ECOLE POLYTECHNIQUE

CENTRE DE MATH EMATIQUES APPLIQU EES
UMR CNRS 7641

91128 PALAISEAU CEDEX (FRANCE). &l: 01 69 33 41 50. Fax: 01 69 3330 11

http://www.cmap.polytechnique.fr/

Functional central limit theorems for
a large network in which customers
join the shortest of several queues

Carl Graham

R.l. N° 526 Mars 2004







Functional central limit theorems for a large network in which
customers join the shortest of several queues

CARL GRAHAM *

Abstract. We considetV single server infinite buffer queues with service rat€ustomers arrive at raféa,
chooseL queues uniformly, and join the shortest. We study the proceéssé®, — RN = (RY (k))ren for
large N, whereRY (k) is the fraction of queues of length at leasat timet. Laws of large numbers (LLNS)

are known, see Vvedenskaya et al. [15], Mitzenmacher [12] and Graham [5]. We consider certain Hilbert
spaces with the weak topology. First, we prove a functional central limit theorem (CLT) undeptteri
assumption that the initial daf)’ satisfy the corresponding CLT. We use a compactness-uniqueness method,
and the limit is characterized as an Ornstein-Uhlenbeck (OU) process. Then, we stily thequilibrium

under the stability condition < (3, and prove a functional CLT with limit the OU process in equilibrium. We
use ergodicity and justify the inversion of limiteny .o lim; .o, = lim; . limy_,, by a compactness-
uniqueness method. We dedwcposteriorithe CLT for R} under the invariant laws, an interesting result in

its own right. The main tool for proving tightness of the implicitly defined invariant laws in the CLT scaling
and ergodicity of the limit OU process is a global exponential stability result for the nonlinear dynamical
system obtained in the functional LLN limit.
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1 Introduction
1.1 Preliminaries

We consider a Markovian network constitutedéf> L > 1 infinite buffer single server queues.
Customers arrive at rat¥ «, are each allocatel distinct queues uniformly at random, and join the
shortest, ties being resolved uniformly. Servers work atatérrivals, allocations, and services are
independent. Fof. = 1 we have i.i.d.M,/Mgs/1/00 queues. Fol, > 2 the interaction structure
depends only on sampling from the empirical measuré-ofiples of queue states: in statistical
mechanics terminology, the system islidbody mean-field interaction. We continue the large

study introduced by Vvedenskaya et al. [15] and Mitzenmacher [12] and continued in Graham [5].

The proces$ XV )1<i<n is Markov, whereX " (¢) denotes the length of queuat timet in R, .

Its empirical measurg? = % vazl dyn~ has samples i?(D(R4,N)), and its marginal process
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XN = (XN )iso with XY = iy = L3N dx~(; has sample paths iB(R, P(N)). We are

interested in the tails of the marginat§" and consider
1 N
RN = (RM)iz0,  RY =(RY(K)ken, R (k)= N ; Ty n gyt

and R} (k) is the fraction of queues of length at le&sat timet. For the uniform topology on

V= {0(k))ken : 0(0) = 1, v(k) > v(k + 1), limv =0} Ceo, VN =Vn %NN,

coinciding here with the product topology, the proc&35 has sample paths [B](R+, VN).

The processeX ¥ andR" are in relation throughp € P(N) «— v € V for v(k) = p[k, 00) and
p{k} =v(k)—v(k+1)for kin N. This classical homeomorphism maps the subspace of probability
measures with finite first moment ontonN ¢;, corresponding to a finite number of customers in the
network. The symmetry structure implies that these processes are Markov.

The stationary regime has great practical relevance. The stability conditiof® (Theorem 5 (a)
in [15], Lemma 3.1 in [12], Theorem 4.2 in [5]) is obtained from ergodicity criteria yielding little
information. We study the largd” asymptotics ofR”, first for transient regimes with appropriately
converging initial data, and then in equilibrium using an indirect approach involving ergodicity in
well-chosen transient regimes and an inversion of limits for la¥gand large times. Law of large

numbers (LLN) results are already known, and we obtain functional central limit theorems (CLTS).

1.2 Previous results: laws of large numbers

We relate results found in essence in Vvedenskaya et al. [15]. We follow Graham [5] which extends
these results, notably by considering the empirical measures on pathspamed thus yielding
chaoticity results (asymptotic independence of queues). Chapter 3 in Mitzenmacher [12] gives re-
lated results. (The ratesand correspond to\ and1 in [15, 12] andv and ) in [5].)

Consider the mappings with valuesdhgiven forv in ¢y by
Fr()(k) = a(o(k = DF —o(k)"), F_(0)(k) = Bu(k) —v(k+1)), k=1, (L1)
andF = F; — F_, and the nonlinear differential equation= F'(u) onV, given fort > 0 by
(k) = aug(k — 1)F —up(k)Y) — Blue(k) — ue(k + 1))
= aw(k — 1)* — (aw (k)" + Bur(k)) — Bus(k+1),  k>1. (1.2)

This corresponds to the systems (1.6) in [15], (3.5) in [12] and (3.9) in [5]. Noteftha linear.

Theorem 1.1 There exists a unique solutian= (u:):>o taking values inY for (1.2), andu is in
C(R4, V). If ug isin ¥V N ¢; thenu takes values iy N /5.
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Proof. We use Theorem 3.3 and Proposition 2.3 in [5]. These exploit the homeomorphism be-
tweenP(N) with the weak topology and with the product topology. Then (1.2) corresponds

to a non-linear forward Kolmogorov equation for a pure jump process with uniformly bounded
(time-dependent) jump rates. Uniqueness within the class of bounded measures and existence of
a probability-measure valued solution are obtained using the total variation norm. Theorem 1 (a) in

[15] yields existence (and uniquenessyim /. O

Firstly, a functional LLN for initial conditions satisfying a LLN is part of Theorem 3.4 in [5] and

can be deduced from Theorem 2 in [15].

Theorem 1.2 Assume tha(LRé\’)NZL converges in law tag in V. Then(RN)NZL converges in law

inID(R4, V) to the unique solutiom = (u;):>o Starting atu for (1.2).
Secondly, forw < § the limit equation (1.2) has a globally attractive stable paiit V N ¢;.

Theorem 1.3 Letp = o/ < 1. The equation (1.2) has a unique stable poinVigiven by

i = (a(k)pen, (k) = pE=D/E=1) = JLATIHLA g1

and the solution; of (1.2) starting at any:y in V N £1 is such thatim; ., u; = @.

Proof. Theorem 1 (b) in [15] yields that is globally asymptotically stable i N ¢;. A stable point
winV satisfies3u(k + 1) — au(k)® = Bu(k) — au(k — 1)*¥ = --- = Bu(1) — o and converges to

0, henceu(1) = o/ andu(2), u(3), ... are successively determined uniquely. O

Lastly, a compactness-uniqueness argument justifies the inversion ofllmjits. o, lim; .o, =
limy oo limy_. 0, Which yields a result in equilibrium. This method, used by Whitt [16] for the star-
shaped loss network, is detailed in Graham [6] Sections 9.5 and 9.7.3. The following functional LLN
in equilibrium (Theorem 4.4 in [5]) can be deduced from [15] but is not stated there, and implies that
under the invariant lawlm y ... E(RY (k)) = (k) for k € N (Theorem 5 (c) in [15]).

Theorem 1.4 Letp = «/3 < 1 and the networks of siz& be in equilibrium. Ther{RY) x>,
converges in probability i)(R., V) to «.

Note thati(k) decays hyper-exponentially infor L > 2 instead of the exponential deca¥
corresponding to i.i.d. queues in equilibriuth & 1). For finite networks in equilibrium there is at
most exponential decay sinBy(X{" + --- + X§ > Nk) < P(X{' > k) +---+P(X}Y > k) and
by comparison with aiM/ . /Myg/1 queue

E(R (k) =P(X]" (1) > k) > %pN’“, k>0 (1.3)



The asymptotic queue sizes are dramatically decreased by this simple load balancing (or resource
pooling) procedure, which carries little overhead even for laxgsince L is fixed (for instance
L = 2). This feature is quite robust and true for many systems, as was illustrated on several examples
by Mitzenmacher [12] and Turner [14] using proofs as well as simulations. It can be used as a
guideline for designing practical networks. In contrast, the bound (1.3) assumes the best utilization

of the N servers, fully collaborating even for a single customer.

Theorem 3.5 in Graham [5] gives convergence bounds on bounded time infér&l$or i.i.d.
(XN

2

(0))1<i<n using results in Graham and@&gard [7]. This can be extended if the initial laws

satisfya priori controls, but it is not so in equilibrium (the bounds are exponentially larg8.in

1.3 The outline of this paper

The study of the fluctuations around the functional LLN will yield for instance asymptotically tight
confidence intervals for the process» N~'Card{i =1,..., N : X}V (t) € A}. In a realistic set-

ting (finite number of finite buffer queues) such confidence intervals would allow network evaluation
or dimensioning in function of quality of service requirements on delays and overflows. The LLN
on path space concerns objects suciVasCard{i = 1,..., N : (t — X}V (t)) € B} with aricher

temporal structure, but topological difficulties usually block the corresponding fluctuation study.

We consider the proceg#" and solution for (1.2) starting at?)y in V» andu in V, and
ZN = VN(RYN —u). (1.4)

The processeg” = (Z}),>o will be studied in the Skorokhod spaces on appropriate Hilbert spaces

with the weak topology. These spaces are not metrizable and require appropriate tightness criteria.

We first consider a wide class @t} andwu, under theassumptiorthat (Z}¥)n>. converges
in law (for instance satisfies a CLT). We obtain a functional CLT in relation to Theorem 1.2, with
limit given by an Ornstein-Uhlenbeck (OU) process starting at the limit of () y>z. This
covers without constraints am and 3 manytransientregimes withexplicit initial conditions, such

as initially empty networks, or more generally i.i.d. initial queue sizes.

We then focus on thetationaryregime fora. < (. The initial data is nowmplicit: the law of
RY is the invariant law forR™ andug = @. We prove tightness faiZ)') x>, using the ergodicity
of ZN for fixed N and intricate fine studies of the long-time behavior of the nonlinear dynamics
appearing at the larg® limit. The main result in this paper is a functional CLT in equilibrium for
(Z™) y>r, with limit the OU process in equilibrium. Thimpliesa CLT under the invariant laws for

(Z{¥)n>1, an important result which seems difficult to obtain directly.

Section 2 introduces without proof the main notions and results. Section 3 gives the proof of the

functional CLT for converging initial data by compactness-uniqueness and martingale techniques.
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We then considety = 4. We study the OU process in Section 4, derive a spectral representation
for the linear operator in the drift, and prove the existence of a spectral gap. A main difficulty is that
the scalar product for which the operator is self-adjoirtbs strongfor the limit dynamical system
and the invariant laws for finit&/. We consider appropriate Hilbert spaces in which the operator is

not self-adjoint and prove exponential stability.

In Section 5 we likewise prove thatis globally exponentially stable for the non-linear dynamical
system. In Section 6 we obtain bounds 6 uniform for¢ > 0 and largeN, using the preceding
stability result in order to iterate the bounds on intervals of leAgtiBounds on the invariant laws
of ZN follow using ergodicity. The proof for the functional CLT in equilibrium follows from a

compactness-uniqueness argument involving the functional CLT for converging initial data.

2 The functional central limit theorems

2.1 Preliminaries

The exponential of a bounded linear operator is given by the usual series expansitgr’arhdﬂg for

p > 1 be the subspaces of sequences vanishifg#the classical sequence spaegéwith limit 0)

and/, (with summablep-th power). In matrix notation we use the canonical basis, hence sequences
vanishing ab are identified with infinite column vectors indexed fily, 2, - - -}. The diagonal matrix

with terms given by the sequeneeis denoted byliag(a). Sequence inequalities, etc., should be
interpreted termwise. Empty sums are equdl amd empty products tb. Constants such & may

vary from line to line. Letyy = (Gk)kzl be the geometric sequence with paraméter

For a sequence = (w(k))x>1 such thatu(k) > 0 we define the Hilbert spaces

_ N . _ 2 _ z (k) ? _ 2 -1
Lo(w) z€R":2(0) =0, |27, Z w(h) w(k) Zm(k}) w(k)™ < oo

k>1 k>1

and in matrix notatior{z, y) () = z*diag(w™!)y. We use the notatiofi»(w) since its elements
will often be considered as measures identified with their densities with respect to the reference
measurew. In this perspectivd.; (w) = ¢{ and if w is summable thefjz|; < |]w\|1/2||xHL2(w)
and Ly (w) C ¢9. Using Ly(1) = ¢ as a pivot space, for boundedwe have the Gelfand triplet
Lo(w) C 63 C La(w)* = La(w™t).
Another natural perspective dip(w) is that it is an/, space with weights, and we consider the
£1 space with same weights (the notation being chosen for consistency)
0 (w) = {m ERY:2(0) =0, [zl = D le(k)|wk) " < oo}
E>1
andz € Ly(w) & 2 € £1(w) with [|2Z, ) = [2*[|¢, ) The inclusiony N ¢y (w) — VN La(w)

is continuous since? < |x| for |z| < 1. The following result is trivial.
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Lemma 2.1 If w = O(v) andv = O(w) then theLy(v) and Ly(w) norms are equivalent, and the

¢1(v) and/; (w) norms are equivalent.

In the sequel we often assume that= (wy),>; satisfies the condition that
de,d>0,Vk>1,0<cw(k+1) <w(k) <dw(k+1), (2.1)

which is satisfied byy = (6%)x>1 with ¢ = d = 1/6 for 6 > 0. It implies thatw(1)d(1/d)* <
w(k) < w(1)e(1/¢)* which boundsw by geometric sequences. The norms have exponentially strong

weights forc > 1. We give a refined existence result {ar2). (Proofs are left for later.)

Theorem 2.2 Letw satisfy (2.1). Then itw the mappingd”, F'; and F_ are Lipschitz for thels (w)

and the/; (w) norms. Existence and uniqueness holds for (1.2) im Ly(w) and inV N 41 (w).

2.2 The functional CLT for converging initial data

The time-inhomogeneous Ornstein-Uhlenbeck process

In V, the linearization of (1.2) around a particular solutiois the linearization of the recentered

equation satisfied by = g — v whereg is a generic solution for (1.2). It is given foer> 0 by
Z = K(u)z (2.2)
where forv in V the linear operatoK (v) : z — K(v)z onc) is given by
K()z(k) = aLv(k — 1)F ek — 1) — (aLv(k)I Y + B)z(k) + Bz(k+1), k>1, (2.3)

and is identified with its infinite matrix in the canonical badis1,0,0...), (0,0,1,0...), ...

— (aLv(1)X=1 + ) 6] 0
alv(1)F=1 — (aLv(2)E1 + ) B
K(v) = 0 aLv(2)t1 — (aLv(3)L71 + )
0 alLv(3)L1

0

Let (M (k))ren be independent real continuous centered Gaussian martingales, determined in

law by their deterministic Doob-Meyer brackets givenfor 0 by

(M(R)), = /O [F, (us)(k) + F_(u)(k)} ds (2.4)

The processes! = (M (k)0 and (M) = ((M(k))) .y, have values in.

Theorem 2.3 Let w satisfy (2.1) andup be inV N ¢;(w). Then the Gaussian martingal® is

square-integrable iy (w).



Proof. We haveE(HMtH%Q(w)) = [[(M)¢t[l¢, () @nd we conclude using (2.4), Theorem 2.2, and

uniform bounds ir; (w) on (us)o<s<: IN function ofug given by the Gronwall Lemma. O

The limit equation for the fluctuations is a Gaussian perturbation of (2.2), the inhomogeneous
affine SDE given fot > 0 by

t
Zy = Z0+/ K (us)Zs ds + M . (2.5)
0

A well-defined solution is called an Ornstein-Uhlenbeck process, in short OU process. We recall that

strong (or pathwise) uniqueness implies weak uniqueness, and thatC Lo (w).

Theorem 2.4 Let the sequence satisfy (2.1).

(a) Forv in v, the operatoK (v) is bounded inLy(w) with operator norm uniformly bounded in
(b) Letu, be inV N Ly(w). Then inLs(w) there is a unique solution, = efo K(w:) s for (2.2)
and strong unigueness of solutions holds for (2.5).

(c) Letu, be inV N 41 (w). Then inLy(w) there is a unique strong solutial, = elo K(us)ds 7, 4
fot el Kudrgnr for (2.5) and ifE(HZoH%Q(w)> < o0 thenE<supt§T HZt||%2(w)> < 0.

Tightness bounds and the CLT

The finite-horizon bounds in the following lemma will yield tightness estimates for the procg8ses

used in the compactness-uniqueness proof for the subsequent theorem.

Lemma 2.5 Letw satisfy (2.1). Letiy be inV N ¢1(w) and RY be inV. For anyT > 0

. N2 . N2
lim sup B (128 ) < o0 = h;ﬂj;;pEQ;ggT |12 HL2<w>) <o

We refer to Jakubowski [8] for the Skorokhod topology for non-metrizable topologies. For the
weak topology of a reflexive Banach space, the relatively compact sets are the bounded sets for the
norm, see Rudin [13] Theorems 1.15 (b), 3.18, and 4.3. HencdB(sij denotes the closed ball
centered at O of radius, a set7 of probability measures is tight if and only if for al > 0 there

existsr. < oo such thap(B(r:)) > 1 — ¢ uniformly for p in 7. We state the functional CLT.

Theorem 2.6 Letw satisfy (2.1). Considefs(w) with its weak topology anfd(R, Ly (w)) with
the corresponding Skorokhod topology. kgtbe inV N ¢1(w), RY in VY, and ZV be given by
(1.4). If (Z))n>L converges in law td7, and is tight, then(Z"V) x>, converges in law to the

unique OU process solving (2.5) starting4s and is tight.
2.3 The functional CLT in equilibrium
We assume the stability conditign= o/ < 1 holds, and consider, = 4.
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The Ornstein-Uhlenbeck process
We setC = K(u) and (2.3) yields thakl : = € ¢) — Kz € ¢ is given by
Ka(k) = K(@)e(k) = BLp" ak —1) — (ﬂLpL’“ + 5) 2(k) + Be(k+1), k>1, (2.6)

identified with its infinite matrix in the canonical basis

— (8Lp" + 8) 8 0 0
Lot —(BLe" +5) 8 0
K = 0 BLe  —(BLp" 4+ 9) 8 | @
0 0 BLpY . (BLpL4 + 6)

Note thatlC = A* whereA is the generator of a sub-Markovian birth and death process. We give
the Karlin-McGregor spectral decomposition #6rin Section 4.2, to which we make a few forward

references (it isota resolution of the identity, see Rudin [13]). The potential coefficienid afe
m= (@)1, wlk) = L R = ot R ) (2.8)

and solve the detailed balance equatiofis + 1) = L,oLkw(k:) with (1) = 1. The linearization of

(1.2) around its stable pointis the forward Kolmogorov equation fot given fort > 0 by
Zt = ICZt (29)

which is special case of (2.2). Considering (2.4) &fd) = F'\(u) — F_(a) = 0, the martingale
M = (M(k))ren has the same law asgvalued sequencB = (B(k))xen Of independent centered

Brownian motions such tha(0) = 0 and fork > 1
(k) := var(By (k) = E(Bi(k)?) = 28 (a(k) — a(k + 1)) = 28pF" =D/E=1 (1 = pE%) |
and B has diagonal infinitesimal covariance matdixg(v). The following result is obvious.

Theorem 2.7 The process3 is an Hilbertian Brownian motion i (w) if and only ifa is in £; (w).

This is true forw = m andw = gy for 6 > 0 whenL > 2 or for w = gg for § > p whenL = 1.

The Ornstein-Uhlenbeck (OU) proce8s= (Z(k))ren Solves the affine SDE given for> 0 by
t

Zy = Zy + / KZsds + By (2.10)
0

which is a Brownian perturbation of (2.9). Far> 2, existence and uniqueness results hold under

much weaker assumptions than (2.1).



Theorem 2.8 Letw be such that there exists> 0 andd > 0 with
0<cwk+1) <w(k) < dprLkw(k +1), E>1.

(@) In Ly(w), the operatork is bounded, the equation (2.9) has a unique solutipn= ez,
wheree®t has a spectral representation given by (4.1), and there is uniqueness of solutions for the
SDE (2.10). The assumptions and conclusions hold/fer m andw = gg for 6 > 0.

(b) In addition letw be such that is in /1 (w). The SDE (2.10) has a unique solutigh= ¢! 7 +-

5 Xt=) By in Ly(w) further made explicit in (4.2). This the case for= = andw = g, for

6 > 0whenL > 2 orforw = ggfor6 > pwhenL = 1.

We use results in van Doorn [3] to prove the existence of a spectral gap, and use this fact for an

exponential stability result inspired from Callaert and Keilson [2] Section 10.

Theorem 2.9 (Spectral gap.) The operatd€ is bounded self-adjoint id» (7). The least pointy

of the spectrum ok is such thal) < v < . The solutionz; = ¢tz for (2.9) in Ly (7) satisfies

126l o) < € |20l L)

For L > 2 the sequence decays hyper-exponentially, see (2.8), and (1.3) implies thdtilwe)
norm is too strong for the CLT. Further, the mappifig is not Lipschitz iny N Ly(7) for the Ly ()
norm, see Theorems 2.2 and 2.8 and their contrasting assumptions and proofs. Hence we prove

exponential stability and (exponential) ergodicity for the OU process in appropriate spaces.

Theorem 2.10 Let0 < 6 < 1whenL > 2orp < 6 < 1whenL = 1. There existgy > 0 andCy <

oo such that the solution, = "'z for (2.9) in La(g) satisfies| 2| 1,5, < € " Chll20/ 1.5 (gy)-

Theorem 2.11Letw = morw = gy With0 < 8 < 1whenL > 2 orletw = gg Withp < 6 < 1
whenL = 1. Any solution for the SDE (2.10) ik, (w) converges in law for large times to its unique
invariant law (exponentially fast). This law is the law F e®d B, which is Gaussian centered with
covariance matrix|; e*diag(7)e* "*dt made more explicit in (4.3) and (4.4). There is a unique
stationary OU process solving the SDE (2.10Yis(w).

Global exponential stability for (1.2), infinite-horizon and invariant law bounds, and the CLT

We state an important global exponential stability resul &r the non-linear dynamical system.
This is essential in the proof of the subsequent infinite-horizon bounds for the marginals of the
processes, which yield bounds on their long time limit, the invariant law. We need uniformity over

the state space, and results for the linearized equation (2.8paeaough.



Theorem 2.12 Letp < 6 < 1 andu be the solution of (1.2) starting at, in V N L2(gg). There

existsyy > 0 andCy < oo such thatlju; — |, (g,) < € 7" Cylluo — | 1, (gy)-

This doeshothold in Ly(7) for L > 2, else Lemma 2.13 below would also holdlig(7), which
would contradict (1.3). Theorem 3.6 in Mitzenmacher [12] states a related result for some weighted

£1 norms obtained by potential function techniques.

Lemma 2.13 Letp < 6 < 1whenL >2orp < 6 < 1whenL = 1. Then

. N2 ; N2
ot B (178 ,) < o0 = Hmsupsup® (1271, ) < o0

and under the invariant lawkm supy_, .. E (HZ{)VH%Q(%)) < oo.

Our main result is the functional CLT in equilibrium, obtained with a compactness-uniqueness

method using tightness of the invariant laws (based on Lemma 2.13) and Theorems 2.6 and 2.11.

Theorem 2.14 Let the networks of siz& be in equilibrium. ForL > 2 considerLy(g,) with
its weak topology an® (R, L2(g,)) with the corresponding Skorokhod topology. THER ) > 1,
converges in law to the unique stationary OU process solving the SDE (2.10), in par(igdlan 7,
converges in law to the invariant law for this process (see Theorem 2.11). Foil the same result

holds inLy(gp) for p < 6 < 1.

3 The proofs for converging initial conditions

3.1 Existence and unigueness results

Proof of Theorem 2.2 (refined existence result for (1.2))

We give the proof foi.s (w), the proof for¢; (w) being similar. The assumption (2.1) and the identity
ot —yt = (@ -y + 2"y + -+ gyt yield
(u(k — 1) = v(k — 1)5) w(k)™ < (u(k — 1) — v(k — 1)) L2dw(k — 1),

(u(k)" = v(k))* wk) ™" < (u(k) - o(k)? LPw(k) ™,

(wk+1) —vlk+ 1)) wk) ™ < (wk+1)—vk+1)?ctwk+1)7T,

hence we have the Lipschitz boungiB’. (u) — i (v)[17,,,, < 20°L*(d + 1)|lu — ||, and
1F-(w) = F-()]I7, 0 < 268%(c™" + Dllu - v]3,,,. Existence and uniqueness follows by a

classical Cauchy-Lipschitz method.
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The derivation of the Ornstein-Uhlenbeck process

Let (z)y = x(z —1)---(x — k+ 1) for z € R (the falling factorial of degreé¢ € N). Considering

(1.12), let the mappingEiV and FN with values inc) be given forv in ¢ by

(No(k—1))r — (Nv(k))L
(N)rL ’

FY()(k) =a kE>1, FN(w)=FN@w) - F_(v). (3.1)

The processk’ is Markov onV?, and when in state has jumps in its:-th coordinatek > 1, of
sizel/N atrateNF?Y (r)(k) and size-1/N atrateN F_(r)(k).

Lemma 3.1 Let RYY be inV¥, u solve (1.2) starting at in V, andZ"¥ be given by (1.4). Then
t
zN =z} +/ VN (FN(RY) — F(u,)) ds + MY (3.2)
0

defines an independent family of square-integrable marting@lés = (M" (k))ren independent

of Z} with Doob-Meyer brackets given by
t
(), = [ {FY R)®) + F(RY) W) ds. (3.3)

Proof. This follows from a classical application of the Dynkin formula. g

The first lemma below shows that it is indifferent to chooseltlygieues with or without replace-

ment at this level of precision. The second one is a linearization formula.

Lemma3.2 For N > L > 1 anda in R we have

AN(a) := (Na)p, _aL:Lz_:l(a_l)jaL—j 3 i
- s j=1 1<iy << <L—1 (N —iy) - (N —ij)

and AN (a) = N~'O(a), uniformly for0 < a < 1, and AN (k/N) < 0fork =0,1,...,N.

Proof. We developN®e — 1L ! Na—i _ Lot (a +(a—1)5 ) to obtain the identity for

(N)r N—i
AN(a) which is clearlyN—'O(a), uniformly for0 < a < 1. Fora = k/N, [/, J& is com-
posed of terms bounded layor contains a term equal tband cannot exceed". O

Lemma 3.3 For L > 1 andae and/ in R we have
Lo/ .
B(a,h) == (a + h)' —al — LaP'h = Z < ‘)aL_Zh’
i—2 \!

with B(a,h) = 0 for L = 1 and B(a,h) = h? for L = 2. For L > 2 we have) < B(a,h) <
hl + (21— L — 2) ah? for a anda + R in [0, 1].

11



Proof. The identity is Newton’s binomial formula. A convexity argument yielgig:, h) > 0. Fora
anda + hin [0,1], B(a,h) < h* + 310" ()ah? = b + (28 — L — 2) ah?. O

Letv be inV andz in ¢J. Considering (1.1), (3.1) and Lemma 3.2,d&Y : V — ¢ be given by
GN (0) (k) = aAN (v(k — 1)) — a AN (v(k)), k>1, (3.4)
and considering (1.1), (2.3) and Lemma 3.3/t V x c) — ¢J be given by
H(v,z)(k) =aB(v(k—1),z(k —1)) — aB(v(k),z(k)), kE>1, (3.5)
so that forv + z in V
FN=F4+GN, Fw+4z)-F@) =K@z+Hv,z), (3.6)

and we derive the limit equation (2.5) and (2.4) for the fluctuations from (3.2) and (3.3).

Proof of Theorem 2.4 (existence and uniqueness for the OU process)
Considering (2.3)y < 1, convexity bounds, and (2.1), we have

K ()17, < 20aL+8)) (aLa(k—1)2dwk —1)"" + (aL + B)x(k)*w(k) "
k>1

+ Bk +1)%c  w(k + 1))
< 2(aL + B)(aL(d+1) + Blc™t + 1))|z|2, )

and (a) and (b) follow. Fot, in V N ¢1(w) the martingaleM is square-integrable ifs(w). If

E<\|Z0H%2(w)) < oo then the formula forZ is well-defined, solves the SDE, and the Gronwall

Lemma yieIdsE<supt§T HZt\|%2(w)> < oo. Else for anye > 0 there isr. < oo such that

P(HZOHLQ(U,) > rs) < ¢ and a localization procedure using pathwise uniqueness yields existence.

3.2 The proof of the CLT
Proof for Lemma 2.5 (finite-horizon bounds)
Using (3.2) and (3.6)
ZN =7V + M} + \/N/Ot GN(RN)ds + /Ot\/N(F(Rgv) — F(uy)) ds (3.7)
where Lemma 3.2 yield&™¥ (RY) (k) = N7'O(RY (k — 1) + R (k)) and considering (2.1)
e m

Moy = N0 ) (3:8)

We have
HRéVHLQ(w) = HUSHLQ(U)) + N_1/2 HZéVHLQ(w) (39)
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and sincef’,, F_ and F' are Lipschitz (Theorem 2.2) the Gronwall Lemma yields that for some
K < oo we havelus|| ) < K7 [luol 1, ., @nd
N N -1/2 N
A 12| Ly < KT(HZO Loy + N 2K [luoll ) + oot 17 HL2(w)>'

We conclude using the Doob inequality, (3.3), (3.6), (3.8), (3.9), and

[F4 (B + Fo (B 10y < K BIN 10)- (3.10)

Tightness for the process

Lemma 3.4 Letw satisfy (2.1), and considérs (w) with its weak topology an®(R ., Ly (w)) with
the corresponding Skorokhod topology. kgthe inV N ¢;(w) and RYY in VY, and Z¥ be given by

(1.4). 1f(Z{)n>1 is tight then(Z) v, is tight and its limit points are continuous.

Proof. Fore > 0 letr. < oo be such thaP(Z)¥ € B(r.)) > 1 —efor N > 1 (see the discussion
prior to Theorem 2.6). LeR,)* be equal taR) on {2} € B(r.)} and such thaZ, * is uniformly
bounded inLs(w) on {Z) ¢ B(r.)}. Then ZéV’E is uniformly bounded inLy(w) and we may
use a coupling argument to constrigt < and Z™ coinciding on{Z}’ € B(r.)}. Hence to prove
tightness of ZV) x>, we may restrict our attention {@") vy, uniformly bounded inLs(w), for

which we may use Lemma 2.5.

The compact subsets @f;(w) are Polish, a fact yielding tightness criteria. We deduce from
Theorems 4.6 and 3.1 in Jakubowski [8], which considers completely regular Hausdorff spaces (Ty-

chonoff spaces) of whichs(w) with its weak topology is an example, th&™) v, is tight if

1. For eacHl’ > 0 ande > 0 there is a bounded subs&t; . of Ly(w) such that forN > L we
haveP (Z" € D([0,T), K1) > 1—e.

2. For eachi > 1, thed-dimensional processég™ (1), ..., Z¥(d)) >, are tight.

Lemma 2.5 and the Markov inequality yield condition 1. We use (3.7) (see (3.2) and (3.6)),
and (3.3) and (3.6), and the bounds (3.8), (3.9) and (3.10). The bounds in Lemma 2.5 and the fact
that ZV (k) has jumps of size /v/N = o(N) classically imply that the above finite-dimensional
processes are tight and have continuous limit points, see for instance Ethier-Kurtz [4] Theorem 4.1
p. 354 or Joffe-Mtivier [9] Proposition 3.2.3 and their proofs. O

Proof of Theorem 2.6 (the functional CLT)

Lemma 3.4 implies that from any subsequenceZ6f we may extract a further subsequence which

converges to somg&° with continuous sample paths. Necessaffy has same law ag,. In (3.7)
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we have considering (3.6) that
VN (F(RY)(k) = F(us)(k)) = K(us) ZY + VNH (ug, N"'2ZY) . (311)

We use the bounds (3.8), (3.9) and (3.10), the uniform bounds in Lemma 2.5, and additionally (3.5)
and Lemma 3.3. We deduce by a martingale characterizatioitidtas the law of the OU process
unique solution for (2.5) irl2(w) starting atZ3°, see Theorem 2.4; the drift vector is given by the
limit for (3.2) and (3.7) considering (3.11), and the martingale bracket by the limit for (3.3). See for
instance Ethier-Kurtz [4] Theorem 4.1 p. 354 or Joffé&tivier [9] Theorem 3.3.1 and their proofs

for details. Thus, this law is the unique accumulation point for the relatively compact sequence of

laws of (ZV) y>1, which must then converge to it, proving Theorem 2.6.

4  The properties of € = K(1u)
4.1 Proof of Theorem 2.8 (existence and uniqueness results)

Considering (2.6) and convexity bounds we have

K207 0y = 87 (L D0k — 1) — (L™ + 1)z (k) + 2(k + 1))2w(k)*1
k>1

< /6’2 2L + 2) ( Zp oLk— 1 2w(k)_1+LZp2Lkz(k)2w k)~

k>1 k>1

+ )2k wk) > 2k + 1)2w(k)_1>

E>1 k>1

< B%(2L + 2) (Ldz 2k = 12wk — 1)~ + (Lp*F +1) ) 2(k)*w(k) ™

k>2 k>1

+e D> sk + 1) w(k+1)7 )

k>1
< B2(2L+2) (Lo + Ld+ ¢ " +1) 2l ) -
The Gronwall Lemma yields uniqueness. kop 1 we have
(L") w(ke+ 1) < w(k) = (Lp™) " w(k + 1) < (LR 2 ) w4 1),
9—lgkt+l < gk < (9 1 L —2Lk)9k+1.

When B is an Hilbertian Brownian motion, the formula faryields a well-defined solution.

4.2 Arelated birth and death process, and the spectral decomposition

Considering (2.7),A = K* is the infinitesimal generator of the sub-Markovian birth and death
process on the irreducible class 2, . ..) with birth rates\;, = ﬂLka and death rateg,, = (5 for

k > 1 (killed at rateu; = [ at statel). The process is well-defined since the rates are bounded.
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Karlin and McGregor [10, 11] give a spectral decomposition for such processes, used by Callaert
and Keilson [1, 2] and van Doorn [3] to study exponential ergodicity properties. The state space in
these works ig0, 1,2, .. .), possibly extended by an absorbing barrier or graveyard staté.aiVe
consider(1, 2, ...) and adapt their notations to this simple shift.

The potential coefficients ([10] eq. (2.2), [3] eq. (2.10)) are given by

YREE

(k) = AL A1 Lot o Lot = Ly =L)/(L-1) E>1,
M2 -

and solve the detailed balance equatipps;w(k + 1) = \gm(k) with (1) = 1, see (2.8).

The equationdQ(z) = —zQ(x) for an eigenvecto)(z) = (Qn(z))n>1 Of eigenvalue—z
yields\1Q2(z) = (A + 1 — 2)Q1(z) and\,Qni1(z) = A + i — ) Qn(x) — pinQn—1(z) for
n > 2. With the natural conventio®, = 0 and normalizing choic€); = 1, we obtain inductively

@, as the polynomial of degree— 1 satisfying the recurrence relation

—2Qn () = BQn-1(x) — (BL™" + B) Qn(x) + BLY™ Quir(z),  n>1,
corresponding to [10] eq. (2.1) and [3] eq. (2.15). Such a sequence of polynomials is orthogonal with
respect to a probability measufeon R, and, fori, j > 1 with i # j, [ Qi(x)? ¢(dx) = w(i)~*
and [;° Qi(2)Q;(z) ¢(dx) = 0 or in matrix notation|;* Q(z)Q(x)* 1 (dz) = diag(r ).
Let P, = (p(4,7))i;>1 denote the sub-stochastic transition matrix for The adjoint matrix
Py is the fundamental solution for the forward equatign= A*z; = Kz given in (2.9). The

representation formula of Karlin and McGregor [10, 11], see (1.2) and (2.18) in [3], yields

&= P = (i igers PEGsd) = (i) = 7(0) / e Qu(n)Qy (@) w(dr) . (4.0)

0
or in matrix notatiore™ = diag(r) [;° e "'Q(2)Q(z)* ¢ (dz).

The probability measure is called the spectral measure, its supors called the spectrum,
and we sety = min S. The OU process in Theorem 2.8 (b) and its invariant law and its covariance

matrix in Theorems 2.11 and 2.14 can be written

7, = diag() / e Q(z)* (Zo + /0 s st> Q(z) ¥(dx) 4.2)

S

/OOO M dB, = diag(w)/s <Q($)* /OOO - dBt) Q) v(dz) 43

/0 Ooe’“diag(ﬁ)e’c*tdt:diag(w) 5 (x)*iaf(yﬁ)Q(y)

Q(2)Q(y)" Y (dx)(dy) diag(r). (4.4)
4.3 The spectral gap, exponential stability, and ergodicity
Proof of Theorem 2.9 (spectral gap and exponential stability in the self-adjoint case)

The potential coefficientsr(k));>1 solve the detailed balance equationsfoand hencdC = A* is

self-adjoint inLy (7). For the spectral gap, we follow Van Doorn [3], Section 2.3. The orthogonality
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properties imply tha€),, hasn — 1 distinct zero$) < z, 1 < ... < zp p—1 Suchthate,1; < x,; <
Tny1,i+1 for 1 <4 < n —1. Hence; = limy, oo ;i > 0 eXists,§; < &1, ando = lim; o &
exists in[0, co]. Theorem 5.1 in [3] establishes that> 0 if and only if o > 0 and Theorem 5.3 (i)
in [3] that o = (y/Timy, A, — Iy, z)° = 8 > 0. (Theorem 3.3 in [3] states that= ¢, < o, but

estimatingg; is impractical.)

For the exponential stability, we haye:||7 ., = (eFtzg, M and the fact that"* is

20) Lo(r)
self-adjoint inLy(7) and the spectral representation (4.1) yield

(eM20,20) ) = (20,€720) 1) = /So ()Q(x)"20 ¥ (dx)

IN

e /5 % Q(@)Q(x) 20 v (dx) = ™" (20, 20) 1, (ry -

Proof of Theorem 2.10 (exponential stability, non self-adjoint case)

It is similar to and simpler than the proof for Theorem 2.12 to which Section 5 is devoted, and we

postpone the proof until the end of that section.

Proof of Theorem 2.11 (ergodicity for the OU process)

We use the uniqueness result and explicit formula in Theorem 2.8, and Theorem 2.9 or 2.10.

5 Exponential stability for the nonlinear system
5.1 Some comparison results

Considering (3.6) withiC = K(a) andF'(u) = 0, if u solves (1.2) inV theny = u — @ solves the
recentered equation given by(k) = F'(a + y) = Ky:(k) + H(a,y:)(k) or

(k) = BLYY gk — 1) + aB(a(k — 1), y:(k — 1))

— (BLo™ (k) + aB(@k), (k) + By (K)) + Bk +1), k=1 (B.1)

If ugisin¥V N ¢y thenuisiny N{; and hencey is in Z(f and fork > 1 we have
" " o= BLPY gk — 1) + aB(a(k — 1), (k= 1)) — By(k) . (5.2)
(k) +9e(k+1) + BLp"

If y solves (5.1) starting afy such thatyy + @ is in V, thenu = y + @ solves (1.2) inY starting at
up =yo + @ Then—a <y <1-aand—1 <y < 1. Foryy + @ in V N ¢; we havey in ¢5.

Lemma 5.1 Letu andwv be two solutions for (1.2) it¥ such thatuy < vg. Thenu; < v fort > 0.
Letyo + @ be inV andy solve (5.1). Ifyg > 0 theny, > 0 and ifyy < 0theny, < 0fort > 0.
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Proof. Lemma 6 in [15] yields the result for (1.2) (the proof written for= 2 is valid for L > 1).
The result for (5.1) follows by considering= y + @ anda which solve (1.2). O

We compare solutions of the nonlinear equation (5.1) and of certain linear equations.

Lemma 5.2 Let A be the generator of the sub-Markovian birth and death process with birth rate

A, > 0 and death rate3 at k > 1. Letsup,, A, < co. The linear operator: — A*z given by
A w(k) = Meoaw(k — 1) — (A + Ba(k) + Bu(k +1),  k>1,

is bounded in?9. There exists a unique = (z)>0 given byz, = eA*tzo solving the forward
Kolmogorov equatiort = A*z in 9. Itis such that ifzy > 0 thenz; > 0 and if zo < 0 thenz; < 0,
andét(k) + Zt(k + 1) + e = S\k_lzt(k‘ — 1) — ﬁZt(k> fork > 1.

Proof. The operator norm iff) of A* is bounded by (sup,, N + (), hence existence and uniqueness.
Uniqueness and linearity imply thatif = 0 thenz; = 0 and else ifzg > 0 thenz:,5||z0\|1‘1 is the
instantaneous law of the process startingyéito||;* and hence, > 0. If 2o < 0 then—z solves the

equation starting atzo > 0 and hence-z; > 0. The last result is obtained by summation. [

Lemma5.3 LetL > 2 andy = (y;)+>0 Solve (5.1) withy, + @ in V N ¢;. Under the assumptions of

Lemma 5.2, let = (z)>0 Solvez = A*zin £9. Leth = (h;):>0 be given int? by
h(k)=z(k)+z(k+1)+-- —(yk)+ylk+1)+---), k>1.

(@) Leth, > BLp"" + a1+ (28 — L — 2) a(k)) for k > 1, yo > 0, andhg > 0. Thenh, > 0 for
t>0.

(b) Letd, > BLpY" fork > 1,40 < 0, andhg < 0. Thenh, < 0 for ¢ > 0.

Proof. We prove (a). Foe > 0 let A* correspond to\; = A, + . The operator norm i
of A* — A* is bounded by2e, hencelim._oe4itzy = z in €0 and we may assume thaj, >
BLPY + a1 4 (28 — L —2) (k) for k > 1. Sincez = eA"'z, depends continuously on in
¢) we may assumgg > 0. Let7 = inf{t > 0: {k > 1: hy(k) = 0} # 0} be the first time when
h(k) = 0 for somek > 1. We haver > 0.

The result (a) holds if = co. If 7 # o0, Lemma 5.2 and (5.2) yield
he(k) = Aee1yr (b — 1) = BLPY "y (k — 1) — aB(alk — 1), y-(k — 1))

+ M1 (2 (k= 1) = yr(k = 1)) = B(zr (k) = yr(K)) -
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Lemma 5.1 yieldgy > 0 and Lemma 3.3 angl < 1 yield
B(i(k —1),y(k — 1)) < y(k — ¥ + (2 = L - 2) a(k — D)y(k — 1)?
<1+ -L-2)alk-1)yk-1),

henceh,_y(k — 1) — BLka*ly(k: — 1) —aB(u(k —1),y(k — 1)) > 0 with equality only when
y(k—1)=0.Forkin Z={k>1:h.(k) =0} # 0 we have

k=1 —yr(k=1) = hy(k—1) >0, z:(k) —yr(k) = —h(k+1) <0,

henceh, (k) > 0 with equality if only ifk — 1isin Z U {0} andk + 1 is in Z. Moreoverh, (k) > 0
fort < 7 andh, (k) = 0 imply ,(k) < 0. Henceh,(k) = 0, and the above signs and equality
casesyield that,(k — 1) =y, (k—1) =0andk — 1isin ZU {0} andk + 1 is in Z. By induction
2:(1) = y-(i) = 0 for ¢« > 1 which impliesz, = y, = 0 for ¢t > 7, and the proof of (a) is complete.
The proof for (b) is similar and involves obvious changes of sign. The assunﬁpgi@nﬂLka
suffices to conclude sincB(u(k — 1),y(k — 1)) > 0 (Lemma 3.3) and the non-linearity “pushes”

in the right direction. O

Lemma 5.4 For any0 < 6 < 1 there exists{y < oo such that forr in La(gy) C £
[(@(k) + 2k +1) + - izl 1y g0) < KollzlL2(g5) -
Proof. Using a classical convexity inequality

D (k) +a(k+1)+---)%0F

k>1

IN

S on(ek) +ak+1)2 4+ +ak+n -2+ (@k+n—1)+a(k+n)+---)?) 0"
k>1

Snl40+--+60"2)> (k)0 +no" > (a(k) +a(k+1)+--)%0"

k>1 k>1

and we take: large enough that¢" ! < 1andKj =n(1+6+---+6"2) (1 —ne" )=t O

5.2 Proofs of the exponential stability results
Proof of Theorem 2.12 forL > 2
If uo isin VN La(ge), then so arey; = min{ug, @} andud = max{ug, @} and hence the corre-

sponding solutiona~ andu™* for (1.2), see Theorem 2.2. Lemma 5.1 yields that< u; < u;” and

u; <@ <w; fort>0. Then



solve the recentered equation (5.1), and termwise
lyol = max{yy, —yo }» v <max{y, -y}, t>0. (5.3)
We consider the birth and death process with generdtoefined in Lemma 5.2 with
j\k:max{ﬁLka—|—a(l—|—(2L—L—2) ﬁ(k‘)),ﬁﬁ} , kE>1,

which satisfies the assumptions of Lemma 5.3 (a) and (b). We reproduce the spectral study in Sec-
tion 4.2 and the proof of Theorem 2.9 in Section 4.3fgrcorresponding objects being denoted with

a hat. Forp < 0 < 1 we havea < 30 and hence\,, is equivalent tq30 for largek, Theorems 5.1

and 5.3 (i) in [3] yield thad < 4 < & = (/B0 — v/B)” = B (1 — vA)’, and if > solvesz = A*z
then||z|| 1, #) < e 7|20l 1,4 for £ > 0. Moreover

k—1
05~ < #(k) = 651 | [ max {e—leL’“ +07 (1 + (28 — L —2) a(k)), 1}
and the product converges, heridé) = O(6%) andd* = O(#(k)) and Lemma 2.1 yields that there

existsc > 0 andd > 0 such that™|| - ||,z < || - | o(g5) < @Il - || 1o(#)- Hence fort >0

2] L ge) < AllztllLozy < € dllz0llLor) < € ed]z0]| Lo (gy) -
Hence ifz* solvesz* = A*» starting atz; =y > 0 then Lemmas 5.3 (a) and 5.4 yield

19 1 La(ge) < Iy (k) + 5" (k + 1) + - D1l L (gy)
< (k) + 27 (k+ 1) + - izl L (g9)
< Koll2 | a(ge) < € edBgl|yg [l Lo (g5)
and similarly ifz~ solvesz~ = A*z~ starting atz, =y, < 0thenLemmas 5.3 (b) and 5.4 yield
195 11 1a(g9) < €V cdKpl|yg [ 1,(g9)- We Setyy = 4 andCy = cdKy. Considering (5.3),
HytHLQ (g0) S < |lyf HLQ(ge + llyr HL2 (90) = e 21 Cy <”Z/0 HL2 o) T 1190 HLQ (g0) )

and we complete the proof by remarking that fop> 1, eitheryg (k) = yo(k) andy, (k) = 0 or
yo (k) = yo(k) andyg (k) = 0, and hencdlyy 12, o) + 160 12,00 = 190012000

Proof of Theorem 2.10 and of Theorem 2.12 fol. = 1

The linearization (2.9) of Equation (1.2) is obtained by repladihgnd H in Equation (5.1) by
and coincides with Equation (5.1) fér= 1. Likewise, the equation for (2.9) corresponding to (5.2)
is obtained by omitting the termsB(u(k — 1), y:(k — 1)). We obtain a result for Equation (2.9)
corresponding to Lemma 5.3 (a) and (b) under the sole assumtion ﬂLka for k > 1. The
proof proceeds as for Theorem 2.12 for> 2 with the difference thak; = max {ﬂLka,ﬂe}. We
have), equal togéd for largek for 0 < 8 < 1whenL > 2 and forp < 6 < 1whenL = 1.
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6 Tightness estimates and the functional CLT in equilibrium
6.1 Proof of Lemma 2.13 (infinite horizon and invariant law bounds)

Let Ux(v) be the solution of (1.2) at time > 0 with initial valuew in V. Forty > 0 let )Y , =
VN (RY ., — Un(RY)) . Thenzl , = ZN, + /N (Un(R{)) — @) and Theorem 2.12 yields

+e 0 Cy || Z (6.1)

H t()'f‘hHLQ (g9) — H t07hHL2(gg HL2(99) )

The conditional law of Z; h)h>0 givenR]Y = risthe law ofZ" started withR}Y = ug = r, in

particular withz}’ = ZN0 = 0. We reason as in (3.7)—(3.10) except that the bound (3.9) becomes

HRQHHLQ(Q@) < Hﬂ”h(ge) + N2 HZt]XJrsHLQ(gQ)

and we use (6.1) and obtain that for sokie < co

50 128y < K (N2 il 0 N 128y 500 1002~ 3 )

which combined with (6.1) yields that for sonl@- < co we have fol0 < h < T
< Ly + 2(Kr N~ +e70m202E (|| 2N (6.2)
B (|21l 7, ) < L1 +2(KeN " +e " 2CE (|2 ]1,000)) - :
We fix T' large enough foBe =277 C2 < ¢ < 1. Uniformly for N > Kpe¥”, form € N

2 2
E (HZ(]prl)THLz(gg)) <LrteE <HZ%THL2(ge))

and by induction

2 N m Lt
B (1230l ) < L Do+ B (122 ) < 1 + B (12012
j=1

and (6.2) also yields

s B(123ranll ) < Lo+ 863 B (1 20]1)

hence the infinite horizon bound

2 Lt
iggE (HZt]VHLQ(gg)) <Lt +8092 < + E (HZ HLQ ge))>

Ergodicity and the Fatou Lemma yield that f6£’ distributed according to the invariant law

2 2
B (112X}, 4) < lim inf B (128 ) < sup B (12 )
and the invariant law bound follows if we show that we can chd@¥en V¥ such that

limsup E (HZ(])V 2
N—o0

17 san) <o (6.3)
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For this we considef. > 2, the casd. = 1 being similar, and?)’ given fork > 0 by R (k) =
iN“twith1 < i< Nsuchthat-2"'!N~! < q(k) —iN"! <27'N-L Forz>0and0 < y <1

(L*=1)/(L-1)

y=p < x=log(1+ (L—1)logy/logp)/logL

& 07" = (1+ (L —1)logy/log p)~lee?/ls L

hence forz(N) = inf{k > 1: R{'(k) =0} we havez(N) = inf{k > 1:a(k) <27'N'} =
inf {k e N:k>log(1+(L—1)log(27*N~1) /logp) /log L}. Then

2(N)— 1
128130y = N ey ke
k=1 k>z(N
with
Gty 1 H—Z(N) —_p1
N k:)) 9k <2 2N-1 e = O (N~ (log N)~lo&®/1og L)

k=1

and for large enoughV (and hence(V))

N Z k)207% = Na(z(N))? Y p2b W=D/ g-(ta()
k>z(N 7>0

< 272NN P EIED/ED — (N,
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hence (6.3) holds and the proof is complete.

6.2 The functional CLT: Proof of Theorem 2.14

Lemma 2.13 and the Markov inequality imply that in equilibrilQZbN)NzL is tight for the weak
topology ofL»(g,), for which all bounded sets are relatively compact. Consider a subsequence. We
can extract a further subsequence along whE‘(ﬁ)NzL converges in law to some square-integrable
Z8° in Ly (g,), and Theorem 2.6 yields that along the further subsequézite >, converges in

law to the OU proces&> unique solution for (2.10) i2(g,) starting atZg°.

The limit in law of a sequence of stationary processes is stationary (Ethier-Kurtz [4] p. 131,
Lemma 7.7 and Theorem 7.8). Hence the law&f is determined as the unique law of the stationary
OU process given by (2.10), see Theorem 2.11. From every subsequence we can extract a further

subsequence converging in law6°, hencdimy_..o Z~ = Z° in law.
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