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Anisotropic curvature-driven �ow of convex sets

Vicent Caselles∗ and Antonin Chambolle†

Abstract

We study in this paper the evolution by mean curvature, and in particular by

anisotropic mean curvature, of convex sets in RN (without driving forces). If the

anisotropy is smooth, we show that the evolution remains convex. If the anisotropy

is crystalline, we build a convex evolution which satis�es an equation which is a weak

form of the crystalline curvature motion equation.

1 Introduction

In this paper, we study the evolution of a convex set whose boundary moves with a velocity
equal to its anisotropic mean curvature. This so-called curvature-driven �ow models the
evolution of a crystal under the in�uence of its surface tension and possibly some external
potential, that we will not consider in the present study. We refer to [35, 46] for the physical
motivations of the problem. A particularly interesting case is the crystalline case, when the
interfacial energy (or surface tension) ϕ◦(ν) (a convex, even, one�homogeneous function
that depends on the normal ν to the surface of the set) is nonsmooth, that is, when the
Frank diagram {ϕ◦ ≤ 1} is a convex polytope.

From a mathematical point of view, the motion by anisotropic mean curvature of the
boundary ∂E corresponds to the evolution of a bounded set E ⊂ RN along the gradient
�ow of the surface energy functional Pϕ (E) =

∫
∂E ϕ

◦(νE) dHN−1. The surface tension ϕ◦

corresponds to an anisotropic density with respect to the usual perimeter. The �◦� refers
to the fact that it is the polar of an anisotropic norm ϕ in RN (that de�nes an anisotropic
metric), that is, ϕ◦(ξ) = supϕ(η)≤1 η · ξ (and vice-versa). We will follow this point of view,
which is described, in all generality, in [18] and is studied in many subsequent papers by
Bellettini, Novaga and Paolini.

In [2], Almgren, Taylor and Wang have proposed a variational approach for constructing
evolutions at all time. The idea can be described in the framework of Minimizing Movements
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of De Giorgi (see [4] for a nice description). It is based on a time discretization, and on a
minimization problem for computing the surface at time (k + 1)h from the surface at time
kh, k ∈ N, h > 0. More precisely, if Th(E) is a solution of

min
F
Pϕ (F ) +

1
h

∫
F4E

d(x, ∂E) dx (1)

where d(x, ∂E) denotes the distance from x to ∂E, then the discrete evolution of the set
E0 is Th(t)[t/h](E0). The distance d can be the Euclidean distance, or, as in [18], the
distance induced by the norm ϕ. The idea of Almgren, Taylor and Wang (also proposed by
Luckhaus and Sturzenhecker in the isotropic (Euclidean) case ϕ = ϕ◦ = | · | [38]), is that the
Euler equation of this minimization problem corresponds to an implicit time-discretization
of the curvature-driven �ow, with time-step h. They actually show that if Pϕ (E) < +∞,
the iterates T [t/h]

h E ([·] denotes the integer part) will converge to some �ow E(t) (Hölder-
continuous in time in the L1 topology), that they call the �at ϕ◦-curvature �ow. When
E and ϕ,ϕ◦ are smooth they can show that E(t) coincides, for small t, with the classical
de�nition of the �ow.

In a recent paper [19], the second author has found that a way to build a solution ThE
to (1) is by letting ThE = [u < 0] := {x : u(x) < 0}, where u is a minimizer of∫

Ω
ϕ◦(Du) +

1
2h

∫
Ω
(u(x)− dE(x))2 dx , (2)

Ω being an arbitrary open subset of RN �large� enough with respect to E, and dE , this
time, being the signed distance function to ∂E, that is, −d∂E inside E and +d∂E outside.
In this case, Th is monotone, that is, E ⊂ E′ ⇒ ThE ⊂ ThE

′. This is very interesting, since,
together with the above-mentionned consistance result of [2], it allows to show that E(t)

coincides with the generalized motion by mean curvature starting from E, in the sense of
barriers or viscosity solutions, as long as this motion is unique [24, 20, 31].

In this paper, we essentially follow the same approach, except that we consider a u

satisfying the Euler equation of (2) in the whole space RN , namely,

−h div ∂ϕ◦(∇u) + u − dE 3 0 in RN . (3)

This is particularly interesting when the initial set E is convex: indeed, in this case, we are
able to show that also u is convex, hence the evolved set ThE. In the smooth case, it yields
the convexity, up to extinction, of the set E(t), in any dimension of space. In the isotropic
case, this fact was proven �rst by Gage and Hamilton in 2D [26, 25], then by Huisken [36] in
arbitrary dimension. The same result was then given by Evans and Spruck in the framework
of vicosity solutions [24]. In the anisotropic case, Angenent and Gurtin [8, 7] have studied
very general evolutions (including with nonconvex potentials) in dimension 2. They show,
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for evolutions de�ned by local equations (which excludes the completely singular crystalline
case, but allows some particular smooth but nonconvex ϕ◦s), local existence of a �ow which
preserves convexity. Our result, although valid only for convex interfacial energies, shows
that convexity is actually preserved in any dimension.

In the crystalline case, a notion of (non local) evolution can be de�ned in dimension 2
(see [8, 45, 44, 32, 29, 27, 28]). The convexity of evolutions was studied by McCann, still in
dimension 2: he shows that convexity is preserved if the initial set is balanced and convex,
following an approach to which ours is related: indeed, he uses the static approximation (1)
to deduce the convexity of the �at �ow. This yields the result also for the classical �ow,
since it is shown in [1] that both notions are consistent, in the 2-dimensional crystalline
case. Our approach shows the convexity of the �at �ow in any dimension, without further
hypothesis on the initial convex shape.

Moreover, our construction shows that the approximate �at �ow ∂T
[t/h]
h E converges in

the Hausdor� distance to a convex evolution ∂E(t) (up to some time T > 0 after which E(t)

vanishes or becomes (N − 1)�dimensional) which satis�es, in all cases including crystalline,
a weak form of the curvature �ow equation: indeed, the distance function dE is a weak
subsolution inside E, and supersolution outside E, of the equation ∂td − div ∂ϕ◦(∇d) 3 0.
In the framework of viscosity solutions (hence whenever ϕ◦ is smooth), it was observed by
Soner that these conditions characterize the motion [43].

In the crystalline case in three or more dimensions, for a general initial set, the situation
is very complicated, in particular because of the �facet-breaking� phenomena: facets of
an evolving polyhedron may break or may bend during its evolution [17]. While the �rst
phenomenon has been rigorously proved, the second is not completely proved but has been
con�rmed in numerical experiments [41]. These phenomena are related to the di�culties
to prove the existence of ϕ-regular motions in the sense of [16]. In dimension 3, under
the facet-stays-as-facet assumption, local existence in time results for crystalline evolution
have been proved for crystalline surfaces having a triple junction at each corner [33, 30].
As it has been suggested in [33], when more than three faces meet at a corner a new facet
probably emerges and, as far as we know, no existence result has been proved in this case.
We conjecture that the �at-�ow that we build is in fact a ϕ-regular crystalline curvature
�ow: this is the subject of future studies [12]. Let us mention that in this case, uniqueness
holds according to the result in [16].

Eventually, we would like to make a comment on the choice of the distance function in (1)
(and (2)). In our paper we have adopted the convention in [18] and de�ned the distances in
RN by means of the function ϕ, polar of ϕ◦ (that is, d(x, ∂E) = miny∈∂E ϕ(x−y), etc.) This
is particularly interesting since in this case, the solution of (2) for E the Wul� shape {x :

ϕ(x) ≤ 1} is explicit (see Appendix B). However, this is not very general. As mentionned
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in [39], the choice of this distance governs the choice of themobility in the curvature equation:
our choice corresponds to a normal velocity ϕ◦(ν)×(anisotropic ϕ-curvature) (hence mobility
ϕ◦(ν)), while Almgren, Taylor and Wang's choice of the Euclidean distance corresponds to
a normal velocity equal to the anisotropic mean curvature (mobility 1). In fact, any other
convex, one homogeneous function ψ◦ (polar of a norm ψ in RN ) could be considered for
the mobility. All of our results still hold in this case, except those related to the explicit
evolution of the Wul� shape. Concerning the latter, estimates can still be shown, of the
minimal and maximal speed at which it decreases (see Appendix D).

Let us explain the plan of the paper. In Section 2 we collect some preliminary results
on functions with bounded variation, anisotropic total variation and its subdi�erential with
Dirichlet boundary conditions. General facts about the characterization of the solutions
of (3) are stated in Section 3. Then, in Section 4 we prove that (3) has a convex solution as
soon as dE is replaced with any convex and Lipschitz function. This includes in particular
the case of the distance function to a convex set. In Section 5 we relate problem (3) with
the variational formulation (1). We can deduce the uniqueness of the solution of (1) when
E is convex (for h small enough). Section 6, together with Appendix B, is devoted to
the explicit computation of the evolution of the Wul� shape. Section 7 contains our main
result, namely, the proof of the convergence of Almgren, Taylor and Wang's algorithm to a
convex evolution, when the initial set is convex. For the reader's convenience we include in
Appendix A some basic results about the Hausdor� distance and the convergence of sets.
In Appendix C, we prove a general uniqueness and comparison principle for the solutions
of the PDE (13), which is a general form of (3) with a L1

loc data. This gives an alternative
approach to the uniqueness result of Section 5, that may prove useful in future studies.

2 Preliminaries

2.1 BV functions and sets of �nite perimeter

Let Ω be an open subset of RN . A function u ∈ L1(Ω) whose gradient Du in the sense of
distributions is a (vector valued) Radon measure with �nite total variation in Ω is called a
function of bounded variation. The class of such functions will be denoted by BV (Ω). The
total variation of Du on Ω turns out to be

sup
{∫

Ω
u div z dx : z ∈ C∞0 (Ω; RN ), ‖z‖L∞(Ω) := ess sup

x∈Ω
|z(x)| ≤ 1

}
, (4)

(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i ) and will be denoted by

|Du|(Ω) or by
∫
Ω |Du|. It turns out that the map u→ |Du|(Ω) is L1

loc(Ω)-lower semicontin-
uous. BV (Ω) is a Banach space when endowed with the norm

∫
Ω |u| dx+ |Du|(Ω). We recall
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that BV (RN ) ⊆ LN/(N−1)(RN ). The total variation of u on a Borel set B ⊆ Ω is de�ned
as inf{|Du|(A) : A open , B ⊆ A ⊆ Q}. We denote by BVloc(Ω) the space of functions
w ∈ L1

loc(Ω) such that wϕ ∈ BV (Ω) for all ϕ ∈ C∞0 (Ω). For results and informations on
functions of bounded variation we refer to [5, 23].

A measurable set E ⊆ RN is said to be of �nite perimeter in Ω if (4) is �nite when
u is substituted with the characteristic function χE of E. The perimeter of E in Ω is
de�ned as P (E,Ω) := |DχE |(Ω), and P (E,Ω) = P (RN \ E,Ω). We shall use the notation
P (E) := P (E,RN ). For sets of �nite perimeter E one can de�ne the essential boundary
∂∗E, which is countably (N − 1) recti�able with �nite HN−1 measure, and compute the
outer unit normal νE(x) at HN−1 almost all points x of ∂∗E, where HN−1 is the (N − 1)

dimensional Hausdor� measure. Moreover, |DχE | coincides with the restriction of HN−1 to
∂∗E.

Given u ∈ BV (Ω), we denote by ∇u(x) dx is the absolutely continuous part of the
derivative Du, Dsu will denote its singular part (with respect to the Lebesgue measure dx).

If µ is a (possibly vector valued) Radon measure and f is a Borel function, the integration
of f with respect to µ will be denoted by

∫
fdµ. When µ is the Lebesgue measure, the symbol

dx will be often omitted.

2.2 Anisotropic Total Variation

Let us consider a convex function F : RN → R satisfying the conditions

F (tξ) = |t|F (ξ) ∀ξ ∈ RN , ∀t ∈ R, (5)

m|ξ| ≤ F (ξ) ≤M |ξ| ∀ξ ∈ RN , (6)

for some positive constants m,M . The polar function F ◦ is de�ned by

F ◦(ξ) := sup{〈ξ, x〉 : F (x) ≤ 1}.

The polar function satis�es also assumptions (5), (6).

Let Ω be an open subset of RN with Lipschitz boundary. Let u ∈ BV (Ω). We de�ne
the anisotropic total variation of u with respect to F in Ω ([3]) as∫

Ω
F (Du) = sup

{∫
Ω
u div σ : σ ∈ CF

}
(7)

where
CF := {σ ∈ C1

0 (Ω; RN ) : F ◦(σ(x)) ≤ 1, ∀x ∈ Ω}.

If E ⊆ RN has �nite perimeter in Ω, we set

PF ◦(E,Ω) :=
∫

Ω
F (DχE)
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and we have ([3])
PF ◦(E,Ω) =

∫
∂∗E

F (νE(x)) dHN−1.

Recall that, since F is homogeneous, F (Du) coincides with the nonnegative Radon
measure in RN given by F (Du) = F (∇u(x)) dx+ F

(
Dsu
|Dsu|

)
|Dsu|.

2.3 A generalized Green's formula

Let Ω be an open subset of RN . Following [9], let

X2(Ω) := {z ∈ L∞(Ω; RN ) : div z ∈ L2(Ω)}.

If z ∈ X2(Ω) and w ∈ L2(Ω) ∩ BV (Ω) we de�ne the functional (z,Dw) : C∞0 (Ω) → R by
the formula

< (z,Dw), ϕ >:= −
∫

Ω
wϕ div z dx−

∫
Ω
w z · ∇ϕdx.

Then (z,Dw) is a Radon measure in Ω,∫
Ω
(z,Dw) =

∫
Ω
z · ∇w dx ∀w ∈ L2(Ω) ∩W 1,1(Ω),

and ∣∣∣∣ ∫
B

(z,Dw)
∣∣∣∣ ≤ ∫

B
|(z,Dw)| ≤ ‖z‖∞

∫
B
|Dw| ∀B Borel set ⊆ Ω.

If no confusion arises we shall write z · Dw instead of (z,Dw). We denote by θ(z,Dw) ∈
L∞|Dw|(Ω) the density of (z,Dw) with respect to |Dw|, that is

(z,Dw)(B) =
∫
B
θ(z,Dw) d|Dw| ∀ Borel set B ⊆ Ω. (8)

We recall that [9] (see also [6], Corollary C.16) if z ∈ X2(Ω), w ∈ L2(Ω) ∩ BV (Ω), and
p : R → R is a Lipschitz continuous increasing function then

θ(z,D(p ◦ w), x) = θ(z, w, x) |Du|-a.e.. (9)

We recall the following result proved in [9].

Theorem 1 Let Ω ⊂ RN be a bounded open set with Lipschitz boundary. Let u ∈ BV (Ω)∩
L2(Ω) and z ∈ X2(Ω). Then there exists a function [z · νΩ] ∈ L∞(∂Ω) such that ‖[z ·
νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), and∫

Ω
u div z dx+

∫
Ω
(z,Du) =

∫
∂Ω

[z · νΩ]u dHN−1.
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When Ω = RN we have the following integration by parts formula [9], for z ∈ X2(RN )

and w ∈ L2(RN ) ∩BV (RN ):∫
RN

w div z dx+
∫

RN

(z,Dw) = 0. (10)

In particular, if z ∈ X2(RN ) and Q is bounded and has �nite perimeter in RN , from (10)
and (8) it follows∫

Q
div z dx =

∫
RN

(z,−DχQ) =
∫
∂∗Q

θ(z,−DχQ) dHN−1. (11)

If additionally, Q is a bounded open set with Lipschitz boundary, then θ(z,−DχQ) coincides
with [z · νQ].

2.4 The subdi�erential of the anisotropic TV

Let us consider a convex function F : RN → R satisfying (5) and (6). As usual, we shall
denote by ∂F (ξ) the subdi�erential of F at ξ ∈ RN (de�ned by η ∈ ∂F (ξ) i� F (ξ′) ≥
F (ξ) + η · (ξ′ − ξ) for any ξ′). Since F is homogeneous of degree 1, for any η ∈ ∂F (ξ) we
have

F (ξ) = η · ξ.

We also observe that for any ξ ∈ RN , ∂F (ξ) ⊆ ∂F (0) ⊆ B(0,M). We have F (ξ) ≥ η · ξ for
any η ∈ ∂F (0), in fact, F (ξ) = maxη∈∂F (0) η · ξ for any ξ ∈ RN .

Let Ω be an open bounded subset of RN with Lipschitz boundary, and h ∈ L1(∂Ω). Let
ΨF,h : L2(Ω) → (−∞,+∞] be the functional de�ned by

ΨF,h(u) :=


∫

Ω
F (Du) +

∫
∂Ω
F (νΩ)|u− h| if u ∈ L2(Ω) ∩BV (Ω)

+∞ if u ∈ L2(Ω) \BV (Ω).

(12)

The functional ΨF,h is convex and lower semicontinuous in L2(Ω), hence ∂ΨF,h is a maximal
monotone operator in L2(Ω).

Let us recall the following result proved in [40].

Proposition 2.1 Let u, v ∈ L2(Ω). The following conditions are equivalent

(i) v ∈ ∂ΨF,h(u)

(ii) u ∈ BV (Ω), and there exists a vector �eld z ∈ X2(Ω), z(x) ∈ ∂F (∇u(x)) a.e.,

satisfying

z ·Du = F (Du) as measures in Ω
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v = −div z in D′(Ω),

and the Dirichlet boundary condition holds in a relaxed way, i.e.,

[z(x), νΩ] ∈ sign(h− u|∂Ω)F (νΩ(x)) a.e. in ∂Ω.

Here �sign� is the subdi�erential of | · | (that is, x 7→ −1 if x < 0, [−1, 1] if x = 0, 1 if x > 0).

3 Some preliminary results

Let us consider the following partial di�erential equation

u− div ∂F (∇u) 3 g in RN . (13)

De�nition 1 We say that u ∈ BVloc(RN )∩L2
loc(RN ) is a minimizing solution to (13) if for

any R > 0 and any v ∈ C1
c (BR) (with BR = B(0, R)),∫

BR

F (Du) +
∫
BR

(u(x)− g(x))
2

2

dx

≤
∫
BR

F (D(u+ v)) +
∫
BR

(u(x) + v(x)− g(x))
2

2

dx. (14)

De�nition 2 Let g ∈ L2
loc(RN ). We say that u ∈ BVloc(RN )∩L2

loc(RN ) is a solution of (13)

if there exists a vector �eld z ∈ L∞(RN ; RN ) with z(x) ∈ ∂F (∇u(x)) almost everywhere,

div z ∈ L2
loc(RN ), such that

(a) u− div z = g in D′(RN ).

(b) z ·Du = F (Du) locally as measures in RN .

Proposition 3.1 Assume that u, g ∈ L2
loc(RN ). The following assertions are equivalent

(i) u is a solution of (13).

(ii) u is a minimizing solution of (13).

(iii) for all R > 0, u is the solution of

Min
∫
BR

F (Dw) +
1
2

∫
BR

|w − g|2 (15)

on the class of functions w ∈ L2(BR) ∩BV (BR) such that w|∂BR
= u|∂BR

.

(iv) for all R > 0, u is the solution of

Min
∫
BR

F (Dw) +
1
2

∫
BR

|w − g|2 +
∫
∂BR

F (νBR) |w − u|∂BR
| (16)

on the class of functions w ∈ L2(BR) ∩BV (BR).
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By Proposition 2.1, the solution w of (16) is characterized by the equation{
w − div ∂F (Dw) 3 g in BR
w = u|∂BR

on ∂BR
(17)

i.e., there exists a vector �eld z ∈ X2(BR), z(x) ∈ ∂F (∇w(x)) a.e., satisfying z · Dw =

F (Dw) as measures in BR, w − div z = g in D′(Ω), and the Dirichlet boundary condition
in a relaxed way

[z(x), νBR ] ∈ sign(u− w|∂BR
)F (νBR(x)) a.e. in ∂BR.

Proof. Since any function v ∈ L2(BR) ∩ BV (BR) with v|∂BR
= 0 can be approximated in

L2(BR) by a sequence of functions vn ∈ C1
c (BR) satisfying

∫
BR

F (Du+Dvn) →
∫
BR

F (Du+

Dv) it follows that (ii)→ (iii). The implications (iii)→ (iv) and (iv) → (ii) are immediate.

Assume that u solves (13), and let us prove that u|BR
is a minimizing solution, hence (ii).

Let v ∈ C1
c (BR). Multiplying (13) by v and integrating by parts, and using (b) of de�nition

2, we obtain∫
BR

(u− g)v dx = −
∫
BR

z ·Dv = −
∫
BR

z ·D(u+ v)−
∫
BR

F (Du)

≤
∫
BR

F (D(u+ v))−
∫
BR

F (Du)

and this implies (14).

Now, assume that u satis�es (iv). Then for any R > 0 there exists zR ∈ L∞(BR; RN )

such that zR ∈ ∂F (∇u(x)) on BR,

u− div zR = g in D′(BR) (18)

zR ·Du = F (Du) as measures in BR

[zR, νBR ] ∈ sign(u− u|∂BR
)F (νBR(x)) a.e. in ∂BR.

Take ψ ∈ C∞0 (RN ), multiply (18) by uψ and, after integrating by parts, we obtain∫
u2ψ +

∫
F (Du)ψ +

∫
zR · ∇ψu =

∫
guψ.

Letting R → ∞, and assuming, by extracting a subsequence, if necessary, that zR → z

weakly∗ in L∞(RN ,RN ), we obtain∫
u2ψ +

∫
F (Du)ψ +

∫
z · ∇ψu =

∫
guψ. (19)

Similarly, multiplying (18) by ψ, integrating by parts, and letting R→∞, we obtain∫
uψ +

∫
z · ∇ψ =

∫
gψ, (20)
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hence
u− div z = g in D′(RN ).

Now, multiplying this equation by uψ and integrating by parts, after comparing with (19) we
obtain that z ·Du = F (Du) locally as measures in RN . In particular, we have z(x) ·∇u(x) =

F (∇u(x)) a.e. in RN , hence z(x) ∈ ∂F (∇u(x)) a.e.. Thus u is a solution of (13).

Remark 3.2 If u is a solution of 13, then we have that z · Dp(u) = F (Dp(u)) locally as
measures in RN for any function p ∈ P where

P := {p ∈W 1,∞(R) : p′ ≥ 0, supp(p′) compact}.

First, we observe that since z ·Du = F (Du) locally as measures in RN we have that

θ(z,Du)|Du| = F (Du)

locally as measures in RN . Second, we have

F (Dp(u)) = F (∇p(u)) + F
( Dsp(u)
|Dsp(u)|

)
|Dsp(u)| = F (∇p(u)) + F

( Dsu

|Dsu|

)
|Dsp(u)|

Finally, recall the chain rule for functions in BV ,

Dp(u) = puDu

where pu denotes Vol'pert's average superposition, pu = p′(u) a.e. [5]. Now, for any ψ ∈
C∞0 (RN ), using (9), we have∫

RN

z ·Dp(u)ψ =
∫

RN

θ(z,Dp(u))ψ |Dp(u)| =
∫

RN

θ(z,Du)ψ |Dp(u)|

=
∫

RN

θ(z,Du)pu|Du|ψ =
∫

RN

θ(z,Du)[p′(u)∇u+ pu|Dsu|]ψ

=
∫

RN

[F (∇u)p′(u) + F
( Dsu

|Dsu|

)
|Dsu|pu]ψ

=
∫

RN

F (Dp(u))ψ.

Hence z ·Dp(u) = F (Dp(u)) locally as measures in RN .

Even if it is not necessary to prove our main result, let us state the following comparison
principle whose proof will be included in Appendix C.

Theorem 2 Let u, u ∈ L1
loc(RN ) be two solutions of (13) corresponding to the right hand

sides g, g ∈ Lαloc(RN ), respectively. Assume that α > max(N, 2). If g ≤ g, then u ≤ u.
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4 Convexity properties

Let F : RN → [0,+∞) be a convex real valued function, satisfying F (p) ≥ c|p|− c′ for some
positive c, c′ and F (0) = 0. We consider the problem

u− div ∂F (∇u) 3 g (21)

where g : RN → R is a convex function with lim sup|x|→∞ g(x)/|x| = L < +∞ (in particular
g is L�Lipschitz). We prove the following result.

Theorem 3 There exists u a convex, L�Lipschitz minimizing solution (cf. Def. 1) to (21),

with u ≥ g.

Proof. The proof follows a similar proof by N. Korevaar, on bounded domains [37]. For
all ε > 0 we let F ε(p) = ρε ∗ F (p) + ε|p|2/2, where ρ is a smoothing kernel, and aεi,j(p) =

∂2
i,jF

ε(p).
We let, then, uε be the unique viscosity solution of

−aεi,j(∇u)∂2
i,ju

ε + uε = g in RN . (22)

For the notion of viscosity solution and the results needed in this section we refer to [21],
and in particular to Section 5.D. and Thm. 5.1. In particular, this theorem yields existence
and uniqueness of uε in the class of the uniformly continuous functions that grow at most
linearly at in�nity. We observe that the function uε is of class C2,α for some α < 1 [34,
Thm 15.18�15.19].

In the �rst two steps of this proof, we will show that uε is convex and L�Lipschitz for
any ε > 0 (the fact it is L�Lipschitz is also easily deduced from the comparison principle
for vicosity solutions, see [21, Sec. 5.D.]). In a third step, we will deduce that the limit of
the uε as ε→ 0 is a convex solution to the original problem. For simplicity, in Steps 1 and
2, we drop the superscripts ε.

Step 1 Let us �rst assume that there exists R > 0 and λ > 0 such that if |x| > R,
g(x) = λ|x|. Consider the C1,1 function

uc(x) =

 λ

(
|x|+ c

|x|

)
if |x| >

√
c,

2λ
√
c if |x| ≤

√
c.

We show that, for c large enough, uc is a supersolution of the equation, that is

−ai,j(∇uc)∂2
i,juc + uc − g ≥ 0 in RN .
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We must �nd c such that it is a classical supersolution (hence a viscosity supersolution) for
{|x| 6=

√
c}, and a viscosity supersolution on {|x| =

√
c}.

First we assume c > R2. If |x| =
√
c, ∇uc = 0. If X is a symmetric N ×N matrix such

that uc(y) ≥ uc(x) + (1/2)(X(y − x)) · (y − x) + o(|y − x|)2 for all y near x, one must have
X ≤ 0. Hence uc is a viscosity supersolution as soon as −ai,j(0)Xi,j + 2λ

√
c− g(x) ≥ 0 for

all nonpositive matrix X. This is true since 2λ
√
c − g(x) = 2λ

√
c − λ|x| = λ

√
c ≥ 0. If

|x| <
√
c, by convexity of g we still have g ≤ 2λ

√
c, hence uc is a classical supersolution.

If |x| >
√
c, then

∇uc = λ

(
1− c

|x|2

)
x

|x|
while

D2uc =
λ

|x|

[(
1− c

|x|2

)(
I − x⊗ x

|x|2

)
+

2c
|x|2

x⊗ x

|x|2

]
.

Hence, |∇uc| ≤ λ, and |D2uc| ≤ λ
√
N + 3/|x| in the Euclidean (or Frobenius) norm. Letting

M = max|p|≤λ |(ai,j(p))Ni,j=1| (Euclidean norm), we �nd that on {|x| >
√
c},

−ai,j(∇uc)∂2
i,juc + uc − g ≥ −λM

√
N + 3
|x|

+
λc

|x|
≥ 0

as soon as c > M
√
N + 3. Hence uc is a supersolution, provided c is chosen large enough.

We deduce (from the comparison principle in [21, Sec. 5.D.]) that u ≤ uc.
On the other hand, g, being convex, is trivially a subsolution (that is, −ai,j(p)Xi,j +

g(x) − g(x) ≤ 0 for all x, p and X such that g(y) ≤ g(x) + p · (y − x) + (1/2)(X(y − x)) ·
(y − x) + o(|y − x|2), which yields in particular X ≥ 0). Hence g ≤ u.

We �nd that for |x| large enough,

0 ≤ u(x)− g(x) = u(x)− λ|x| ≤ λc

|x|
(23)

Hence u(x)− g(x) = u(x)− λ|x| → 0 uniformly as |x| → ∞.
Now let us introduce, as in [37], the quantity

C(x, y, t) = u(tx+ (1− t)y)− tu(x)− (1− t)u(y),

with x, y ∈ RN and t ∈ [0, 1]. In order to show that u is convex, we need to show that C ≤ 0

everywhere. Let (xn, yn, tn)n≥1 be a maximizing sequence for C and assumem = supC > 0.
We will let also zn = tnxn + (1− tn)yn. We consider the two following cases:

1) Let us �rst assume that xn and yn are bounded: we may assume there exists a
maximum (x, y, t) where C(x, y, t) = m, and we let z = tx+ (1− t)y. Notice that we must
have 0 < t < 1 (since m > 0). The proof is exactly as in [37] in this case. Considering
that the gradient of C with respect to x and y must vanish we �nd that ∇u(x) = ∇u(y) =

∇u(z) = p. Then, computing the second variation of C(x+ τ, y + τ, t) along τ , we �nd

D2u(z) − tD2u(x) − (1− t)D2u(y) ≤ 0, so that
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ai,j(p)∂2
i,ju(z) − tai,j(p)∂2

i,ju(x) − (1− t)ai,j(p)∂2
i,ju(y) ≤ 0.

This yields

m = u(z) − tu(x) − (1− t)u(y) ≤ g(z) − tg(x) − (1− t)g(y) ≤ 0,

a contradiction.
2) Assume now that either xn or yn is unbounded. Up to a subsequence, we can assume

that |xn| → ∞ as n→∞ (the case where |yn| → ∞ is symmetrical). If zn is also unbounded,
we write that C(xn, yn, tn) ≤ g(zn) + λc/|zn| − tg(xn)− (1− t)g(yn) ≤ λc/|zn| for |zn| large
enough, and in the limit we get m ≤ 0, a contradiction. Hence zn must be bounded. We
can assume that yn → y, zn → z, and it must be that tn → 0.

For any q ∈ RN we write

m− C(xn, yn, tn) ≥ C(xn, yn + q, tn)− C(xn, yn, tn)

= u(zn + (1− tn)q)− (1− tn)u(yn + q)− (u(zn)− (1− tn)u(yn)).

Sending n→∞, we �nd that

u(z + q)− u(y + q) ≤ u(z)− u(y),

so that ∇u(z) = ∇u(y) and D2u(z) ≤ D2u(y). We deduce that

ai,j(∇u(z))∂2
i,ju(z) ≤ ai,j(∇u(y))∂2

i,ju(y),

hence (u(z)− g(z))− (u(y)− g(y)) ≤ 0. But

C(xn, yn, tn) = u(zn)− tnu(xn)− (1− tn)u(yn)

≤ u(zn)− tng(xn)− (1− tn)u(yn)

≤ u(zn)− g(zn)− (1− tn)(u(yn)− g(yn)),

and sending n→∞ we �nd m ≤ 0, a contradiction. Hence u must be convex in RN .
Notice that because of (23), lim sup|x|→∞ u(x)/|x| = λ. We deduce that u is λ�Lipschitz

continuous.

Step 2 In the general case, we only know that lim sup|x|→∞ g(x)/|x| = L < +∞. If δ > 0,
there exists R > 0 such that g(x) ≤ (L+ δ)|x| for |x| ≥ R. Let λ = L+ 2δ. For each n ≥ 0

we let gn(x) = g(x) ∨ (λ|x| − n) = max{g(x), (λ|x| − n)}. If |x| ≥ R,

g(x) ≤ (L+ δ)|x| = λ|x| − n + n − δ|x|

hence as soon as |x| ≥ (n/δ), gn(x) = λ|x| − n. Therefore by Step 1, the solution un

of (22) with the function gn is convex, and Lipschitz continuous with constant λ. Moreover,
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since for all n ≥ 0, g ≤ gn+1 ≤ gn, the comparison principle for viscosity solutions yields
u ≤ un+1 ≤ un, where u is the unique viscosity solution of (22) in the class of uniformly
continuous functions with growth at most linear at in�nity.

As n → ∞, gn → g (locally uniformly), and we deduce that un converges locally uni-
formly to u, which is therefore convex. We �nd out that this function is (L+ 2δ)�Lipschitz
for any δ > 0, hence it is L�Lipschitz. This proves the Theorem in the smooth case.

Step 3 We have shown that uε, solution of the regularized problem, is L�Lipschitz and
convex. To deduce that (up to a subsequence, using Ascoli-Arzelà's theorem) it converges
locally uniformly to some convex, L�Lipschitz function u, we need some uniform bound for
uε(x), at some x ∈ RN .

To �nd this bound, we build a supersolution for (22), that can easily be bounded uni-
formly in ε. We observe that ∇F ε is globally invertible in RN , with continuous (and
even C∞) inverse, since F ε is C∞ and D2F ε ≥ εI. Moreover, if we introduce (F ε)∗, the
Legendre-Fenchel transform of F ε, by the Legendre-Fenchel identity we have (∇F ε)−1 =

∇(F ε)∗, hence (F ε)∗ is C∞, and ∇F ε(∇(F ε)∗(x)) = x for all x ∈ RN . In particu-
lar, ai,j(∇(F ε)∗(x))∂2

i,j(F
ε)∗(x) = div∇F ε(∇(F ε)∗(x)) = N . Let us de�ne the function

wεc = (F ε)∗ + N + c, c ∈ R: it will therefore be a supersolution of (22) if and only if
(F ε)∗ + c ≥ g in RN .

First, we �nd a c such that this inequality holds for all ε ∈ (0, 1). Observe that if ε < 1,
F ε(p) is below the convex function G(p) = max|q|≤1 F (p−q)+ |p|2/2 (assuming the molli�er
ρε has support in B(0, ε)). Hence (F ε)∗ ≥ G∗. Since G is �nite everywhere in RN , G∗ must
have superlinear growth, so that there exists c ∈ R with G∗ + c ≥ g in RN . For such a
choice of c, wεc is a supersolution of (22) for all ε < 1, and uε ≤ wεc .

On the other hand, if ε ∈ (0, 1), F ε(p) ≥ H(p) = min|q|≤1 F (p− q). Hence (F ε)∗ ≤ H∗,
and uε ≤ wεc ≤ H∗ + c, and if x is in the domain of H∗ (the set where H∗ is �nite), then
it provides a uniform upper bound for uε(x). A uniform lower bound is provided by the
function g itself.

We deduce that uε, up to a subsequence, converges locally uniformly to a function u

that is convex and L�Lipschitz. Now, for any R > 0 and v ∈ C1
c (BR), it is easy to see that∫

BR

F ε(∇uε) +
(uε − g)

2

2

dx ≤
∫
BR

F ε(∇(uε + v)) +
(uε + v − g)

2

2

dx.

If we can show that∇uε → ∇u a.e. (up to a subsequence), we will have that F ε(∇(uε+v)) →
F (∇u+ v) a.e. in BR (since F ε → F locally uniformly), and by Lebesgue's theorem we will
deduce that limε→0

∫
BR

F ε(∇(uε+ v)) dx =
∫
BR

F (∇(u+ v)). Sending ε to 0, this will yield∫
BR

F (∇u) +
(u− g)

2

2

dx ≤
∫
BR

F (∇(u+ v)) +
(u+ v − g)

2

2

dx,
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showing that u is a convex minimizing solution of (21), hence proving the theorem. Note
that, by Proposition 3.1, u is a solution of (21) in the sense of De�nition 2.

It remains to study the convergence of ∇uε to ∇u. In fact, one shows that ∇uε → ∇u
in L2

loc(RN ) (hence any Lploc(RN ) for p < +∞). Indeed, if ϕ ∈ C1
c (RN ), we have∫

RN

|∇uε−∇u|2ϕdx = −
∫

RN

(uε− u)∇ϕ · (∇uε−∇u)−
∫

RN

(uε− u)ϕ(∆uε−∆u). (24)

The two integrals on the right-hand side clearly go to zero, the �rst one because |∇uε−∇u| ≤
2L a.e., the second one because the distributions ∆uε and ∆u are nonnegative Radon
measures in RN that are uniformly bounded in the sense of Radon measures (indeed, for any
R > 0,

∫
BR

|∆uε| =
∫
∂BR

∇uε · ν ≤ LHN−1(∂BR)). This achieves the proof of Theorem 3.

5 Implicit time discretization of the mean curvature �ow

5.1 Notations and main problem

In this section and the rest of the paper, ϕ is a convex, even, one�homogeneous function
satisfying (6), that will represent a distance in RN (dϕ(x, y) = ϕ(x − y)). Given a set
E ⊂ RN , the signed distance to ∂E is

dϕE(x) = dϕ(x,E) − dϕ(x,RN \ E) ,

it is negative in the interior of E and positive outside of its closure (dϕ(x,E) = infy∈E ϕ(x−
y)).

The polar of ϕ is denoted by ϕ◦(x) = supϕ(y)≤1 y · x. In this section and the subsequent
ones, the �Wul� shape� of radius r and center x is denoted by W (x, r) = {y ∈ RN :

ϕ(y − x) < R}, whereas W (x, r) = {y ∈ RN : ϕ(y − x) ≤ r}.
As in Section 2.2, and following the notations in [18], we will denote by Pϕ (F ) the

anisotropic perimeter associated to the anisotropy ϕ◦, given by

Pϕ (F ) =
∫

RN

ϕ◦(DχF ) =
∫
∂∗F

ϕ◦(νF (x)) dHN−1(x).

We will make use of the corresponding anisotropic total variation (in any open set Ω ⊆ RN )∫
Ω
ϕ◦(Du) = sup

{∫
Ω
u div σ : σ ∈ C1

c (Ω; RN ) , ϕ(σ(x)) ≤ 1 ∀x ∈ Ω
}
.

Given a bounded set E ⊂ RN , let us consider the equation

−h div ∂ϕ◦(∇u) + u − dϕE 3 0 in RN . (25)

We will show in this section that (25) has a solution u, globally Lipschitz, unique in the
class of functions with bounded sublevel sets [u < t] := {x ∈ RN : u(x) < t}, that can
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be recovered as the limit of solutions of the same problem on increasing bounded domains
(with Neumann boundary conditions). We will then de�ne the set ThE = [u < 0] as an
implicit evolution of time step h of ∂E by anisotropic mean curvature.

5.2 A variational problem for the level sets

Lemma 5.1 Assume v ∈ BVloc(RN ) is a solution of (25) such that [v ≤ s] are bounded for

any s ∈ R. Then for any s ∈ R, the set [v < s] is a solution of the variational problem

(Ps) min
F
Pϕ (F ) +

1
h

∫
F
(dϕE(x)− s) dx

Proof. If v ∈ BVloc(RN ) is a solution of (25), it means (cf Def. 2) that there exists a vector
�eld z with ϕ(z(x)) ≤ 1 a.e. in RN , such that z · Dv = ϕ(Dv) as measures (locally in
RN ), and −div z + u = dϕE in the distributional sense in RN . First, let us observe that
−z ·Dχ[v≤s] = ϕ◦(Dχ[v≤s]) as measures in RN for almost any s ∈ R. Indeed, since for any
k > 0 Tk(v) = k −

∫ k
−k
χ

[v≤t] dt, by [9, Proposition 2.7], we have

z ·DTk(v) = −
∫ k

−k
z ·Dχ[v≤t] dt, k > 0.

Since ϕ◦(DTk(v)) =
∫ k
−k ϕ

◦(Dχ[v≤t]), and, by Remark 3.2, we have ϕ◦(DTk(v)) = z ·DTk(v),
we obtain

−
∫ k

−k
z ·Dχ[v≤t] dt =

∫ k

−k
ϕ◦(Dχ[v≤t]) dt, k > 0,

and this implies our claim. Let us denote by N ⊂ R the negligible set of values for which
the claim is false. For s 6∈ N , let Es := [v ≤ s], and let F ⊆ RN be a set of �nite perimeter,
with �nite measure. Multiplying (25) by χEs − χF and integrating by parts, we obtain

1
h

∫
RN

(v − dϕE)(χEs − χF ) =
∫

RN

div z (χEs − χF ) = −
∫

RN

z ·DχEs +
∫

RN

z ·DχF

= Pϕ (Es) +
∫

RN

z ·DχF ≥ Pϕ (Es)− Pϕ (F ).

Hence

Pϕ (Es) +
1
h

∫
Es\F

(dϕE(x)− v) dx ≤ Pϕ (F ) +
1
h

∫
F\Es

(dϕE(x)− v) dx,

and, therefore,

Pϕ (Es) +
1
h

∫
Es\F

(dϕE(x)− s) dx ≤ Pϕ (F ) +
1
h

∫
F\Es

(dϕE(x)− s) dx.

By adding (1/h)
∫
Es∩F (dϕE − s) dx to both sides of the inequality, we obtain that

Pϕ (Es) +
1
h

∫
Es

(dϕE(x)− s) dx ≤ Pϕ (F ) +
1
h

∫
F
(dϕE(x)− s) dx.
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If s ∈ N , we observe that [v < s] =
⋃
s′<s,s′ 6∈N [v < s′] and we deduce the thesis of the

Lemma by approximation and semicontinuity of the total variation. Observe also that since
for any s, [v ≤ s] =

⋂
s′>s[v < s′], the set [v ≤ s] is also a solution of (Ps).

Remark 5.2 It is simple to check that Problem (Ps) is equivalent to the variational problem

(P ′s) min
F
Pϕ (F ) +

1
h

∫
F4Es

|dϕE(x)− s| dx

where Es = [dϕE < s].

5.3 A uniqueness result

We will show, as a consequence of Lemma 5.1 and of the following lemma, that (25) can
have at most one solution in the class of functions with bounded sublevel sets [u < s], s ∈ R.

Lemma 5.3 Let us denote by Fs a minimizer of (Ps), for any s ∈ R. Then, if s < s′, we

have Fs ⊆ F ′s.

Proof. Let s < s′, and let us prove that Fs ⊆ F ′s. Indeed, one has

Pϕ (Fs) +
1
h

∫
Fs

(dϕC(x)− s) dx ≤ Pϕ (Fs ∩ Fs′) +
1
h

∫
Fs∩Fs′

(dϕC(x)− s) dx ,

Pϕ (Fs′) +
1
h

∫
Fs′

(dϕC(x)− s′) dx ≤ Pϕ (Fs ∪ Fs′) +
1
h

∫
Fs∪Fs′

(dϕC(x)− s′) dx .

Now, summing the inequalities and using the well�known inequality

Pϕ (Fs ∩ Fs′) + Pϕ (Fs ∪ Fs′) ≤ Pϕ (Fs) + Pϕ (Fs′) ,

we �nd that∫
Fs

(dϕC(x)− s) dx +
∫
Fs′

(dϕC(x)− s′) dx ≤
∫
Fs∩Fs′

(dϕC(x)− s) dx +
∫
Fs∪Fs′

(dϕC(x)− s′) dx .

In other words,
s′(|Fs ∪ Fs′ | − |Fs′ |) ≤ s(|Fs| − |Fs ∩ Fs′ |) ,

that is s′|Fs \ Fs′ | ≤ s|Fs \ Fs′ |. Hence, if s′ > s, we must have |Fs \ Fs′ | = 0 so that (up to
a negligible set) Fs ⊆ Fs′ .
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Corollary 5.4 If u and v are two solutions of (25), such that [u < s] and [v < s] are

bounded for any s, then u = v a.e. in RN .

Proof. By Lemma 5.1, [u < s] and [v < s] solve (Ps) for any s. By Lemma 5.3, we �nd that
if s′ > s, [u < s] ⊆ [v < s′] and [v < s] ⊆ [u < s′]. We easily deduce [v < s] ⊆ [u < s] for
any s, as well as the reverse inclusion (up to negligible sets). Hence u = v a.e. in RN .

Remark 5.5 One also deduces that [u < s] is the smallest solution of (Ps), while [u ≤ s]

is the largest. In particular, for almost any s (but a countable set), [u = s] is negligible and
(Ps) has a unique solution.

Remark 5.6 One could try to deduce from Lemmas 5.1 and 5.3 an approach for building
a solution to (25) (through the sets Fs solving (Ps)), hence showing existence. However, a
simpler approach is proposed in the next section, that yields other important properties of
this solution.

5.4 Approximation by variational problems on bounded domains

We show, here, existence of a solution u to (25), with bounded sublevels [u < s], by means
of an approximation by Neumann (variational) problems in increasing bounded domains.

If E ⊂ RN is bounded and R > 0 is such that E ⊂⊂ W (0, R), we de�ne uR as the
solution of

min
u∈BV (W (0,R))

∫
W (0,R)

ϕ◦(Du) +
1
2h

∫
W (0,R)

|u(x)− dϕE(x)|2 dx (26)

We may assume, without loss of generality, that 0 ∈ E. In this case, there exists
M > 0 such that ϕ −M ≤ dϕE ≤ ϕ. By comparison (cf [19, Lemma 2.1]), one gets that
ūR,h −M ≤ uR ≤ ūR,h where ūR,h is given by (33), in Appendix B. We deduce that if
R′ > R is large enough, the sublevel [uR′ < R + h(N − 1)/R + 1] contains W (0, R). On
the other hand, u ≥ uR′,h −M > R + h(N − 1)/R + 1 on ∂W (0, R′ − 2

√
h) as soon as

R′ is large enough, so that [uR′ < R + h(N − 1)/R + 1] ⊂⊂ W (0, R′). By [19, Cor. A.2],
we deduce that if Ω ⊇ W (0, R′), and if uΩ is the solution of (26) with W (0, R) replaced
with Ω, then uΩ ∧ (R+ h(N − 1)/R+ 1) = uR′ ∧ (R+ h(N − 1)/R+ 1), and in particular,
uΩ|W (0,R) = uR′ |W (0,R). We deduce the following lemma:

Lemma 5.7 For any R > 0, there exists R0 > R such that if R′ ≥ R0 the restriction to

W (0, R) of the solution uR′ of (26) (with R replaced with R′) is independent of R′.

We deduce, in particular, that asR→∞, uR converges to a function u that solves (25) (it
is obviously a �minimizing solution� in the sense of De�nition 1), and with ūh−M ≤ u ≤ ūh
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(where ūh is the limit of ūR,h, given by (32)). By Corollary 5.4, this function u is the unique
solution of (25) in the class of function with bounded sublevels [u < s].

From [19, Cor. A.9], which we can invoke in the sets [uR < s] for any level s and R large
enough (so that [uR < s] = [u < s]), we deduce the following lemma:

Lemma 5.8 ϕ◦(∇u) ≤ 1 a.e. in RN .

Let us mention that this lemma also easily follows by approximation with smooth problems,
and using the comparison principle for viscosity solutions mentionned in Section 4.

To summarize, we have shown the following result.

Theorem 4 For any bounded E ⊂ RN , problem (25) admits a unique solution u in the

class of functions with bounded sublevels [u < s]. This function u is globally Lipschitz, and

each sublevel [u < s] is a minimizer of (Ps) or (P ′s). The function u is the limit of the

solutions of (26) as R→∞. In particular, if E ⊆ E′, one deduces that u′ ≥ u, where u′ is

the solution of (25) with dϕE′ replacing d
ϕ
E, and [u < s] ⊆ [u′ < s] for any s ∈ R.

5.5 Implicit time discretization of the mean curvature �ow

Given u the solution of (25) given by Theorem 4, we let ThE = [u < 0]. The set ThE
is a solution of (P ′0), which is the variational problem suggested by Almgren, Taylor and
Wang [2] as an implicit time discretization of the mean curvature �ow (see also Luckhaus
and Sturzenecker [38]). From Theorem 4, we have the important property that if E ⊆ E′,
then ThE ⊆ ThE

′.
The evolution generated by Th, as h → 0, has been studied in [19], and is shown to

converge, when the anisotropy ϕ is smooth and uniformly convex, to the generalized motion
by anisotropic mean curvature (in the sense of minimal barriers or viscosity solutions, see [13,
14, 15, 42, 10, 11]). In this paper, we are interested in the particular case of convex sets.

We thus consider C a bounded, convex set, with nonempty interior. Observe that in
this case the boundary of C is negligible and for our problem it is irrelevant to consider
C closed or open. In this case, dϕC is convex (cf [39, Lem. 4.2]), so that the solution u

of (25) for E = C is convex too, by Theorem 3. One also deduces u ≥ dϕC , in particular,
[u ≤ 0] ⊂ C. If minu < 0 (which will be true as soon as h is small enough), then one sees
that ThC = [u < 0] is an open convex set with closure [u ≤ 0]. This generalizes McCann's
Theorem 4.1 in [39], which shows the same result for C a two�dimensional, balanced convex
set.

The set ThC is a solution of Problem (P ′0), that is,

min
F
Pϕ (F ) +

1
h

∫
F4C

|dϕC(x)| dx (27)
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where the minimizer is taken among all �nite perimeter sets F ⊂ RN .
We have ThC = ∅ if minu ≥ 0. If minu > 0, it is the unique solution of (27). If

ThC 6= ∅, it must be that |[u = 0]| = 0 and we �nd again that ThC is the unique solution
of (27). It is only in the case minu = 0 that (27) might have multiple solutions: indeed,
[u < 0] = ∅ and [u = 0] might provide two di�erent solutions (here, of course, �unique� and
�di�erent� are intended in the sense of �nite-perimeter sets, that is, up to a negligible set in
RN , in particular, whenever |[u = 0]| = 0, then [u < 0] and [u ≤ 0] are the same set).

We then de�ne the discrete�in�time evolution Ch(t) = (Th)[t/h](C), for all t > 0. We
also let Ch ⊂ RN × [0,+∞) be the �tube� {(x, t) : t ≥ 0, x ∈ Ch(t)}.

We will show that as h→ 0, Ch(t) converges to an evolution C(t) which satis�es, in the
case of a nonsmooth anisotropy ϕ,ϕ◦, a weak form of the mean curvature motion equation.
In the case of a smooth anisotropy, the fact that C(t) is the mean curvature evolution
starting from C already follows from the results in [2], [19], and [38] in the isotropic case.
However, our construction also proves that given any smooth anisotropy, the evolution of a
convex set remains convex, which did seem to be known only in dimension 2 [39].

6 Evolution of the Wul� shape.

Let us compute the evolution of the Wul� shape of radius r0, that is, the set W (0, r0) =

{ϕ ≤ r0}. We �rst compute ThW (0, r0) = ThW (0, r0).
Equation (40) in Appendix B shows that if C = W (0, r0) in (25), then u is given by

u(x) =


ϕ(x)− r0 +

h(N − 1)
ϕ(x)

if ϕ(x) ≥
√
h(N + 1) ,

2N
√
h√

N + 1
− r0 otherwise.

We deduce that ThW (0, r0) = ∅ if h ≥ (N + 1)r20/(4N
2), and ThW (0, r0) = W (0, Sh(r0)),

with Sh(r0) = r0(1+
√

1− 4h(N − 1)/r20)/2, otherwise (by convention, let us set Sh(r0) = 0

when h ≥ (N + 1)r20/(4N
2)). One can show that (Sh)[t/h](r0) → r(t) uniformly in [0,+∞)

as h→ 0 where r(t) solves ṙ = −(N − 1)/r, r(0) = r0, that is: r(t) =
√
r20 − 2(N − 1)t for

t ≤ tr0 = r20/(2(N − 1)), and, by convention, r(t) = 0 for t > tr0 . One also shows that for
any T > tr0 , (Sh)[t/h](r0) = 0 for h small enough and t ≥ T . One deduces the following
lemma (we refer to Appendix A for the de�nition and properties of the Hausdor� distance
and convergence).

Lemma 6.1 Let C(t) = W (0, r(t)) for t ≤ tr0 , and ∅ for t larger, and let Ch(t) =

(Th)[t/h](W (0, r0)). Then, as h→ 0, Ch(t) converges to C(t) in the following senses:

• For each t ∈ (0, tr0), Ch(t) converges to C(t) in the Hausdor� sense, moreover, if

T > tr0 , then for h small enough Ch(t) = ∅ for any t ≥ T ,
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• For each 0 ≤ t < tr0 , ∂Ch(t) converges to ∂C(t) = {x : ϕ(x) = r(t)} in the Hausdor�

sense,

• The �tube� Ch = {(x, t) : x ∈ Ch(t)} converges in the Hausdor� sense to {(x, t) : x ∈
C(t)} = {(x, t) : 0 ≤ t ≤ tr0 , ϕ(x) ≤ r(t)}, in RN × [0,+∞)

• The boundary of Ch, ∂Ch, converges to the set {(x, t) : 0 ≤ t ≤ tr0 , ϕ(x) = r(t)} in

RN × [0,+∞).

Remark 6.2 These properties also yield that Ch(t)c converges to C(t)c in the Hausdor�
sense, and, as well, that the complements of Ch converge to {(x, t) : 0 ≤ t ≤ tr0 , ϕ(x) ≥
r(t)}.

Remark 6.3 In the same way, for any x ∈ RN , r0 > 0, t ≥ 0, one shows similar
convergence properties of T [s/h]−[t/h]

h (W (x, r0)) in RN × [t,+∞), to the tube given by
W (x,

√
r20 − 2(N − 1)(s− t)) for t ≤ s ≤ t+ r20/(2(N − 1)) and ∅ for s ≥ t+ r20/(2(N − 1)).

7 Evolution of a general convex set

Let C0 be an initial bounded convex set, with nonempty interior, and let, for h > 0 small
enough, Ch(t) = (Th)[t/h](C0). Let also Ch ⊂ RN × [0,+∞) be the tube {(x, t) : t ≥ 0, x ∈
Ch(t)}.

Up to a subsequence (that we will still denote by (h)h>0 throughout the sequel), we may
assume that Ch → C∗ in the Hausdor� sense as h → 0, and, as well, that (Ch)c → (C∗)c

(see Appendix A). One has C∗ ⊂ C∗ and C∗ \ C∗ is the Hausdor� limit of ∂Ch.
We denote by C∗(t) (resp., C∗(t)) the section {x : (x, t) ∈ C∗} (resp., {x : (x, t) ∈ C∗}).
Let us observe that, from the existence of some R > 0 with C ⊂ W (0, R) and the

convergence properties established in the previous section, C∗(t) is empty for t > tR.
From the properties of Ch(t), it is straightforward that both C∗(t) and C∗(t) are convex

for any t, and, as well, that if t < s, C∗(t) ⊇ C∗(s) and C∗(t) ⊇ C∗(s). We call tC the
extinction time for C∗, that is, tC = min{t ≥ 0 : C∗(t) = ∅} (observe that C∗(t) 6= ∅ for any
t < tC). Similarly, let t∗C be the extinction time of C∗, that is, max{t ≥ 0 : C∗(t) 6= ∅}. It is
also clear (since C∗ ⊂ C∗) that tC ≤ t∗C , and that t∗C = limh→0 th where th is the extinction
time of Ch (th = min{t ≥ 0 : Ch(t) = ∅}). It is very likely that t∗C = tC , although we were
not able to prove it.

Let us �rst show the following properties for the tubes C∗ and C∗ and their sections:

(i)
⋃
t′>t

C∗(t′) = C∗(t) for any t ≥ 0,
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(ii) int (
⋂
t′<t

C∗(t′)) = C∗(t) for any t > 0,

(iii) int (C∗(t)) = C∗(t) for any t > 0, and C∗(0) = int (C0), C∗(0) = C0.

To show (i) we �rst observe that since C∗ is nonincreasing in time, C∗(t) ⊇ ∪t′>tC∗(t′). On
the other hand, if x ∈ C∗(t), then there exists ρ > 0 such that W (x, ρ)× {t} ⊂⊂ C∗, hence
is contained in Ch for h small enough. Then, T [s/h]−[t/h]

h W (x, ρ) ⊂ Ch(s) for s ≥ t, or,{
(y, s) ∈ RN × [t,+∞) : y ∈ T [s/h]−[t/h]

h W (x, ρ)
}c

⊃ (Ch)c.

Passing to the Hausdor� limit and using Lemma 6.1 and Remark 6.3, we see that for any
s ∈ [t, t + ρ2/(2(N − 1))), W (x,

√
ρ2 − 2(N − 1)(s− t)) ⊂ C∗(s). In particular, x ∈ C∗(s)

for s close enough to t, s > t. This shows (i).
The proof of (ii) is similar. We �x t > 0. First, since C∗ is nonincreasing in time, C∗(t) ⊂

int (∩t′<tC∗(t′)). Now, if x ∈ int (∩t′<tC∗(t′)) there exists ρ > 0 such thatW (x, ρ) ⊂⊂ C∗(t′)

for any t′ < t. Repeating the proof of (i), we �nd that W (x,
√
ρ2 − 2(N − 1)(s− t′)) ⊂

C∗(s) for any s ∈ [t′, t′+ρ2/(2(N−1))), and sending t′ to t, that for t ≤ s ≤ t+ρ2/(2(N−1)),
W (x,

√
ρ2 − 2(N − 1)(s− t)) ⊂ C∗(s). In particular, W (x, ρ) ⊂ C∗(t), showing our claim.

Let us now prove (iii). Let t > 0. If x ∈ int (C∗(t)) then, by convexity, we can choose
N + 1 points ξ1, . . . , ξN+1 ∈ C∗(t) and ρ > 0 such that W (x, ρ) is contained in the convex
envelope of the (ξi)N+1

i=1 . Then, there exist sequences (ξih, t
i
h)h>0 for each i, with ξih ∈ Ch(tih),

and such that tih → t and ξih → ξi as h → 0. If t′ < t, then for h small enough, t′ ≤ tih

so that ξih ∈ Ch(t′). By convexity, the simplex with vertices ξih is also in Ch(t′), and if h
is small enough it will contain W (x, ρ/2). Reproducing the arguments in the proofs of (i)
and (ii), we �nd that W (x,

√
ρ2/4− 2(N − 1)(s− t′)) ⊂ C∗(s) for s > t′, s close to t′.

Sending t′ to t we �nd in particular that W (x, ρ/2) ⊂ C∗(t), hence int (C∗(t)) ⊂ C∗(t).
Since C∗(t) ⊂ C∗(t), we �nd that int (C∗(t)) = C∗(t).

Eventually, we see that if x ∈ intC0, the proof of (i) can be reproduced to show that
x ∈ C∗(0), now, we �nd int (C0) ⊆ C∗(0) ⊂ C∗(0) ⊆ C0 (since C0 contains Ch(t) for all h
and t). Since int (C0) is the interior of C0, and C0 the closure of int (C0), it yields the two
last statements of (iii).

Point (iii) shows that int (C∗(t)) = C∗(t) for all t ≥ 0. In particular, int (C∗(t)) is empty
if t ≥ tC . If t < tC , we deduce also that C∗(t) = C∗(t). Fix t ≥ 0 and consider A ⊂ B

such that Ac is the Hausdor� limit of a converging subsequence of ((Ch(t))c)h>0, while B
is the limit of Ch(t) along the same subsequence. One has C∗(t) ⊆ A ⊂ B ⊆ C∗(t). Hence,
if t < tC , we deduce that A = C∗(t) and B = C∗(t) (showing in particular that the whole
sequences ((Ch(t))c)h>0 and (Ch(t))h>0 converge to Ac and B). Notice that the convergence
of Ch(t) to C∗(t) = C∗(t) and of (Ch(t))c to (C∗(t))c is equivalent to the convergence of
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∂Ch(t) to ∂C∗(t) (see Section A.5). If t ≥ tR, we �nd that A = ∅ = C∗(t). In particular,
we have shown the following lemma:

Lemma 7.1 If t ∈ [0, tC), then Ch(t) → C∗(t) in the Hausdor� sense while (Ch(t))c →
(C∗(t))c, and one has C∗(t) = C∗(t) while C∗(t) is the interior of C∗(t). In particular

∂Ch(t) goes to ∂C∗(t).

We observe that in particular (cf Section A.5), C∗(t)\C∗(t) = ∂C∗(t) is Lebesgue�negligible
for any t < tC , whereas if t ≥ tC , then C∗(t) has empty interior (from point (iii)). As a
consequence, also C∗ \ C∗ is negligible in RN × [0,+∞).

Lemma 7.2 The function t 7→ ∂C∗(t) is Hausdor��continuous on [0, tC ]. Moreover, for

any T < tC , the convergence of ∂Ch(t) to ∂C∗(t) = ∂C∗(t) in the Hausdor� distance is

uniform on [0, T ].

Proof. We refer to Section A.6 in the appendix. From property (i) above, we get that as
long as t < tC , ∂C∗(t′) → ∂C∗(t) if t′ → t, t′ > t, On the other hand, the semicontinuity
property C∗(t) =

⋂
t′<tC

∗(t′) is clearly true for any t > 0. Indeed, if x ∈
⋂
t′<tC

∗(t′) it
means that (x, t′) ∈ C∗ for any t′ < t, but C∗ is closed, so that (x, t) ∈ C∗ hence x ∈ C∗(t).
Conversely if x ∈ C∗(t), then (x, t) = limh→0(xh, th) for some sequence (xh, th) ∈ Ch, but
as if t′ < t, th ≥ t′ for h small enough, one deduces x ∈ C∗(t′), hence x ∈

⋂
t′<tC

∗(t′). We
deduce that for any t > 0, ∂C∗(t′) → ∂C∗(t) if t′ → t, t′ < t.

Now let us consider the convergence of ∂Ch(t) to ∂C∗(t). As mentionned in Section A.5,
the fact that for any t < tR, ∂Ch(t) → ∂C∗(t) is equivalent to the uniform convergence
in RN of the distance functions dh(x, t) = dϕCh(t)(x) to d(x, t) = dϕC∗(t)(x). To get uniform
convergence in t ∈ [0, T ], T < tC , we must show that supt∈[0,T ] supx∈RN |dh(x, t)−d(x, t)| →
0 as h → 0. But, by the previous paragraph, t 7→ d(x, t) is continuous, hence uniformly
continuous, as a function from [0, T ] to C(RN ) (with uniform convergence). Moreover, we
know that both dh and d are nondecreasing in time. Let us �x ε > 0 and �nd t0 = 0 <

t1 < · · · < tk−1 < tk = T such that 0 ≤ d(x, ti) − d(x, ti−1) ≤ ε for any i = 1, . . . , k and
any x ∈ RN . If h is small enough, then |dh(x, ti)− d(x, ti)| ≤ ε for any i = 0, . . . , k and any
x ∈ RN . For such h, t ∈ [0, T ], x ∈ RN , if i is an index such that ti ≤ t ≤ ti+1, we have

dh(x, t)− d(x, t) ≤ dh(x, ti)− d(x, ti+1) ≤ dh(x, ti)− d(x, ti) + ε ≤ 2ε,

dh(x, t)− d(x, t) ≥ dh(x, ti+1)− d(x, ti) ≥ dh(x, ti+1)− d(x, ti+1)− ε ≥ −2ε,

which proves the desired property and achieves the proof of the lemma.
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If ϕ, ϕ◦ are smooth, we deduce that on [0, tC), the limit evolution ∂C∗(t) is the general-
ized anisotropic mean curvature motion starting from C0, by [2, Thm 6.2]. Here �generalized�
is intended in the sense of viscosity solutions, see for instance [11]. In particular, we deduce
that for any smooth anisotropy, the mean curvature motion starting from a convex set re-
mains convex at all time. Notice that tC must be the extinction time for the curvature �ow,
since the limit of C∗(t) as t→ tC has empty interior.

In all cases, including the nonsmooth or �crystalline� case, we can derive a weak form of
the Mean Curvature Flow equation:

Theorem 5 There exists z ∈ L∞(RN × (0, tC)) with z ∈ ∂ϕ◦(∇d) a.e. in RN × (0, tC),

such that

−div z(x, t) +
∂d

∂t
≥ 0 (28)

as measures out of C∗ ∩ RN × (0, tC), and

−div z(x, t) +
∂d

∂t
≤ 0 (29)

as measure in C∗.

Proof. Let th be the extinction time of Ch, we recall th → t∗C ≥ tC . For h > 0 and t ∈ [0, th)

we let dh(x, t) = dϕCh(t)(x). We also denote by uh(t, x) the solution of (25) for the convex
Ch(t). Since Ch(t + h) = {uh(·, t) < 0} and (by Lemma (5.8)), ϕ◦(∇uh(x, t)) ≤ 1, we
can show that uh(x, t) ≤ dh(x, t + h) for any (x, t) 6∈ Ch whereas uh(x, t) ≥ dh(x, t + h)

if (x, t) ∈ Ch. Let us show for instance the �rst assertion: for x 6∈ Ch(t), there exists
x0 ∈ ∂Ch(t) with ϕ(x− x0) = dh(x, t+ h). Since uh(x0) = 0, one has

uh(x) =
∫ 1

0
∇uh(x0 + s(x− x0)) · (x− x0) ds

= ϕ(x− x0)
∫ 1

0
∇uh(x0 + s(x− x0)) ·

x− x0

ϕ(x− x0)
ds

Since ϕ((x−x0)/ϕ(x−x0)) = 1, the scalar product in the integral is less than ϕ◦(∇uh(x0 +

s(x− x0))) ≤ 1. Hence uh(x) ≤ ϕ(x− x0) = dh(x, t+ h). The proof of the second assertion
is identical: if x ∈ Ch(t), there exists x0 ∈ ∂Ch(t) with −ϕ(x0 − x) = dh(x, t+ h), and one
gets in the same way −uh(x, t) = uh(x0, t)− uh(x, t) ≤ ϕ(x0 − x) = −dh(x, t+ h).

Therefore, for each t < th, there exists a �eld zh(x, t) ∈ ∂ϕ◦(∇uh(x, t + h)) (piecewise
constant in t) such that

−div zh(x, t) +
dh(x, t+ h)− dh(x, t)

h
≥ 0 for (x, t) 6∈ Ch ,

−div zh(x, t) +
dh(x, t+ h)− dh(x, t)

h
≤ 0 for (x, t) ∈ Ch .

(30)
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There exists z ∈ L∞(RN×(0, tC); RN ) such that, up to a subsequence, zh → z weakly−∗
(here zh, which strictly speaking is de�ned only up to t = th, can be arbitrarily extended,
for instance by 0, after th if th < tC). Assume we have shown that ∇uh(x, t+h) → ∇d(x, t)
in L2

loc(RN × (0, tC)). If p(x, t) ∈ L2
loc(RN × (0, tC); RN ) is an arbitrary vector �eld and

ψ ∈ C∞c (RN × (0, tC)) a nonnegative test function, one has for any h small enough∫ tC

0

∫
RN

ϕ◦(p(x, t))ψ(x, t) dxdt ≥
∫ tC

0

∫
RN

ϕ◦(∇uh(x, t+ h))ψ(x, t) dxdt

+
∫ tC

0

∫
RN

(zh(x, t) · (p(x, t)−∇uh(x, t+ h)))ψ(x, t) dxdt.

Sending h→ 0, we �nd∫ tC

0

∫
RN

ϕ◦(p(x, t))ψ(x, t) dxdt ≥
∫ tC

0

∫
RN

ϕ◦(∇d(x, t))ψ(x, t) dxdt

+
∫ tC

0

∫
RN

(z(x, t) · (p(x, t)−∇d(x, t)))ψ(x, t) dxdt.

We easily deduce that a.e. in RN × (0, tC), z ∈ ∂ϕ◦(∇d). Now, let us choose a nonnegative
test function ψ ∈ C∞c (RN × (0, tC)) such that the support of ψ is out of C∗, then for h
small enough suppψ ⊂ (Ch)c, and integrating against the �rst equation in (30), integrating
by parts and passing to the limit, we �nd (28). We show (29) in the same way. We have
checked the inequalities (28-29) in the distributional sense, however, since both ∂d/∂t and
div z are nonnegative (see Remark 7.4), they also are Radon measures and (28-29) must be
true in the sense of measures, in their respective domains.

It remains to check that ∇uh(x, t+h) → ∇d(x, t) in L2
loc(RN × (0, tC)). Let us consider

equation (25): if we multiply it by (u − dϕC)e−|x|, and take the integral over RN , we �nd
that

h

∫
RN

z(x) · ∇((u(x)− dϕC(x))e−|x|) dx +
∫

RN

|u(x)− dϕC(x)|2e−|x| dx = 0.

Hence (using Lemma 5.8),∫
RN

|u(x)− dϕC(x)|2e−|x| dx ≤ 2h
∫

RN

e−|x| dx + Ch

∫
RN

|u(x)− dϕC(x)|e−|x|

where C = maxϕ(z)≤1 |z|. Using Cauchy�Schwarz inequality, we deduce

∫
RN

|u(x)− dϕC(x)|2e−|x| dx ≤ C ′h

(
2 + C

(∫
RN

|u(x)− dϕC(x)|2e−|x| dx
) 1

2

)

where C ′ = NωNΓ(N). We deduce that
∫

RN |u(x)− dϕC(x)|2e−|x| dx = O(h). In particular,
for any t < th,

∫
RN |uh(x, t + h) − dh(x, t)|2e−|x| dx → 0 as h → 0 and since ϕ◦(∇uh) ≤ 1

a.e., we deduce that uh(x, t + h) goes locally uniformly (in x) to d(x, t) as h → 0 (since d
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is the limit of dh). Using the same argument as in the last paragraph of Section 4 (based
on the integration by parts (24)) we deduce that ∇uh(x, t + h) goes to ∇d(x, t), �rst in
L2

loc(RN ) for each t ∈ [0, tC), and by Lebsegue's dominated convergence theorem, also in
L2

loc(RN × (0, tC)). Notice that using the same argument as in the proof of Lemma 7.2, we
deduce (since also uh is nondecreasing in t) that uh(x, t+h) goes to d(x, t) locally uniformly
in RN × [0, tC).

Remark 7.3 In fact, one shows similarly that dh(x, t) and uh(x, t + h) converge to d for
t ∈ [tC , t∗C) at least at all points where d is continuous (in time, a careful analysis shows
then that it is the case except at an at most countable number of points). One deduces
that (28) holds up to t∗C . We expect this inequation can be used to show that t∗C = tC (since
C∗(t) is (N − 1)�dimensional for tC ≤ t ≤ t∗C).

Remark 7.4 Since for all x and t ≤ th, one has div zh(x, t) ≥ 0 (indeed div zh is the
(Lipschitz) function (uh − dh)/h, which is known to be nonnegative), in the limit one also
deduces div z ≥ 0, which is not obvious out of C∗. On the other hand, one also clearly has
∂d/∂t ≥ 0.

Remark 7.5 Other properties can be shown about the measure ∂d/∂t, for instance, it is
locally L∞ inside C∗ since one may show that ∂d/∂t ≤ −(N − 1)/d where d < 0. We
conjecture that (28) and (29) yield that ∂C∗(t) is a convex �ow by crystalline curvature in
the classical sense. This is the subject of future studies.

A Hausdor� distance

A.1 De�nition

In this section, we recall some properties of the Hausdor� distance and convergence. The
Hausdor� distance between two sets A and B in RN is de�ned as

dH(A,B) = max
{

sup
a∈A

dist (a,B), sup
b∈B

dist (b, A)
}

where the distance of a point x to a set E is de�ned, as usual, by dist (x,E) = infy∈E |x−y|.
Equivalently, one has

dH(A,B) = inf
{
t > 0 : X ⊆ Y t and Y ⊆ Xt

}
,

where Et is the set {x : dist (x,E) ≤ t}.
Let us show that

dH(A,B) = sup
x∈RN

|dist (x,A)− dist (x,B)|. (31)
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Since by de�nition, dH(A,B) = supx∈A∪B |dist (x,A)−dist (x,B)|, we need to show that for
any x 6∈ A ∪B, |dist (x,A)− dist (x,B)| ≤ dH(A,B). Let t ≥ dH(A,B). Given x 6∈ A ∪B,
let an ∈ A such that dist (x,A) = limn→∞ |x − an|. For all n, since an ∈ A ⊂ Bt, there
exists bn ∈ B with |an − bn| ≤ t + 1/n. Then, dist (x,B) ≤ |x − bn| ≤ |x − an| + t + 1/n.
Passing to the limit, we �nd that dist (x,B) − dist (x,A) ≤ t. Interverting A and B we
�nd that |dist (x,A) − dist (x,B)| ≤ t, hence |dist (x,A) − dist (x,B)| ≤ dH(A,B) for any
x 6∈ A ∪B. This shows the identity (31).

We say that the sequence of sets (An)n≥1 converges to A in the Hausdor� sense if and
only if dH(An, A) → 0 and A is closed (this assumption being added in order for the limit
to be unique, since for any A,B ⊂ RN , dH(A,B) = dH(A,B)). By (31), it means that the
distance to An converges uniformly in RN to the distance to A.

A.2 Characterization of limits

Let (An)n≥1 be a uniformly bounded sequence of sets, and let A be a closed set. Then it is
well known that An goes to A in the Hausdor� sense as n goes to in�nity if and only if

(i) Given any sequence (xn)n∈N with xn ∈ An, if x is the limit of a subsequence of
(xn)n≥1, then x ∈ A;

(ii) For every x ∈ A, there exists a sequence of points xn ∈ An such that limn→∞ xn = x.

A.3 Sets with bounded complement

Assume (An)n≥1 is a sequence of unbounded sets such that their complements Acn are uni-
formly bounded in RN , and A ⊂ RN : then again, the sets An converge to A if and only
if (i) and (ii) hold. Indeed, if R is large enough so that Acn ⊂ B(0, R − 1) for any n, then
An goes to A if and only if B(0, R)c ⊂ A and the bounded sets B(0, R) ∩ An converge to
B(0, R) ∩A: then we can use the characterization given in A.2.

A.4 Compactness

Let (An)n≥1 be a sequence of sets in RN , such that either (An)n≥1, or their complements
(Acn)n≥1, are uniformly bounded. Then, there exists a closed set A ⊂ RN such that, up to
a subsequence, An → A in the Hausdor� sense.

For each n ≥ 1, let dn(x) = dist (x,An). Since the functions dn are (locally) uniformly
bounded and equicontinuous (being all 1�Lipschitz) then, up to a subsequence (still denoted
by (dn)n≥1), they converge locally uniformly to some function d. Let A = {d = 0}. Then,
if xn ∈ An for all n and xnk

→ x as k → ∞, since the subsequence (xnk
) is bounded one

has dnk
(xnk

) → d(x) as k → ∞, so that d(x) = 0 (since dn(xn) = 0 for all n) and x ∈ A.
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Let now x ∈ A: then dn(x) → 0 as n → ∞. Hence, for any n, there exists xn ∈ An, with
limn→∞ |xn − x| = 0. We have checked both points (i) and (ii) of paragraph A.2. Hence A
is the Hausdor� limit of the sets An. By (31), we deduce that d(x) = dist (x,A), and that
limn→∞ supx∈RN |dn(x)− d(x)| = 0.

To summarize, for such sets, An → A as n→∞ if and only if dist (x,An) → dist (x,A)

locally uniformly, if and only if dist (x,An) → dist (x,A) uniformly in RN .

A.5 Signed distance function

For any set E ⊂ RN let dE(x) = dist (x,E) − dist (x,Ec) be the signed distance to ∂E.
Let (An)n≥1 be a sequence of uniformly bounded sets in RN . Up to a subsequence, dAn

converges to some Lipschitz function d (locally uniformly, and, in fact, uniformly by the
previous results). From the paragraph above, we have that A∗ = {d ≤ 0} is the Hausdor�
limit of the sets An, whereas A∗ = {d < 0} ⊂ A∗ is the complement of the Hausdor� limit
of the sets Acn. Also, since |dAn(x)| = dist (x, ∂An), {d = 0} = A∗ \ A∗ is the limit of the
boundaries ∂An, and |d| is the distance to A∗ \A∗.

In particular, if A∗ = int (A∗), then the boundaries ∂An converge in the Hausdor� sense
to ∂A∗ = A∗ \A∗, and d = dA∗ .

If An is convex for all n, then dAn is convex, so that also d is convex, and A∗, A∗

are also convex. One has |∇d| = 1 a.e. in RN , since one can show that ∇dAn → ∇d in
L2
loc(RN ) (see (24) and the last paragraph of Section 4). In particular, we deduce |{d =

0}| = |A∗ \ A∗| = 0. One must have min d ≤ 0 (since min dAn ≤ 0 for all n). If min d < 0,
then A∗ = int (A∗), A∗ = A∗, and d = dA∗ = dA∗ , in this case, the boundaries ∂An converge
to ∂A∗ = ∂A∗. If min d = 0, A∗ has empty interior, since it is negligible, and, again,
∂An → ∂A∗ = A∗.

Let us observe that all that has been said about the distance functions remains valid if
the Euclidean distance |x − y| is replaced with some arbitrary anisotropic distance of the
form ϕ(x− y), with ϕ an even, convex, one�homogeneous function in RN , equivalent to the
Euclidean norm.

A.6 Nonincreasing sequences of sets

Let (An)n≥1 be a sequence of closed sets in RN , such that either (An)n≥1, or their comple-
ments (Acn)n≥1, are uniformly bounded. Assume An ⊇ An+1 for any n and A =

⋂
n≥1An.

Then, An → A in the Hausdor� sense, and (An)c → Ac, as n → ∞. In particular, one
deduces that ∂An goes to ∂A (and dAn → dA).

Let us show this: �rst, if x ∈ A, then x ∈ An for all n hence it is a limit of a sequence
(xn) with xn ∈ An for all n. Conversely, if xn ∈ An and xnk

→ x, assume that x 6∈ A. Then
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x 6∈ An for some n ≥ 1, hence there exists ρ > 0 such that B(x, ρ) ∩ An = ∅. Now, if k is
large enough xnk

∈ B(x, ρ) and nk ≥ n, a contradiction since Ank
⊂ An. This shows that

A is the Hausdor� limit of (An)n≥1. Let us show that Ac is the limit of the complements
Acn (or of their closure, which is equivalent). If xn 6∈ An for all n, since

⋃∞
n=1A

c
n = Ac, then

any cluster point of {xn : n ≥ 1} is in Ac. Conversely, if x ∈ Ac, there exists yk ∈ Ac with
yk → x as k →∞. Now, for any k, there exists n(k) such that yk ∈ Acn(k). By induction we
may build the sequence n(k) in order to always have n(k + 1) > n(k). Then, we de�ne xn
as follows: we let xn = yk whenever n(k) ≤ n < n(k + 1). We have xn ∈ Acn for all n, and
xn → x.

B Explicit solution for d = ϕ.

In this section we show how to compute the solution of

−h div ∂ϕ◦(Du) + u = ϕ (32)

in RN . We also consider the problem

min
u∈BV (W (0,R))

∫
W (0,R)

|Du| +
∫
W (0,R)

(u(x)− ϕ(x))
2h

2

dx , (33)

for R > 0 �nite. By Theorem 3, equation (32) has a convex solution ūh (larger than ϕ),
whereas by Lemma 5.4, it is unique in the class of functions with bounded level sets [u < s],
s ∈ R. We will show that the solutions ūR,h of (33) coincide with ūh, in a Wul� shape
W (0, ρ(R, h)) for some ρ(R, h) close to R (ρ(R, h) ' R −

√
2h as R → ∞ and h → 0). In

particular, we have ūR,h → ūh as R→∞.
Let us �rst consider Problem (33). If v is Lipschitz,∫

W (0,R)
ϕ◦(Dv) =

∫
W (0,R)

ϕ◦(∇v(x)) dx =
∫ R

0

∫
{ϕ(x)=s}

ϕ◦(∇v(x)) dH
N−1(x)

|∇ϕ(x)|
ds,

hence ∫
W (0,R)

ϕ◦(Dv) =
∫
{ϕ(ξ)=1}

dHN−1(ξ)
|∇ϕ(ξ)|

∫ R

0
ϕ◦(∇v(sξ)) ds.

As ϕ◦(∇v) ≥ |∇v · ξ| for any ξ with ϕ(ξ) ≤ 1 (here we use the fact ϕ◦ is even, otherwise
one just has ϕ◦(∇v) ≥ (∇v · ξ)+, which probably yields the same result), we �nd∫

W (0,R)
ϕ◦(Dv) ≥

∫
{ϕ(ξ)=1}

dHN−1(ξ)
|∇ϕ(ξ)|

∫ R

0
|∇v(sξ) · ξ| sN−1 ds.

Denoting by vξ(s) the function s 7→ v(sξ), we get∫
W (0,R)

ϕ◦(Dv) ≥
∫
{ϕ(ξ)=1}

dHN−1(ξ)
|∇ϕ(ξ)|

∫ R

0
|v′ξ(s)|sN−1 ds,
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with equality whenever v is of the form f ◦ ϕ.
On the other hand,∫

W (0,R)

(v(x)− dϕC(x))
2h

2

dx =
∫
{ϕ(ξ)=1}

dHN−1(ξ)
|∇ϕ(ξ)|

∫ R

0

(vξ(s)− s)
2h

2

sN−1 ds .

We see that, for v a Lipschitz function,∫
W (0,R)

ϕ◦(Dv) +
∫
W (0,R)

(v(x)− dϕC(x))
2h

dx

≥
∫
{ϕ(ξ)=1}

dHN−1(ξ)
|∇ϕ(ξ)|

∫ R

0

(
|v′ξ(s)|+

(vξ(s)− s)
2h

2
)
sN−1 ds . (34)

This inequality is easily extended by approximation to any v ∈ BV (W (0, R)). We deduce
that the unique minimizer ūR,h of (33) is of the form fR,h(ϕ(x)), with fR,h minimizing (over
f) the integral ∫ R

0

(
|f ′(s)|+ (f(s)− s)

2h

2
)
sN−1 ds

that appears in (34). In particular, fR,h(|x|) is the solution of (33) in the isotropic case
ϕ = ϕ◦ = | · |. (In fact, by uniqueness and symmetry it was already clear that this solution
is radial.)

In the isotropic case, the Euler equation for (33) is

−h div z + ūR,h = |x| (35)

in B(0, R), where |z| ≤ 1 and z ·DūR,h = |DūR,h|, and, at the boundary ∂B(0, R), z ·ν = 0.
Simple scaling arguments show that ūR,h(x) = Rū1,h/R2(x/R), hence it is enough to consider
the case R = 1.

By classical rearrangement arguments, one sees that ū1,h is radially nondecreasing (in
other words, f1,h is nondecreasing). Hence there are essentially two situations. Either
ū1,h is radially increasing, and z = x/|x|: in this case, the Euler equation shows that
ū1,h(x) = |x|+ h(N − 1)/|x|. Otherwise ū1,h is constant.

There exist, hence, two radii α and β such that ū1,h(x) = |x|+h(N−1)/|x| if α ≤ |x| ≤ β,
ū1,h = cα = α+h(N−1)/α if |x| ≤ α, and ū1,h = cβ = β+h(N−1)/β if β ≤ |x| ≤ 1. When
x ∈ [α, β], the �eld z in the Euler equation is x/|x|, otherwise, it is of the form σ(|x|)x/|x|
with |σ| ≤ 1. Then, the Euler equation yields σ′(r)+(N −1)σ(r)/r = (c− r)/h with c = cα

if r ≤ α and c = cβ if r ≥ β. We deduce that

σ(r) = − r2

h(N + 1)
+ c

r

hN
+

d

rN−1
, (36)

where c = cα, cβ (depending on r) and the second constant d = dα if r ≤ α, d = dβ if r ≥ β

is to be determined. If r ≤ α, the constraint |σ(r)| ≤ 1 yields dα = 0, and α is given by the
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radial continuity of σ which yields σ(α) = 1. One shows that it implies α =
√
h(N + 1),

and cα = 2N
√
h/
√
N + 1. We deduce

z(x) =

(
1−

(
|x|

h
√
N + 1

− 1
)2
)

x

|x|

if |x| ≤
√
h(N + 1).

It remains to �nd β, dβ , for |x| ≥ β. The Neumann boundary condition for z shows that
σ(1) = 0, whereas by continuity σ(β) = 1. Hence

dβ =
1

h(N + 1)
−

cβ
hN

and − β2

h(N + 1)
+ cβ

β

hN
+

dβ
βN−1

= 1 .

We deduce the following equation for β (remember cβ = β + h(N − 1)/β):

hβN−1 +
βN+1 − 1
N + 1

−
(
β +

h(N − 1)
β

)
βN − 1
N

= 0,

which can be written in polynomial form as

P (β) := − βN+2

N(N + 1)
+
h

N
βN +

β2

N
− β

N + 1
+
h(N − 1)

N
= 0. (37)

Notice that in the sequence of the coe�cients of P ,
(
h(N−1)

N ,− 1
N+1 ,

1
N ,

h
N ,−

1
N(N+1)

)
, the

number of consecutive sign changes is 3. By Sturm's Theorem [22, p. 69] the number
of roots of (37) in (0,+∞) is at most 3. Since, by Descartes' Rule [22, p. 69], the
number of sign changes of the above sequence minus the number of roots of (37) is an
even number, the number of roots of P must be either 1 or 3. Observe that P (0) > 0,
P (α) = P (

√
h(N + 1)) = 2h−

√
h

N+1 < 0 when 2
√
h(N + 1) < 1. Thus, for h small enough,

there is a root of P in (0, α). On the other hand, since P (1) = h
N and P (+∞) = −∞, there

is a second root of P in (1,∞). Let us compute the third root which is in (α, 1). Indeed,
one deduces

h =
N
N+1 + βN+1

N+1 − β

βN−1 + N−1
β

.

Writing β = 1− δ, with δ close to 0 as h→ 0, we �nd
√
h =

δ√
2

(
1 − N − 1

6
δ + o(δ)

)
,

and the local inversion theorem hence yields that

β = 1 −
√

2h − N − 1
3

h + o(h)

as h→ 0. Equation (37) has no other solution in the interval (α, β).
Thus, the vector �eld z(x) = x

|x| when α ≤ |x| ≤ β and z(x) = σ(|x|) x|x| when 0 ≤ |x| ≤ α

or β ≤ |x| ≤ 1, and σ(|x|) being of the form (36) with corresponding constants cα, dα and
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cβ , dβ depending on the region, satis�es |z| ≤ 1, and together with ū1,h is a solution of (35)
in D′(B(0, 1)). Moreover, since σ(1) = 0, we have z · ν = 0. Finally, one easily proves that
z ·Dū1,h = |Dū1,h|. Thus, ū1,h is the solution of (35).

In general, we deduce that for some ρ(R, h) satisfying

ρ(R, h) = R −
√

2h − N − 1
3

h

R
+ o

(
h

R

)
(38)

the solution of (33) is given by

ūR,h(x) =



√
h

2N√
N + 1

if ϕ(x) ≤
√
h(N + 1) ,

ϕ(x) + h
N − 1
ϕ(x)

if
√
h(N + 1) ≤ ϕ(x) ≤ ρ(R, h) ,

ρ(R, h) + h
N − 1
ρ(R, h)

if ρ(R, h) ≤ ϕ(x) ≤ R .

(39)

In particular, this solution is independent of R in W (0, R′) as soon as ρ(R, h) ≥ R′, which
is always true for R large enough. As R → ∞, it hence converges to a solution ūh of (32),
given by

ūh(x) =


√
h

2N√
N + 1

if ϕ(x) ≤
√
h(N + 1) ,

ϕ(x) + h
N − 1
ϕ(x)

if ϕ(x) ≥
√
h(N + 1) .

(40)

C A comparison principle

Let α ≥ 2, Tk(r) := max(min(r, k),−k), T+
k (r) = max(Tk(r), 0) (k ≥ 0) and let jα =

rT+
k (r)α−1.

Theorem 6 Let u, u ∈ L1
loc(RN ) be two solutions of (13) corresponding to the right hand

sides g, g ∈ Lαloc(RN ), α ≥ 2, respectively. Then(∫
RN

jα(u− u)ϕα
)1/α

≤
(∫

RN

(g − g)+αϕα
)1/α

+ 2M
(∫

RN

|∇ϕ|α
)1/α

(41)

for any ϕ ∈ C∞0 (RN ), ϕ ≥ 0.

Proof. Let p(r) := αT+
k (r)α−1, p∗(r) := j∗′(r) = −p(−r). Let z, z ∈ L∞(RN ; RN ) with

(z,Dp(u)) = F (Dp(u)), (z,Dp(u)) = F (Dp(u)), and such that

u− div z = g in D′(RN ), (42)

u− div z = g in D′(RN ). (43)
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Let l1, l2 ∈ R, r, r ∈ RN . Multiplying (42) by p(u − l1) and (43) by p(u − l2), adding and
substracting

∫
RN r · ∇xη p(u− l1), and

∫
RN r · ∇xη p(u− l2), respectively, we obtain∫

RN

up(u− l1)η +
∫

RN

η z ·Dxp(u− l1) +
∫

RN

(z − r) · ∇xη p(u− l1)

+
∫

RN

r · ∇xη p(u− l1) =
∫

RN

gp(u− l1)η,

(44)

and ∫
RN

up∗(u− l2)η +
∫

RN

η z ·Dyp
∗(u− l2) +

∫
RN

(z − r) · ∇yη p
∗(u− l2)

+
∫

RN

r · ∇yη p
∗(u− l2) =

∫
RN

gp∗(u− l2)η,

(45)

for all η ∈ C∞0 (RN ).
We choose two di�erent variables x, y and consider u, z, g as functions of x and u, z, g

as functions of y. Let 0 ≤ ψ ∈ C∞0 (RN ), and (ρn) a standard sequence of molli�ers in RN .
De�ne

ηn(x, y) := ρn(x− y)ψ
(
x+ y

2

)
≥ 0.

Note that for n su�ciently large,

x 7→ ηn(x, y) ∈ C∞0
(
RN
)

∀ y ∈ RN ,

y 7→ ηn(x, y) ∈ C∞0
(
RN
)

∀ x ∈ RN .

Hence, for y �xed, if we take l1 = u(y) and r = z(y) in (44), we get∫
RN

up(u− u(y))ηn +
∫

RN

ηn z ·Dxp(u− u(y))

+
∫

RN

(z − z(y)) · ∇xηn p(u− u(y))

+
∫

RN

z(y) · ∇xηn p(u− u(y)) =
∫

RN

gp(u− u(y))ηn

(46)

Similarly, for x �xed, if we take l2 = u(x) and r = z(x) in (45), we get∫
RN

up∗(u− u(x))ηn +
∫

RN

ηn z ·Dyp
∗(u− u(x))

+
∫

RN

(z − z(x)) · ∇yηn p
∗(u− u(x))

+
∫

RN

z(x) · ∇yηn p
∗(u− u(x)) =

∫
RN

gp∗(u− u(y))ηn.

(47)
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Now, since p∗(r) = −p(−r), we can rewrite (47) as

−
∫

RN

up(u(x)− u)ηn −
∫

RN

ηn z ·Dyp(u(x)− u)

+
∫

RN

(z(x)− z) · ∇yηn p(u(x)− u)

−
∫

RN

z(x) · ∇yηn p(u(x)− u) = −
∫

RN

gp(u− u)ηn.

(48)

Integrating (46) with respect to y and (48) with respect to x and taking the sum yields∫
RN×RN

(u− u)p(u− u)ηn

+
∫

RN×RN

ηn z ·Dxp(u− u)−
∫

RN×RN

ηn z ·Dyp(u− u)

+
∫

RN×RN

(
z − z

)
·
(
∇xηn +∇yηn

)
p(u− u)

+
∫

RN×RN

z · ∇xηn p(u− u)−
∫

RN×RN

z · ∇yηn p(u− u)

=
∫

RN×RN (g − g)p(u− u)ηn.

(49)

Let us observe that ∫
RN×RN

ηn z ·Dxp(u− u) +
∫

RN×RN

z · ∇xηn p(u− u)

=
∫

RN×RN

(F (Dp(u− u))− z ·Dxp(u− u))ηn ≥ 0

Similarly, we have ∫
RN×RN

ηn z ·Dyp(u− u)−
∫

RN×RN

z · ∇yηn p(u− u) ≥ 0

Taking into account these last two estimates we obtain∫
RN×RN

(u− u)p(u− u)ηn +
∫

RN×RN

(
z − z

)
·
(
∇xηn +∇yηn

)
p(u− u)

≤
∫

RN×RN

(g − g)p(u− u)ηn.

Since
∇xηn +∇yηn = ρn(x− y)∇ψ

(x+ y

2

)
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letting n→∞ in the above inequality we obtain∫
RN

(u− u)p(u− u)ψ ≤
∫

RN

(g − g)p(u− u)ψ

+
∫

RN

(
z − z

)
· ∇ψ p(u− u).

Let us replace ψ by ψα, ψ ∈ C∞0 (RN ), ψ ≥ 0. Let M > 0 be such that ‖z‖∞ ≤ M ,
‖z‖∞ ≤M . Since p(r) = αT+

k (r)α−1, afetr dividing by α we may write the above inequality
as ∫

RN

jα(u− u)ψα ≤
∫

RN

(g − g)T+
k (u− u)α−1ψα

+ 2M
∫

RN

ψα−1|∇ψ|T+
k (u− u)α−1.

Since ∫
RN

(g − g)T+
k (u− u)α−1ψα ≤

∫
RN

(g − g)+T+
k (u− u)α−1ψα

≤
(∫

RN

T+
k (u− u)αψα

)(α−1)/α(∫
RN

(g − g)+αψα
)1/α

,

∫
RN

ψα−1|∇ψ|T+
k (u− u)α−1 ≤

(∫
RN

T+
k (u− u)αψα

)(α−1)/α(∫
RN

|∇ψ|α
)1/α

,

and T+
k (r)α ≤ jα(r) for all r ∈ R, we obtain(∫

RN

jα(u− u)ψα
)1/α

≤
(∫

RN

(g − g)+αψα
)1/α

+ 2M
(∫

RN

|∇ψ|α
)1/α

.

Remark C.1 For the proof we only need the inequality ≤ both in (44) and (45). This
permits to extend the above result. Indeed, we could have de�ned the notion of solution
saying that there exists z ∈ L∞(RN ; RN ) with div z ∈ L2

loc(RN ), such that u− div z = g in
D′(RN ) and ∫

RN

up(u)η +
∫

RN

η F (Dxp(u)) +
∫

RN

z · ∇xη p(u) ≤
∫

RN

gp(u)η, (50)

for any η ∈ C∞0 (RN ), η ≥ 0, and any p ∈ P.

The following corollary proves Theorem 2.

Corollary C.2 Let u, u ∈ L1
loc(RN ) be two solutions of (13) corresponding to the right hand

sides g, g ∈ Lαloc(RN ), respectively. Assume that α > max(N, 2). If g ≤ g, then u ≤ u.
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Proof. Let ψ ∈ C∞0 , 0 ≤ ψ ≤ 1, ψ(x) = 1 if x ∈ B(0, 1), ψ(x) = 0 outside B(0, 2). Setting
ψn(x) := ψ(xn) instead of ψ(x) we get(∫

RN

jα(u− u)ψαn
)1/α

≤
(∫

RN

(g − g)+αψαn
)1/α

+ 2M
(∫

RN

|∇ψn|α
)1/α

≤ 2M
(∫

RN

|∇ψn|α
)1/α

.

Now, observe that∫
RN

|∇ψn|α = n−α
∫

RN

|∇ψ(
x

n
)|α = nN−α

∫
RN

|∇ψ(x)|α → 0

as n→∞. Thus, letting n→∞, we obtain∫
RN

jα(u− u) dx ≤ 0,

and, we conclude that u ≤ u.

D Evolutions with di�erent mobilities

In this brief appendix we explain how to adapt our results whenever one considers the
anisotropic curvature motion with a mobility di�erent from ϕ◦(ν). The general motion of
the interface we consider is governed by the formal equation

V (x) = ψ◦(ν(x))κϕ(x)

where V is the (Euclidean) normal speed, κϕ is the anisotropic ϕ�curvature (that is,
div ∂ϕ◦(∇d(x))), and ψ◦ is a convex, one�homogeneous function that may be di�erent from
ϕ◦. ψ◦ is the polar of some ψ (that is, ψ◦(ξ) = supψ(η)≤1 η · ξ) that has to satisfy, for some
constants c2 > c1 > 0,

c1ϕ ≤ ψ ≤ c2ϕ .

In this case, all the results in this paper hold, replacing each time the distance dϕ with
dψ, except the results in Section B that concern the explicit evolution of the Wul� shape.
However, inner and outer estimates can be easily computed, as follows.

Consider the set W (0, r) = [ϕ ≤ r], r > 0, and the associated problem

−h div ∂ϕ◦(∇u) + u − dψW (0,r) 3 0 in RN . (51)

One easily checks that for any x ∈ RN ,

c1(ϕ(x)− r) ∧ c2(ϕ(x)− r) ≤ dψW (0,r)(x) ≤ c1(ϕ(x)− r) ∨ c2(ϕ(x)− r) .

Notice that c1(ϕ − r) ∧ c2(ϕ − r) = c1(ϕ − r)+ − c2(ϕ − r)− and c1(ϕ − r) ∨ c2(ϕ − r) =

c2(ϕ− r)+− c1(ϕ− r)−. One shows, following the approaches in Section 5 and Appendix B,
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that if g(x) = a(ϕ(x) − r) for ϕ(x) ≤ r and g(x) = b(ϕ(x) − r) for ϕ(x) ≥ r, then, the
solution w of

−h div ∂ϕ◦(∇w) + w − g 3 0 in RN

is given by

w(x) =


g(x) + h

N − 1
ϕ(x)

if ϕ(x) ≥
√

h
a (N + 1) ,

2N
√
ah√

N + 1
− ar otherwise,

as soon as h ≤ ar2/(N+1). Hence, if u is the solution of (51), the set Th(W (0, r)) = [u < 0]

satis�es, as soon as h is small enough,

W (0, Sh/c1(r)) ⊆ Th(W (0, r)) ⊆W (0, Sh/c2(r))

where as in Section 6, Sh(r) = r(1 +
√

1− 4h(N − 1)/r2)/2. We deduce that any limit,
as h goes to zero, of the discrete evolution T

[t/h]
h (W (0, r0)), is between the evolutions

W (0,
√
r20 − 2(N − 1)t/c1) and W (0,

√
r20 − 2(N − 1)t/c2). This allows to extend all the

proofs in Section 7 to the case of a general mobility ψ◦.
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