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Abstract. We considerN single server infinite buffer queues with service rateβ. Customers arrive at rateNα,

chooseL queues uniformly, and join the shortest. We study the processest ∈ R+ 7→ RN
t = (RN

t (k))k∈N for

largeN , whereRN
t (k) is the fraction of queues of length at leastk at timet. Laws of large numbers (LLNs)

are known, see Vvedenskaya et al. [15], Mitzenmacher [12] and Graham [5]. We consider certain Hilbert

spaces with the weak topology. First, we prove a functional central limit theorem (CLT) under thea priori

assumption that the initial dataRN
0 satisfy the corresponding CLT. We use a compactness-uniqueness method,

and the limit is characterized as an Ornstein-Uhlenbeck (OU) process. Then, we study theRN in equilibrium

under the stability conditionα < β, and prove a functional CLT with limit the OU process in equilibrium. We

use ergodicity and justify the inversion of limitslimN→∞ limt→∞ = limt→∞ limN→∞ by a compactness-

uniqueness method. We deducea posteriorithe CLT forRN
0 under the invariant laws, an interesting result in

its own right. The main tool for proving tightness of the implicitly defined invariant laws in the CLT scaling

and ergodicity of the limit OU process is a global exponential stability result for the nonlinear dynamical

system obtained in the functional LLN limit.
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1 Introduction

1.1 Preliminaries

We consider a Markovian network constituted ofN ≥ L ≥ 1 infinite buffer single server queues.

Customers arrive at rateNα, are each allocatedL distinct queues uniformly at random, and join the

shortest, ties being resolved uniformly. Servers work at rateβ. Arrivals, allocations, and services are

independent. ForL = 1 we have i.i.d.Mα/Mβ/1/∞ queues. ForL ≥ 2 the interaction structure

depends only on sampling from the empirical measure ofL-tuples of queue states: in statistical

mechanics terminology, the system is inL-body mean-field interaction. We continue the largeN

study introduced by Vvedenskaya et al. [15] and Mitzenmacher [12] and continued in Graham [5].

The process(XN
i )1≤i≤N is Markov, whereXN

i (t) denotes the length of queuei at timet in R+.

Its empirical measureµN = 1
N

∑N
i=1 δXN

i
has samples inP(D(R+,N)), and its marginal process
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X̄N = (X̄N
t )t≥0 with X̄N

t = µt = 1
N

∑N
i=1 δXN

i (t) has sample paths inD(R+,P(N)). We are

interested in the tails of the marginals̄XN
t and consider

RN = (RN
t )t≥0 , RN

t = (RN
t (k))k∈N , RN

t (k) =
1
N

N∑
i=1

1IXN
i (t)≥k ,

andRN
t (k) is the fraction of queues of length at leastk at timet. For the uniform topology on

V = {(v(k))k∈N : v(0) = 1, v(k) ≥ v(k + 1), lim v = 0} ⊂ c0 , VN = V ∩ 1
N

NN ,

coinciding here with the product topology, the processRN has sample paths inD
(
R+,VN

)
.

The processes̄XN andRN are in relation throughp ∈ P(N)←→ v ∈ V for v(k) = p[k,∞) and

p{k} = v(k)−v(k+1) for k in N. This classical homeomorphism maps the subspace of probability

measures with finite first moment ontoV ∩ `1, corresponding to a finite number of customers in the

network. The symmetry structure implies that these processes are Markov.

The stationary regime has great practical relevance. The stability conditionα < β (Theorem 5 (a)

in [15], Lemma 3.1 in [12], Theorem 4.2 in [5]) is obtained from ergodicity criteria yielding little

information. We study the largeN asymptotics ofRN , first for transient regimes with appropriately

converging initial data, and then in equilibrium using an indirect approach involving ergodicity in

well-chosen transient regimes and an inversion of limits for largeN and large times. Law of large

numbers (LLN) results are already known, and we obtain functional central limit theorems (CLTs).

1.2 Previous results: laws of large numbers

We relate results found in essence in Vvedenskaya et al. [15]. We follow Graham [5] which extends

these results, notably by considering the empirical measures on path spaceµN and thus yielding

chaoticity results (asymptotic independence of queues). Chapter 3 in Mitzenmacher [12] gives re-

lated results. (The ratesα andβ correspond toλ and1 in [15, 12] andν andλ in [5].)

Consider the mappings with values inc00 given forv in c0 by

F+(v)(k) = α
(
v(k − 1)L − v(k)L

)
, F−(v)(k) = β(v(k)− v(k + 1)) , k ≥ 1 , (1.1)

andF = F+ − F−, and the nonlinear differential equationu̇ = F (u) onV, given fort ≥ 0 by

u̇t(k) = α
(
ut(k − 1)L − ut(k)L

)
− β(ut(k)− ut(k + 1))

= αut(k − 1)L −
(
αut(k)L + βut(k)

)
− βut(k + 1) , k ≥ 1 . (1.2)

This corresponds to the systems (1.6) in [15], (3.5) in [12] and (3.9) in [5]. Note thatF− is linear.

Theorem 1.1 There exists a unique solutionu = (ut)t≥0 taking values inV for (1.2), andu is in

C(R+,V). If u0 is in V ∩ `1 thenu takes values inV ∩ `1.
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Proof. We use Theorem 3.3 and Proposition 2.3 in [5]. These exploit the homeomorphism be-

tweenP(N) with the weak topology andV with the product topology. Then (1.2) corresponds

to a non-linear forward Kolmogorov equation for a pure jump process with uniformly bounded

(time-dependent) jump rates. Uniqueness within the class of bounded measures and existence of

a probability-measure valued solution are obtained using the total variation norm. Theorem 1 (a) in

[15] yields existence (and uniqueness) inV ∩ `1. �

Firstly, a functional LLN for initial conditions satisfying a LLN is part of Theorem 3.4 in [5] and

can be deduced from Theorem 2 in [15].

Theorem 1.2 Assume that(RN
0 )N≥L converges in law tou0 in V. Then(RN )N≥L converges in law

in D(R+,V) to the unique solutionu = (ut)t≥0 starting atu0 for (1.2).

Secondly, forα < β the limit equation (1.2) has a globally attractive stable pointũ in V ∩ `1.

Theorem 1.3 Letρ = α/β < 1. The equation (1.2) has a unique stable point inV given by

ũ = (ũ(k)k∈N , ũ(k) = ρ(Lk−1)/(L−1) = ρLk−1+Lk−2+···+1 ,

and the solutionu of (1.2) starting at anyu0 in V ∩ `1 is such thatlimt→∞ ut = ũ.

Proof. Theorem 1 (b) in [15] yields that̃u is globally asymptotically stable inV ∩ `1. A stable point

u in V satisfiesβu(k + 1)− αu(k)L = βu(k)− αu(k − 1)L = · · · = βu(1)− α and converges to

0, henceu(1) = α/β andu(2), u(3), . . . are successively determined uniquely. �

Lastly, a compactness-uniqueness argument justifies the inversion of limitslimN→∞ limt→∞ =

limt→∞ limN→∞, which yields a result in equilibrium. This method, used by Whitt [16] for the star-

shaped loss network, is detailed in Graham [6] Sections 9.5 and 9.7.3. The following functional LLN

in equilibrium (Theorem 4.4 in [5]) can be deduced from [15] but is not stated there, and implies that

under the invariant lawslimN→∞E(RN
0 (k)) = ũ(k) for k ∈ N (Theorem 5 (c) in [15]).

Theorem 1.4 Let ρ = α/β < 1 and the networks of sizeN be in equilibrium. Then(RN )N≥L

converges in probability inD(R+,V) to ũ.

Note thatũ(k) decays hyper-exponentially ink for L ≥ 2 instead of the exponential decayρk

corresponding to i.i.d. queues in equilibrium (L = 1). For finite networks in equilibrium there is at

most exponential decay sinceP
(
XN

1 + · · ·+XN
N ≥ Nk

)
≤ P

(
XN

1 ≥ k
)
+ · · ·+P

(
XN

N ≥ k
)

and

by comparison with anMNα/MNβ/1 queue

E
(
RN

t (k)
)

= P
(
XN

i (t) ≥ k
)
≥ 1
N
ρNk , k ≥ 0 . (1.3)
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The asymptotic queue sizes are dramatically decreased by this simple load balancing (or resource

pooling) procedure, which carries little overhead even for largeN sinceL is fixed (for instance

L = 2). This feature is quite robust and true for many systems, as was illustrated on several examples

by Mitzenmacher [12] and Turner [14] using proofs as well as simulations. It can be used as a

guideline for designing practical networks. In contrast, the bound (1.3) assumes the best utilization

of theN servers, fully collaborating even for a single customer.

Theorem 3.5 in Graham [5] gives convergence bounds on bounded time intervals[0, T ] for i.i.d.

(XN
i (0))1≤i≤N using results in Graham and Méléard [7]. This can be extended if the initial laws

satisfya priori controls, but it is not so in equilibrium (the bounds are exponentially large inT ).

1.3 The outline of this paper

The study of the fluctuations around the functional LLN will yield for instance asymptotically tight

confidence intervals for the processt 7→ N−1Card
{
i = 1, . . . , N : XN

i (t) ∈ A
}

. In a realistic set-

ting (finite number of finite buffer queues) such confidence intervals would allow network evaluation

or dimensioning in function of quality of service requirements on delays and overflows. The LLN

on path space concerns objects such asN−1Card
{
i = 1, . . . , N :

(
t 7→ XN

i (t)
)
∈ B

}
with a richer

temporal structure, but topological difficulties usually block the corresponding fluctuation study.

We consider the processRN and solutionu for (1.2) starting atRN
0 in VN andu0 in V, and

ZN =
√
N(RN − u). (1.4)

The processesZN = (ZN
t )t≥0 will be studied in the Skorokhod spaces on appropriate Hilbert spaces

with the weak topology. These spaces are not metrizable and require appropriate tightness criteria.

We first consider a wide class ofRN
0 andu0 under theassumptionthat (ZN

0 )N≥L converges

in law (for instance satisfies a CLT). We obtain a functional CLT in relation to Theorem 1.2, with

limit given by an Ornstein-Uhlenbeck (OU) process starting at the limit of the(ZN
0 )N≥L. This

covers without constraints onα andβ manytransientregimes withexplicit initial conditions, such

as initially empty networks, or more generally i.i.d. initial queue sizes.

We then focus on thestationaryregime forα < β. The initial data is nowimplicit: the law of

RN
0 is the invariant law forRN andu0 = ũ. We prove tightness for(ZN

0 )N≥L using the ergodicity

of ZN for fixed N and intricate fine studies of the long-time behavior of the nonlinear dynamics

appearing at the largeN limit. The main result in this paper is a functional CLT in equilibrium for

(ZN )N≥L with limit the OU process in equilibrium. Thisimpliesa CLT under the invariant laws for

(ZN
0 )N≥L, an important result which seems difficult to obtain directly.

Section 2 introduces without proof the main notions and results. Section 3 gives the proof of the

functional CLT for converging initial data by compactness-uniqueness and martingale techniques.

4



We then consideru0 = ũ. We study the OU process in Section 4, derive a spectral representation

for the linear operator in the drift, and prove the existence of a spectral gap. A main difficulty is that

the scalar product for which the operator is self-adjoint istoo strongfor the limit dynamical system

and the invariant laws for finiteN . We consider appropriate Hilbert spaces in which the operator is

not self-adjoint and prove exponential stability.

In Section 5 we likewise prove thatũ is globally exponentially stable for the non-linear dynamical

system. In Section 6 we obtain bounds forZN
t uniform for t ≥ 0 and largeN , using the preceding

stability result in order to iterate the bounds on intervals of lengthT . Bounds on the invariant laws

of ZN follow using ergodicity. The proof for the functional CLT in equilibrium follows from a

compactness-uniqueness argument involving the functional CLT for converging initial data.

2 The functional central limit theorems

2.1 Preliminaries

The exponential of a bounded linear operator is given by the usual series expansion. Letc00 and`0p for

p ≥ 1 be the subspaces of sequences vanishing at0 of the classical sequence spacesc0 (with limit 0)

and`p (with summablep-th power). In matrix notation we use the canonical basis, hence sequences

vanishing at0 are identified with infinite column vectors indexed by{1, 2, · · ·}. The diagonal matrix

with terms given by the sequencea is denoted bydiag(a). Sequence inequalities, etc., should be

interpreted termwise. Empty sums are equal to0 and empty products to1. Constants such asK may

vary from line to line. Letgθ = (θk)k≥1 be the geometric sequence with parameterθ.

For a sequencew = (w(k))k≥1 such thatw(k) > 0 we define the Hilbert spaces

L2(w) =

{
x ∈ RN : x(0) = 0 , ‖x‖2L2(w) =

∑
k≥1

(
x(k)
w(k)

)2

w(k) =
∑
k≥1

x(k)2w(k)−1 <∞

}
and in matrix notation(x, y)L2(w) = x∗diag(w−1)y. We use the notationL2(w) since its elements

will often be considered as measures identified with their densities with respect to the reference

measurew. In this perspectiveL1(w) = `01 and if w is summable then‖x‖1 ≤ ‖w‖1/2
1 ‖x‖L2(w)

andL2(w) ⊂ `01. UsingL2(1) = `02 as a pivot space, for boundedw we have the Gelfand triplet

L2(w) ⊂ `02 ⊂ L2(w)∗ = L2(w−1).

Another natural perspective onL2(w) is that it is aǹ 2 space with weights, and we consider the

`1 space with same weights (the notation being chosen for consistency)

`1(w) =

{
x ∈ RN : x(0) = 0 , ‖x‖`1(w) =

∑
k≥1

|x(k)|w(k)−1 <∞

}
andx ∈ L2(w)⇔ x2 ∈ `1(w) with ‖x‖2L2(w) = ‖x2‖`1(w). The inclusionV ∩ `1(w) ↪→ V ∩ L2(w)

is continuous sincex2 ≤ |x| for |x| ≤ 1. The following result is trivial.
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Lemma 2.1 If w = O(v) andv = O(w) then theL2(v) andL2(w) norms are equivalent, and the

`1(v) and`1(w) norms are equivalent.

In the sequel we often assume thatw = (wk)k≥1 satisfies the condition that

∃ c, d > 0 , ∀k ≥ 1 , 0 < cw(k + 1) ≤ w(k) ≤ dw(k + 1) , (2.1)

which is satisfied bygθ = (θk)k≥1 with c = d = 1/θ for θ > 0. It implies thatw(1)d(1/d)k ≤

w(k) ≤ w(1)c(1/c)k which boundsw by geometric sequences. The norms have exponentially strong

weights forc > 1. We give a refined existence result for(1.2). (Proofs are left for later.)

Theorem 2.2 Letw satisfy (2.1). Then inV the mappingsF , F+ andF− are Lipschitz for theL2(w)

and thè 1(w) norms. Existence and uniqueness holds for (1.2) inV ∩ L2(w) and inV ∩ `1(w).

2.2 The functional CLT for converging initial data

The time-inhomogeneous Ornstein-Uhlenbeck process

In V, the linearization of (1.2) around a particular solutionu is the linearization of the recentered

equation satisfied byy = g − u whereg is a generic solution for (1.2). It is given fort ≥ 0 by

żt = K(ut)zt (2.2)

where forv in V the linear operatorK(v) : x 7→ K(v)x on c00 is given by

K(v)x(k) = αLv(k − 1)L−1x(k − 1)− (αLv(k)L−1 + β)x(k) + βx(k + 1) , k ≥ 1 , (2.3)

and is identified with its infinite matrix in the canonical basis(0, 1, 0, 0 . . .), (0, 0, 1, 0 . . .), . . .

K(v) =


−

(
αLv(1)L−1 + β

)
β 0 · · ·

αLv(1)L−1 −
(
αLv(2)L−1 + β

)
β · · ·

0 αLv(2)L−1 −
(
αLv(3)L−1 + β

)
· · ·

0 0 αLv(3)L−1 · · ·
...

...
...

...

 .

Let (M(k))k∈N be independent real continuous centered Gaussian martingales, determined in

law by their deterministic Doob-Meyer brackets given fort ≥ 0 by

〈M(k)〉t =
∫ t

0

{
F+(us)(k) + F−(us)(k)

}
ds . (2.4)

The processesM = (M(k))k≥0 and〈M〉 = (〈M(k)〉)k∈N have values inc00.

Theorem 2.3 Let w satisfy (2.1) andu0 be in V ∩ `1(w). Then the Gaussian martingaleM is

square-integrable inL2(w).
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Proof. We haveE
(
‖Mt‖2L2(w)

)
= ‖〈M〉t‖`1(w) and we conclude using (2.4), Theorem 2.2, and

uniform bounds iǹ 1(w) on (us)0≤s≤t in function ofu0 given by the Gronwall Lemma. �

The limit equation for the fluctuations is a Gaussian perturbation of (2.2), the inhomogeneous

affine SDE given fort ≥ 0 by

Zt = Z0 +
∫ t

0
K(us)Zs ds+Mt . (2.5)

A well-defined solution is called an Ornstein-Uhlenbeck process, in short OU process. We recall that

strong (or pathwise) uniqueness implies weak uniqueness, and that`1(w) ⊂ L2(w).

Theorem 2.4 Let the sequencew satisfy (2.1).

(a) For v in V, the operatorK(v) is bounded inL2(w) with operator norm uniformly bounded inv.

(b) Letuo be inV ∩ L2(w). Then inL2(w) there is a unique solutionzt = e
R t
0 K(us) dsz0 for (2.2)

and strong uniqueness of solutions holds for (2.5).

(c) Letuo be inV ∩ `1(w). Then inL2(w) there is a unique strong solutionZt = e
R t
0 K(us) dsZ0 +∫ t

0 e
R t

s K(ur) drdMs for (2.5) and ifE
(
‖Z0‖2L2(w)

)
<∞ thenE

(
supt≤T ‖Zt‖2L2(w)

)
<∞.

Tightness bounds and the CLT

The finite-horizon bounds in the following lemma will yield tightness estimates for the processesZN

used in the compactness-uniqueness proof for the subsequent theorem.

Lemma 2.5 Letw satisfy (2.1). Letu0 be inV ∩ `1(w) andRN
0 be inVN . For anyT ≥ 0

lim sup
N→∞

E
(∥∥ZN

0

∥∥2

L2(w)

)
<∞⇒ lim sup

N→∞
E

(
sup

0≤t≤T

∥∥ZN
t

∥∥2

L2(w)

)
<∞ .

We refer to Jakubowski [8] for the Skorokhod topology for non-metrizable topologies. For the

weak topology of a reflexive Banach space, the relatively compact sets are the bounded sets for the

norm, see Rudin [13] Theorems 1.15 (b), 3.18, and 4.3. Hence, ifB(r) denotes the closed ball

centered at 0 of radiusr, a setT of probability measures is tight if and only if for allε > 0 there

existsrε <∞ such thatp(B(rε)) > 1− ε uniformly for p in T . We state the functional CLT.

Theorem 2.6 Letw satisfy (2.1). ConsiderL2(w) with its weak topology andD(R+, L2(w)) with

the corresponding Skorokhod topology. Letu0 be inV ∩ `1(w), RN
0 in VN , andZN be given by

(1.4). If (ZN
0 )N≥L converges in law toZ0 and is tight, then(ZN )N≥L converges in law to the

unique OU process solving (2.5) starting atZ0 and is tight.

2.3 The functional CLT in equilibrium

We assume the stability conditionρ = α/β < 1 holds, and consideru0 = ũ.
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The Ornstein-Uhlenbeck process

We setK = K(ũ) and (2.3) yields thatK : x ∈ c00 7→ Kx ∈ c00 is given by

Kx(k) = K(ũ)x(k) = βLρLk−1
x(k − 1)−

(
βLρLk

+ β
)
x(k) + βx(k + 1) , k ≥ 1 , (2.6)

identified with its infinite matrix in the canonical basis

K =



−
(
βLρL + β

)
β 0 0 · · ·

βLρL −
(
βLρL2

+ β
)

β 0 · · ·

0 βLρL2 −
(
βLρL3

+ β
)

β · · ·

0 0 βLρL3 −
(
βLρL4

+ β
)
· · ·

...
...

...
...


. (2.7)

Note thatK = A∗ whereA is the generator of a sub-Markovian birth and death process. We give

the Karlin-McGregor spectral decomposition forK in Section 4.2, to which we make a few forward

references (it isnot a resolution of the identity, see Rudin [13]). The potential coefficients ofA are

π = (π(k))k≥1 , π(k) = Lk−1ρ(Lk−L)/(L−1) = ρ−1Lk−1ũ(k) , (2.8)

and solve the detailed balance equationsπ(k + 1) = LρLk
π(k) with π(1) = 1. The linearization of

(1.2) around its stable point̃u is the forward Kolmogorov equation forA given fort ≥ 0 by

żt = Kzt (2.9)

which is special case of (2.2). Considering (2.4) andF (ũ) = F+(ũ) − F−(ũ) = 0, the martingale

M = (M(k))k∈N has the same law as ac00-valued sequenceB = (B(k))k∈N of independent centered

Brownian motions such thatB(0) = 0 and fork ≥ 1

ṽ(k) := var(B1(k)) = E
(
B1(k)2

)
= 2β (ũ(k)− ũ(k + 1)) = 2βρ(Lk−1)/(L−1)

(
1− ρLk)

,

andB has diagonal infinitesimal covariance matrixdiag(ṽ). The following result is obvious.

Theorem 2.7 The processB is an Hilbertian Brownian motion inL2(w) if and only ifũ is in `1(w).

This is true forw = π andw = gθ for θ > 0 whenL ≥ 2 or for w = gθ for θ > ρ whenL = 1.

The Ornstein-Uhlenbeck (OU) processZ = (Z(k))k∈N solves the affine SDE given fort ≥ 0 by

Zt = Z0 +
∫ t

0
KZs ds+Bt (2.10)

which is a Brownian perturbation of (2.9). ForL ≥ 2, existence and uniqueness results hold under

much weaker assumptions than (2.1).
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Theorem 2.8 Letw be such that there existsc > 0 andd > 0 with

0 < cw(k + 1) ≤ w(k) ≤ dρ−2Lk
w(k + 1) , k ≥ 1 .

(a) In L2(w), the operatorK is bounded, the equation (2.9) has a unique solutionzt = eKtz0

whereeKt has a spectral representation given by (4.1), and there is uniqueness of solutions for the

SDE (2.10). The assumptions and conclusions hold forw = π andw = gθ for θ > 0.

(b) In addition letw be such that̃u is in `1(w). The SDE (2.10) has a unique solutionZt = eKtZ0 +∫ t
0 eK(t−s) dBs in L2(w) further made explicit in (4.2). This the case forw = π andw = gθ for

θ > 0 whenL ≥ 2 or for w = gθ for θ > ρ whenL = 1 .

We use results in van Doorn [3] to prove the existence of a spectral gap, and use this fact for an

exponential stability result inspired from Callaert and Keilson [2] Section 10.

Theorem 2.9 (Spectral gap.) The operatorK is bounded self-adjoint inL2(π). The least pointγ

of the spectrum ofK is such that0 < γ ≤ β. The solutionzt = eKtz0 for (2.9) inL2(π) satisfies

‖zt‖L2(π) ≤ e−γt‖z0‖L2(π).

ForL ≥ 2 the sequenceπ decays hyper-exponentially, see (2.8), and (1.3) implies that theL2(π)

norm is too strong for the CLT. Further, the mappingF+ is not Lipschitz inV ∩L2(π) for theL2(π)

norm, see Theorems 2.2 and 2.8 and their contrasting assumptions and proofs. Hence we prove

exponential stability and (exponential) ergodicity for the OU process in appropriate spaces.

Theorem 2.10 Let0 < θ < 1 whenL ≥ 2 or ρ ≤ θ < 1 whenL = 1. There existsγθ > 0 andCθ <

∞ such that the solutionzt = eKtz0 for (2.9) inL2(gθ) satisfies‖zt‖L2(gθ) ≤ e−γθtCθ‖z0‖L2(gθ).

Theorem 2.11 Letw = π or w = gθ with 0 < θ < 1 whenL ≥ 2 or let w = gθ with ρ < θ < 1

whenL = 1. Any solution for the SDE (2.10) inL2(w) converges in law for large times to its unique

invariant law (exponentially fast). This law is the law of
∫∞
0 eKtdBt which is Gaussian centered with

covariance matrix
∫∞
0 eKtdiag(ṽ)eK

∗tdt made more explicit in (4.3) and (4.4). There is a unique

stationary OU process solving the SDE (2.10) inL2(w).

Global exponential stability for (1.2), infinite-horizon and invariant law bounds, and the CLT

We state an important global exponential stability result atũ for the non-linear dynamical system.

This is essential in the proof of the subsequent infinite-horizon bounds for the marginals of the

processes, which yield bounds on their long time limit, the invariant law. We need uniformity over

the state space, and results for the linearized equation (2.9) arenot enough.
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Theorem 2.12 Let ρ ≤ θ < 1 andu be the solution of (1.2) starting atu0 in V ∩ L2(gθ). There

existsγθ > 0 andCθ <∞ such that‖ut − ũ‖L2(gθ) ≤ e−γθtCθ‖u0 − ũ‖L2(gθ).

This doesnothold inL2(π) for L ≥ 2, else Lemma 2.13 below would also hold inL2(π), which

would contradict (1.3). Theorem 3.6 in Mitzenmacher [12] states a related result for some weighted

`1 norms obtained by potential function techniques.

Lemma 2.13 Letρ ≤ θ < 1 whenL ≥ 2 or ρ < θ < 1 whenL = 1. Then

lim sup
N→∞

E
(∥∥ZN

0

∥∥2

L2(gθ)

)
<∞⇒ lim sup

N→∞
sup
t≥0

E
(∥∥ZN

t

∥∥2

L2(gθ)

)
<∞

and under the invariant lawslim supN→∞E
(
‖ZN

0 ‖2L2(gθ)

)
<∞.

Our main result is the functional CLT in equilibrium, obtained with a compactness-uniqueness

method using tightness of the invariant laws (based on Lemma 2.13) and Theorems 2.6 and 2.11.

Theorem 2.14 Let the networks of sizeN be in equilibrium. ForL ≥ 2 considerL2(gρ) with

its weak topology andD(R+, L2(gρ)) with the corresponding Skorokhod topology. Then(ZN )N≥L

converges in law to the unique stationary OU process solving the SDE (2.10), in particular(ZN
0 )N≥L

converges in law to the invariant law for this process (see Theorem 2.11). ForL = 1 the same result

holds inL2(gθ) for ρ < θ < 1.

3 The proofs for converging initial conditions

3.1 Existence and uniqueness results

Proof of Theorem 2.2 (refined existence result for (1.2))

We give the proof forL2(w), the proof for̀ 1(w) being similar. The assumption (2.1) and the identity

xL − yL = (x− y)(xL−1 + xL−2y + · · ·+ yL−1) yield

(
u(k − 1)L − v(k − 1)L

)2
w(k)−1 ≤ (u(k − 1)− v(k − 1))2 L2dw(k − 1)−1 ,(

u(k)L − v(k)L
)2
w(k)−1 ≤ (u(k)− v(k))2 L2w(k)−1 ,

(u(k + 1)− v(k + 1))2w(k)−1 ≤ (u(k + 1)− v(k + 1))2 c−1w(k + 1)−1 ,

hence we have the Lipschitz bounds‖F+(u) − F+(v)‖2L2(w) ≤ 2α2L2(d + 1)‖u − v‖2L2(w) and

‖F−(u) − F−(v)‖2L2(w) ≤ 2β2(c−1 + 1)‖u − v‖2L2(w). Existence and uniqueness follows by a

classical Cauchy-Lipschitz method.
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The derivation of the Ornstein-Uhlenbeck process

Let (x)k = x(x− 1) · · · (x− k + 1) for x ∈ R (the falling factorial of degreek ∈ N). Considering

(1.1), let the mappingsFN
+ andFN with values inc00 be given forv in c0 by

FN
+ (v)(k) = α

(Nv(k − 1))L − (Nv(k))L

(N)L
, k ≥ 1 ; FN (v) = FN

+ (v)− F−(v) . (3.1)

The processRN is Markov onVN , and when in stater has jumps in itsk-th coordinate,k ≥ 1, of

size1/N at rateNFN
+ (r)(k) and size−1/N at rateNF−(r)(k).

Lemma 3.1 LetRN
0 be inVN , u solve (1.2) starting atu0 in V, andZN be given by (1.4). Then

ZN
t = ZN

0 +
∫ t

0

√
N

(
FN (RN

s )− F (us)
)
ds+MN

t (3.2)

defines an independent family of square-integrable martingalesMN = (MN (k))k∈N independent

ofZN
0 with Doob-Meyer brackets given by

〈
MN (k)

〉
t
=

∫ t

0

{
FN

+ (RN
s )(k) + F−(RN

s )(k)
}
ds . (3.3)

Proof. This follows from a classical application of the Dynkin formula. �

The first lemma below shows that it is indifferent to choose theL queues with or without replace-

ment at this level of precision. The second one is a linearization formula.

Lemma 3.2 For N ≥ L ≥ 1 anda in R we have

AN (a) :=
(Na)L

(N)L
− aL =

L−1∑
j=1

(a− 1)jaL−j
∑

1≤i1<···<ij≤L−1

i1 · · · ij
(N − i1) · · · (N − ij)

andAN (a) = N−1O(a), uniformly for0 ≤ a ≤ 1, andAN (k/N) ≤ 0 for k = 0, 1, . . . ,N .

Proof. We develop(Na)L

(N)L
=

∏L−1
i=0

Na−i
N−i =

∏L−1
i=0

(
a+ (a− 1) i

N−i

)
to obtain the identity for

AN (a) which is clearlyN−1O(a), uniformly for 0 ≤ a ≤ 1. For a = k/N ,
∏L−1

i=0
Na−i
N−i is com-

posed of terms bounded bya or contains a term equal to0 and cannot exceedaL. �

Lemma 3.3 For L ≥ 1 anda andh in R we have

B(a, h) := (a+ h)L − aL − LaL−1h =
L∑

i=2

(
L

i

)
aL−ihi

with B(a, h) = 0 for L = 1 andB(a, h) = h2 for L = 2. For L ≥ 2 we have0 ≤ B(a, h) ≤

hL +
(
2L − L− 2

)
ah2 for a anda+ h in [0, 1].
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Proof. The identity is Newton’s binomial formula. A convexity argument yieldsB(a, h) ≥ 0. Fora

anda+ h in [0, 1],B(a, h) ≤ hL +
∑L−1

i=2

(
L
i

)
ah2 = hL +

(
2L − L− 2

)
ah2 . �

Let v be inV andx in c00. Considering (1.1), (3.1) and Lemma 3.2, letGN : V → c00 be given by

GN (v)(k) = αAN (v(k − 1))− αAN (v(k)) , k ≥ 1 , (3.4)

and considering (1.1), (2.3) and Lemma 3.3 letH : V × c00 → c00 be given by

H(v, x)(k) = αB(v(k − 1), x(k − 1))− αB(v(k), x(k)) , k ≥ 1 , (3.5)

so that forv + x in V

FN = F +GN , F (v + x)− F (v) = K(v)x+H(v, x) , (3.6)

and we derive the limit equation (2.5) and (2.4) for the fluctuations from (3.2) and (3.3).

Proof of Theorem 2.4 (existence and uniqueness for the OU process)

Considering (2.3),v ≤ 1, convexity bounds, and (2.1), we have

‖K(v)x‖2L2(w) ≤ 2(αL+ β)
∑
k≥1

(
αLx(k − 1)2dw(k − 1)−1 + (αL+ β)x(k)2w(k)−1

+ βx(k + 1)2c−1w(k + 1)−1
)

≤ 2(αL+ β)(αL(d+ 1) + β(c−1 + 1))‖x‖2L2(w)

and (a) and (b) follow. Foruo in V ∩ `1(w) the martingaleM is square-integrable inL2(w). If

E
(
‖Z0‖2L2(w)

)
< ∞ then the formula forZ is well-defined, solves the SDE, and the Gronwall

Lemma yieldsE
(
supt≤T ‖Zt‖2L2(w)

)
< ∞. Else for anyε > 0 there isrε < ∞ such that

P
(
‖Z0‖L2(w) > rε

)
< ε and a localization procedure using pathwise uniqueness yields existence.

3.2 The proof of the CLT

Proof for Lemma 2.5 (finite-horizon bounds)

Using (3.2) and (3.6)

ZN
t = ZN

0 +MN
t +

√
N

∫ t

0
GN (RN

s ) ds+
∫ t

0

√
N

(
F (RN

s )− F (us)
)
ds (3.7)

where Lemma 3.2 yieldsGN (RN
s )(k) = N−1O

(
RN

s (k − 1) +RN
s (k)

)
and considering (2.1)∥∥GN (RN

s )
∥∥

L2(w)
= N−1O

(∥∥RN
s

∥∥
L2(w)

)
. (3.8)

We have ∥∥RN
s

∥∥
L2(w)

≤ ‖us‖L2(w) +N−1/2
∥∥ZN

s

∥∥
L2(w)

(3.9)
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and sinceF+, F− andF are Lipschitz (Theorem 2.2) the Gronwall Lemma yields that for some

KT <∞ we have‖us‖L2(w) ≤ KT ‖u0‖L2(w) and

sup
0≤t≤T

∥∥ZN
t

∥∥
L2(w)

≤ KT

(∥∥ZN
0

∥∥
L2(w)

+N−1/2KT ‖u0‖L2(w) + sup
0≤t≤T

∥∥MN
t

∥∥
L2(w)

)
.

We conclude using the Doob inequality, (3.3), (3.6), (3.8), (3.9), and∥∥F+(RN
s ) + F−(RN

s )
∥∥

L2(w)
≤ K

∥∥RN
s

∥∥
L2(w)

. (3.10)

Tightness for the process

Lemma 3.4 Letw satisfy (2.1), and considerL2(w) with its weak topology andD(R+, L2(w)) with

the corresponding Skorokhod topology. Letu0 be inV ∩ `1(w) andRN
0 in VN , andZN be given by

(1.4). If (ZN
0 )N≥L is tight then(ZN )N≥L is tight and its limit points are continuous.

Proof. Forε > 0 let rε < ∞ be such thatP(ZN
0 ∈ B(rε)) > 1 − ε for N ≥ 1 (see the discussion

prior to Theorem 2.6). LetRN,ε
0 be equal toRN

0 on{ZN
0 ∈ B(rε)} and such thatZN,ε

0 is uniformly

bounded inL2(w) on {ZN
0 6∈ B(rε)}. ThenZN,ε

0 is uniformly bounded inL2(w) and we may

use a coupling argument to constructZN,ε andZN coinciding on{ZN
0 ∈ B(rε)}. Hence to prove

tightness of(ZN )N≥L we may restrict our attention to(ZN
0 )N≥L uniformly bounded inL2(w), for

which we may use Lemma 2.5.

The compact subsets ofL2(w) are Polish, a fact yielding tightness criteria. We deduce from

Theorems 4.6 and 3.1 in Jakubowski [8], which considers completely regular Hausdorff spaces (Ty-

chonoff spaces) of whichL2(w) with its weak topology is an example, that(ZN )N≥L is tight if

1. For eachT ≥ 0 andε > 0 there is a bounded subsetKT,ε of L2(w) such that forN ≥ L we

haveP
(
ZN ∈ D([0, T ],KT,ε)

)
> 1− ε.

2. For eachd ≥ 1, thed-dimensional processes(ZN (1), . . . , ZN (d))N≥L are tight.

Lemma 2.5 and the Markov inequality yield condition 1. We use (3.7) (see (3.2) and (3.6)),

and (3.3) and (3.6), and the bounds (3.8), (3.9) and (3.10). The bounds in Lemma 2.5 and the fact

thatZN (k) has jumps of size1/
√
N = o(N) classically imply that the above finite-dimensional

processes are tight and have continuous limit points, see for instance Ethier-Kurtz [4] Theorem 4.1

p. 354 or Joffe-Ḿetivier [9] Proposition 3.2.3 and their proofs. �

Proof of Theorem 2.6 (the functional CLT)

Lemma 3.4 implies that from any subsequence ofZN we may extract a further subsequence which

converges to someZ∞ with continuous sample paths. NecessarilyZ∞0 has same law asZ0. In (3.7)
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we have considering (3.6) that
√
N

(
F (RN

s )(k)− F (us)(k)
)

= K(us)ZN
s +

√
NH

(
us, N

−1/2ZN
s

)
. (3.11)

We use the bounds (3.8), (3.9) and (3.10), the uniform bounds in Lemma 2.5, and additionally (3.5)

and Lemma 3.3. We deduce by a martingale characterization thatZ∞ has the law of the OU process

unique solution for (2.5) inL2(w) starting atZ∞0 , see Theorem 2.4; the drift vector is given by the

limit for (3.2) and (3.7) considering (3.11), and the martingale bracket by the limit for (3.3). See for

instance Ethier-Kurtz [4] Theorem 4.1 p. 354 or Joffe-Métivier [9] Theorem 3.3.1 and their proofs

for details. Thus, this law is the unique accumulation point for the relatively compact sequence of

laws of(ZN )N≥1, which must then converge to it, proving Theorem 2.6.

4 The properties ofK = K(ũ)

4.1 Proof of Theorem 2.8 (existence and uniqueness results)

Considering (2.6) and convexity bounds we have

‖Kz‖2L2(w) = β2
∑
k≥1

(
LρLk−1

z(k − 1)− (LρLk
+ 1)z(k) + z(k + 1)

)2
w(k)−1

≤ β2(2L+ 2)
(
L

∑
k≥1

ρ2Lk−1
z(k − 1)2w(k)−1 + L

∑
k≥1

ρ2Lk
z(k)2w(k)−1

+
∑
k≥1

z(k)2w(k)−1 +
∑
k≥1

z(k + 1)2w(k)−1

)

≤ β2(2L+ 2)
(
Ld

∑
k≥2

z(k − 1)2w(k − 1)−1 + (Lρ2L + 1)
∑
k≥1

z(k)2w(k)−1

+ c−1
∑
k≥1

z(k + 1)2w(k + 1)−1

)
≤ β2(2L+ 2)

(
Lρ2L + Ld+ c−1 + 1

)
‖z‖2L2(w) .

The Gronwall Lemma yields uniqueness. Fork ≥ 1 we have(
LρL

)−1
π(k + 1) ≤ π(k) =

(
LρLk)−1

π(k + 1) ≤
(
L−1ρLρ−2Lk)

π(k + 1) ,

θ−1θk+1 ≤ θk ≤
(
θ−1ρLρ−2Lk)

θk+1 .

WhenB is an Hilbertian Brownian motion, the formula forZ yields a well-defined solution.

4.2 A related birth and death process, and the spectral decomposition

Considering (2.7),A = K∗ is the infinitesimal generator of the sub-Markovian birth and death

process on the irreducible class(1, 2, . . .) with birth ratesλk = βLρLk
and death ratesµk = β for

k ≥ 1 (killed at rateµ1 = β at state1). The process is well-defined since the rates are bounded.
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Karlin and McGregor [10, 11] give a spectral decomposition for such processes, used by Callaert

and Keilson [1, 2] and van Doorn [3] to study exponential ergodicity properties. The state space in

these works is(0, 1, 2, . . .), possibly extended by an absorbing barrier or graveyard state at−1. We

consider(1, 2, . . .) and adapt their notations to this simple shift.

The potential coefficients ([10] eq. (2.2), [3] eq. (2.10)) are given by

π(k) =
λ1 · · ·λk−1

µ2 · · ·µk
= LρL1 · · ·LρLk−1

= Lk−1ρ(Lk−L)/(L−1), k ≥ 1 ,

and solve the detailed balance equationsµk+1π(k + 1) = λkπ(k) with π(1) = 1, see (2.8).

The equationAQ(x) = −xQ(x) for an eigenvectorQ(x) = (Qn(x))n≥1 of eigenvalue−x

yieldsλ1Q2(x) = (λ1 + µ1 − x)Q1(x) andλnQn+1(x) = (λn + µn − x)Qn(x)− µnQn−1(x) for

n ≥ 2. With the natural conventionQ0 = 0 and normalizing choiceQ1 = 1, we obtain inductively

Qn as the polynomial of degreen− 1 satisfying the recurrence relation

−xQn(x) = βQn−1(x)−
(
βLρLn

+ β
)
Qn(x) + βLρLn

Qn+1(x) , n ≥ 1 ,

corresponding to [10] eq. (2.1) and [3] eq. (2.15). Such a sequence of polynomials is orthogonal with

respect to a probability measureψ on R+ and, fori, j ≥ 1 with i 6= j,
∫∞
0 Qi(x)2 ψ(dx) = π(i)−1

and
∫∞
0 Qi(x)Qj(x)ψ(dx) = 0 or in matrix notation

∫∞
0 Q(x)Q(x)∗ ψ(dx) = diag(π−1).

Let Pt = (pt(i, j))i,j≥1 denote the sub-stochastic transition matrix forA. The adjoint matrix

P ∗t is the fundamental solution for the forward equationżt = A∗zt = Kzt given in (2.9). The

representation formula of Karlin and McGregor [10, 11], see (1.2) and (2.18) in [3], yields

eKt = P ∗t = (p∗t (i, j))i,j≥1 , p∗t (i, j) = pt(j, i) = π(i)
∫ ∞

0
e−xtQi(x)Qj(x)ψ(dx) , (4.1)

or in matrix notationeKt = diag(π)
∫∞
0 e−xtQ(x)Q(x)∗ ψ(dx).

The probability measureψ is called the spectral measure, its supportS is called the spectrum,

and we setγ = minS. The OU process in Theorem 2.8 (b) and its invariant law and its covariance

matrix in Theorems 2.11 and 2.14 can be written

Zt = diag(π)
∫

S
e−xtQ(x)∗

(
Z0 +

∫ t

0
exs dBs

)
Q(x)ψ(dx) , (4.2)∫ ∞

0
eKt dBt = diag(π)

∫
S

(
Q(x)∗

∫ ∞

0
e−xt dBt

)
Q(x)ψ(dx) , (4.3)∫ ∞

0
eKtdiag(ṽ)eK

∗t dt = diag(π)
∫

S2

Q(x)∗diag(ṽ)Q(y)
x+ y

Q(x)Q(y)∗ ψ(dx)ψ(dy) diag(π). (4.4)

4.3 The spectral gap, exponential stability, and ergodicity

Proof of Theorem 2.9 (spectral gap and exponential stability in the self-adjoint case)

The potential coefficients(π(k))k≥1 solve the detailed balance equations forA and henceK = A∗ is

self-adjoint inL2(π). For the spectral gap, we follow Van Doorn [3], Section 2.3. The orthogonality
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properties imply thatQn hasn−1 distinct zeros0 < xn,1 < . . . < xn,n−1 such thatxn+1,i < xn,i <

xn+1,i+1 for 1 ≤ i ≤ n − 1. Henceξi = limn→∞ xn,i ≥ 0 exists,ξi ≤ ξi+1, andσ = limi→∞ ξi

exists in[0,∞]. Theorem 5.1 in [3] establishes thatγ > 0 if and only if σ > 0 and Theorem 5.3 (i)

in [3] thatσ =
(√

limk λk −
√

limk µk

)2 = β > 0. (Theorem 3.3 in [3] states thatγ = ξ1 ≤ σ, but

estimatingξ1 is impractical.)

For the exponential stability, we have‖zt‖2L2(π) =
(
eKtz0, eKtz0

)
L2(π)

and the fact thateKt is

self-adjoint inL2(π) and the spectral representation (4.1) yield

(
eKtz0, eKtz0

)
L2(π)

=
(
z0, e2Ktz0

)
L2(π)

=
∫

S
e−2xtz∗0Q(x)Q(x)∗z0 ψ(dx)

≤ e−2γt

∫
S
z∗0Q(x)Q(x)∗z0 ψ(dx) = e−2γt (z0, z0)L2(π) .

Proof of Theorem 2.10 (exponential stability, non self-adjoint case)

It is similar to and simpler than the proof for Theorem 2.12 to which Section 5 is devoted, and we

postpone the proof until the end of that section.

Proof of Theorem 2.11 (ergodicity for the OU process)

We use the uniqueness result and explicit formula in Theorem 2.8, and Theorem 2.9 or 2.10.

5 Exponential stability for the nonlinear system

5.1 Some comparison results

Considering (3.6) withK = K(ũ) andF (ũ) = 0, if u solves (1.2) inV theny = u − ũ solves the

recentered equation given byẏt(k) = F (ũ+ y) = Kyt(k) +H(ũ, yt)(k) or

ẏt(k) = βLρLk−1
yt(k − 1) + αB(ũ(k − 1), yt(k − 1))

−
(
βLρLk

yt(k) + αB(ũ(k), yt(k)) + βyt(k)
)

+ βyt(k + 1) , k ≥ 1 . (5.1)

If u0 is in V ∩ `1 thenu is in V ∩ `1 and hencey is in `01 and fork ≥ 1 we have

ẏt(k) + ẏt(k + 1) + · · · = βLρLk−1
yt(k − 1) + αB(ũ(k − 1), yt(k − 1))− βyt(k) . (5.2)

If y solves (5.1) starting aty0 such thaty0 + ũ is in V, thenu = y + ũ solves (1.2) inV starting at

u0 = y0 + ũ. Then−ũ ≤ y ≤ 1− ũ and−1 < y < 1. Fory0 + ũ in V ∩ `1 we havey in `01.

Lemma 5.1 Letu andv be two solutions for (1.2) inV such thatu0 ≤ v0. Thenut ≤ vt for t ≥ 0.

Lety0 + ũ be inV andy solve (5.1). Ify0 ≥ 0 thenyt ≥ 0 and ify0 ≤ 0 thenyt ≤ 0 for t ≥ 0.
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Proof. Lemma 6 in [15] yields the result for (1.2) (the proof written forL = 2 is valid forL ≥ 1).

The result for (5.1) follows by consideringu = y + ũ andũ which solve (1.2). �

We compare solutions of the nonlinear equation (5.1) and of certain linear equations.

Lemma 5.2 Let Â be the generator of the sub-Markovian birth and death process with birth rate

λ̂k ≥ 0 and death rateβ at k ≥ 1. Letsupk λ̂k <∞. The linear operatorx 7→ Â∗x given by

Â∗x(k) = λ̂k−1x(k − 1)− (λ̂k + β)x(k) + βx(k + 1) , k ≥ 1 ,

is bounded iǹ 0
1. There exists a uniquez = (zt)t≥0 given byzt = eÂ

∗tz0 solving the forward

Kolmogorov equatioṅz = Â∗z in `01. It is such that ifz0 ≥ 0 thenzt ≥ 0 and if z0 ≤ 0 thenzt ≤ 0,

and żt(k) + żt(k + 1) + · · · = λ̂k−1zt(k − 1)− βzt(k) for k ≥ 1.

Proof. The operator norm iǹ0
1 of Â∗ is bounded by2(supk λ̂k+β), hence existence and uniqueness.

Uniqueness and linearity imply that ifz0 = 0 thenzt = 0 and else ifz0 ≥ 0 thenzt‖z0‖−1
1 is the

instantaneous law of the process starting atz0‖z0‖−1
1 and hencezt ≥ 0. If z0 ≤ 0 then−z solves the

equation starting at−z0 ≥ 0 and hence−zt ≥ 0. The last result is obtained by summation. �

Lemma 5.3 LetL ≥ 2 andy = (yt)t≥0 solve (5.1) withy0 + ũ in V ∩ `1. Under the assumptions of

Lemma 5.2, letz = (zt)t≥0 solveż = Â∗z in `01. Leth = (ht)t≥0 be given iǹ 0
1 by

h(k) = z(k) + z(k + 1) + · · · − (y(k) + y(k + 1) + · · · ) , k ≥ 1 .

(a) Let λ̂k ≥ βLρLk
+ α

(
1 +

(
2L − L− 2

)
ũ(k)

)
for k ≥ 1, y0 ≥ 0, andh0 ≥ 0. Thenht ≥ 0 for

t ≥ 0.

(b) Letλ̂k ≥ βLρLk
for k ≥ 1, y0 ≤ 0, andh0 ≤ 0. Thenht ≤ 0 for t ≥ 0.

Proof. We prove (a). Forε > 0 let Â∗ε correspond tôλε
k = λ̂k + ε. The operator norm iǹ0

1

of Â∗ε − Â∗ is bounded by2ε, hencelimε→0 eÂ
∗
εtz0 = zt in `01 and we may assume thatλ̂k >

βLρLk
+ α

(
1 +

(
2L − L− 2

)
ũ(k)

)
for k ≥ 1. Sincezt = eÂ

∗tz0 depends continuously onz0 in

`01 we may assumeh0 > 0. Let τ = inf{t ≥ 0 : {k ≥ 1 : ht(k) = 0} 6= ∅} be the first time when

h(k) = 0 for somek ≥ 1. We haveτ > 0.

The result (a) holds ifτ =∞. If τ 6=∞, Lemma 5.2 and (5.2) yield

ḣτ (k) = λ̂k−1yτ (k − 1)− βLρLk−1
yτ (k − 1)− αB(ũ(k − 1), yτ (k − 1))

+ λ̂k−1(zτ (k − 1)− yτ (k − 1))− β(zτ (k)− yτ (k)) .
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Lemma 5.1 yieldsy ≥ 0 and Lemma 3.3 andy ≤ 1 yield

B(ũ(k − 1), y(k − 1)) ≤ y(k − 1)L +
(
2L − L− 2

)
ũ(k − 1)y(k − 1)2

≤
(
1 +

(
2L − L− 2

)
ũ(k − 1)

)
y(k − 1) ,

henceλ̂k−1y(k − 1) − βLρLk−1
y(k − 1) − αB(ũ(k − 1), y(k − 1)) ≥ 0 with equality only when

y(k − 1) = 0. Fork in Z = {k ≥ 1 : hτ (k) = 0} 6= ∅ we have

zτ (k − 1)− yτ (k − 1) = hτ (k − 1) ≥ 0 , zτ (k)− yτ (k) = −hτ (k + 1) ≤ 0 ,

henceḣτ (k) ≥ 0 with equality if only if k − 1 is inZ ∪ {0} andk + 1 is inZ. Moreoverht(k) > 0

for t < τ andhτ (k) = 0 imply ḣτ (k) ≤ 0. Henceḣτ (k) = 0, and the above signs and equality

cases yield thatzτ (k− 1) = yτ (k− 1) = 0 andk− 1 is inZ ∪ {0} andk+ 1 is inZ. By induction

zτ (i) = yτ (i) = 0 for i ≥ 1 which implieszt = yt = 0 for t ≥ τ , and the proof of (a) is complete.

The proof for (b) is similar and involves obvious changes of sign. The assumptionλ̂k > βLρLk

suffices to conclude sinceB(ũ(k − 1), y(k − 1)) ≥ 0 (Lemma 3.3) and the non-linearity “pushes”

in the right direction. �

Lemma 5.4 For any0 < θ < 1 there existsKθ <∞ such that forx in L2(gθ) ⊂ `01

‖(x(k) + x(k + 1) + · · ·)k≥1‖L2(gθ) ≤ Kθ‖x‖L2(gθ) .

Proof. Using a classical convexity inequality∑
k≥1

(x(k) + x(k + 1) + · · · )2θ−k

≤
∑
k≥1

n
(
x(k)2 + x(k + 1)2 + · · ·+ x(k + n− 2)2 + (x(k + n− 1) + x(k + n) + · · · )2

)
θ−k

≤ n
(
1 + θ + · · ·+ θn−2

) ∑
k≥1

x(k)2θ−k + n θn−1
∑
k≥1

(x(k) + x(k + 1) + · · · )2θ−k

and we taken large enough thatnθn−1 < 1 andK2
θ = n

(
1 + θ + · · ·+ θn−2

)
(1− nθn−1)−1. �

5.2 Proofs of the exponential stability results

Proof of Theorem 2.12 forL ≥ 2

If u0 is in V ∩ L2(gθ), then so areu−0 = min{u0, ũ} andu+
0 = max{u0, ũ} and hence the corre-

sponding solutionsu− andu+ for (1.2), see Theorem 2.2. Lemma 5.1 yields thatu−t ≤ ut ≤ u+
t and

u−t ≤ ũ ≤ u
+
t for t ≥ 0. Then

y = u− ũ , y+ = u+ − ũ ≥ 0 , y− = u− − ũ ≤ 0 ,

18



solve the recentered equation (5.1), and termwise

|y0| = max{y+
0 ,−y

−
0 } , |yt| ≤ max{y+

t ,−y
−
t } , t ≥ 0 . (5.3)

We consider the birth and death process with generatorÂ defined in Lemma 5.2 with

λ̂k = max
{
βLρLk

+ α
(
1 +

(
2L − L− 2

)
ũ(k)

)
, βθ

}
, k ≥ 1 ,

which satisfies the assumptions of Lemma 5.3 (a) and (b). We reproduce the spectral study in Sec-

tion 4.2 and the proof of Theorem 2.9 in Section 4.3 forÂ, corresponding objects being denoted with

a hat. Forρ ≤ θ < 1 we haveα ≤ βθ and hencêλk is equivalent toβθ for largek, Theorems 5.1

and 5.3 (i) in [3] yield that0 < γ̂ ≤ σ̂ =
(√
βθ −

√
β
)2 = β

(
1−
√
θ
)2

, and ifz solvesż = Â∗z

then‖zt‖L2(π̂) ≤ e−γ̂t‖z0‖L2(π̂) for t ≥ 0. Moreover

θk−1 ≤ π̂(k) = θk−1
k−1∏
i=1

max
{
θ−1LρLk

+ θ−1ρ
(
1 +

(
2L − L− 2

)
ũ(k)

)
, 1

}
and the product converges, henceπ̂(k) = O(θk) andθk = O(π̂(k)) and Lemma 2.1 yields that there

existsc > 0 andd > 0 such thatc−1‖ · ‖L2(π̂) ≤ ‖ · ‖L2(gθ) ≤ d‖ · ‖L2(π̂). Hence fort ≥ 0

‖zt‖L2(gθ) ≤ d‖zt‖L2(π̂) ≤ e−γ̂td‖z0‖L2(π̂) ≤ e−γ̂tcd‖z0‖L2(gθ) .

Hence ifz+ solvesz+ = Â∗z+ starting atz+
0 = y+

0 ≥ 0 then Lemmas 5.3 (a) and 5.4 yield

‖y+
t ‖L2(gθ) ≤ ‖(y+

t (k) + y+
t (k + 1) + · · · )k≥1‖L2(gθ)

≤ ‖(z+
t (k) + z+

t (k + 1) + · · · )k≥1‖L2(gθ)

≤ Kθ‖z+
t ‖L2(gθ) ≤ e−γ̂tcdKθ‖y+

0 ‖L2(gθ)

and similarly ifz− solvesz− = Â∗z− starting atz−0 = y−0 ≤ 0 then Lemmas 5.3 (b) and 5.4 yield

‖y−t ‖L2(gθ) ≤ e−γ̂tcdKθ‖y−0 ‖L2(gθ). We setγθ = γ̂ andCθ = cdKθ. Considering (5.3),

‖yt‖2L2(gθ) ≤ ‖y
+
t ‖2L2(gθ) + ‖y−t ‖2L2(gθ) ≤ e−2γθtC2

θ

(
‖y+

0 ‖
2
L2(gθ) + ‖y−0 ‖

2
L2(gθ)

)
and we complete the proof by remarking that fork ≥ 1, eithery+

0 (k) = y0(k) andy−0 (k) = 0 or

y−0 (k) = y0(k) andy+
0 (k) = 0, and hence‖y+

0 ‖2L2(gθ) + ‖y−0 ‖2L2(gθ) = ‖y0‖2L2(gθ).

Proof of Theorem 2.10 and of Theorem 2.12 forL = 1

The linearization (2.9) of Equation (1.2) is obtained by replacingB andH in Equation (5.1) by0

and coincides with Equation (5.1) forL = 1. Likewise, the equation for (2.9) corresponding to (5.2)

is obtained by omitting the termsαB(ũ(k − 1), yt(k − 1)). We obtain a result for Equation (2.9)

corresponding to Lemma 5.3 (a) and (b) under the sole assumptionλ̂k ≥ βLρLk
for k ≥ 1. The

proof proceeds as for Theorem 2.12 forL ≥ 2 with the difference that̂λk = max
{
βLρLk

, βθ
}

. We

haveλ̂k equal toβθ for largek for 0 < θ < 1 whenL ≥ 2 and forρ ≤ θ < 1 whenL = 1.
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6 Tightness estimates and the functional CLT in equilibrium

6.1 Proof of Lemma 2.13 (infinite horizon and invariant law bounds)

Let Uh(v) be the solution of (1.2) at timeh ≥ 0 with initial valuev in V. For t0 ≥ 0 let ZN
t0,h =

√
N

(
RN

t0+h − Uh(RN
t0 )

)
. ThenZN

t0+h = ZN
t0,h +

√
N

(
Uh(RN

t0 )− ũ
)

and Theorem 2.12 yields∥∥ZN
t0+h

∥∥
L2(gθ)

≤
∥∥ZN

t0,h

∥∥
L2(gθ)

+ e−γθhCθ

∥∥ZN
t0

∥∥
L2(gθ)

. (6.1)

The conditional law of(ZN
t0,h)h≥0 givenRN

t0 = r is the law ofZN started withRN
0 = u0 = r, in

particular withZN
0 = ZN

t0,0 = 0. We reason as in (3.7)–(3.10) except that the bound (3.9) becomes∥∥RN
t0+s

∥∥
L2(gθ)

≤ ‖ũ‖L2(gθ) +N−1/2
∥∥ZN

t0+s

∥∥
L2(gθ)

and we use (6.1) and obtain that for someKT <∞

sup
0≤h≤T

∥∥ZN
t0,h

∥∥
L2(gθ)

≤ KT

(
N−1/2 ‖ũ‖L2(gθ)+N

−1Cθ

∥∥ZN
t0

∥∥
L2(gθ)

+ sup
0≤h≤T

∥∥MN
t0+h −MN

t0

∥∥
L2(gθ)

)
which combined with (6.1) yields that for someLT <∞ we have for0 ≤ h ≤ T

E
(∥∥ZN

t0+h

∥∥2

L2(gθ)

)
≤ LT + 2(KTN

−1 + e−γθh)2C2
θ E

(∥∥ZN
t0

∥∥2

L2(gθ)

)
. (6.2)

We fix T large enough for8e−2γθTC2
θ ≤ ε < 1. Uniformly forN ≥ KT eγθT , form ∈ N

E
(∥∥ZN

(m+1)T

∥∥2

L2(gθ)

)
≤ LT + εE

(∥∥ZN
mT

∥∥2

L2(gθ)

)
and by induction

E
(∥∥ZN

mT

∥∥2

L2(gθ)

)
≤ LT

m∑
j=1

εj−1 + εm E
(∥∥ZN

0

∥∥2

L2(gθ)

)
≤ LT

1− ε
+ E

(∥∥ZN
0

∥∥2

L2(gθ)

)
,

and (6.2) also yields

sup
0≤h≤T

E
(∥∥ZN

mT+h

∥∥2

L2(gθ)

)
≤ LT + 8C2

θ E
(∥∥ZN

mT

∥∥2

L2(gθ)

)
,

hence the infinite horizon bound

sup
t≥0

E
(∥∥ZN

t

∥∥2

L2(gθ)

)
≤ LT + 8C2

θ

(
LT

1− ε
+ E

(∥∥ZN
0

∥∥2

L2(gθ)

))
.

Ergodicity and the Fatou Lemma yield that forZN
∞ distributed according to the invariant law

E
(∥∥ZN

∞
∥∥2

L2(gθ)

)
≤ lim inf

t≥0
E

(∥∥ZN
t

∥∥2

L2(gθ)

)
≤ sup

t≥0
E

(∥∥ZN
t

∥∥2

L2(gθ)

)
and the invariant law bound follows if we show that we can chooseRN

0 in VN such that

lim sup
N→∞

E
(∥∥ZN

0

∥∥2

L2(gθ)

)
<∞ . (6.3)
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For this we considerL ≥ 2, the caseL = 1 being similar, andRN
0 given fork ≥ 0 by RN

0 (k) =

iN−1 with 1 ≤ i ≤ N such that−2−1N−1 < ũ(k)− iN−1 ≤ 2−1N−1. Forx ≥ 0 and0 < y ≤ 1

y = ρ(Lx−1)/(L−1) ⇔ x = log (1 + (L− 1) log y/ log ρ) / logL

⇔ θ−x = (1 + (L− 1) log y/ log ρ)− log θ/ log L

hence forz(N) = inf
{
k ≥ 1 : RN

0 (k) = 0
}

we havez(N) = inf
{
k ≥ 1 : ũ(k) ≤ 2−1N−1

}
=

inf
{
k ∈ N : k ≥ log

(
1 + (L− 1) log

(
2−1N−1

)
/ log ρ

)
/ logL

}
. Then

∥∥ZN
0

∥∥2

L2(gθ)
= N

z(N)−1∑
k=1

(
RN

0 (k)− ũ(k)
)2
θ−k +N

∑
k≥z(N)

ũ(k)2θ−k

with

N

z(N)−1∑
k=1

(
RN

0 (k)− ũ(k)
)2
θ−k ≤ 2−2N−1 θ

−z(N) − θ−1

θ−1 − 1
= O

(
N−1(logN)− log θ/ log L

)
and for large enoughN (and hencez(N))

N
∑

k≥z(N)

ũ(k)2θ−k = Nũ(z(N))2
∑
j≥0

ρ2Lz(N)(Lj−1)/(L−1)θ−(j+z(N))

≤ 2−2N−1
∑
j≥0

ρLz(N)(Lj−1)/(L−1) = o(N−1) ,

hence (6.3) holds and the proof is complete.

6.2 The functional CLT: Proof of Theorem 2.14

Lemma 2.13 and the Markov inequality imply that in equilibrium(ZN
0 )N≥L is tight for the weak

topology ofL2(gρ), for which all bounded sets are relatively compact. Consider a subsequence. We

can extract a further subsequence along which(ZN
0 )N≥L converges in law to some square-integrable

Z∞0 in L2(gρ), and Theorem 2.6 yields that along the further subsequence(ZN )N≥L converges in

law to the OU processZ∞ unique solution for (2.10) inL2(gρ) starting atZ∞0 .

The limit in law of a sequence of stationary processes is stationary (Ethier-Kurtz [4] p. 131,

Lemma 7.7 and Theorem 7.8). Hence the law ofZ∞ is determined as the unique law of the stationary

OU process given by (2.10), see Theorem 2.11. From every subsequence we can extract a further

subsequence converging in law toZ∞, hencelimN→∞ ZN = Z∞ in law.
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