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Abstract

We study Approximate Value Iteration where value representations
V. are processed iteratively by V,4+1 = ATV, where 7 is the Bellman
operator and A an approximation operator. Bounds on the error between
the performance of the policies induced by this algorithm and the optimal
policy are given as a function of weighted L or Li-norms of the approxi-
mation errors. A Markov Decision Problem is thus reduced to successive
resolutions of Supervised Learning problems.

1 Introduction

We study the resolution of Markov Decision Problems (MDPs) (Puterman,
1994) using approximate value function representations V,,. The Approximate
Value Iteration (AVI) algorithm is defined by the iteration

Vn+1 = ATVn (1)

where T is the Bellman operator and A an approximation operator, or equiva-
lently a supervised learning (SL) algorithm. AVT is very popular and has been
successfully implemented in many different settings in Dynamic Programming
(DP) and Reinforcement Learning (RL) (Bertsekas & Tsitsiklis, 1996).

A simple version is: at stage n, select a sample of states (x)g=1...x from
some distribution p,, compute the backed-up values TV, (zy), then make a
call to the SL algorithm. This returns a function V,,41 minimizing the average
empirical loss& >, (Va1 (k) — TVa(zk)). Most SL algorithms use squared
(L3) or absolute (L;) loss functions (or variants) thus perform a minimization
problem in weighted semi-norm L; or Lo, where the weights are defined by p,.
Tt is therefore crucial to estimate the performance of AVI as a function of the
weighted Ly and Ls- norms of the SL approximation errors. The goal of this
paper is to extend usual results in L,-norm to similar results in weighted L,
and Ls- norms. The performance achieved by such a resolution of the MDP
may then be directly related to the accuracy of the SL algorithm.



Alternative results in approximate DP with weighted norms include Linear
Programming (de Farias & Roy, 2003) and Policy Iteration (Munos, 2003).

Let X be the state space (with N < oo states, although all results are
extensible to the case N = o00) and A the action space. Let p(z,a,y) be the
probability that the next state is y given that the current state is x and the
action is a. Let r(z,a,y) be the reward received when a transition (z,a) — y
occurs.

A policy 7 is a mapping from X to A. We write P™ the N x N—matrix with
elements P™(z,y) = p(z,n(x),y) and r™ the vector with components r™ (z) =
>y P, m(z), y)r(z, n(z),y).

For a policy w, we define the value function V™ which, in the discounted
and infinite horizon case studied here, is the expected discounted sum of future

rewards
(o]

V™(z) = ]E[ nyt r(z¢, at, Te1)|To = 2, ar = w(2t)
t=0

where v € [0,1) is a discount factor. V7™ is the fixed point of the operator

77 : RN — RY defined, for any vector W € RN by T*W % p7 + v PV,
The optimal value function V* = sup, V™ is the fixed-point of the Bellman

operator 7T defined, for any W € IRV, by

TW(z) = sup »_p(x,a,y)[r(z,a,y) + W (y)].

a€A v
We say that a policy 7 is greedy with respect to W € R if for all z € X,
m(x) € argmax gp(w, a,y)[r(z,a,y) + W (y)]-

An optimal policy * is a policy greedy w.r.t. V*.

An exact resolution method for computing V* is the Value Iteration (VI)
algorithm defined by the iteration V,,; 1 = 7V,,. Due to the contraction property
in Lo,—norm of the operator 7, the iterates V,, converge to V* as n — oc.
However, problems with a large number of states prevent us from using such
exact resolution methods; we need to represent the functions with a moderate
number of coefficients and perform approximate iterations such as (1).

The paper is organized as follows. We first remind some approximation
results in L,-norm, then give componentwise bounds and use them to derive
error-bounds in L; and Ls-norms. Finally we detail some practical implemen-
tations. The main result of this paper is Theorem 2. All proofs are detailed in
the Appendix.

We remind the definition of the norms: let v € RYM. Its Lo,-norm is
[|u]loo def supcx |u(z)|. Let p be a distribution on X. Its weighted Ly and
Ly —(semi)norms (noted Ly ,, and L) are ||ulli, & ¥y p(x)|u(z)| and
]2, < [>ccx #(@)u(z)?]/2. We note || - ||1 or || - ||2 the unweighted L; and
Ls norms (i.e. when y is uniform).



2 Approximation results in L,-norm

The results in this section are given in (Bertsekas & Tsitsiklis, 1996). For consis-
tency, the proofs are reminded in the Appendix. Consider the AVI algorithm
defined by (1). This algorithm does not converge but its asymptotic behav-
ior may be studied. If the approximation errors are bounded (in Lo, —norm)
[|Va+1 — AT Vi||loo < € then, the limit superior of the error between the approx-
imate and the optimal value functions satisfies

lim ||V* — Vpl]oo <

n—oo 1—’y

E. (2)

A bound on the error between the asymptotic performance of a policy m,
greedy w.r.t. V,, and the optimal policy is

i * Tn 27
7}1_{20“‘/ — V™|l < WE- 3)

This L..-bound requires a uniformly low approximation error over all states,
which is difficult to get in practice (exceptions include (Gordon, 1995; Guestrin
et al., 2001)), especially for large-scale problems. Most approximators such
as those described in the next section perform a minimization problem using
weighted L; and Ls norms.

3 Approximation operators

A supervised learning algorithm returns a good fit g (within given classes
of functions F) of the data (zx,vr) € X X R, k=1...K (with the z; sampled
from some distribution p and the values vy, being estimates of some function
f(zk)), by minimizing the average loss & Eszl I(vg — g(z1)), mainly with Ly
or Lo loss functions (or variants). Equivalently, A may be considered as an
approximation operator that returns a compact representation g € F of
a general function f by minimizing some L, , or L, ,-norm. Approximation
theory studies the approximation error as a function of the smoothness of f
(DeVore, 1997).

The projection onto the span of a fixed family of functions (called features)
is called linear approximation and include Splines, Radial Basis, Fourier or
Wavelet decomposition. A better approximation is reached when choosing the
features according to f (i.e. feature selection). This non-linear approzimation is
particularly efficient when f has piecewise regularities (e.g. in adaptive wavelet
basis (Mallat, 1997) such functions are compactly represented with few non-
zero coefficients). Greedy algorithms for selecting the best features among a
given dictionary of functions include the Matching Pursuit and variants (Davies
et al., 1997).

In Statistical Learning (Hastie et al., 2001), other SL algorithms are Neural
Network, Locally Weighted Learning and Kernel Regression (Atkeson et al.,
1997), Support-Vectors (SVs) and Reproducing Kernels (Vapnik et al., 1997).



We call A an e—approximation operator if A returns an e—approximation
gof fo|If —gll <e.

4 Componentwise bounds

Here we provide several componentwise bounds that will be used in the next
section. The next result provides two bounds on the error between the per-
formance of a reference policy and a policy which is greedy w.r.t. a function
V.

Lemma 1 Let .o be a reference policy, V € RN, and 7 a policy greedy w.r.t.
V. Then

Vet _ YT
Vet _ YT

V(I =y P "L (P — PTY)(VT = V), (4)

<
< AT =y PT)TH(PTe = PT)(VTe V). ()

Now consider the AVI algorithm defined by (1). Call &, = TV,, — Vi1
the approximation error. The error between the successive approximations
V., and the optimal value function V* may be bounded by the approximation
errors:

Lemma 2 We have

AP™ (V* — V) + en < V* = Vipy <4P™ (V* = Vp) + €.

Thus
n—1
Vv — Vn < Z ’Yn_l_k(Pﬂ*)n_k_lEk + ,Yn(Pw*)n(V* _ VO);
k=0
n—1 n—1 n
ViV = Yy RCI Per + ([ POV - Vo).
k=0 i=k+1 =1

As a consequence of Lemma 1 (inequality (5) applied to V,, and the choice
of an optimal policy as the reference policy) we derive a bound on the error
between the performance of a policy 7, greedy w.r.t. V;, and the optimal policy

V* = V™ <y(I —yP™) " (P™ = P™)(V* = Vp). (6)

5 Approximation results in L; and Ly—norms

We use results of the previous section to extend the bound (3) in Le,-norm to
bounds in L; and Lo—norms. Let u be a distribution on X (considered as a
row vector). From Lemma 2 and (6) we deduce the result:



Theorem 1 For all 0<k<n, define the stochastic matrices

Ang = “T”(I —yPm™)1 {[(P”*)"‘k +( I pm)]_
i=k+1

Then pin def wAp i s a distribution on X, and for i =1 or 2,

i n—1
TV = Vol < ey > el ™

This result extends the bound in L., —norm (3). However, one might wonder
how useful the bound (7) is, given that the distributions p, j are unknown (since
they make use of the a-priori unknown optimal policy). In the next section we
detail some hypotheses on the structure of the MDP that will be used to prove
Theorem 2 and which will fully justify the relevance of this bound.

5.1 Any practical use of these bounds?

At each iteration of the AVI algorithm the new function V,y; is obtained by

approximating 7V, via a call to a SL algorithm A, which solves a minimiza-

tion problem using some distribution p,. The g, r—norm of &4 in (7) may be
ok | leglli . where |

[ . o is the
mismatch ratio between those distributions. In order to bound this ratio, we
first require py to be lower bounded. This condition was already mentioned
in (Koller & Parr, 2000; Kakade & Langford, 2002; Munos, 2003) to secure
Policy Improvement steps in Approximate Policy Iteration. Here, we consider
distributions of the form

bounded by its py—norm: ||ex|[; , . < Bnk

po = (1= N+ Apn (8)

(for 0 < A < 1) where p,, is any distribution. A such example is the distribution
) = (1= X)pu(I — AP™)~!. This is the state visitation distribution of a Markov
chain that starts with an initial state g ~ g and which at time ¢ either follows
policy m,: xsr1 ~ p(xs, mn (), ) with probability A or restarts z;y1 ~ p with
probability 1 — X. Note that when A\ — 0, p) tends to u, and when A — 1, p}
tends to the steady-state distribution for policy .

A second requirement in order that the mismatch ratio be bounded is to
upper bound pp k. In (Munos, 2003), we state a property (called uniform
stochasticity) of the MDP under which we can prove that pg and p, are
upper bounded. In practice though, this property does not cover a broad class
of MDPs, and in particular never holds for deterministic MDPs. Here we inves-
tigate a much weaker assumption that holds for a large class of MDPs.

Hypothesis 1 Given some distribution p. For any m > 0 and any sequence of
m policies w1, Ty, ..., Tm, we have

puP™ P2 P™ < h(m)p (9)



where h(m) € IR is such that ), o Y"h(m) KN for N < co. If N = oo this
assumption reads that the series ), o v™h(m) converges (e.g. when h has at
most an exponential growth (i.e. h(m) = O(8™)) with some constant § < 1/v).

Let us give some insight about this hypothesis. An example for which this
hypothesis fails is an MDP where for a specific policy 7 all states jump to a
given state -say state 1- with probability 1. Then if p is an uniform distribution
p = (%...%) we have u(P™)™ = (10...0) < Nu. Thus h(m) = N and

Ym0 Y h(m) = % which contradicts the hypothesis. This is really the
worst case.
Intuitively this assumption means that for any sequence of policies 71, . . . , T,

the discounted state visitation distribution at any state y starting from zg ~ p
is upper bounded by a constant (much smaller than N) times p(y):

o0
To ~ W,
mPr = < N
;7 { " y| z; ~ p(®i—1,Ti(Ti-1),") } Hy)

In short, this assumption prevents the mass of the future state visitation
distribution to accumulate on few specific states. An important class of MDPs
for which this assumption holds is defined in the following Lemma.

Lemma 3 Assume that the MDP is embedded in IR?, and that:

1. each state is represented by a point in IR?,

2. the transitions are local (i.e. there exists r > 0 s.t. p(z,a,y) > 0 =
llz =yl <r),

3. the density of points is bounded (i.e. there exists § > 0 s.t. for any volume
V € R?, the number of points in V is at most &|V|).

Then Hypothesis 1 holds with the uniform distribution u.

This Lemma encompasses a large class of MDPs among which those that
result from a discretization of continuous (deterministic or stochastic) Markov
processes (Kushner & Dupuis, 2001). Under this assumption, we now state the
main result of this paper.

Theorem 2 Leti =1 or2 and p o distribution on X. Let A be an e—approzimation
operator in L; ,x-norm where the distribution p is of the form (8) (i.e. for all
n >0, |lenlli,pr <€) Assume Hypothesis 1. Then

_ 27 ¢\
* __ Tn|]|. < - =
A [V =V i < =753 (1 - /\) c (10

with the constant C = h(1)[(1 —7) 32,50 Y™ h(m)]*.



5.2 Illustration on the Chain Walk MDP

We illustrate the fact that the L; and Ly—norm bounds given in Theorem 2
may be much tighter than the Lo ,—norm (3) on the Chain Walk MDP defined
in (Lagoudakis & Parr, 2003). This is a linear chain with N states with two
dead-end states: states 1 and N. On each of the interior states 2 <z < N —1
there are two possible actions: right or left, which changes the state in the
intended direction with probability 0.9, and fails with probability 0.1 changing
the state in the opposite direction. The reward simply depends on the current
state and is 1 at boundary states and 0 elsewhere: r = (10...01)".

Consider approximation of the value function of the form V,,(x) = a, + Bnz

where © € {1,..., N} is the state number. Assume that initial approximation
is zero: Vo = (0...0)'. Then TVp = (10...01)". The best fit in Lo,-norm is a
constant function V; = (3 ... )’ which produces an error ||V} — TVp||eo = 3.

Let us choose uniform distributions g = p, = (... %) (i.e. A=0). In L;-

norm we find that the best fit is V; = (0...0)’ (for N > 4) and the resulting error
is |[Va — TVo|l = %. In Ly-norm the best fit is also constant V; = (% ... %)’

and the error is ||V} — TVp||2 = ¥2R—2.
In the three cases, by induction we see that the successive approximations
V,, are constant, thus 7V, = r + 4V, and the approximation errors remain

the same as in the first iteration: |[Vog1 — TValloo = 3, [|[Vat1 — TVl = %,

and ||Vagr — TVall2 = 2%_4. Since V,, is constant any policy 7, is greedy
w.r.t. V,. Hence for m, = 7* the lL.h.s. of (3) and (10) are equal to zero.
Now in order to compare the r.h.s. of these inequalities we need to estimate
the constant C. The worst case in (9) is obtained when the mass of the state
visitation distribution is mostly concentrated on one boundary state -say state
1- which corresponds to a policy 7resy that chooses everywhere action left. We
see that p(P™er)™(x) < p(P™er)™(1) < (14 0.9m)pu(z) for all z > 0. Since
1 4 0.9m has sub-exponential growth, Hypothesis 1 is satisfied with h(m) =
1+ 0.9m. Note that this result is also a consequence of Lemma 3 since this
Chain Walk is a typical example of an MDP embedded in IR. By noting that
Yom>0MY™ = 775z, we derive the constant C' = 1.9[1 + 0.97775]* which is
independent from N. We deduce that when the number of states N is large,
the L; —norm bound gives an approximation of order O(N~1), the Ly—norm
bound is of order O(N~'/?), whereas the Lo,—norm bound (3) bound is only
of order O(1).

6 Practical algorithms

6.1 Model-based AVI

Let u be a distribution on X. Given € > 0 and an e—approximation operator
Ain L; ,x-norm (for 4 = 1 or 2). Assume Hypothesis 1. Successive iterations:

1. Select set of states z; € X, k = 1...K, sampled from the distribution
o = (L= A+ Apn,



2. Compute the backed-up values vy, = TV, (zk),

3. Make a call to the supervised learning algorithm .4 with the data {z; v},
which returns an e—approximation V41,

computes, after enough iterations, approximations V' such that the error be-
tween the performance of a policy m greedy w.r.t. V and the optimal policy

satisfies Vi
R 2y c\"
7=Vl < s (1) = 1)

6.2 Reinforcement Learning

Step 2 in the preceding algorithm requires the knowledge of a model of the
transition probabilities (as well as a way to compute the expectations in operator
T). If this is not the case one may consider using a Reinforcement Learning
(RL) algorithm (Sutton & Barto, 1998). Let us introduce the @-values and the
operator R defined on functions of X x A,

RQ(z,0) € " p(z,a,y)[r(z,a,9) + ymaxQ(y,b)].

yeX

The AVI algorithm is equivalent to defining successive approximations @,
with iteration

Qn+1 = ARQn

where A is an approximation operator on X x A. Thus, a model-free RL algo-
rithm would be defined by the iteration:

1. Observe a set of transitions: (zx,ar) = yx, k = 1... K, where for current
state zp and action ag, yr ~ p(zk,ar,-) is the next observed state and 7y,
the received reward,

2. Compute the values vy, = r + v maxp Qr (Y, b),

3. Make a call to the supervised learning algorithm A with the data {(z, ax); v },
which returns an e—approximation estimate @41,

An interesting case is when A is a linear operator in the values {vg} (which
implies that the operators A and E commute) such as in Least Squares Regres-
sion, k-Nearest Neighbors, Locally Weighted Learning. Then the approximation
@: returned by A is an unbiased estimate of ARQ, (since the values {vy}
are unbiased estimates of RQ,(x, ar))- Thus when K is large such an iteration
acts like a (model-based) AVT iteration, and bounds similar to those in Theorem
2 may be derived.



7 Conclusion

Theorem 2 provides a useful tool to relate the performance of AVI to the ap-
proximation power of the SL algorithm. Expressing the performance of AVI in
the same norm as that used by the supervised learner to minimize the approxi-
mation error guarantees the tightness of this bound.

Extension to other loss functions I, such as e-insensitive (used in SVs) or
Hubert’s loss function (for robust regression) is straightforward (Lemma 5 in
the Appendix and thereby all other results extend to any semi-norm L;,, of the
form [|ull;,, = >, cx #(x)l(u(x)) with an increasing an convex loss function I
on RT).

Other possible extensions include Markov games and on-line RL.

A Appendix: proof of the results

Proof 1 (Proofs of the results in L, ,-norm) Since 7 is greedy w.r.t. V
(i.e. T™V >T™ V), we have

V- VT = VT V4TV -T VTV T V"
< V=T V4TV -T"V"

Thus, in norm:

V=Vl < |IV* =T Voo + [TV =TVl
< 2V = Vl]loo + IV = V7 |oo
2y
< - * .
< TV Vil (12)
From the fact that
V= Vatillo < ||[TV' = TValleo +€
< ANV =Vallo + ¢,

we deduce (2) by taking the limit superior. Now, (12) applied to V;, and combined
with (2) implies (3).

Now let us give two preliminary results.

Lemma 4 Let A be an invertible matriz such that all the elements of its inverse
are positive. Then the solutions to the inequality Au < b are also solutions to
u< A~ 'h.

Proof of Lemma 4. Let u be a solution to Au < b. This means that there
exists a vector ¢ with positive components s.t. Au = b—c¢, thusu = A~1b—A"lc.
Since all components of A~ !¢ are positive, we deduce that u < A=1b. O



Lemma 5 Let p be a distribution on X, {Sk }1<k<k stochastic matrices, {ar }1<k<k
positive numbers that sum to one, and u and {vi}1<k<k (column) vectors that

satisfy (componentwise) 0 < u < Y, apSkvr. Then py def 1Sy is a distribution
on X and we have ||ul|1,, < 30 akl|vill1,u, and [[ul3, < 3\ arl|vell3 ,, -

Proof of Lemma 5. We have

lulli, = pu <Y aruSior =Y axllox|
k k

1,pk -

Using two times Jensen’s inequality (since the aj, sum to one and the Sy, are
stochastic matrices, respectively),

pu® < M(Zakskvk)2 < Nzak(skvk)2
% %
< uZakSkvi = Zakukvi = Z%HWH%,MD
% % %

Proof of Lemma 1. Since TV > 7™V we have

ull3,,

V7rref _ Vﬂ' — 7'7I'rer7l'ref _ Tﬂ'refv + 7'7I'rer _ TV + TV _ Tﬂ'Vﬂ'
A G S R T L ]

IN

Thus
(I _ ,ypmef)(vﬂ'ref _ Vﬂ') S ,y(pﬂ'ref _ Pﬂ')(Vﬂ’ _ V)

and inequality (4) follows from Lemma 4. Similarly,
Vﬂref _ Vﬂ' S ,yPﬂ'ref (Vﬂref _ V) + ,YPTI'(V _ V7rref + Vﬂref _ Vﬂ')’

thus

(I =PVt = V™) < 4(Pet — P7)(V™ext = V),
which proves (5). O

Proof of Lemma 2. Since 7V, > 7™ V,, and TV* > T™V*, we have
V*—Vagr = TV =T  Vat T" Vo= TVi + €n

’7P7r* (V*=Vo) +én
TV =TV TV =TV, +ep
YP™(V* =V,) +en

IN

V* - Vn41

v

The other inequalities follow by induction. O
Proof of Theorem 1. From Lemma 2 and by taking the absolute value in
(6) we deduce that

n—1
29(1 —A™
0V =-V™ < E akAn,k%kH +0(y™*)
k=0

10



with ap = = 7” 4" %=1 and we apply Lemma 5. Thus

n—1

* ™ 27 —R—
IV* = V™l < = 7" ekl + O
k=0

and by taking the limit superior, (7) follows for 4 = 1. Similarly in Ly—norm,

P 2y(1=9")
v < (R
n—1 1— ~y
o — " ekl F i, OO
k=0

and (7) follows for i = 2. O
In order to prove Theorem 2, we first show that the distribution py, 1 is upper
bounded by a constant times p.

Lemma 6 If Hypothesis 1 holds for the distribution p, then for all 0 < k < n,
Pk < Cpk—1p, with the constant Cp,_—1 = h(1)h(n—k=1)(1—v) Y07 o y™h(m).

Proof of Lemma 6. From the definition of py, 1,

oo

HPnk = NAn,k < %’yp’[ Z ’Ymh(m)]
m=0
n—1
[Pﬂ'* (Pﬂ'*)’n,—k—l + P H Pm]
i=k+1

< 1=y Y]y"hm)]h)h(n -k —1)p O

Proof of Theorem 2. Now, from the definition of p} we have ) S
k o]
C" =L thus ||ex][} i S < Gn= =t=1gt. For i = 1, we deduce from (7) that

lim [|[V* = V™1, < —— ~™ €

and (10) follows. Similarly, for ¢ = 2, from (7),

* Tn |12 m
Tim [V V™3, < 32>0 7"
m
(27) C
0
= A-pt1-x°

Proof of Lemma 3. Let y € X. The number of states z that have a
positive probability of reaching y in m steps, using any sequence of m policies

11



M1To ... Tm, is less than the number of states in the ball of radius mr centered
on y. Since a ball of radius mr has a volume k(mr)? where k is a constant that
depend on the dimension of the space d, the sum over all states x of all m—steps
probabilities P™ P72 ... P™ (g,y) reaching y is bounded by

ZP’“P”Z o P (g y) < k(mar)ds

Thus (9) holds with a uniform distribution g and h(m) = k(mr)?6. Since h(m)
is polynomial in m it has sub-exponential growth, and Hypothesis 1 holds. O
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