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Abstract

We consider the solution of a class of complex symmetric block Toeplitz

linear systems, arising from integral equations problems. Algorithms that

exploit the Toeplitz structure provide considerable savings on the number

of arithmetic operations, compared to the classical Cholesky factorization.

We propose a fast Schur algorithm adapted to the complex symmetric

case. We detail blocked variants, that perform better by a wider use of

BLAS3 primitives. We also propose a solver, based on an augmented

matrix approach, that allows a substantial decrease in the use of memory,

by avoiding an explicit assembly of the Cholesky factor. All algorithms

have been implemented and numerical results are included to illustrate

the effectiveness of our approach.

1 Introduction

The Boundary Element Method (BEM), which is widely used in electromagnetic
or acoustic scattering, consists in transforming the original scattering problem,
set in an unbounded domain into an integral equation set on the boundary of
the scatterer [18]. In many situations, a symmetric formulation of the integral
equation is preferred (such as the Electric Field Integral Equation in electro-
magnetism [3] [8]). The discretisation of such an integral equation e.g by Finite
Element Methods (FEM) leads to a linear system

A X = B,

where the coefficients matrix A of size N is dense, complex valued, symmetric
but non hermitian. It is well known that for a general complex symmetric matrix
Cholesky algorithm may break down; hence it is recommended for the complex
symmetric matrices to use the Bunch-Kauffman factorization algorithm with
diagonal pivoting [7] [23]. Nevertheless, it has been widely observed, although
never demonstrated, that for complex symmetric matrices issued from the dis-
cretization of Boundary Integral Equations, pivoting is not required: thus, a
Cholesky factorization can be used, which substantially speeds up the computa-
tion [4]. For very large problems (e.g N ≥ 100000), direct solvers are too costly
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and preconditionned iterative algorithms are preferred [9] [10].
Our aim in this paper is to propose a fast direct solver when the coefficients
matrix possess an additional block Toeplitz structure. For instance, the numer-
ical analysis of piezo-electric surface acoustic wave (SAW) filters, by a coupled
integral equation/finite element formulation [20] leads to a linear system whose
coefficients matrix is both complex symmetric and block Toeplitz. This block
Toeplitz structure comes from the periodicity of the geometry of the filter.
The concept of displacement structure [15] provides a unifiying framework to
describe such matrices, whose entries are not independent: a point Toeplitz ma-
trix of size N can namely be reconstructed from the knowledge of one row and
one column, that is its N2 entries only depend on 2N parameters. Fast direct
algorithms for solving

T X = B,

where T is Toeplitz, have been proposed in [12] [17]. These algorithms are Schur-
type algorithm, that is they are fast procedures, in only O(N 2) operations,
for obtaining the Cholesky factorization of T , which usually requires O(N 3)
operations. They have been developped and tested in the hermitian case. We
refer to [22] for an analysis of stability of these algorithms.
In this article, we derive several variants of Schur-type algorithms adapted to
complex symmetric block Toeplitz matrices 1.
In section 2, we review some definitions about the displacement structure. Then,
in Section 3, we propose a fast algorithm with a complexity of O(n2m3) for the
Cholesky factorization of a block Toeplitz complex symmetric matrix with n×n
blocks, each of size m ×m. The key step consists in putting the generator of
T in proper form, by means of complex orthogonal Householder transforms. In
Section 4, we adapt several accumulation techniques to the complex orthogonal
case and provide blocked variants of the algorithm, designed to make a wider
use of BLAS 3 primitives. We present in Section 5 a fast solver, based on an
augmented matrix approach, which does not explicitly assemble the triangular
Cholesky factor, and thus is less memory consuming. Finally, we present in
Section 6 the results of numerical experiments that demonstrate the efficiency
of the algorithms, especially the blocked versions, both in terms of accuracy and
execution time.

2 Displacement structure

We recall some basic definitions on the displacement structure approach intro-
duced first in [11] for Toeplitz matrices, and presented in a systematic way in
[15] and [14]. Since we are mainly interested in symmetric matrices, we present
the symmetric case first, and then the modifications that are necessary when
dealing with non-symmetric matrices.

1Like Cholesky algorithm for complex symmetric matrices, our algorithm can be subject

to breakdown. Nevertheless, for matrices issued from the discretization of BIE, it has never

been observed
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2.1 Symmetric displacement

For a given matrix F ∈ Cn×n, we define a symmetric displacement operator by:

∇F : C
n×n → Cn×n

M 7→ ∇F (M) = F M + M F T ,
(1)

or
∇F : C

n×n → Cn×n

M 7→ ∇F (M) = M − F M F T ,
(2)

The operator defined by (1) is called a Sylvester-type operator, and the operator
defined by (2) a Stein-type operator.
For symmetric matrices with a particular structure, F can be chosen so that
∇F maps these matrices to low-rank matrices.
Moreover,∇F (M) is called displacement of M and its rank is called∇F−displacement
rank.
A structured matrix M ∈ Cn (for a certain displacement operator ∇F ) is a
matrix for which a F can be found such that

rank(∇F (M))� n

Example 2.1 (Symmetric block Toeplitz matrix). A block Toeplitz matrix
is a matrix whose block entries are constant along the diagonals. If T is moreover
symmetric, it reads:

T =









T0 T T
1 . . . Tn−1

T T
1 T0 . . . Tn−2

· · ·
T T

n−1 T T
n−2 . . . T0









,

where each Tk ∈ C
m×m, and T0 = T T

0 .
We choose F as the block shift matrix:

F = Zn =













0m . . . 0m

Im 0m

...
...

. . .
. . .

0m . . . Im 0m













,

where Im denotes the identity of size m and 0m the zero matrix of size m. The
index n recalls the size of Zn: n× n blocks. It is ommitted whenever its value
is obvious. Then, the displacement of T is

∇Z(T ) = T − Z T ZT =











T0 T1 . . . Tn−1

T T
1 0 . . . 0
...

...
...

T T
n−1 0 . . . 0











. (3)

Its rank is equal to 2m, and it is much smaller than the size mn of T .
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2.2 Generators

The symmetric displacement of a real matrix M ∈ Rn×n can be factorized (in
a nonunique way) as

∇F (M) = A J AT ,

where A is a real matrix, of size n× α (α = rank(∇F (M))), and J ∈ Rα×α a
symmetric real matrix.
When M is a complex matrix, its displacement can be factorized (also in a non
unique way) as

∇F (M) = A AT , A ∈ C
n×α

Example 2.2. For a complex block Toeplitz matrix T , the displacement ∇Z(T )
is factorized by:

∇Z(T ) = T − Zn T ZT
n = A AT , (4)

where the matrix A ∈ Cmn×m is obtained by identification:

A =











L0 0

T1 L−T
0 i T1 L−T

0
...

...

Tn L−T
0 i Tn L−T

0











, (5)

and L0 is the lower Cholesky factor of the first bloc T0:

L0 LT
0 = T0. (6)

The matrix A (or the pair A, J for real matrices) is called symmetric gener-
ator of M .

Remark 1. The generator is not unique:

∀Q ∈ C
α×α, Q QT = Iα, ∇F (M) = A AT = (A Q) (A Q)T

and A Q is another symmetric generator of M .

Definition 2.1. The symmetric proper generator of M , associated to the dis-
placement operator ∇Z is the unique matrix A such that

• A AT = ∇Z(M)

• A12 = 0m

• A11 is lower triangular

Remark 2. The generator defined by (5) is in proper form.
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2.3 The non-symmetric case

The definitions introduced in the last section can be stated in a more general
way, for matrices that are not symmetric and not even square.
For two given matrices F ∈ C

n×n and G ∈ C
p×p, a (non-symmetric) displace-

ment operator is defined by

∇F,G : C
n×p → Cn×p

M 7→ ∇F,G(M) = F M + M G,

or
∇F,G : C

n×p → Cn×p

M 7→ ∇F,G(M) = M − F M G,

A structured matrix is a matrix for which a pair (F, G) can be found such that

α
def
= rank(∇F,G(M))� rank(M).

The displacement of M can then be factorized as:

∇F,G(M) = A B,

where A ∈ Cn×α and B ∈ Cα×p. The pair (A, B) is called generator of M .

Remark 3. Note that these definitions reduce to the symmetric case if we take:

n = p, G = F T , B = AT .

3 Fast Cholesky algorithm

In this section, we derive a fast algorithm for the Cholesky factorization of a
block Toeplitz matrix, T . Since T is only defined by n block entries (instead of
n(n + 1)/2), each of size m2, the complexity of its Cholesky factorization can
be reduced from an order of magnitude and a n2 complexity is expected.
The key point in writing a fast algorithm is to rewrite the classical algorithm
in terms of generator updates, thanks to the displacement equation (4), which
expresses that the whole matrix can be reconstructed from the knowledge of the
generator. The operations needed are thus applied to roughly n block entries,
instead of n2 and the complexity is decreased.
We refer to [12] and [17], for the derivation of fast Cholesky algorithms for real
symmetric block Toeplitz matrices.

3.1 Cholesky algorithm

Let T be a block Toeplitz matrix with n× n blocks. Let us set

T (0) = T,

and define the block Schur complement of order k, T (k) ∈ C
(n−k).m×(n−k).m by

T (k) = Tkm+1:nm,km+1:nm − Tkm+1:nm,1:km T−1
1:km,1:km T T

km+1:nm,1:km,
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or equivalently by recursion from T (k−1) by

T (k) = T
(k−1)
m+1:(n−k)m,m+1:(n−k)m

−T
(k−1)
m+1:(n−k)m,1:m T (k−1)−1

1:m.1:m T (k−1)T

m+1:(n−k)m,1:m.

Cholesky block algorithm consists in computing n − 1 successive block Schur
complements of T , and finally obtain a symmetric fatorization of T as

T = L LT ,

with L lower triangular matrix.
We recall the block right-looking version of Cholesky factorization in Algorithm
1. In this algorithm, the function llt computes the Cholesky factorization of a
complex symmetric matrix in a non-blocked way.

Algorithm 1 Block right-looking Cholesky factorization

Input: Matrix T of size nm× nm
Output: Lower Cholesky factor of T , L such that T = L LT .
1: for k = 1 : n do
2: s = (k − 1).m + 1 {Start of block to factorize}
3: e = k.m {End of block to factorize}
4: u = e + 1 {Start position for update}
5: Compute Cholesky factorization of Ts:e,s:e:

Ls:e,s:e ← llt(Ts:e,s:e)
6: if e < m then
7: Update bottom of block column k:

Lu:nm,s:e = Tu:nm,s:e/Ls:e,s:e

8: Compute Schur complement T (k):
Tu:nm,u:nm ←

Tu:nm,u:nm − Lu:nm,s:e LT
u:nm,s:e

9: end if
10: end for

3.2 Schur complementation and generator recursion

We show that the displacement operator is invertible, that is the whole block
matrix T solution of

T − Z T ZT = A AT .

can be reconstructed from a generator A.
The next Lemma justifies that the successive Schur complements are themselves
structured and satisfy the same kind of displacement equations than T .

Lemma 3.1. Let T be a matrix of size nm× nm, solution of the homogeneous
equation:

T − Z T ZT = 0mn×mn.

Then, T = 0mn×mn.
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Proof. The first block column and the first block row of Z T ZT are equal to
zero, forall matrix T . If moreover T is such that ∇Z(T ) = 0, then the first
block row and column of T are bound to be zero. There follows immediately
that the rest of the matrix T has to be zero.

Lemma 3.2. Let T be a complex symmetric block Toeplitz matrix, with n × n
blocks of size m×m. Let us set

T (0) = T.

There exists a sequence of proper generators:

A(k) ∈ C
(n−k).m×2m, k ∈ [0 : n− 1],

such that:

∀ k ∈ [0 : n− 1], ∇Zn−k
(T (k)) = T (k) − Zn−k T (k) ZT

n−k = A(k) A(k)T
. (7)

Moreover, if L is the lower Cholesky factor of T such that T = L LT , we have:

∀ k ∈ [0 : n− 1], L(km + 1 : nm, km + 1 : (k + 1).m) = A(k)(:, 1 : m). (8)

Proof. The Lemma is shown by induction.
For k = 0, the matrix T = T (0) satisfies the displacement equation

∇Zn
(T (0)) = A(0) A(0)T

, (9)

where the proper generator A(0) = A is defined by (5).
Equality (8) for k = 0

A(0)(1 : m, :) = L(:, 1 : m), (10)

is immediate (by identification) since A(0) is in proper form.
For the sake of readability, we will now show (7) for k = 1, instead of justifying
that this equation remains true for k, provided that it is true for k − 1.
We construct a proper generator A(1) such that the Schur complement of order
1 satisfies

∇Zn−1
(T (1)) = A(1) A(1)T

.

Let us partition T (0) in

T (0) =

(

T11 T T
21

T21 T22

)

,

where we have denoted

T11 = T1:m,1:m, T21 = T1:m,m+1:nm, T22 = Tm+1:nm,m+1:nm.

We introduce the Cholesky factorization of the first block T11:

T11 = L11 LT
11 = L1:m,1:m LT

1:m,1:m.
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By (10), we have L11 = A
(0)
1:m,1:m, since A(0) is in proper form.

Since the Schur complement of order 1

T (1) = T22 − T T
21 T−1

11 T21,

is given by
(

Im 0
0 T (1)

)

=

(

L11 0
−T12 T−1

11 I(n−1)m

) (

T11 T T
12

T12 T22

) (

L−T
11 −T−1

11 T T
12

0 I(n−1)m

)

,

we multiply the displacement equation (9), on the left by the elimination matrix

M =

(

L−1
11 0

−T12 T−1
11 I(n−1)m

)

and on the right by MT . Hence we get:
(

Im 0

0 T (1)

)

− M Zn M−1

(

Im 0

0 T (1)

)

(

M Zn M−1
)T

= MA(0) (MA(0))T .

(11)

We have

M Zn = Zn, and M−1 =

(

L:,1:m
0

I(n−1).m

)

.

So

M Zn M−1 = Zn M−1 =

(

0m 0
Lm+1:(n−1)m,1:m Zn−1

)

.

We compute next

M A(0) =

(

Im 0

0 A
(0)
m+1:nm,m+1:2m

)

.

By identifying the (2, 2) block term in (11), and remembering (10), we get

T (1) − Zn−1 T (1) ZT
n−1 = a(1) a(1)T

,

with
a(1) =

(

A1:(n−1)m,1:m Am+1:nm,m+1:2m

)

. (12)

So, T (1) satisfies the same kind of displacement equation than T (0), with Zn

replaced by Zn−1. A symmetric generator of T (1) is given by (12), but it is not
in proper form.
We then compute a (complex) orthogonal transform Q, such that

(a(1) Q)1:m,m+1:2m = 0m.

The symmetric proper generator associated to T (1) is defined by:

A(1) = a(1) Q.

Equality (8) is easily obtained by identification from (7), since for all k, the
generator A(k) is in proper form.
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3.3 Fast factorization algorithm

In this paragraph, we use Lemmas 3.2 and 3.1 to translate Algorithm 1 to its
fast equivalent.
Thanks to Lemma 3.2, we know that the successive Schur complements of T
satisfy displacement equations of type:

∇Zn−k
(T (k)) = A(k) A(k)T

Thanks to Lemma 3.1, we know that such a displacement equation is uniquely
solvable and characterizes matrix T (k) in a unique way. Moreover, at Schur step
number k, the first block row of the proper generator is equal to the k +1 block
row of the Cholesky factor, by (8).
So, instead of computing the sequence of Schur complements T (k) (classical
Cholesky algorithm), we compute the sequence of their proper generators A(k)

(fast Cholesky algorithm), as described in Alg. 2.

Algorithm 2 Fast Block Cholesky factorization

Input: First block-column of T , of size m× nm
Output: Lower Cholesky factor of T , L such that T = L LT .
1: Set up generator A from formula (5).
2: Initialize L from A by L:,1:m = A:,1:m.
3: for k = 2 : n do
4: Determine a generator a(k) for the kth Schur complement, T (k) from for-

mula:
a(k) =

(

A
(k−1)
1:(n−k).m,1:m A

(k−1)
m+1:(n−k+1).m,m+1:2m

)

5: Put a(k) in proper form:
Determine Q complex orthogonal such that:
(a(k) Q)1:m,m+1:2m = 0m×m.
Apply Q to the generator: a(k) ← a(k) Q.

6: Store kth column of Cholesky factor L:

L(k−1).m+1:nm,(k−1).m+1:km = a
(k)
:,1:m

7: end for

4 Implementation issues

In this section, we now detail the implementation of the different steps of Algo-
rithm 2.

4.1 Generator data structure

We have chosen to store A the generator of T , (and hence the sequence of the
generators of the successive Schur complements) in two matrices A1 and A2,

9



one for each block column:

A1, A2 ∈ C
mn×m, A1← A(:, 1 : m), A2← A(:, m + 1 : 2m)

This results in Alg. 3 to set up the generator (based on formula (5)).
At each step k, the determination of a generator of the current Schur comple-

Algorithm 3 Setup generator: (A1, A2) = setup gen(T )

1: A1 = zeros(mn, m), A2 = zeros(mn, m)
2: A1← T1:mn,1:m

3: Compute the Cholesky factorization of the first block of A1 in situ:
A11:m,1:m ← llt(A11:m,1:m) {Non fast Cholesky factorization}

4: A1m+1:nm,: = A1m+1:nm,:/A1T
1:m,1:m

5: A2m+1:nm,: = i ∗A1m+1:nm,:

ment is based on formula

a(k) =
(

A
(k−1)
1:(n−k).m,1:m A

(k−1)
m+1:(n−k+1).m,m+1:2m

)

,

which is the equivalent of (12) for a general k (not necessary 1). To avoid copy
operations, it is achieved through the update of four indexes s1, e1, s2 and e2

such that

a(k) =

(

A11:e1,:

A2s2:e2,:

)

as shown in Alg. 4

Algorithm 4 Set current generator: (e1, s2, e2) = set curr gen(k)

1: e1 = (n− k + 1) ∗m
2: s2 = (k − 1) ∗m + 1
3: e2 = n ∗m

4.2 Reduction step

In this paragraph, we detail the main step of Algorithm 2, that is the reduction
of generator in proper form:
At step k, the generator a(k) is defined by two matrices of n− k blocks of size
m×m :

a(k) = A =
(

A11:e1,1:m A2s2:e2,1:m

)

Matrix A1 is lower triangular.
To put a(k) in proper form, we have to find a complex orthogonal transform Q,
such that

(a(k) Q)1:m,m+1:2m = 0m×m.

The transform Q is computed as a product of m elementary Householder reflec-
tors.
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Remark 4 (Gram-Schmidt orthogonalization). Modified Gram-Schmidt (MGS)
method ([13] p.232) is an alternative to Householder method to perform the QR
factorization of a square given matrix M .
But our purpose is slightly different, because the matrix A is not square: its
size is m× 2m.
MGS algorithm allows to build a set of m orthogonal vectors Q(1, 1 : 2m) . . .Q(m, 1 :
2m) spanning the same space as A(1, :), . . . , A(m, :). The matrix Q ∈ Cm×2m

then satisfies
A =

(

A1 A2
)

= Q R

for a triangular matrix R ∈ Cm×m.
But, one can not deduce from Q in a simple way an orthogonal matrix P , so
that

A P =
(

R 0
)

, and P P T = I2m,

as would be the case for A square!

That is the reason why we focus now on Householder orthogonalization
method.

4.2.1 Householder transforms

The Householder method is the one chosen in LAPACK [1] to achieve the QR
factorization of a matrix (routine xGEQRF). We refer to [13] (p.224) for a de-
scription. But since we are interested into complex orthogonal reflectors (and
not unitary), we have to adapt the standard algorithm.

To annihilate block a
(k)
1:m,m+1:2m, we zero in turn rows s2 to s2 +m− 1 of A2 by

applying successively m complex orthogonal Householder elementary reflectors
Hj to A. Each reflector Hj is defined through:

Hj = I2m − βj xj xT
j , j ∈ [1 : m],

where βj is a complex scalar (βj = 2/(xT
j .xj)) and xj ∈ C2m is the Householder

vector.
The vector xj is chosen in such a way that

A(:, j) Hj = αj ej ,

and Hj leaves the j − 1 previous rows of A unchanged.
The matrix A can thus be put in proper form by:

A1:m,1:2m ← H1 . . .Hm A1:m,1:2m.

The orthogonal transform Q is not explicitly formed, it is instead determined
in factored form as:

Q = H1 . . . Hm−1 Hm

Let us now detail the determination of the Householder reflector Hj . We impose
that xj(j) = 1 , hence this term need not be stored. Taking into account the
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triangular pattern of A1, the components of xj are then given by

xj(i) =















0 1 ≤ i ≤ j − 1
1 i = j
0 j + 1 ≤ i ≤ m
x2(i−m) m + 1 ≤ i ≤ 2m

,

where x2 is a vector of size m that contains the significant part of x, called the
essential part of x.
Alg. 5 computes the essential part of w which reduces to the vector x2, and the
scalars β and α.

Algorithm 5 Householder vector: (x2, β, α) = house vec(A1, A2, j1, j2)

1: if A2 j2,: is already zero then
2: β = 0
3: else
4: Compute pseudo-norm of Aj,j:2m:

σ = A2 j2,: .A2T
j2,:

α = (A12
j1,j1 + σ)1/2

5: if |A1j1,j1 + α| ≤ |A1j1,j1 − α| then
6: z ← A1j1,j1 − α
7: else
8: z ← A1j1,j1 + α
9: α← −α

10: end if
11: x2← A2j2,:/z
12: β ← 2z2/(σ + z2)
13: end if

4.3 Update of the generator

In the last paragraph, we described how to determine a set of m Householder
reflectors (Hj)j∈[1:m] such that:

a
(k)
1:m,1:2m H1 . . .Hm

is lower triangular.
Updating the generator consists in applying these transforms to the generator,
that is:

a(k) ← a(k) H1 . . . Hm.

4.3.1 Sequential update

A straightforward implementation shown in Alg. 6 consists in applying each
reflector in turn to the whole generator. Computations are arranged so that
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Algorithm 6 Sequential Reduction: (A1, A2) = seq reduc (A1, A2, k)

1: for j = 1 : m do
2: Determine Hj :

j1 = j {row index in A1}
j2 = s2 + j − 1 {row index in A2}
(x2, β, α) = house vec(A1, A2, j1, j2)

3: Update A :,j :
A1j1,j1 ← α, A2 j2,: ← 0.

4: Update A j+1:,: :
Aj+1:,: ← Aj+1:,: Hj .

5: end for

matrix R overwrites matrix A1 and matrix X2 overwrites matrix A2.
Due to the storage of A in two different matrices, step 4 of Alg. 6 is per-

formed in the following way for rows j + 1 : e1 of A1 and rows s2 + j : e2 of
A2:

1: u1 = 1 + j {Start (row) position for update in A1}
2: u2 = s2 + j {Start (row) position for update in A2}
3: vec← A1u1:e1,j + A2u2:e2,: x2 {ZGEMV}
4: A1u1:e1,j ← A1u1:e1,j − βj vec {ZAXPY}
5: A2:,u2:e2 ← A2u2:e2,: − βj vec xT

2 {ZGERU}

It involves Level 2 BLAS operations: ZGEMV (matrix-vector multiplication) and
ZGERU (rank-1 update).

4.3.2 Blocked versions

We describe in this paragraph variants of the reduction step, that can employ
BLAS Level 3 kernels, and are thus able to achieve better performances than
Alg. 6. These variants are based on aggregating the Householder transforms
before applying them to the generator. Several techniques exists for performing
the aggregation of transforms, respectively based on the WY representation
of Bischof and Van Loan [6], on the storage efficient Y TY T representation of
Schreiber and Van Loan [21] (which is used in LAPACK QR factorization routine
xGEQRF) or its modification by Puglisi [19].
We present in turn these techniques, adapted to the complex orthogonal case.
Our presentation closely follows the review in [5].
A product

Qp = H1 H2 . . . Hp

of p Householder reflectors defined by

Hj = I2m − βj xj xT
j , j ∈ [1 : p],
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can be represented as:

Qp = Ip + Xp Y T
p WY1-way [6]

Qp = Ip + Wp XT
p WY2-way [6]

Qp = Ip + Xp Tp XT
p YTY1-way [21]

Qp = Ip + Xp (T−1
p )−1 XT

p YTY2-way [19] [24]

Matrix X always stores the Householder vectors:

Xp ∈ C
2m×p.

Matrices Yj , Wj ∈ C2m×j are updated for j ∈ [1 : p] by:

Y1 = −β1 x1, Yj = [Hj Yj−1 − βj xj ], (13)

and
W1 = −β1 x1, Wj = [Wj−1 − βj Qj−1 xj ]. (14)

Upper triangular matrix Tj ∈ Cj×j is updated for j ∈ [1 : p] by:

T1 = −β1, Tj =

(

Tj−1 −βj Tj−1 Xj−1 xj

01×j−1 −βj

)

(15)

In the YTY2 variant, matrix T−1
p (instead of Tp) is computed by

T−1
p = triu(−XT

p Xp), T−1
p (i, i)← T−1

p (i, i)/2, i = [1 : p]. (16)

This formula is based on the Woodbury-Morrison formula applied to the or-
thogonal matrix I + Y TY T , which yields T−1 + T−T = −XT X [19].
The general algorithm corresponding to a block reduction is shown in Alg. 7.
In this algorithm, the aggregation of the elementary Householder reflectors, and
the block updating have to be chosen among the different available methods.
The aggregation and update steps are detailed for each method as summarized
below:

Method Aggregate step Update step
WY1 Alg. 8 Alg. 9
WY2 Alg. 10 Alg. 11
YTY1 Alg. 12 Alg. 13
YTY2 Alg. 14 Alg. 15

In our case, only the lower part of matrix X needs to be stored, in a m × p
matrix X2, since

X ∈ C
2m×p, X =

[

Im

X2

]

,

and X2(:, j), for j = 1 : p, stores the essential part x2 of the Householder
vector, as computed by Alg. 5.
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Algorithm 7 Block Reduction: (A1, A2) = block reduc (A1, A2, k)

Input: p: blocking factor
1: for sb = 1 : p : m do
2: eb = min(sb + p− 1, m) {end position for current bloc}
3: u1 = eb + 1 {update position for A1}
4: u2 = eb + s2 {update position for A2}
5: peff = min(p, m− sb + 1) {effective size of the block}
6: for j = 1 : peff do
7: j1 = sb + j − 1 {column index for A1}
8: j2 = s2 + sb + j − 2 {column index for A2}
9: Determine Hj :

(X2 :,j , β, α) = house vec(A1, A2, j1, j2)
10: Update A(j, :):

A1 j1,j1 ← α, A2 j2,: ← 0.
11: Update current block:

(

A1 j1+1:eb,: A2 j2+1:eb+s2−1,:

)

←
(

A1 j1+1:eb,: A2 j2+1:eb+s2−1,:

)

Hj

12: Aggregate Hj

13: end for
14: Update A1 u1:e1,: and A2 u2:e2,: :

(A1, A2) = block update (A1, u1, e1, A2, u2, e2)
15: end for

Algorithm 8 (Y 1, Y 2) = wy1 aggregate (Hj , j1, j2) see (13)
1:

Y 1j1,j ← −β
Y 2 :,j ← −β X2 1:m,j

vec 1:j−1 = −β X2T
1:m,j Y 21:m,1:j−1 {ZGEMV}

Y 1 j1,1:j−1 ← Y 1 j1,1:j−1 + vec 1:j−1 {ZAXPY}
Y 2 1:m,1:j−1 ← Y 2 1:m,1:j−1 + X2 1:m,j vec 1:j−1 {ZGERU}

15



Matrices Y and W have the form

Y, W ∈ C
2m×p, Y =

[

Y 1
Y 2

]

, W =

[

W1
W2

]

,

and Y 1 upper triangular, W1 lower triangular.

Algorithm 9 (A1, A2) = wy1 update (A1, u1, e1, A2, u2, e2, )

mat = A1u1:e1,sb:eb
+ A2u2:e2,1:m X21:m,1:peff

{ZGEMM}
A1u1:e1,sb:eb

← A1u1:e1,sb:eb
+ mat :,1:peff

Y 1T
sb:eb,1:peff

{ZTRMM}

A2u2:e2,1:m ← A2u2:e2,1:m + mat :,1:peff
Y 2T

1:m,1:peff
{ZGEMM}

Algorithm 10 (W1, W2) = wy2 aggregate (Hj , j1, j2) see (14)

1: vec1:j−1 = −β X2T
1:m,1:j−1 X21:m,j {ZGEMV}

W1j1,j = −β
W2 :,j = −β X2 :,j

2: if j > 1 then
3: W1 sb:j1−1,j ← W1 sb:j1−1,j vec 1:j−1 {ZTRMV}
4: W2 :,j ←W2 :,j + W21:m,1:j−1 vec 1:j−1) {ZGEMV}
5: end if

Algorithm 11 (A1, A2) = wy2 update (A1, u1, e1, A2, u2, e2, )

mat :,1:peff
= A1u1:e1,sb:eb

W1sb:eb,1:peff
{ZTRMM}

+ A2u2:e2,1:m W21:m,1:peff
{ZGEMM}

A1u1:e1,sb:eb
← A1u1:e1,sb:eb

+ mat:,1:peff
{ZAXPY}

A2u2:e2,1:m ← A2u2:e2,1:m + mat:,1:peff
X21:m,1:peff

{ZGEMM}

5 Fast direct solver

We have developped fast techniques to compute the Cholesky factorization of a
complex symmetric block Toeplitz matrix T . Since the n2 block entries of T are
described by the 2n blocks (of size m ×m) of the generator, the factorization
complexity is reduced by an order of magnitude. But, the Cholesky factor is
not structured and its storage requires n(n+1)/2 blocks. If one’s aim is to solve
the linear system:

T X = B,
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Algorithm 12 (T ) = yty1 aggregate (Hj , j1, j2) see (15)

T (j, j) = −β
vec1:j−1 = −β X2T

1:m,1:j−1 X21:m,j {ZGEMV}
Tj,1:j−1 ← T1:j−1,1:j−1 vec1:j−1 {ZTRMV}

Algorithm 13 (A1, A2) = yty1 update (A1, u1, e1, A2, u2, e2, )

mat :,1:peff
= A1u1:e1,sb:eb

+ A2u2:e2,1:m X21:m,1:peff
{ZGEMM}

mat :,1:peff
← mat :,1:peff

T1;peff ,1:peff
{ZTRMM}

A1u1:e1,sb:eb
← A1u1:e1,sb:eb

+ mat :,1:peff
{ZAXPY}

A2u2:e2,1:m ← A2u2:e2,1:m + mat :,1:peff
X2T

1:m,1:peff
{ZGEMM}

Algorithm 14 (invT ) = yty2 aggregate (Hj , j1, j2) see (16)

1: invT (:, :) ← − triu (I + X2T X2) {ZSYRK}
2: for j = 1 : peff do
3: invT (j, j) ← invT (j, j)/2
4: end for

Algorithm 15 (A1, A2) = yty2 update (A1, u1, e1, A2, u2, e2, )

mat :,1:peff
= A1u1:e1,sb:eb

+ A2u2:e2,1:m X21:m,1:peff
{ZGEMM}

mat :,1:peff
← mat :,1:peff

/ invT1:peff ,1:peff
{ZTRMM}

A1u1:e1,sb:eb
← A1u1:e1,sb:eb

+ mat :,1:peff
{ZAXPY}

A2u2:e2,1:m ← A2u2:e2,1:m + mat :,1:peff
X2T

1:m,1:peff
{ZGEMM}
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associated to the matrix T , one can use an alternative method (shown in [17] and
[12] for the real case), which avoids the storage of the Cholesky factor. Instead
of factoring T and then solving the linear system by a sequence of backward
and forward substitution, we proceed through n steps of block factorization of
an augmented structured matrix. This method is called the augmented matrix
approach.

5.1 The augmented system

Lemma 5.1. Let M ∈ Cn×n be a matrix with complex entries. Then, for
B ∈ Cn×nrhs, solving

M X = B,

is equivalent to compute the Schur complement of M in the augmented matrix

M ∈ C
2n×(n+nrhs), M =

(

M −B
In 0n×nrhs

)

.

Proof. The Schur complement of M in M is defined by

0n×nrhs − In M−1 (−B) = M−1 B = X.

If M is structured, its associated augmented matrix M is also structured.
We choose M as the complex symmetric block Toeplitz matrix T , with n × n
blocks of size m × m. The augmented matrix T is the (non-square) matrix
defined by

T =

(

T −B
Inm 0nm,nrhs

)

(17)

and we have the following Lemma:

Lemma 5.2. The augmented matrix T is structured with respect to the (non
symmetric) displacement operator

∇Zl
n,Zr

n
: C

2nm×(n+nrhs) → C
2nm×(n+nrhs)

M 7→ ∇Zl
n,Zr

n
(M) = M − Z l

n M Zr
n,

where the (square) matrices Z l
n ∈ Cnm×nm and Zr

n ∈ C(nm+nrhs)×(nm+nrhs) are
given by:

Zl
n =

(

Zn 0nm,nm

0nm,nm Zn

)

Zr
n =

(

ZT
n 0nm,nrhs

0nrhs,nm 0nrhs,nrhs

)

.

Proof. The displacement of T is given by:

∇Zl
n,Zr

n
(T ) =

(

∇Zn
(T ) −B

∇Zn
(Inm) 0

)

.
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We have

∇Zn
(Inm) =











Im 0m . . . 0m

0m 0m

...
. . .

0m . . . 0m











,

and its rank is equal to the block size m.
The displacement rank of T is thus equal to the displacement rank of T , and if
T is structured, T is also structured. We recall that the displacement of T is
defined by (3).

The displacement of T can be factorized as

∇Zl
n,Zr

n
(T ) = AB,

where A ∈ C2nm×(2m+nrhs) and B ∈ C(2m+nrhs)×(nm+nrhs) are constructed by
identification:

A =













A −B

L−T
0 i L−T

0

0(n−1)m,m 0(n−1)m,m
0nm,nrhs













(18)

and

B =









AT 0nm,nrhs

0nrhs,nm Inrhs









, (19)

where A and L0 are defined in (5) and (6).
We say that (A,B) is a generator in proper form of T , associated to the dis-
placement operator ∇Zl

n,Zr
n

if

• A,B = ∇Zl
n,Zr

n
(T ),

• A12 = B21 = 0m,

• A11 is lower triangular,

• B11 is upper triangular.

A proper generator is unique.
The next Lemma justifies that the successive block Schur complements of T ,
denoted by T (k), k = [0 : n−1], are structured for the same kind of displacement
operator than T . It is the equivalent for T of Lemma 3.2 for T .

Lemma 5.3. Let T the augmented matrix associated to T by (17). Let us set

T (0) = T .
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There exists a sequence of proper generators:

(A(k), B(k)) ∈ C
(2n−k).m×2m × C

2m×(n−k).m+nrhs, k ∈ [0 : n− 1],

such that:

∀ k ∈ [0 : n− 1], ∇Zl
n−k

,Zr
n−k

(T (k)) = T (k) − Zl
n−k T

(k) Zr
n−k

= A(k) B(k),
(20)

where Z l
n−k and Zr

n−k are defined by

Zl
n−k = Zl

km+1:,km+1: , Zr
n−k = Zr

km+1:,km+1: .

Proof. The Lemma is shown by induction. The proof is very similar to that of
Lemma 3.2. To simplify the notations, we show the result for k = 0 and deduce
that it then remains true for k = 1.
For k = 0, the proper generator

(A(0),B(0)) = (A,B),

is defined by (18) and (19). Since it is in proper form, we have the identity:

A(0)(:, 1 : m) = T (0)(:, 1 : m), B(0)(1 : m, :) = T (0)(1 : m, :). (21)

Moreover, since T is symmetric,

A(0)(1 : nm, 1 : 2m) = B(0)(1 : 2m, 1 : nm)T .

We now construct the proper generator (A(1),B(1)), such that the Schur com-
plement of order 1 satisfies:

∇Zl
n−1

,Zr
n−1

(T (1)) = A(1) B(1).

Let us partition T (0) in:

T (0) =

(

T11 T12
T21 T22

)

,

where we have denoted

T11 = T1:m,1:m, T12 = T1:m,m+1:nm+nrhs,
T22 = Tm+1:2nm,m+1:nm+nrhs, T21 = Tm+1:2nm,1:m,

We introduce the Cholesky factorization of the first block T11, which is also the
first block of T :

T11 = L11 LT
11.

We define two (left and right) elimination matrices

Ml =

(

L−1
11 0

−T21 T
−1
11 I(2n−1).m

)

, Mr =

(

L−T
11 −T −1

11 T12
0 I(n−1).m+nrhs

)

,
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such that

Ml T
(0) Mr =

(

Im 0(n−1).m+nrhs

0(2n−1).m T (1)

)

.

By multiplying the displacement equation (20) by Ml on the left and by Mr on
the right, we get:

(

Im 0m×(n−1).m+nrhs

0(2n−1).m×m T (1)

)

+ Ml Z
l
n M−1

l

(

Im 0m×(n−1).m+nrhs

0(2n−1).m×m T (1)

)

M−1
r Zr

n Mr

= (MlA
(0)) (B(0) Mr).

(22)

We compute

Ml Z
l
n M−1

l = Zl
n M−1

l =

(

Zl
n

(

L11

T21 L−T
11

)

0m×(n−1).m

Zl
n−1

)

=

(

Zl
n T

(0)(:, 1 : m)
0m×(n−1).m

Zl
n−1

)

and

M−1
r Zr

n Mr = M−1
r Zr

n =

(

Zr
n

(

LT
11 L−1

11 T12
)

0(n−1).m×m Zr
n−1

)

=

(

Zr
n T

(0)(1 : m, :)
0(n−1).m×m Zr

n−1

)

.

We also have

M lA(0) =

(

Im 0m

0(2n−1).m×m A(0)(m + 1 :, m + 1 :)

)

and

B(0) Mr =

(

Im 0(n−1).m+nrhs

0m B
(0)
m+1:,m+1:

)

,

since the generator (A(0),B(0)) is in proper form. Identifying the (2, 2) term in
(22) leads to:

T (1) − Zl
n−1 T

(1)Zr
n−1 = a(1) b(1),

with

a(1) =
(

(Zl
n T

(0)
:,1:m)(m + 1 :, 1 : m) A(0)(m + 1 :, m + 1 : 2m + nrhs)

)

and

b(1) =

(

(T
(0)
1:m,: Zr

n) (1 : m, m + 1 :)

B
(0)
m+1:2m+nrhs,m+1:

)
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By (21), a(1) and b(1) are also directly defined from A(0) and B(0) by:

a(1) =
(

(Zl
n A

(0)
:,1:m)(m + 1 :, 1 : m) A

(0)
m+1:,m+1:2m+nrhs

)

and

b(1) =

(

(B
(0)
1:m,: Zr

n) (1 : m, m + 1 :)

B
(0)
m+1:2m+nrhs,m+1:

)

The last step of the proof consists in putting the generator (a(1), b(1)) in proper
form.
We construct a transform L, such that the pair

(a(1) L,L−1 b(1))
def
= (A(1),B(1)), (23)

is in proper form.
Let Q ∈ C2m×2m be an orthogonal transform such that

(a
(1)
:,1:2m Q)(m + 1 : 2m) = 0m,

defined in a similar way as in the proof of Lemma 3.2. The transform L is
defined in matrix form by:

L ∈ C
(2m+nrhs)×(2m+nrhs), L =





Q
−α−1 γ
0m×nrhs

0nrhs×2m Inrhs



 ,

where the blocks α and γ are defined by:

α = a(1)(1 : m, 1 : m), γ = a(1)(2m + 1 : 2m + nrhs, 1 : m).

When we apply L to a(1), the block a(1)(1 : m, m + 1 : 2m) is annihilated by
the orthogonal transform Q, whereas the block a(1)(2m + 1 : 2m + nrhs, 1 : m)
is annihilated by a simple Gaussian elimination.
Now the inverse of L

L−1 ∈ C
(2m+nrhs)×(2m+nrhs), L =





QT α−1 γ
0m×nrhs

0nrhs×2m Inrhs



 ,

has to be applied to b(1) from the left (see formula (23). Note that b(1)(2m+1 :
2m + nrhs, 1 : m) was already zero!
So, we have constructed a generator in proper form of T (1), which ends the
proof by induction.

5.2 Fast direct solver

The fast direct solver described by Alg. 16 is based on Lemma 3.2. We com-
pute the sequence of the proper generators (A(k),B(k)) of the successive Schur
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complements T (k).
Therefore, for k = 1 : n− 1, we set in proper form the generators:

a(k) =
(

(Zl
n−k+1A

(k−1)
:,1:m )(m + 1 :, 1 : m) A

(k−1)
m+1:,m+1:2m+nrhs

)

b(k) =

(

(B
(k−1)
1:m,: Zr

n−k+1) (1 : m, m + 1 :)

B
(k−1)
m+1:2m+nrhs,m+1:

) (24)

Remark 5. In practice, it is enough to put a(k) in proper form at each step of
the algorithm. The other matrix B(k) is deduced from A(k) by inspection:

B(k) =







A(k)T

1:(n−k).m,1:m x

A(k)T

1:(n−k).m,m+1:2m 0m×nrhs

0m×(n−k).m Inrhs






,

where x is some non-zero, but not important value: it is namely not neeeded to
construct the next generator (a(k+1), b(k+1)).

Hence, after n steps of fast Schur complementation, we get a generator of
the solution X of the linear system:

T X = B,

and X is given by:

X = A(n−1)(1 : nm, 2m + 1 : 2m + nrhs). (25)

Algorithm 16 Fast Direct Solver

Input:
First block-row of T , of size nm×m,
Right hand side B, of size nm× nrhs

Output: Solution X of T X = B.
1: Set up generator (A,B) from formula (18) and (19).
2: for k = 2 : n do
3: Determine a generator (a(k), b(k)) for the kth Schur complement, T (k)

from formula (24).
4: Put (a(k), b(k)) in proper form:

Determine Q complex orthogonal such that:
(a(k) Q)(1 : m, m + 1 : 2m) = 0m×m.
Apply Q to the generator: a(k) ← a(k) Q.

Gaussian elimination of a
(k)
1:m,2m+1:2m+nrhs.

5: end for
6: Get X from formula (25).
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6 Numerical Experiments

We have implemented our algorithms in Fortran90 and performed numerical
experiments to investigate the behavior of the different options:

• blocked/unblocked methods

• with/without assembling the Cholesky factor

We compare their efficiency both in terms of accuracy and execution time to the
other available algorithms: the classical Cholesky factorization and the Levinson
solver for block complex general Toeplitz matrices [2], available from Netlib.
Throughout this section, we adopt the following naming scheme:

• no struct: non-structured Cholesky method,

• seq: structured factorization with non-blocked Householder transforms,

• wy1, wy2, yty1, yty2: structured, factorization with blocked Householder
transforms, for the corresponding block schemes.

• levin: Levinson solver from Netlib

We use Intel fortran compiler ifc (version 7.1) and Math Kernel Library opti-
mized implementation of BLAS. Numerical experiments have been performed in
double precision arithmetic. The tests were carried out on a bi-processor Intel
Pentium 4 XEON, with 2 CPU at 3.05GHz, and a cache size of 512 KB, running
Linux.
We consider complex symmetric block-Toeplitz matrices, generated with the
BEM-based code transdper [20].

6.1 Cholesky factorization

We compute the Cholesky factor L of block-Toeplitz matrices, with blocks of
size 20, by structured and non-structured methods.When a blocking scheme is
used, the blocking factor (p) is chosen equal to the size of the Toeplitz blocks
(m).
We show on Figure 1 the size of the relative residual

R =
||L LT − T ||F
||T ||F

for the different structured approaches, in Frobenius norm. We see that their ac-
curacy slightly depends on the (blocked/unblocked) method for applying House-
holder transforms, but they all reasonably low.
Nevertheless, when we compare any structured method with the classsical Cholesky
method, we note that the relative size of the factorization residual obtained via
the structured method is significantly higher. This confirms the accuracy re-
sults obtained by Kressner in [16], for the real case. But in spite of this, the
structured methods give sufficiently accurate factorizations. The execution time
is shown on Figure 2.
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Figure 3: Relative forward error, with forming the Cholesky factor

6.2 Solution of the linear system, with an explicit factor-

ization of the coefficients matrix

In this section, we solve linear systems

T X = B. (26)

associated to Toeplitz matrices of different sizes. We proceed as follows:

• Cholesky factorization of T , by the various structured/non-structured
methods displayed in the last paragraph.

• solution of the system by forward/backward substitutions.

We build a random exact solution Xexact and define the right-handside from
Xexact by:

B = T Xexact.

We then present the relative forward error, defined in 2-norm by

Ferr =
||X −Xexact||2
||Xexact||2

,

where X denotes the computed solution of the linear system (26). The matrices
we consider have (Toeplitz) blocks of size 20. The blocking factor, used to
accumulate the Householder transforms is taken equal to the size of the Toeplitz
blocks.
We present on Figure 3 the relative forward error, for each method, structured
and non-structured. We see that the accuracy is reasonable, though inferior to
the non-structured method. This confirms what we observed on the factorization
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residuals, in the last paragraph.
The timing results are shown on Figure 4. The difference in the slopes of the
curves corresponding to the structured/non-structured methods represents the
difference in the complexity of the algorithms. For sufficiently large systems, the
structured methods are clearly faster, especially the blocked implementations.
The tests we performed do not show a significant advantage of one of the blocked
methods.

6.3 Solution of the linear system, without an explicit fac-

torization of the coefficients matrix

In this section, we test the fast solver presented in section 5. This method allows
to solve the linear system

T X = B,

without explicitly forming the Cholesky factor of T . Different techniques are
investigated, corresponding to the way the generator of the augmented system
is put in proper form. It is especially attractive when large systems are to be
solved, since it only demands a small amount of memory.
We build a random exact solution Xexact and define the right-handside from
Xexact by:

B = T Xexact.

The matrices we consider have (Toeplitz) blocks of size 20. The blocking factor,
used to accumulate the Householder transforms is taken equal to the size of the
Toeplitz blocks.
The relative forward error is shown on Figure 5. It has the same order of
magnitude than the error obtained with the solver tested in the last paragraph
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Figure 5: Relative forward error, without forming the Cholesky factor

(with assembling the Cholesky factor, before solving the system). But, since it
requires less memory, it has been tested on larger matrices. The timing results
are reported on Figure 6. The non-blocked implementation again appears slower
than the blocked implementations.

6.4 When is it worth considering the structure of a ma-

trix?

When is a “fast” structured method really faster than a non-structured one?
Let us again consider the linear problem:

T X = B

for a block Toeplitz matrix T of n× n blocks, each of size m×m.
When n = 1, the matrix is in fact only symmetric (not Toeplitz) and the
proper way to solve (6.4) is a non-structured Cholesky factorization. We guess
that when n is small, that is the matrix has only a few blocks, a structured
method is not very efficient: it is clear on the beginning of Figure 4. On the
opposite, m = 1 means that the matrix is point Toeplitz, and that a structured
method is probably effective.
We verify numerically this idea on two examples. Therefore, we fix a block size
m, and plot the CPU time required to solve (6.4) by structured and unstructured
methods, for different values of n. We have chosen the structured solvers based
on an explicit assembling of the Cholesky factor, to have a fair comparison with
the non-structured method. The result for block sizes m = 100, m = 199, and
m = 451 is respectively shown on Figures 7, 8 and 9. We recall that the case of
blocks of size 20 corresponds to Figure 4. We see that when n increases, struc-
tured methods become attractive. The blocked structured algorithms achieve
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Figure 6: Execution time, without forming the Cholesky factor
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Figure 7: Execution time, matrices with blocks of size 100
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crossover points at which they beat the non-structured algorithm.
Let us now define, for one of the blocked structured method (for instance wy2),
the mapping:

m 7→ nwy2(m) = min{n, Twy2(n, m) ≤ Tno struct(n, m)}

where Twy2(n, m) (resp. Tno struct(n, m)) is the CPU time needed to solve the
linear sytem associated to a Toeplitz matrix of n×n blocks, each of size m×m
by the wy2-blocked structured method (resp. by the non-structured method).
We plot this function on Figure 10, and see that it is decreasing.

6.5 Comparison with the general Levinson solver tgslz

We compare the solver based on the yty2-blocked version of Algorithm 16 (with-
out an explicit assembly of the Cholesky factor) with the structured solver tgslz
for general block Toeplitz systems [2] available on Netlib. This solver is of Levin-
son type, that is it is based on a factorization of T−1 (and not T , as in Schur type
algorithms). This solver was previously used in the BEM-based code transdper
[20]. Note that tgslz deals with general matrices whereas the new Schur type
algorithm is adapted to symmetric matrices and should therefore be at least
twice faster.
Timing results are reported on Figure 11 and on Figure 12. On Figure 11, we
have plotted the CPU time required to solve the linear system associated to a
block Toeplitz matrix, with n (variable) blocks of (fixed) size m. On Figure 12,
we consider matrices of n (fixed) blocks of (variable) size m. Hence, Figure 11
points out the behaviour of the algorithm with respect to the number of blocks
n, whereas Figure 12 points out the behaviour of the algorithm with respect to
the size of blocks m. We see on Figure 11 that except for the smallest size of
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Figure 11: Levinson/symmetric Schur algorithm: Run time w.r.t m (block size)
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m n Relative forward error Relative forward error
Levinson algorithm yty2− Schur algorithm

67
50
100
150

8.33 10−13

4.05 10−12

1.07 10−11

3.91 10−12

8.06 10−12

1.29 10−11

100
50
100
140

6.74 10−13

3.45 10−12

7.13 10−12

2.20 10−12

5.29 10−12

8.19 10−12

451
10
30

2.54 10−12

7.26 10−12
5.10 10−11

1.27 10−11

Table 1: Levinson/symmetric Schur algorithm: relative forward error

Matrix size (n=30 blocks)

C
P

U
 t

im
e 

(s
ec

on
ds

)

310 410

010

110

210

310 yty2 
levin

Matrix size (n=60 blocks)

C
P

U
 t

im
e 

(s
ec

on
ds

)

41033. 10 34. 10 35. 10 36. 10 37. 10 38. 10 39. 10 42. 10

110

210

yty2 
levin

Figure 12: Levinson/symmetric Schur algorithm: Run time w.r.t n (number of
blocks)

blocks, the new algorithm outperforms the old one. The larger the blocksize,
the better the new algorithm behaves: it is slower for blocks of size 20, but for
blocks of size 451, it is about 5 times faster! The slope of the timing curves are
identical: both algorithms have the same dependence with respect to n. The
accuracy remains the same: Table 1 compares the relative forward error for both
methods. Figure 12 confirms what we observed on Figure 11: the superiority of
our symmetric Schur algorithm becomes obvious when m increases. This time,
the slopes of the timing curves are different: the curve corresponding to our
algorithm has a smaller slope, which means that its order with respect to m is
lower than Levinson algorithm’s. This explains why Schur algorithm is faster
for m large.

7 Conclusions

We proposed fast algorithms for the solution of dense complex symmetric block
Toeplitz systems. These linear systems arise for instance in the analysis of elec-
tromagnetic radiation and scattering problems by Boundary Element Methods.
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Memory and CPU-time requirements by classical direct (Cholesky) method are
quite high. Therefore, exploiting the structure of the matrix, when it exists due
to a periodic geometry, is very attractive. Our numerical experiments demon-
strate the efficiency of fast algorithms both in terms of accuracy and run time
for several matrices issued from the discretization of Boundary Integral Equa-
tions. Moreover, we believe that Algorithm 16 is particularly interesting, since
it avoids an explicit assembly of the Cholesky factor, and thereby demands less
memory space. Therefore, using this algorithm for the numerical solution of the
discretized BEM problems both allows to consider problems of larger size and
to speed up their solution. We also pointed out that blocked algorithms should
be preferred since they are significantly faster than their unblocked version.
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