ω)λ′(ω, 〈ȳ, θ(ω)〉) R(dω).

Let us first fix some notations. Recall that the extended entropy Ī is given by (4.4):
Ī(`) = I(`a) + Is(`s), ` = `a + `s ∈ L′

γo
. Let us define for all x ∈ X ,

J̄(x)
M
= inf{Ī(`); ` ∈ L′

γo
, 〈θ, `〉 = x}

J(x)
M
= inf{I(`); ` ∈ Lγ∗o , 〈θ, `〉 = x}

Js(x)
M
= inf{Is(`); ` ∈ Ls

γo
, 〈θ, `〉 = x}
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Because of the decomposition L′
γo
' Lγ∗o ⊕ Ls

γo
, one obtains for all x ∈ X ,

J̄(x) = inf{I(`1) + Is(`2); `1 ∈ Lγ∗o , `2 ∈ Ls
γo

, 〈θ, `1 + `2〉 = x}
= inf{J(x1) + Js(x2); x1, x2 ∈ X , x1 + x2 = x}
= J�Js(x)

where J�Js is the inf-convolution of J and Js. By Theorem 4.5, if J̄(x) < ∞, there exists
`x ∈ L′

γo
such that 〈θ, `x〉 = x and J̄(x) = Ī(`x). Let us define

xa M
= 〈θ, `a

x〉 and xs M
= 〈θ, `s

x〉.
These definitions make sense since `a

x is the unique (common) absolutely continuous part
of the minimizers of Ī on the closed convex set {` ∈ L′

γo
; 〈θ, `〉 = x} (see Lemma 4.9-(b)).

Of course, we have
x = xa + xs

and as J̄(x) = Ī(`x) = I(`a
x) + Is(`s

x) ≥ J(xa) + Js(xs) ≥ J�Js(x) = J̄(x), one gets the
following result.

Proposition 6.3. For all x ∈ X such that J̄(x) < ∞, we have:

J̄(x) = J(xa) + Js(xs), J(xa) = I(`a
x) and Js(xs) = Is(`s

x).

Now, let us have a look at the dual equalities. Let us introduce the recession function
of Λ∗, defined for all x by

Λ̃∗(x)
M
= lim

t→+∞
Λ∗(tx)/t ∈ (−∞, +∞].

Let us say that x is recessive for Λ∗ if for some δ > 0 and ξ ∈ X , Λ∗(x+tξ)−Λ∗(x) = tΛ̃∗(ξ)
for all t ∈ (−δ, +∞). It is said to be non-recessive otherwise.

Proposition 6.4. Under the bad constraint assumptions (stated before Theorem 4.5), we
have

Js = Λ̃∗

and the dual equalities:

inf{Ī(`); ` ∈ L′
γo

, 〈θ, `〉 = x} = Λ∗(x), for all x ∈ X
and

inf{I(`); ` ∈ Lγ∗o , 〈θ, `〉 = x} = Λ∗(x), for all non-recessive x ∈ X .

Proof. Under the bad constraint assumption, by Theorem 4.5 we have: J̄(x) = Λ∗(x)
and by ([20], Thm 2.3), we get: Js(x) = χ∗(x) for all x ∈ X , where χ(y) is the convex
indicator of dom Λ i.e. χ(y) = 0 if Λ(y) < ∞ and +∞ otherwise. In other words, χ∗ is
the support function of dom Λ. Therefore, it is also the recession function of Λ∗. Hence,

we have Λ∗ = J̄ = J�Js = J�Λ̃∗.
Comparing Λ∗ = J�Λ̃∗ with the general identity Λ∗ = Λ∗�Λ̃∗, one obtains that J(x) =
Λ∗(x), for all non-recessive x ∈ X . �

Proposition 6.5. Under the bad constraint assumptions, for all x ∈ X such that Λ∗(x) <
∞, we have:

Λ∗(x) = Λ∗(xa) + Λ̃∗(x− xa).

Moreover, x is non-recessive if and only if xs = 0. In particular, xa is non-recessive.
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Proof. By (4.4), we have Ī(`x) = I(`a
x) + Ĩ(`x − `a

x) where Ĩ is the recession function of I.
It follows that J̄(x) = J(xa) + Js(x− xa), since J(xa) = I(`a

x) (Proposition 6.3) and the
recession function of J̄ is Js. To see this, note that

- Is is the recession function of Ī ,
- the epigraph of x 7→ inf{f(`); `, T ` = x} (with T a linear operator) is “essentially”

a linear projection of the epigraph of f, (let us call it an inf-projection)
- the epigraph of the recession function is the recession cone of the epigraph and
- the inf-projection of a recession cone is the recession cone of the inf-projection.

The first result now follows from J̄ = Λ∗. The same set of arguments also yields the second
statement. �

Theorem 6.6. Under the bad constraint assumption, let us also assume that C∩icordom Λ∗

is nonempty.

(a) Then, a minimizer x̄ of Λ∗ on the set C is a dominating point of C if and only
if x̄ is non-recessive. This is also equivalent to the following statement: “all the
solutions of the minimization problem (P̄ ) are absolutely continuous with respect
to R.” In such a case the solution of (P̄ ) is unique and it matches the solution of
(P ).

(b) In particular when Λ∗ admits a degenerate recession function (Λ̃∗(x) = +∞ for
all x 6= 0), then the minimizer x̄ is a dominating point of C.

Proof. Under the assumption that C ∩ icordom Λ∗ is non-empty, one can apply Theorem
B.2 to obtain (a) and (b) of Definition 6.2.
The representation (c) also follows from this theorem. As in ([21], Thm 3.4) where
the corresponding function Φ̄ is clarified, one can prove that provided that x stands in
icordom Λ∗, any minimizer `x of Ī subject to the constraint 〈θ, `〉 = x, ` ∈ L′

γo
satisfies

`x ∈ λ′(〈yx, θ〉) ·R + K (6.7)

where yx is a measurable linear form on X and K is some convex cone of Ls
γo

. Note that as
it is assumed that x ∈ icordom Λ∗, no infinite force field (see [19] for this notion) enters
the dual representation of `x. This means that the absolutely continuous part of `x is
`a
x = λ′(〈yx, θ〉) ·R.

Let x̄ be a minimizer of Λ∗ subject to the constraint x ∈ C. Considering the associated
minimizer(s) `x̄, it follows that if x̄ is such that x̄s = 0, then it is a dominating point of
C with respect to Λ∗. �

In (Kuelbs, [17], Thm 1), with the setting of Section 5 where X is a Banach space,
Kuelbs proves a result that is slightly different from statement (b) of the above theorem.
It is proved that the existence of a dominating point in the sense of Ney for all convex
sets C with a nonempty topological interior is equivalent to some property of the Gâteaux
derivative of the log-Laplace transform y ∈ X ′ 7→ log

∫
X exp(〈y, x〉) R ◦ θ−1(dx) on the

boundary of its domain. This property is an infinite dimensional analogue of the steepness
of the log-Laplace transform. It turns out that it is equivalent to the following assumption:
the Cramér transform Ξ admits a degenerate recession function.

By (6.7) in the proof of Theorem 6.6, it appears that

`x̄ = λ′(〈ȳ, θ〉) ·R + `s
x̄
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where `s
x̄ is a singular linear form. If the gap x̄ − x̄a = x̄s = 〈`s

x̄, θ〉 is non-zero, then
`s
x̄ 6= 0 is not even a measure in the general case. Its representation in terms of θ and Λ

is obtained in [21].

7. The proof of Theorem 2.3

Theorem 2.3 is a restatement of Propositions 7.1, 7.3, 7.5 and 7.7 below.
We begin with the proof for Xn. As T is continuous and I is a good rate function, J is
also a good rate function. Let us first state the upper bound of a conditional LDP.

Proposition 7.1. Under the assumptions of Theorem 2.3, for all closed subset F of X ,
we have

lim sup
δ→0

lim sup
n→∞

1

n
log P(Xn ∈ F | Xn ∈ Cδ) ≤ −JC(F )

where

JC(x)
M
=

{
J(x)− J(C) if x ∈ C
+∞ if x 6∈ C

Proof. Clearly, for all measurable set B and all n ≥ 1, δ > 0, we have 1
n

log P(Xn ∈ B |
Xn ∈ Cδ) = 1

n
log P(Xn ∈ B ∩ Cδ)− 1

n
log P(Xn ∈ Cδ). Hence,

lim sup
n

1

n
log P(Xn ∈ F | Xn ∈ Cδ)

≤ lim sup
n

1

n
log P(Xn ∈ F ∩ cl Cδ)− lim inf

n

1

n
log P(Xn ∈ int Cδ)

≤ −J(F ∩ cl Cδ) + J(int Cδ)

≤ −J(F ∩ cl Cδ) + J(C)

where the last inequality follows from the assumption (d) on the conditioning event. One
completes the proof with the following lemma. �

Lemma 7.2. For any closed set F, limδ J(F ∩ cl Cδ) = J(F ∩ C) ∈ [0,∞].

Proof. As C ⊂ cl Cδ, for all δ > 0, we have J(F ∩ cl Cδ) ≤ J(F ∩ C). Since Cδ is
nonincreasing, J(F ∩ cl Cδ) is nondecreasing and limδ J(F ∩ cl Cδ) = supδ J(F ∩ cl Cδ) ∈
[0,∞]. If supδ J(F ∩ cl Cδ) = ∞, the inequality J(F ∩ cl Cδ) ≤ J(F ∩ C) leads to the
desired result.
Now, let us suppose that supδ J(F ∩ cl Cδ) < ∞. As F ∩ cl Cδ is closed and J is inf-
compact, for any δ there exists xδ ∈ F ∩cl Cδ such that J(xδ) = J(F ∩cl Cδ) and one can
extract a converging subsequence xk → x∗. Because the Cδ’s are nonincreasing, we get
∩δcl Cδ = ∩kcl Cδk

and limδ J(F ∩cl Cδ) = limk J(xk). More, x∗ ∈ F ∩(∩kcl Cδk
) = F ∩C

and as J is lsc: limk J(xk) ≥ J(x∗) ≥ J(F ∩C). Therefore, limδ J(F ∩ cl Cδ) ≥ J(F ∩C)
which completes the proof. �

Let us state the lower bound corresponding to Proposition 7.1.

Proposition 7.3. If the assumption (d) on the conditioning event is restricted to (d-2):

C ⊂ int Cδ,∀δ > 0 (7.4)
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then, for all open subset G of X , we have

lim inf
δ→0

lim inf
n→∞

1

n
log P(Xn ∈ G | Xn ∈ Cδ) ≥ −JC(G).

Proof. For all δ > 0,

lim inf
n

1

n
log P(Xn ∈ G | Xn ∈ Cδ)

≥ lim inf
n

1

n
log P(Xn ∈ G ∩ int Cδ)− lim sup

n

1

n
log P(Xn ∈ cl Cδ)

≥ −J(G ∩ int Cδ) + J(cl Cδ)

≥ −J(G ∩ C) + J(cl Cδ).

One concludes with Lemma 7.2. �

Let us recall that H = argminJCo is the set of the minimizers of J on C. As C is closed
and J is inf-compact, H is a compact set. As an immediate corollary of Proposition 7.1,
we have the following CLLN which is the part of the statement of Theorem 2.3 concerning
Xn.

Proposition 7.5. For all open subset H of X such that H ⊂ H, we have

lim sup
δ→0

lim sup
n→∞

1

n
log P(Xn 6∈ H | Xn ∈ Cδ) < 0.

Let us now have a look at Ln. We are interested in the asymptotic behavior of P(Ln ∈
· | TLn ∈ Cδ) with Cδ ⊂ X . Let us denote Aδ

M
= T−1(Cδ) = {` ∈ L; T` ∈ Cδ} and

A = T−1C. It is useful to state the assumptions on the Cδ’s rather than on the Aδ’s. In
fact, one has the following transfer result.

Lemma 7.6. We assume that T is continuous.

(a) If C is closed and J(C) = J(int C), then A is closed and I(A) = I(int A).

(b) If C
M
= ∩δcl Cδ ⊂ int Cδ for all δ > 0, then A = ∩δcl Aδ and A ⊂ int Aδ for all

δ > 0.

Proof. Since T is continuous, for any A′ = T−1C ′, we have: T−1(int C ′) ⊂ int A′ ⊂ A′ ⊂
cl A′ ⊂ T−1(cl C ′).
Let us begin with (a). As C is closed, so is A. For any A = T−1C, we have I(A) =
inf{Φ∗(`); T` ∈ C} = infx∈C inf{Φ∗(`); T` = x} = infx∈C J(x) = J(C). Hence, I(A) =
J(C) = J(int C) (by hypothesis) = I(T−1(int C) ≥ I(int A), since T−1(int C) ⊂ int A.
But the converse inequality: I(A) ≤ I(int A) is clear.

Let us prove (b). We have: ∩δcl Aδ ⊂ T−1(∩δcl Cδ)
M
= A

M
= T−1(C) ⊂ T−1(∩δint Cδ)

(by hypothesis) ⊂ ∩δint Aδ ⊂ ∩δcl Aδ. This proves that all these sets are equal, and in
particular that A = ∩δcl Aδ. On the other hand, as for any δ > 0, C ⊂ int Cδ, we have
A = T−1(C) ⊂ T−1(int Cδ) ⊂ int Aδ. �

Let us recall that G is the set of the minimizers of I on A. By the above Lemma 7.6,
in the situation of the Ln’s, Proposition 7.5 becomes the following
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Proposition 7.7. Under our general assumptions, for all open subset G of L such that
G ⊂ G, we have

lim sup
δ→0

lim sup
n→∞

1

n
log P(Ln 6∈ G | TLn ∈ Cδ) < 0.

Note that by Lemma 7.6, the Aδ’s share the same properties as the Cδ’s. In particular,
I(int Aδ) ≤ I(A) also holds for them.

Appendix A. Duality of Orlicz spaces

The function ρ : R → [0, +∞] is called a Young function if it is convex, even and
satisfies ρ(0) = 0, lims→∞ ρ(s) = +∞ and there exists so > 0 such that 0 ≤ ρ(so) < ∞.
Let Ω be an arbitrary set, A be a σ-field of subsets of Ω and let R be a nonnegative
σ-finite measure on A. In this section, all the numerical functions on Ω are A-measurable
and R-almost everywhere equal functions are identified.

The Orlicz space associated with ρ is defined by: Lρ := {u : Ω → R ; ‖u‖ρ < +∞}
with ‖u‖ρ = inf

{
β > 0 ;

∫
Ω

ρ
(
|u(ω)|

β

)
R(dω) ≤ 1

}
. The function ‖ · ‖ρ is a norm (the

Luxemburg norm) and

Lρ = {u : Ω → R ;∃λo > 0,

∫
Ω

ρ(λou) dR < ∞}.

A subspace of interest is

Mρ := {u : Ω → R ;∀λ > 0,

∫
Ω

ρ(λu) dR < ∞}.

Of course: Mρ ⊂ Lρ. The function ρ is said to satisfy the ∆2-condition if

there exist C > 0, so ≥ 0 such that ∀s ≥ so, ρ(2s) ≤ Cρ(s) (A.1)

If so = 0, the ∆2-condition is said to be global. When R is bounded, in order that
Mρ = Lρ, it is enough that ρ satisfies the ∆2-condition. When R is unbounded, this
equality still holds if the ∆2-condition is global.
Note that if ρ(s) = ∞ for some s > 0, Mρ reduces to the null space. If in addition R is
bounded, Lρ is L∞. On the other hand, when ρ is a finite function, Mρ contains all the
bounded functions.

Duality in Orlicz spaces is intimately linked with the convex conjugacy. The convex
conjugate ρ∗ of ρ is also a Young function so that one may consider the Orlicz space Lρ∗ .
A continuous linear form ` ∈ L′

ρ is said to be singular if for all u ∈ Lρ, there exists a
nonincreasing sequence of measurable sets (An) such that R(∩nAn) = 0 and for all n ≥ 1,
〈`, u1Ω\An〉 = 0. Let us denote Ls

ρ the subspace of L′
ρ of all singular forms.

Theorem A.2 (Representation of L′
ρ).). Let ρ be any Young function. Any ` ∈ L′

ρ is
uniquely decomposed as

` = `a + `s (A.3)

with `a in Lρ∗ · R and `s in Ls
ρ (the space of all continuous Lρ∗-singular forms on Lρ).

This means that L′
ρ is the direct sum L′

ρ = (Lρ∗ ·R)⊕ Ls
ρ.
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If ρ satisfies the ∆2-condition L′
ρ = Lρ∗ ·R, so that Ls

ρ reduces to the null vector space.
In the decomposition (A.3), `a is called the absolutely continuous part of ` while `s is its
singular part.

Proof. For a proof of this result, see (Giner, [15], Theorems 6.4 and 7.2bis), or for an
almost complete result in this direction, see (Kozek, [16], Theorem 2.2). �

We denote Iρ(f) =
∫

Ω
ρ(f) dR ∈ [0,∞] and Iρ∗(f) =

∫
Ω

ρ∗(f) dR ∈ [0,∞]. Let A
be a subset of a vector space X in duality with Y. Let δ(x | A) denote the convex
indicator function of A. Its support function is δ∗(y | A) = supx∈X{〈y, x〉 − δ(x | A)} =
supx∈A〈y, x〉, y ∈ Y.

Proposition A.4. Let I∗ρ be the convex conjugate of Iρ for the duality (Lρ, L
′
ρ). For any

` ∈ L′
ρ, I∗ρ(`) = Iρ∗(

d`a

dR
) + δ∗(`s | dom Iρ) where ` = `a + `s is the decomposition (A.3).

Proof. This result is (Kozek, [16], Thm 2.6) when ρ is a finite Young function, it is
(Rockafellar, [29], Thm 1) when Lρ = L∞. For the general case, see (Fougères and Giner,
[12], Thm 3.2). �

Proposition A.5. Let us assume that ρ is finite. Then, ` ∈ L′
ρ is singular if and only if

〈`, u〉 = 0, for all u in Mρ.

Proof. This result is (Fougères and Giner, [12], Cor 4.5). �

Appendix B. A convex minimization problem

The aim of this section is to recall for the convenience of the reader the statements of
the main results of ([22], Section 3).

Let us consider U0 a vector space, L0 = U ]
0 its algebraic dual space, Φ a (−∞, +∞]-

valued convex function on U0 and Φ∗ its convex conjugate for the duality 〈U0,L0〉 which
is defined by

Φ∗(`) = sup
u∈U0

{〈`, u〉 − Φ(u)}, ` ∈ L0.

We shall be concerned with the following convex minimization problem

minimize Φ∗(`) subject to T` ∈ C, ` ∈ L0 (P0)

where C is a convex subset of a vector space X and T : L0 → X is a linear operator.
It is convenient to describe T by means of its adjoint T T . Let Y be a vector space in

separating duality with X . The operator T is then defined for all ` ∈ L0 and x ∈ X by
T` = x if and only if for all y ∈ Y , 〈T T y, `〉U0,L0 = 〈y, x〉. Note that one must assume that

T T y ∈ U0, ∀y ∈ Y (B.1)

for this definition to be meaningful.
The requirement (B.1) allows us to define Γ(y) = Φ(T T y), y ∈ Y . Its convex conjugate is
Γ∗(x) = supy∈Y{〈y, x〉 − Γ(y)}, x ∈ X and the dual problem to (P0) is

maximize inf
x∈C

〈y, x〉 − Γ(y), y ∈ Y . (D0)

A lot of notations. The gauge functional on U0 of the set {u ∈ U0; max(Φ(u), Φ(−u)) ≤
1} is |u|Φ

M
= inf{α > 0; max(Φ(u/α), Φ(−u/α)) ≤ 1}, u ∈ U0. Similarly, the gauge func-

tional on Y of the set {y ∈ Y ; max(Γ(y), Γ(−y)) ≤ 1} is |y|Γ
M
= inf{α > 0; max(Γ(y/α), Γ(−y/α)) ≤
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1}, y ∈ Y . Under our assumptions (H) below, these are norms. Let L1
M
= (U0, | · |Φ)′ be the

topological dual space of (U0, | · |Φ) and let U1 be the | · |Φ-completion of U0. Of course, we

have (U1, |·|Φ)′ = L1 ⊂ L0. Similarly, let X1
M
= X ∩(Y , |·|Γ)′ be the space of |·|Γ-continuous

elements of X and let Y1 be the | · |Γ-completion of Y . We have also (Y1, | · |Γ)′ = X1 ⊂ X .

We denote C1 = C ∩ X1. Let us denote Y2 = X ]
1 the algebraic dual space of X1 and con-

sider Γ̄(y)
M
= supx∈X1

{〈y, x〉 − Γ∗(x)}, y ∈ Y2 the greatest convex σ(Y2,X1)-lsc extension

of Γ to Y2. Similarly, let us denote U2 = L]
1 the algebraic dual space of L1. The greatest

convex σ(U2,L1)-lsc extension of Φ is Φ̄(u)
M
= sup`∈L1

{〈`, u〉 − Φ∗(`)}, u ∈ U2.
The main abstract results of ([22], Section 3) are summarized in Theorem B.2 below. Let
us give its underlying hypotheses.

Hypotheses (H)

(HΦ) 1- Φ : U0 → [0, +∞] is convex and Φ(0) = 0
2- ∀u ∈ U0,∃α > 0, Φ(αu) < ∞
3- ∀u ∈ U0, u 6= 0,∃t ∈ R, Φ(tu) > 0

(HT ) 1- T T (Y) ⊂ U0

2- ker T T = {0}
(HC) C1

M
= C ∩ X1 is a convex σ(X1,Y1)-closed subset of X1

Theorem B.2. Let us assume that the hypotheses (H) are fulfilled.

(a) The following little dual equality holds

inf{Φ∗(`); T` = x, ` ∈ L0} = Γ∗(x) ∈ [0, +∞],∀x ∈ X (B.3)

(b) We have the following dual equalities

inf(P0) = sup(D0) = inf
x∈C

Γ∗(x) ∈ [0, +∞].

(c) If inf(P0) < ∞, then (P0) is attained in L1. Moreover, any minimizing sequence
for (P0) has σ(L1,U1)-cluster points and every such cluster point solves (P0).

If in addition the following geometrical constraint qualification

C ∩ icordom Γ∗ 6= ∅
is satisfied1, then there exists (¯̀, ȳ) ∈ L1 × Y2 a solution to (P0) and to the following
extended dual problem

maximize inf
x∈C1

〈y, x〉 − Γ̄(y), y ∈ Y2 (D2)

Moreover, (¯̀, ȳ) ∈ L0 × Y2 is a solution to (P0) and (D2) if and only if

(a) x̄
M
= T ¯̀∈ C1

(b) 〈ȳ, x̄〉 ≤ 〈ȳ, x〉,∀x ∈ C1.
(c) ¯̀∈ ∂Φ̄(T ∗ȳ)2

In this situation, x̄ minimizes Γ∗ on C and we also have x̄ ∈ ∂Γ̄(ȳ) and

Φ∗(¯̀) + Φ̄(T ∗ȳ) = 〈x̄, ȳ〉 = Γ∗(x̄) + Γ̄(ȳ). (B.4)

1One has dom Γ∗ ⊂ X1, so that C1 ∩ dom Γ∗ = C ∩ dom Γ∗.
2T ∗ : Y2 → L]

0 is the natural extension of TT .
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[20] C. Léonard. Minimization of energy functionals applied to some inverse problems. Appl. Math. Op-

tim. 44, 2001, 273-297.
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