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Abstract. We are concerned with the numerical resolution of backward stochas-
tic differential equations and their applications to finance. We propose a new
numerical scheme based on iterative regressions on function bases, which coeffi-
cients are evaluated using Monte Carlo simulations. A full convergence analysis
is derived. Numerical experiments are included, in particular concerning option
pricing with differential interest rates.
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1 Introduction

In this paper we are interested in numerically approximating the solution of a
decoupled forward-backward stochastic differential equation (FBSDE)

Si,t = Si,0 +
∫ t

0

Si,sBi(s, Ss)ds +
∫ t

0

Si,sΣi(s, Ss)dWs, 1 ≤ i ≤ d, (1)

Yt = Φ(S) +
∫ T

t

f(s, Ss, Ys, Zs)ds−
∫ T

t

ZsdWs. (2)

In this representation, S = (St : 0 ≤ t ≤ T ) = ([S1,t, · · · , Sd,t] : 0 ≤ t ≤ T )
stands for the risky assets (with Si,0 > 0 for any i), whose dynamics are writ-
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ten under the objective probability P. Here, W is a q-dimensional Brownian
motion defined on a filtered probability space (Ω,F , P, (Ft)0≤t≤T ), where (Ft)t

is the completed natural filtration of W . The driver f(·, ·, ·, ·) and the termi-
nal condition Φ(·) are respectively a deterministic function and a deterministic
functional of the price process S. The assumption (H1-H2-H3) below ensures
the existence and the unicity to such equation (1-2).

BSDEs in finance. Such equations, first studied by Peng and Pardoux [25]
in a general form, are important tools in mathematical finance. We mention some
applications and refer the reader to [16] for numerous references. In a complete
market, for the usual valuation of a contingent claim with payoff Φ(S), Y is the
value of the replicating portfolio and Z is related to the hedging strategy. In that
case, the driver f is linear w.r.t. Y and Z. Some market imperfections can also
be incorporated, such as higher interest rate for borrowing [4]: then, the driver
is only Lipschitz continuous w.r.t. Y and Z. Related numerical experiments are
developed in Section 4. In incomplete markets, the Föllmer-Schweizer strategy
[13] is given by the solution of a BSDE. When trading constraints on some
assets are imposed, the super-replication price [17] is obtained as the limit of
non linear BSDEs. Connections with recursive utilities of Duffie and Epstein
[12] are also available. Peng has introduced the notion of g-expectation (here
g is the driver) as a non linear pricing rule [27]. Recently he has shown [26]
the deep connection between BSDEs and dynamic risk measures, proving that
any dynamic risk measure (Et)0≤t≤T (satisfying some axiomatic conditions) is
necessarily associated to a BSDE (Yt)0≤t≤T (the converse being known for years).
The least we can say is that BSDEs are now unavoidable tools in mathematical
finance. Another indirect application may concern variance reduction techniques
for the Monte Carlo computations of option prices, say E(Φ) (omitting here
the discounting factor). Indeed,

∫ T

0
Zs dWs is the so-called martingale control

variate (see [24] among others).
The mathematical analysis of BSDE is now well understood (see [23] for re-

cent references) and its numerical resolution has made recent progresses. How-
ever, even if several numerical methods have been proposed, they suffer of a high
complexity in terms of computational time or are very costly in terms of com-
puter memory. Thus, their uses in practice on real problems are difficult. Hence,
it is still topical to devise more efficient algorithms. This article contributes in
this direction, by developing a simple approach, based on Monte Carlo regres-
sion on function bases. It is in the vein of the general regression approach of
Bouchard and Touzi [6], but here it is actually much simpler because only one
set of paths is used to evaluate all the regression operators. Consequently, the
numerical implementation is easier and more efficient. In addition, we provide
a full mathematical analysis of the influence of the parameters of the method.

Numerical methods for BSDEs. In the past decade, there have been
several attempts to provide approximation schemes for BSDEs. Firstly, Ma etal.
[22] propose the four step scheme to solve general FBSDEs, which requires the
numerical resolution of a quasilinear parabolic PDE. In [2], Bally presents a time
discretization scheme based on a Poisson net: this trick avoids him to use the
unknown regularity of Z and enables him to derive a rate of convergence w.r.t.
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the intensity of the Poisson process. However, extra computations of very high
dimensional integrals are needed and this is not handled in [2]. In a recent work
[28], Zhang proves some L2-regularity on Z, which allows the use of a regular
deterministic time mesh. Under an assumption of constructible functionals for
Φ (which essentially means that the system can be made Markovian, by adding
d′ extra state variables), its approximation scheme is less consuming in terms
of high dimensional integrals. If for each of the d + d′ state variables, one uses
M points to compute the integrals, the complexity is about Md+d′ per time
step, for a global error of order M−1 say1. This approach is somewhat related
to the quantization method of Bally and Pagès [3], which is an optimal space
discretization of the underlying dynamic programming equation (see also the
former work by Chevance [9], where the driver does not depend on Z). We
should also mention the works by Ma etal. [21], Briand etal. [8], where the
Brownian motion is replaced by a scaled random walk. Weak convergence re-
sults are given, without rates of approximation. The complexity becomes very
large in multidimensional problems, like for the usual multinomial tree method
for the pricing of Bermuda/European options [15]. Recently, in the case of path-
independent terminal conditions Φ(S) = φ(ST ), Bouchard and Touzi [6] propose
a Monte Carlo approach which may be more suitable for high dimensional prob-
lems. They follow the approach by Zhang [28] by approximating (1-2) by a
discrete time FBSDE with N time steps (see (4-5) below), with a L2-error of
order N−1/2. Instead of computing the conditional expectations which appear
at each discretization time by discretizing the space of each state variable, the
authors use a general regression operator, which can be derived for instance from
kernel estimators or from the Malliavin calculus integration by parts formulas.
The regression operator at a discretization time is assumed to be build indepen-
dently of the underlying process, and independently of the regression operators
at the other times. For the Malliavin calculus approach for example, this means
that one needs to simulate at each discrete time, M copies of the approximation
of (1), which is costly. The algorithm that we propose in this paper requires
only one set of paths to approximate all the regression operators at each dis-
cretization time at once. Since the regression operators are now correlated, the
mathematical analysis is much more involved.

The regression operator we use in the sequel results from the L2-projection
on a finite basis of functions, which leads in practice to solve a standard least
squares problem. This approach is not new in numerical methods for financial
engineering, since it has been developed by Longstaff and Schwartz [20] for the
pricing of Bermuda options. See also [7] for the option pricing using simulations
under the objective probability.

Organization of the paper. At the end of this section, we set the frame-
work of our study and define some notations used throughout the paper. Then
in Section 2, we describe our algorithm based on the approximation of condi-
tional expectations by a projection on a finite basis of functions. We also state
the main results about the convergence of this scheme. The rest of the paper is
devoted to analyze the influence of the parameters of this scheme on the eval-

1actually, an analysis of the global accuracy is not provided in [28].
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uation of Y and Z. Note that approximation results on Z were not previously
considered in [6]. In Section 3, we provide an estimation of the time discretiza-
tion error: this essentially follows from the results by Zhang [28]. Then, the
impact of the function bases and the number of simulated paths is discussed,
which is the major contribution of our work. Since this least squares approach
is also popular to price Bermuda options [20], it is crucial to accurately estimate
the propagation of errors in this type of numerical methods, i.e. to ensure that
it is not explosive when the exercise frequency shrinks to 0. L2-estimates and a
central limit theorem (see also [10] for Bermuda options) are proved. In section
4, an explicit choice of function bases is given, together with numerical examples
relative to the option pricing with differential interest rates.

Standing assumptions. Throughout the paper, we consider that the fol-
lowing hypotheses are fulfilled.

(H1) For any 1 ≤ i ≤ d, the functions (t, x) 7→ xiBi(t, x) and (t, x) 7→ xiΣi(t, x)
are uniformly Lipschitz continuous w.r.t. (t, x) ∈ [0, T ]× Rd.

(H2) The driver f satisfies the following continuity estimate:

|f(t2, x2, y2, z2)−f(t1, x1, y1, z1)| ≤ Cf (|t2−t1|1/2+|x2−x1|+|y2−y1|+|z2−z1|)

for any (t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ] × Rd × R × Rq. Moreover,
sup0≤t≤T |f(t, 0, 0, 0)| < ∞.

(H3) The terminal condition Φ satisfies Zhang’s L∞-Lipschitz condition, i.e. for
any continuous functions s1 and s2 one has

|Φ(s1)− Φ(s2)| ≤ C sup
t∈[0,T ]

|s1
t − s2

t |.

In addition, |Φ(0)| < ∞ where 0 is the function equal to 0 on [0, T ].

These assumptions (H1-H2-H3) are sufficient to ensure the existence and
uniqueness of a triplet (S,Y,Z) solution to (1-2) (see [23] and references therein).
Note that the L∞-Lipschitz condition allows a large class of exotic payoffs (see
examples later).

General notations.

• The L2(P) projection of the random variable U on a finite family φ =
[φ1, · · · , φn]∗ (considered as a random column vector) is denoted by Pφ(U).
We set Rφ(U) = U − Pφ(U) for the projection error.

• At each time tk some random variables p0,k, p1,k, · · · , pq,k will be used
as projection bases to approximate Ytk

, Z1,tk
, · · · , Zq,tk

(Zl,tk
is the l-

th component of Ztk
). The projection coefficients will be denoted

α0,k, α1,k, · · · , αq,k (viewed as column vectors). To simplify, we write
fk(α0,k, · · · , αq,k) or fk(αk) (resp. fm

k (α0,k, · · · , αq,k) or fm
k (αk)) for

f(tk, SN
tk

, α0,k · p0,k, · · · , αq,k · pq,k) (resp. f(tk, SN,m
tk

, α0,k · pm
0,k, · · · , αq,k ·

pm
q,k) the m-th realization of the same quantity) (SN

tk
is an Euler approxi-

mation of Stk
, see (3)).
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• For convenience, we write Ek(.) = E(.|Ftk
). We put ∆Wk = Wtk+1 −Wtk

(and ∆Wl,k component-wise). The m-th realization is denoted by ∆Wm
l,k.

• For a vector x, |x| stands as usual for its Euclidean norm. The relative
dimension is still implicit. For an integer M and x ∈ RM , we put |x|2M =
1
M

∑M
m=1 |xm|2. For a set of projection coefficients α = (α0, · · · , αq), we

set |α| = max0≤l≤q |αl| (the dimensions of the αl may be different). For
the set of basis functions at a fixed time tk, |pk| is defined analogously.

• For a symmetric matrix A, ‖A‖ and ‖A‖F are respectively the maximum
of the absolute value of its eigenvalues and its Frobenius norm.

• In the next computations, C denotes a generic constant that may change
from line to line. It is still uniform in the parameters of our scheme.

Additional notations are given through the paper when needed.

2 The numerical scheme and the main approxi-
mation results

In this section, we describe our numerical scheme and give the main results about
the convergence analysis. All the proofs are postponed to Section 3. The deriva-
tion of the final scheme is obtained in three main steps. The presentation below
is rather expanded but it should provide an intuition of the main approximation
results.

2.1 Step 1

We first consider a time approximation of equations (1) and (2). Let h be a
time step (say smaller than 1), associated to equidistant discretization times
(tk = kh = kT/N)0≤k≤N .

For the forward component (1), we use a standard Euler scheme, not on S
but on log(S). This modification does not change the further rates of conver-
gence but it is more satisfactory since it leads to non negative prices for the
approximation of S as it is expected. This is defined by (SN

tk
)0≤k≤N , which

writes component-wise SN
i,0 = Si,0 and

SN
i,tk+1

= SN
i,tk

exp
(
[Bi(tk, SN

tk
)− 1

2
|Σi|2(tk, SN

tk
)]h + Σi(tk, SN

tk
)∆Wk

)
. (3)

To ensure the convergence of this modified Euler scheme towards S, we slightly
reinforce (H1).

(H1’) The assumption (H1) is satisfied. In addition, the functions bi(t, x) =
Bi(t, exp(x1), · · · , exp(xd)) and σi(t, x) = Σi(t, exp(x1), · · · , exp(xd)) are
bounded and uniformly Lipschitz continuous w.r.t. (t, x) ∈ [0, T ]× Rd.
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The terminal condition Φ(S) is approximated by ΦN (PN
tN

), where ΦN is a de-
terministic function and (PN

tk
)0≤k≤N is a Markov chain, whose first components

are given by those of (SN
tk

)0≤k≤N . In other words, we eventually add extra state
variables to make Markovian the implicit dynamics of the terminal condition.
We also assume that PN

tk
is Ftk

-measurable and that E[ΦN (PN
tN

)]2 < ∞. Of
course, this approximation strongly depends on the terminal condition type and
its impact is measured in Theorem 1 by the error E|Φ(S) − ΦN (PN

tN
)|2. Let us

give some important examples with d = 1 and q = 1.

• Vanilla payoff: Φ(S) = φ(ST ). Set PN
tk

= SN
tk

and ΦN (PN
tN

) = φ(PN
tN

).
Under the L∞-condition (H3), it gives E|ΦN (PN

tN
)− Φ(S)|2 ≤ Ch.

• Asian payoff: Φ(S) = φ(ST ,
∫ T

0
Stdt). Set PN

tk
= (SN

tk
, h

∑k−1
i=0 SN

ti
) and

ΦN (PN
tN

) = φ(PN
tN

). For usual functions φ, the L2-error is of order 1/2
w.r.t. h. More accurate approximations of the average of S could be
incorporated [18].

• Lookback payoff: Φ(S) = φ(ST ,mint∈[0,T ] St,maxt∈[0,T ] St). Set
ΦN (PN

tN
) = φ(PN

tN
) with PN

tk
= (SN

tk
,mini≤k SN

ti
,maxi≤k SN

ti
). In gen-

eral, this induces an L2-error of magnitude
√

h log(1/h) [28]. The rate
√

h
can be achieved by considering the exact extrema of the continuous Euler
scheme [1].

The backward component (2) is approximated in a backward manner. First,
we set Y N

tN
= ΦN (PN

tN
). Then, (Y N

tk
, ZN

tk
)0≤k≤N−1 are defined by

ZN
l,tk

=
1
h

Ek(Y N
tk+1

∆Wl,k), (4)

Y N
tk

= Ek(Y N
tk+1

) + hf(tk, SN
tk

, Y N
tk

, ZN
tk

). (5)

Using in particular the inequality |ZN
l,tk
| ≤ 1√

h

√
Ek(Y N

tk+1
)2, it is easy to see by a

recurrence argument that Y N
tk

and ZN
tk

belong2 to L2(Ftk
). It is also equivalent

to assert that they minimize the quantity

E(Y N
tk+1

− Y + hf(tk, SN
tk

, Y, Z)− Z∆Wk)2 (6)

over L2(Ftk
) random variables (Y, Z). Note that Y N

tk
is well defined in (5),

because the application Y 7→ Ek(Y N
tk+1

) + hf(tk, SN
tk

, Y, ZN
tk

) is a contraction in
L2(Ftk

), for h small enough. The following result provides an estimate of the
error induced by this first step.

Theorem 1 Assume (H1’-H2-H3). For h small enough, we have

max
0≤k≤N

E|Ytk
− Y N

tk
|2 +

N−1∑
k=0

∫ tk+1

tk

E|Zt − ZN
tk
|2dt

≤ C
(
(1 + |S0|2)h + E|Φ(S)− ΦN (PN

tN
)|2

)
.

2as usual, L2(Ftk ) stands for the square integrable and Ftk -measurable (possibly multidi-
mensional) random variables.
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Owing to the Markov chain (PN
tk

)0≤k≤N , the independent increments
(∆Wk)0≤k≤N−1 and the equations (4-5), we easily get the following result.

Proposition 1 Assume (H1’-H2-H3). For h small enough, we have

Y N
tk

= yN
k (PN

tk
), ZN

l,tk
= zN

l,k(PN
tk

) for 0 ≤ k ≤ N and 1 ≤ l ≤ q, (7)

where (yN
k (·))k and (zN

l,k(·))k,l are measurable functions.

More interesting is the derivation of Lipschitz continuity property for these func-
tions. This is achieved under a Lipschitz property of the terminal condition and
the Markov chain PN

tk
w.r.t. its initial condition. To state a relevant condition,

we use the usual representation of a Markov chain as a random iterative se-
quence of the form PN

tk
= FN

k (Uk, PN
tk−1

) where (FN
k )k are measurable functions

and (Uk)k are i.i.d. random variables. This representation allows to deal with
flow properties of PN

tk
. Consequently, for any initial condition (k0, x) (such that

PN
tk0

= x), we can associate the relative solutions (Y N,k0,x
tk

)k≥k0 , (ZN,k0,x
tk

)k≥k0 ,

(PN,k0,x
tk

)k≥k0 . Our Lipschitz assumption takes the following form.

(H4) The function ΦN (·) is Lipschitz continuous (uniformly in N) and
supN |ΦN (0)| < ∞. In addition, E|PN,k0,x

tN
− PN,k0,x′

tN
|2 + E|PN,k0,x

tk0+1
−

PN,k0,x′

tk0+1
|2 ≤ C|x− x′|2 uniformly in k0 and N .

Proposition 2 Assume (H1’-H2-H3-H4). For h small enough, we have

|yN
k0

(x)− yN
k0

(x′)|+
√

h|zN
k0

(x)− zN
k0

(x′)| ≤ C|x− x′| (8)

uniformly in k0 ≤ N − 1.

It is easy to check that for the previous examples of vanilla, Asian or lookback
options, the assumption (H4) is verified and thus we have to approximate, at
each time tk, Lipschitz continuous functions.

2.2 Step 2

Here, the conditional expectations which appear in the definition of Y N
tk

and ZN
tk

are replaced by a L2(P) projection on function bases.

Definition 1 To approximate Y N
tk

and ZN
l,tk

(1 ≤ l ≤ q), we use respectively
finite-dimensional function bases p0,k(PN

tk
) and pl,k(PN

tk
) (1 ≤ l ≤ q), which

may be also written p0,k and pl,k (1 ≤ l ≤ q) to simplify. We assume that
E|pl,k|2 < ∞ (0 ≤ l ≤ q) and w.l.o.g. that each function basis is free, which
ensures the uniqueness of the coefficients of the projection Ppl,k

(0 ≤ l ≤ q).

A numerical difficulty still remains in the approximation of Y N
tk

in (5), which
is usually obtained as a fixed point. To circumvent this problem, we propose a
solution combining the projection on the function basis and I Picard iterations.
The integer I is a fixed parameter of our scheme (the analysis below shows that
the value I = 3 is relevant).
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Definition 2 We denote3 by Y N,i,I
tk

the approximation of Y N
tk

, where i Picard
iterations with projections have been performed at time tk and I Picard iterations
with projections at any time after tk. Analogous notations stand for ZN,i,I

l,tk
. We

associate to Y N,i,I
tk

and ZN,i,I
l,tk

their respective projection coefficients αi,I
0,k and

αi,I
l,k, on the function bases p0,k and pl,k (1 ≤ l ≤ q).

We now turn to a precise definition of the above quantities. We set Y N,i,I
tN

=
ΦN (PN

tN
), independently of i and I. Assume that Y N,I,I

tk+1
is obtained and let us

define Y N,i,I
tk

, ZN,i,I
l,tk

for i = 0, · · · , I. We begin with Y N,0,I
tk

= 0 and ZN,0,I
tk

= 0,
corresponding to α0,I

l,k = 0 (0 ≤ l ≤ q). By analogy with (6), we set αi,I
k =

(αi,I
l,k)0≤l≤q as the argmin in (α0, · · · , αq) of the quantity

E
(
Y N,I,I

tk+1
− α0 · p0,k + hfk(αi−1,I

k )−
q∑

l=1

αl · pl,k ∆Wl,k

)2
. (9)

Iterating with i = 1, · · · , I, at the end we get (αI,I
l,k )0≤l≤q, thus Y N,I,I

tk
= αI,I

0,k ·p0,k

and ZN,I,I
l,tk

= αI,I
l,k · pl,k (1 ≤ l ≤ q). The least squares problem (9) can be

formulated in different ways but this one is more convenient for the next step of
the scheme. The error induced by this second step is analyzed by the following
result.

Theorem 2 Assume (H1’-H2-H3). For h small enough, we have

max
0≤k≤N

E|Y N,I,I
tk

− Y N
tk
|2 + h

N−1∑
k=0

E|ZN,I,I
tk

− ZN
tk
|2

≤ Ch2I−2
[
1 + |S0|2 + E|ΦN (PN

tN
)|2

]
+ C

N−1∑
k=0

E|Rp0,k
(Y N

tk
)|2 + Ch

N−1∑
k=0

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2.

The above result shows how projection errors cumulate along the backward
iteration. The key point is to note that they only sum up, with a factor C which
does not explode as N →∞. These estimates improve those of Theorem 4.1 in
[6] for two reasons. Firstly, error estimates on ZN are provided here. Secondly,
in the cited theorem, the error is analyzed in terms of E|Rp0,k

(Y N,I,I
tk

)|2 and
E|Rpl,k

(ZN,I,I
l,tk

)|2 say: hence the influence of function bases is still questionable,
since it is hidden in the projection residualsRpk

and also in the random variables
Y N,I,I

tk
and ZN,I,I

l,tk
. Our estimates are relevant to directly analyze the influence

of function bases (see Section 4 for explicit computations, where the Lipschitz
property from Proposition 2 is used). This feature is crucial in our opinion.
Regarding the influence of I, it is enough here to have I = 2 to get an error of
the same order than in Theorem 1. At the third step, I = 3 is needed.

3The notation Y
N,i,

N−k−1 times︷ ︸︸ ︷
I, · · · , I

tk
would be clearer but certainly not convenient at all.
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2.3 Step 3

This step is very analogous to Step 2, except that in the sequence of iterative least
squares problems (9), the expectation E is replaced by an empirical mean built
on M independent simulations of (PN

tk
)0≤k≤N , (∆Wk)0≤k≤N−1. We denote them

((PN,m
tk

)0≤k≤N , (∆Wm
k )0≤k≤N−1)1≤m≤M . The values of basis functions along

these simulations are denoted (pm
l,k = pl(P

N,m
tk

))0≤l≤q,0≤k≤N−1,1≤m≤M . A sub-
tlety remains: it is useful to take advantage of a priori estimates on Y N,i,I

tk
, ZN,i,I

l,tk
,

in order to force their simulation-based evaluations to satisfy the same estimates.
These a priori estimates are given by the following result.

Proposition 3 Under (H1’-H2-H3), for a sequence of explicit functions
(ρN

l,k)0≤l≤q,0≤k≤N−1 bounded from below by 1, one has

|Y N,i,I
tk

| ≤ ρN
0,k(PN

tk
),

√
h|ZN,i,I

l,tk
| ≤ ρN

l,k(PN
tk

), a.s.,

for any i ≥ 0, I ≥ 0 and 0 ≤ k ≤ N − 1, with E|ρN
l,k(PN

tk
)|2 < ∞. We can take

ρN
l,k(x) = max(1, C0|pl,k(x)|) for a constant C0 large enough.

In the sequel, we set ρN
k (PN

tk
) = [ρN

0,k(PN
tk

), · · · , ρN
q,k(PN

tk
)]∗.

Definition 3 Associated to these a priori estimates, we define (random) trun-
cation functions ρ̂N

l,k (resp. ρ̂N,m
l,k ) such that:

• they leave invariant αi,I
0,k · p0,k = Y N,i,I

tk
if l = 0 or

√
hαi,I

l,k · pl,k =
√

hZN,i,I
l,tk

if
l ≥ 1 (resp. αi,I

0,k · pm
0,k if l = 0 or

√
hαi,I

l,k · pm
l,k if l ≥ 1);

• they are bounded by 2ρN
l,k(PN

tk
) (resp. 2ρN

l,k(PN,m
tk

));

• their first derivative is bounded by 1;

• their second derivative is uniformly bounded in N, l, k,m.

A possible construction may be as follows. Take a C2
b -function ξ : R 7→ R, such

that ξ(x) = x for |x| ≤ 3/2, |ξ|∞ ≤ 2 and |ξ′|∞ ≤ 1. Then, set ρ̂N
l,k(x) =

ρN
l,k(PN

tk
)ξ(x/ρN

l,k(PN
tk

)) and ρ̂N,m
l,k (x) = ρN

l,k(PN,m
tk

)ξ(x/ρN
l,k(PN,m

tk
)).

We are now in a position to define the simulation-based approximations of
Y N,i,I

tk
, ZN,i,I

l,tk
. The backward in time iteration starts with Y N,i,I,M

tN
= ΦN (PN

tN
)

independently of i and I. At a given discretization time tk, the Picard iter-
ations are initialized with Y N,0,I,M

tk
= 0 and ZN,0,I,M

tk
= 0, i.e. α0,I,M

l,k = 0
(0 ≤ l ≤ q). Given some projection coefficients (αi,I,M

l,k )0≤l≤q, we define
the approximation candidates Y N,i,I,M

tk
= ρ̂N

0,k(αi,I,M
0,k · p0,k),

√
h ZN,i,I,M

l,tk
=

ρ̂N
l,k(
√

h αi,I,M
l,k · pl,k), and their realizations along the simulations Y N,i,I,M,m

tk
=

ρ̂N,m
0,k (αi,I,M

0,k · pm
0,k),

√
h ZN,i,I,M,m

l,tk
= ρ̂N,m

l,k (
√

h αi,I,M
l,k · pm

l,k). These coefficients
αi,I,M

k = (αi,I,M
l,k )0≤l≤q are iteratively obtained as the argmin in (α0, · · · , αq) of

the quantity

1
M

M∑
m=1

(
Y N,I,I,M,m

tk+1
− α0 · pm

0,k + hfm
k (αi−1,I,M

k )−
q∑

l=1

αl · pm
l,k ∆Wm

l,k

)2

. (10)
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If the above least squares problem has multiple solutions (i.e. the empirical
regression matrix is not invertible, which occurs with small probability when M
becomes large), we may choose for instance the (unique) solution of minimal
norm. Actually, this choice is arbitrary and has no incidence on the further
analysis.

Now, we aim at quantifying the error between (Y N,I,I,M
tk

,
√

hZN,I,I,M
l,tk

)l,k and
(Y N,I,I

tk
,
√

hZN,I,I
l,tk

)l,k, in terms of the number of simulations M , the function
bases and the time step h. The analysis here is more involved than in [6] since
all the regression operators are correlated by the same set of simulated paths. To
obtain more tractable theoretical estimates, we shall assume that each function
basis pl,k is orthonormal. Of course, this hypothesis does not affect the numerical
scheme, since the projection on a function basis is unchanged by any linear
transformation of the basis.
Extra notations. Define

• vk (resp vm
k ), the (column) vector given by [vk]∗ = (p0,k

∗, p1,k
∗∆W1,k√

h
, · · · ,

pq,k
∗∆Wq,k√

h
) (resp. [vm

k ]∗ = (pm
0,k
∗, pm

1,k
∗∆W m

1,k√
h

, · · · , pm
q,k
∗∆W m

q,k√
h

);

• V M
k , the matrix given by V M

k = 1
M

∑M
m=1 vm

k [vm
k ]∗;

• PM
l,k , the matrix given by PM

l,k = 1
M

∑M
m=1 pm

l,k[pm
l,k]∗ (0 ≤ l ≤ q);

• the event AM
k = {∀ j ∈ {k, · · · , N − 1} : ‖V M

j − Id‖ ≤ h, ‖PM
0,j − Id‖ ≤

h and ‖PM
l,j − Id‖ ≤ 1 for 1 ≤ l ≤ q}.

Under the orthonormality assumption for each basis pl,k, the matrices
(V M

k )0≤k≤N−1, (PM
l,k)0≤l≤q,0≤k≤N−1 converge to the identity with probability

1 as M → ∞. Thus, we have limM→∞ P(AM
k ) = 1. We now state our main

result about the influence of the number of simulations.

Theorem 3 Assume (H1’-H2-H3), I ≥ 3, that each function basis pl,k is
orthonormal and that E|pl,k|4 < ∞ for any k, l. For h small enough, we have
for any 0 ≤ k ≤ N − 1

E|Y N,I,I
tk

− Y N,I,I,M
tk

|2 + h
N−1∑
j=k

E|ZI,I
tj

− ZI,I,M
tj

|2

≤ 9
N−1∑
j=k

E(|ρN
j (PN

tj
)|21[AM

k ]c) + ChI−1
N−1∑
j=k

[
1 + |S0|2 + E|ρN

j (PN
tj

)|2
]

+
C

hM

N−1∑
j=k

(
E‖vjv

∗
j − Id‖2F E|ρN

j (PN
tj

)|2 + E(|vj |2|p0,j+1|2)E|ρN
0,j(P

N
tj

)|2

+ h2E
[
|vj |2(1 + |SN

tj
|2 + |p0,j |2E|ρN

0,j(P
N
tj

)|2 +
1
h

q∑
l=1

|pl,j |2E|ρN
l,j(P

N
tj

)|2)
])

.
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The term with [AM
k ]c readily converges to 0 as M →∞ but we have not made

estimations more explicit because the derivation of an optimal upper bound
essentially depends on extra moment assumptions that may be available. For
instance, if ρN

j (PN
tj

) has moments of order higher than 2, we are reduced via an

Hölder inequality to estimate the probability P([AM
k ]c) ≤

∑N−1
j=k

[
P(‖V M

j −Id‖ >

h) + P(‖PM
0,j − Id‖ > h) +

∑q
l=1 P(‖PM

l,j − Id‖ > 1)
]
. We have P(‖V M

k − Id‖ >

h) ≤ h−2E‖V M
k − Id‖2 ≤ h−2E‖V M

k − Id‖2F = (Mh2)−1E‖vkv∗k − Id‖2F . This
simple calculus illustrates the possible computations, other terms can be handled
analogously.

The previous theorem is really informative since it provides a non asymptotic
error estimation. With Theorems 1 and 2, it enables to see how to optimally
choose the time step h, the function bases and the number of simulations to
achieve a given accuracy. We do not report this analysis which seems to be hard
to derive for general function bases. This will be addressed in further researches.
However, our next numerical experiments give an idea of this optimal choice.

We conclude our theoretical analysis by stating a central limit theorem on
the coefficients αi,I,M

k as M goes to ∞. This is less informative than Theorem 3
since this is an asymptotic result. Thus, we remain vague about the asymptotic
variance. Explicit expressions can be derived from the proof.

Theorem 4 Assume (H1’-H2-H3), that the driver is continuously differen-
tiable w.r.t. (y, z) with a bounded and uniformly Hölder continuous deriva-
tives and that E|pl,k|2+ε < ∞ for any k, l (ε > 0). Then, the vector
[
√

M(αi,I,M
k −αi,I

k )]i≤I,k≤N−1 weakly converges to a centered Gaussian vector as
M goes to ∞.

3 Proofs of the approximation results

3.1 Proof of Theorem 1

This follows more or less directly from Theorem 5.3 in [28] and from its proof.
We can not apply this theorem to our case since we use an Euler scheme on
log(S) instead of S, so the proof has to be slightly adapted. We briefly give
the key points which make Theorem 1 valid. Firstly, under (H1-H2-H3), Z is
càdlàg (see Remark 2.6.ii in [28]). Secondly, our representation formula for Z
seems to be different from that of (5.2) in [28], but it actually coincides if we
use the isometry property of Itô’s integral. At last, examining the proof of the
cited theorem, to obtain our result it just remains to prove

E( sup
0≤t≤T

|SN
t |4) ≤ C

(
1 + |S0|4

)
, (11)

E( sup
0≤t≤T

|St − SN
t |2) ≤ C

(
1 + |S0|2

)
h, (12)

where (SN
t )t is the continuous Euler scheme defined for t ∈ [tk, tk+1[ by

SN
i,t = SN

i,tk
exp

(
[Bi(tk, SN

tk
)− 1

2
|Σi|2(tk, SN

tk
)](t− tk) + Σi(tk, SN

tk
)(Wt −Wtk

)
)
.

11



To derive estimates (11) and (12), note that XN
i,t = log(SN

i,t) is the usual
Euler scheme associated to the drift and diffusion coefficients bi(t, x) −
1
2 |σi(t, x)|2 and σi(t, x). Thus, under (H1’) the following classic estimates
hold: E(sup0≤t≤T |Xt−XN

t |p) ≤ Cph
p/2, E(sup0≤t≤T e4Xi,t +sup0≤t≤T e4XN

i,t) ≤
CS4

i,0. Now, the inequality (11) is clear. In addition, writing Si,t − SN
i,t =

(Xi,t −XN
i,t)

∫ 1

0
eλXi,t+(1−λ)XN

i,tdλ, we deduce (12) using the previous estimates
on X and XN . �

3.2 Proof of Theorem 2

For convenience, we denote AN (S0) = 1+ |S0|2 + E|ΦN (PN
tN

)|2. In the following
computations, we repeatedly use three standard inequalities.

1. The contraction property of the L2-projection operator: for any random
variable X ∈ L2, we have E|Ppl,k

(X)|2 ≤ E|X|2.

2. The Young inequality: ∀ γ > 0,∀ (a, b) ∈ R2, (a + b)2 ≤ (1 + γh)a2 +
(1 + 1

γh )b2.

3. The discrete Gronwall lemma: for any non-negative sequences
(ak)0≤k≤N , (bk)0≤k≤N and (ck)0≤k≤N satisfying ak−1+ck−1 ≤ (1+γh)ak+
bk−1 (with γ > 0), we have ak +

∑N−1
i=k ci ≤ eγ(T−tk)

[
aN +

∑N−1
i=k bi

]
. Most

of the time, it will be used with ci = 0.

Because ∆Wk is centered and independent of (pl,k)0≤l≤q, it is straightforward
to see that the solution of the least squares problem (9) is given for i ≥ 1 by

ZN,i,I
l,tk

=
1
h
Ppl,k

(
Y N,I,I

tk+1
∆Wl,k

)
, (13)

Y N,i,I
tk

= Pp0,k

(
Y N,I,I

tk+1
+ hf(tk, SN

tk
, Y N,i−1,I

tk
, ZN,i−1,I

tk
)
)
. (14)

The proof of Theorem 2 may be divided in several steps.
Step 1: a (tight) preliminary upper bound for E|ZN,i,I

l,tk
|2. First note that

ZN,i,I
l,tk

is constant for i ≥ 1. Moreover, the Cauchy-Schwarz inequality yields
|Ek(Y N,I,I

tk+1
∆Wl,k)|2 = |Ek([Y N,I,I

tk+1
− Ek(Y N,I,I

tk+1
)]∆Wl,k)|2 ≤ h

(
Ek[Y N,I,I

tk+1
]2 −

[Ek(Y N,I,I
tk+1

)]2
)
. Since (pl,k)l is Ftk

-measurable and owing to the contraction of
the projection operator, it follows that

E|ZN,i,I
l,tk

|2 =
1
h2

E
[
Ppl,k

(
Ek[Y N,I,I

tk+1
∆Wl,k]

)]2 ≤ 1
h2

E
(
Ek[Y N,I,I

tk+1
∆Wl,k]

)2

≤ 1
h

(
E[Y N,I,I

tk+1
]2 − E[Ek(Y N,I,I

tk+1
)]2

)
. (15)

As it may be seen in the computations below, the term E[Ek(Y N,I,I
tk+1

)]2 in (15)
plays a crucial role to make further estimates not explosive w.r.t. h.
Step 2: L2 bounds for Y N,i,I

tk
and

√
hZN,i,I

l,tk
. Actually, it is an easy exercise

to check that the random variables Y N,i,I
tk

and
√

hZN,i,I
l,tk

are square integrable.
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We aim at proving that uniform L2 bounds w.r.t. i, I, k are available. De-
note χN,I

k : Y ∈ L2(Ftk
) 7→ Pp0,k

(
Y N,I,I

tk+1
+ hf(tk, SN

tk
, Y, ZN,i−1,I

tk
)
)
∈ L2(Ftk

).
Clearly, E|χN,I

k (Y2)− χN,I
k (Y1)|2 ≤ (Cfh)2E|Y2 − Y1|2 where Cf is the Lipschitz

constant of f . Consequently for h small enough, the application χN,I
k is con-

tracting and has an unique fixed point Y N,∞,I
tk

∈ L2(Ftk
) (remind that ZN,i,I

l,tk

does not depend on i ≥ 1). One has

Y N,∞,I
tk

= Pp0,k

(
Y N,I,I

tk+1
+ hf(tk, SN

tk
, Y N,∞,I

tk
, ZN,I,I

tk
)
)
, (16)

E|Y N,∞,I
tk

− Y N,i,I
tk

|2 ≤ (Cfh)2iE|Y N,∞,I
tk

|2 (17)

since Y N,0,I
tk

= 0. Thus, Young’s inequality yields for i ≥ 1

E|Y N,i,I
tk

|2 ≤(1 +
1
h

)E|Y N,∞,I
tk

− Y N,i,I
tk

|2 + (1 + h)E|Y N,∞,I
tk

|2

≤(1 + Ch)E|Y N,∞,I
tk

|2. (18)

The above inequality is also true for i = 0 because Y N,0,I
tk

= 0. We now estimate
E|Y N,∞,I

tk
|2 from the identity (16). Combining Young’s inequality (with γ to be

chosen later), the identity Pp0,k
(Y N,I,I

tk+1
) = Pp0,k

(Ek[Y N,I,I
tk+1

]), the contraction of
Pp0,k

, the Lipschitz property of f , we get

E|Y N,∞,I
tk

|2 ≤(1 + γh)E|Ek[Y N,I,I
tk+1

]|2

+ Ch(h +
1
γ

)
[
Ef2

k (0, · · · , 0) + E|Y N,∞,I
tk

|2 + E|ZN,I,I
tk

|2
]
. (19)

Bringing together terms E|Y N,∞,I
tk

|2, then using (15) and the upper bound
Ef2

k (0, · · · , 0) ≤ C(1 + |S0|2) (see (11)), it readily follows that

E|Y N,∞,I
tk

|2 ≤ (1 + γh)
1− Ch(h + 1

γ )
E|Ek[Y N,I,I

tk+1
]|2 +

Ch(h + 1
γ )

1− Ch(h + 1
γ )

[
1 + |S0|2

]
+

C(h + 1
γ )

1− Ch(h + 1
γ )

(
E|Y N,I,I

tk+1
|2 − E|Ek[Y N,I,I

tk+1
]|2

)
(20)

provided that h is small enough. Take γ = C to get

E|Y N,∞,I
tk

|2 ≤ Ch
[
1 + |S0|2

]
+ (1 + Ch)E|Y N,I,I

tk+1
|2 + ChE|Ek[Y N,I,I

tk+1
]|2

≤ Ch
[
1 + |S0|2

]
+ (1 + 2Ch)E|Y N,I,I

tk+1
|2 (21)

with a new constant C. Plugging this estimate into (18) with i = I, we
get E|Y N,I,I

tk
|2 ≤ Ch

[
1 + |S0|2

]
+ (1 + Ch)E|Y N,I,I

tk+1
|2 and thus, by Gronwall’s

lemma, sup0≤k≤N E|Y N,I,I
tk

|2 ≤ CAN (S0). This upper bound combined with
(21), (18) and (15) finally provides the required uniform estimates for E|Y N,i,I

tk
|2

and E|ZN,i,I
l,tk

|2:

sup
I≥1

sup
i≥0

sup
0≤k≤N

(E|Y N,i,I
tk

|2 + hE|ZN,i,I
l,tk

|2) ≤CAN (S0). (22)
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Step 3: upper bounds for ηN,I
k = E|Y N,I,I

tk
− Y N

tk
|2. Note that ηN,I

N = 0. Our
purpose is to prove the following relation for 0 ≤ k < N :

ηN,I
k ≤(1 + Ch)ηN,I

k+1 + Ch2I−1AN (S0)

+ CE|Rp0,k
(Y N

tk
)|2 + Ch

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2. (23)

Note that the estimate on max0≤k≤N E|Y N,I,I
tk

− Y N
tk
|2 given in Theorem 2 di-

rectly follows from the relation above. With the arguments used to derive (18)
and using the estimate (22), we easily get

ηN,I
k ≤ Ch2I−1AN (S0) + (1 + h)E|Y N,∞,I

tk
− Y N

tk
|2

= Ch2I−1AN (S0) + (1 + h)E|Rp0,k
(Y N

tk
)|2 + (1 + h)E|Y N,∞,I

tk
− Pp0,k

(Y N
tk

)|2
(24)

where we used at the last equality the orthogonality property relative to Pp0,k
:

E|Y N,∞,I
tk

− Y N
tk
|2 = E|Rp0,k

(Y N
tk

)|2 + E|Y N,∞,I
tk

− Pp0,k
(Y N

tk
)|2. (25)

Furthermore, with the same techniques than for (15) and (19), we can prove

E|ZN,I,I
tk

− ZN
tk
|2 =

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2 +

q∑
l=1

E|ZN,I,I
l,tk

− Ppl,k
(ZN

l,tk
)|2

≤
q∑

l=1

E|Rpl,k
(ZN

l,tk
)|2 +

d

h

(
E[Y N,I,I

tk+1
− Y N

tk+1
]2 − E[Ek(Y N,I,I

tk+1
− Y N

tk+1
)]2

)
, (26)

E|Y N,∞,I
tk

− Pp0,k
(Y N

tk
)|2 ≤ (1 + γh)E|Ek[Y N,I,I

tk+1
− Y N

tk+1
]|2

+ Ch(h +
1
γ

)
[
E|Y N,∞,I

tk
− Y N

tk
|2 + E|ZN,I,I

tk
− ZN

tk
|2

]
. (27)

Replacing the estimate (26) in (27), choosing γ = Cd and using (25) directly
leads to

(1− Ch)E|Y N,∞,I
tk

−Pp0,k
(Y N

tk
)|2 ≤ (1 + Ch)ηN,I

k+1

+ Ch

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2 + ChE|Rp0,k

(Y N
tk

)|2. (28)

Plugging this estimate into (24) completes the proof of (23).
Step 4: upper bounds for ζN = h

∑N−1
k=0 E|ZN,I,I

tk
− ZN

tk
|2. We aim at showing

ζN ≤Ch2I−2AN (S0) + Ch
N−1∑
k=0

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2

+ C
N−1∑
k=0

E|Rp0,k
(Y N

tk
)|2 + C max

0≤k≤N−1
ηN,I

k . (29)
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In view of (26), we have ζN ≤ h
∑N−1

k=0

∑q
l=1 E|Rpl,k

(ZN
l,tk

)|2 +
d

∑N−1
k=0

(
E[Y N,I,I

tk
−Y N

tk
]2−E[Ek(Y N,I,I

tk+1
−Y N

tk+1
)]2

)
. Owing to (24) and (27), we

obtain

E|Y N,I,I
tk

−Y N
tk
|2 − E[Ek(Y N,I,I

tk+1
− Y N

tk+1
)]2 ≤ Ch2I−1AN (S0)

+ CE|Rp0,k
(Y N

tk
)|2 + [(1 + h)(1 + γh)− 1]E|Ek[Y N,I,I

tk+1
− Y N

tk+1
]|2

+ Ch(h +
1
γ

)
[
E|Y N,∞,I

tk
− Y N

tk
|2 + E|ZN,I,I

tk
− ZN

tk
|2

]
.

Taking γ = 4Cd and h small enough such that dC(h + 1
γ ) ≤ 1

2 , we have proved

ζN ≤ Ch2I−2AN (S0) + Ch
N−1∑
k=0

q∑
l=1

E|Rpl,k
(ZN

l,tk
)|2 + C

N−1∑
k=0

E|Rp0,k
(Y N

tk
)|2

+C max
0≤k≤N−1

ηN,I
k +

1
2
h

N−1∑
k=0

E|Y N,∞,I
tk

− Y N
tk
|2 +

1
2
ζN .

But taking into account (25) and (28) to estimate E|Y N,∞,I
tk

− Y N
tk
|2, we clearly

obtain (29). This easily completes the proof of Theorem 2.

3.3 Proof of Proposition 2

As for (20), we can obtain

E|Y N,k0,x
tk

− Y N,k0,x′

tk
|2 ≤ (1 + γh)

1− Ch(h + 1
γ )

E|Ek(Y N,k0,x
tk+1

− Y N,k0,x′

tk+1
)|2

+
Ch(h + 1

γ )

1− Ch(h + 1
γ )

E|SN,k0,x
tk

− SN,k0,x′

tk
|2

+
C(h + 1

γ )

1− Ch(h + 1
γ )

(
E|Y N,k0,x

tk+1
− Y N,k0,x′

tk+1
|2 − E|Ek(Y N,k0,x

tk+1
− Y N,k0,x′

tk+1
)|2

)
.

Choosing γ = C and h small enough, we get (for another constant C):

E|Y N,k0,x
tk

−Y N,k0,x′

tk
|2 ≤ (1+Ch)E|Y N,k0,x

tk+1
−Y N,k0,x′

tk+1
|2+ChE|SN,k0,x

tk
−SN,k0,x′

tk
|2.

The last term above is bounded by C|x − x′|2 under assumption (H1’). Thus,
using Gronwall’s lemma and assumption (H4), we get the result for yN

k0
(·). The

result for
√

hzN
k0

(·) follows by considering (4).

3.4 Proof of Proposition 3

In view of Proposition 1, it is tempting to apply a Markov property argument and
to assert that Proposition 3 results from (22) written with conditional expecta-
tions Ek. But this argumentation fails because the law used for the projection is
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not the conditional law Ek but E0. The right argument may be the following one.
Write Y N,i,I

tk
= αi,I

0,k · p0,k(PN
tk

). On the one hand, by (22) we have CAN (S0) ≥
E|Y N,i,I

tk
|2 = αi,I

0,k ·E[p0,kp∗0,k]αi,I
0,k ≥ |αi,I

0,k|2λmin(E[p0,kp∗0,k]). On the other hand,

|Y N,i,I
tk

| ≤ |αi,I
0,k||p0,k(PN

tk
)| ≤ |p0,k|

√
CAN (S0)/λmin(E[p0,kp∗0,k]). Thus, we

can take ρN
0,k(x) = max(1, |p0,k(x)|

√
CAN (S0)/λmin(E[p0,kp∗0,k])). Analogously

for
√

h|ZN,i,I
l,tk

|, we have ρN
l,k(x) = max(1, |pl,k(x)|

√
CAN (S0)/λmin(E[pl,kp∗l,k])).

Note that if pl,k is an orthonormal function basis, we have λmin(E[pl,kp∗l,k]) = 1
and previous upper bounds have simpler expressions.

3.5 Proof of Theorem 3

In the sequel, set

AN,M
k =

1
M

M∑
m=1

|ρN
0,k(PN,m

tk
)|2, BN,M

k =
1
M

M∑
m=1

|fm
k (0, · · · , 0)|2.

Obviously, we have E(AN,M
k ) = E|ρN

0,k(PN
tk

)|2 and E(BN,M
k ) ≤ C(1+|S0|2). Now,

we remind the standard contraction property in the case of least squares prob-
lems in RM , analogously to the case L2(P). Consider a sequence of real numbers
(xm)1≤m≤M and a sequence (vm)1≤m≤M of vectors in Rn, associated to the ma-
trix V M = 1

M

∑M
m=1 vm[vm]∗ which is supposed to be invertible (λmin(V M ) > 0).

Then, the (unique) Rn-valued vector θx = arg infθ |x− θ · v|2M is given by

θx =
[V M ]−1

M

M∑
m=1

vmxm. (30)

The application x 7→ θx is linear and moreover, we have the inequality

λmin(V M )|θx|2 ≤ |θx.v|2M ≤ |x|2M . (31)

For the further computations, it is more convenient to deal with

(θi,I,M
k )∗ =

(
αi,I,M

0,k

∗
,
√

hαi,I,M
1,k

∗
, · · · ,

√
hαi,I,M

q,k

∗)
instead of αi,I,M

k . Then, the Picard iterations given in (10) can be rewritten

θi+1,I,M
k = arg inf

θ

1
M

M∑
m=1

(
ρ̂N,m
0,k+1(α

I,I,M
0,k+1 .pm

0,k+1) + hfm
k (αi,I,M

k )− θ.vm
k

)2
. (32)

Introducing the event AM
k , taking into account the Lipschitz property of the

functions ρ̂N
l,k and using the orthonormality of pl,k, we get

E|Y N,I,I
tk

− Y N,I,I,M
tk

|2 + h
N−1∑
j=k

E|ZN,I,I
tj

− ZN,I,I,M
tj

|2 ≤ 9
N−1∑
j=k

E(|ρN
j (PN

tj
)|21[AM

k ]c)

+ E(1AM
k
|αI,I,M

0,k − αI,I
0,k|

2) + h
N−1∑
j=k

q∑
l=1

E(1AM
k
|αI,I,M

l,j − αI,I
l,j |

2). (33)
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To obtain Theorem 3, we estimate |θI,I,M
k − θI,I

k |2 on the event AM
k . This is

achieved in several steps.
Step 1: contraction properties relative to the sequence (θi,I,M

k )i≥0. They are
summed up in the following lemma.

Lemma 1 For h small enough, on AM
k the following properties hold.

a) |θi+1,I,M
k − θi,I,M

k |2 ≤ Ch|θi,I,M
k − θi−1,I,M

k |2.

b) There is an unique vector θ∞,I,M
k such that

θ∞,I,M
k = arg inf

θ

1
M

M∑
m=1

(
ρ̂N,m
0,k+1(α

I,I,M
0,k+1 .pm

0,k+1) + hfm
k (α∞,I,M

k )− θ.vm
k

)2
.

c) We have |θ∞,I,M
k − θI,I,M

k |2 ≤ [Ch]I |θ∞,I,M
k |2.

Proof. We prove a). Since 1− h ≤ λmin(V M
k ) and λmax(PM

l,k) ≤ 2 (0 ≤ l ≤ q)
on AM

k , in view of (31) we obtain that (1−h)|θi+1,I,M
k − θi,I,M

k |2 is bounded by

h2

M

M∑
m=1

(
fm

k (αi,I,M
k )− fm

k (αi−1,I,M
k )

)2

≤Ch2

q∑
l=0

|αi,I,M
l,k − αi−1,I,M

l,k |2λmax(PM
l,k) ≤ Ch|θi,I,M

k − θi−1,I,M
k |2.

Now, statements a) and b) are clear. For c), apply a) reminding that θ0,I,M
k = 0.

�

Step 2: bounds for |θi,I,M
k | on the event AM

k . Namely, we aim at showing that

|θi,I,M
k |2 ≤ C

(
AN,M

k+1 + hBN,M
k

)
on AM

k . (34)

We first consider i = ∞. As in the proof of Lemma 1, we get

(1− h)|θ∞,I,M
k |2 ≤ 1

M

M∑
m=1

[
ρ̂N,m
0,k+1(α

I,I,M
0,k+1 .pm

0,k+1) + hfm
k (α∞,I,M

k )
]2

≤ (1 + γh)AN,M
k+1 + Ch(h +

1
γ

)
(
BN,M

k +
q∑

l=0

|α∞,I,M
l,k |2λmax(PM

l,k)
)
.

Take γ = 8C and h small enough to ensure 2C(h + 1
γ )(1 + h) ≤ 1

2 (1 − h).

It readily follows |θ∞,I,M
k |2 ≤ C(AN,M

k+1 + hBN,M
k ), proving that (34) holds for

i = ∞. Lemma 1-c) leads to expected bounds for other values of i.
Step 3: we remind bounds for θi,I . Using Proposition 3 and in view of (13-17),
we have for i ≥ 1

|θi,I
l,k |

2 ≤ E|ρN
l,k(PN

tk
)|2, 0 ≤ l ≤ q; |θ∞,I

k − θi,I
k |2 ≤ (Cfh)2iE|ρN

0,k(PN
tk

)|2. (35)
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Remind also the following expression of θ∞,I
k , derived from (13-16) and the

orthonormality of each basis pl,k :

θ∞,I
k = E

(
vk[αI,I

0,k+1.p0,k+1 + hfk(α∞,I
k )]

)
. (36)

Step 4: decomposition of the quantity E(1AM
k
|θI,I,M

k −θI,I
k |2). Due to lemma 1,

on AM
k we get |θ∞,I,M

k −θI,I,M
k |2 ≤ ChI |θ∞,I,M

k |2 ≤ ChI |θ∞,I
k |2 +ChI |θ∞,I,M

k −
θ∞,I

k |2. Thus, using (35), it readily follows that E(1AM
k
|θI,I,M

k −θI,I
k |2) is bounded

by

(1 + h)E(1AM
k
|θ∞,I,M

k − θ∞,I
k |2)

+ 2(1 +
1
h

){E(1AM
k
|θI,I,M

k − θ∞,I,M
k |2) + |θI,I

k − θ∞,I
k |2}

≤ (1 + Ch)E(1AM
k
|θ∞,I,M

k − θ∞,I
k |2) + ChI−1E|ρN

k (PN
tk

)|2 (37)

taking account that I ≥ 3. On AM
k , V M

k is invertible and we can set

B1 = (Id− (V M
k )−1)θ∞,I

k

B2 = (V M
k )−1

[
E(vkρ̂N

0,k+1(α
I,I
0,k+1 · p0,k+1))−

1
M

M∑
m=1

vm
k ρ̂N,m

0,k+1(α
I,I
0,k+1 · p

m
0,k+1)

]
,

B3 = (V M
k )−1h

[
E(vkfk(α∞,I

k ))− 1
M

M∑
m=1

vm
k fm

k (α∞,I
k )

]
,

B4 =
(V M

k )−1

M

M∑
m=1

vm
k

[
ρ̂N,m
0,k+1(α

I,I
0,k+1 · p

m
0,k+1)− ρ̂N,m

0,k+1(α
I,I,M
0,k+1 · p

m
0,k+1)

+ h(fm
k (α∞,I

k )− fm
k (α∞,I,M

k ))
]
.

Thus, by (30-36) and Definition 3 we can write θ∞,I
k −θ∞,I,M

k = B1+B2+B3+B4,
which gives on AM

k

|θ∞,I
k − θ∞,I,M

k |2 ≤ 3(1 +
1
h

)(|B1|2 + |B2|2 + |B3|2) + (1 + h)|B4|2. (38)

Step 5: individual estimation of B1, B2, B3, B4 on AM
k . Remind the classic

result [14]: if ‖Id − F‖ < 1, F−1 − Id =
∑∞

k=1[Id − F ]k and ‖Id − F−1‖ ≤
‖F−Id‖

1−‖F−Id‖ . Consequently, for F = V M
k we get E(1AM

k
‖Id − (V M

k )−1‖2) ≤ (1 −
h)−2E‖Id − V M

k ‖2 ≤ (1 − h)−2E‖V M
k − Id‖2F = (M(1 − h)2)−1E‖vkv∗k − Id‖2F .

Thus, we have

E(|B1|21AM
k

) ≤ C

M
E‖vkv∗k − Id‖2F E|ρN

k (PN
tk

)|2.

Since on AM
k one has ‖(V M

k )−1‖ ≤ 2, it readily follows

E(|B2|21AM
k

) ≤ C

M
E(|vk|2|p0,k+1|2)E|ρN

0,k(PN
tk

)|2,
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E(|B3|21AM
k

) ≤ Ch2

M
E

[
|vk|2(1 + |SN

tk
|2 + |p0,k|2E|ρN

0,k(PN
tk

)|2

+
1
h

q∑
l=1

|pl,k|2E|ρN
l,k(PN

tk
)|2)

]
.

As in the proof of Lemma 1 and using ‖PM
0,k+1‖ ≤ 1+h on AM

k , we easily obtain

(1−h)|B4|2 ≤ (1+h)(1+γh)|αI,I
0,k+1−αI,I,M

0,k+1 |
2+Ch(h+

1
γ

)
q∑

l=0

|α∞,I
l,k −α∞,I,M

l,k |2.

Step 6: final estimations. Put εk = E‖vkv∗k − Id‖2F E|ρN
k (PN

tk
)|2 +

E(|vk|2|p0,k+1|2)E|ρN
0,k(PN

tk
)|2 + h2E

[
|vk|2(1 + |SN

tk
|2 + |p0,k|2E|ρN

0,k(PN
tk

)|2 +
1
h

∑q
l=1 |pl,k|2E|ρN

l,k(PN
tk

)|2)
]
. Plug the above estimates on B1, B2, B3, B4 into

(38), choose γ = 3C and h close to 0 to ensure Ch + C
γ ≤ 1

2 ; after simplifica-
tions, we get

E(1AM
k
|θ∞,I,M

k − θ∞,I
k |2) ≤ C

εk

hM
+ (1 + Ch)E(1AM

k
|αI,I

0,k+1 − αI,I,M
0,k+1 |

2).

But in view of Lemma 1-c) and estimates (35-34), we have E(1AM
k
|αI,I

0,k+1 −
αI,I,M

0,k+1 |2) ≤ (1 + h)E(1AM
k
|α∞,I

0,k+1 − α∞,I,M
0,k+1 |2) + ChI−1

(
1 + |S0|2 +

E|ρN
0,k+1(P

N
tk+1

)|2 + E|ρN
0,k+2(P

N
tk+2

)|2
)
. Finally, we have proved

E(1AM
k
|θ∞,I,M

k − θ∞,I
k |2) ≤ C

εk

hM
+ ChI−1

(
1 + |S0|2 + E|ρN

0,k+1(P
N
tk+1

)|2

+ E|ρN
0,k+2(P

N
tk+2

)|2
)

+ (1 + Ch)E(1AM
k
|α∞,I,M

0,k+1 − α∞,I
0,k+1|

2).

Using a contraction argument as in (37), the index ∞ can be replaced by I,
without changing the inequality (with a possibly different constant C). This can
be written

E(1AM
k
|αI,I,M

0,k − αI,I
0,k|

2) + h

q∑
l=1

E(1AM
k
|αI,I,M

l,k − αI,I
l,k |

2)

≤ C
εk

hM
+ ChI−1

(
1 + |S0|2 + E|ρN

0,k+1(P
N
tk+1

)|2 + E|ρN
0,k+2(P

N
tk+2

)|2
)

+ (1 + Ch)E(1AM
k
|αI,I,M

0,k+1 − αI,I
0,k+1|

2).

Using Gronwall’s lemma, the proof is complete. �

The attentive reader may have noted that powers of h are smaller here than
in Theorem 2, which leads to take I ≥ 3 instead of I ≥ 2 before. Indeed, we can
not take advantage of conditional expectations on the simulations as we did in
(15) for instance. This degradation seems to be unavoidable.

Note that in the proof above, we only use the Lipschitz property of the
truncation functions ρ̂N

l,k and ρ̂N,m
l,k .
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3.6 Proof of Theorem 4

The arguments are standard and there are essentially notational difficulties.
The first partial derivatives of f w.r.t. y and zl are respectively denoted ∂0f
and ∂lf . The parameter β ∈]0, 1] stands for their Hölder continuity index.
Suppose w.l.o.g. that ε < β and that each function basis pl,k is orthonormal.
For k < N − 1, define the quantities

AM
l,k(α) =

1
M

M∑
m=1

vm
k ∂lf(tk, SN,m

tk
, α0 · pm

0,k, · · · , αq · pm
q,k)[pm

l,k]∗,

BM
k =

1
M

M∑
m=1

vm
k [pm

0,k+1]
∗, DM

k =
√

M(Id− V M
k ),

CM
k (α) =

M∑
m=1

{
vm

k [αI,I
0,k+1 · pm

0,k+1 + hfm
k (α)]− E

(
vk[αI,I

0,k+1 · p0,k+1 + hfk(α)]
)}

√
M

.

For k = N − 1, we set BM
k = 0 and in CM

k (α), the terms αI,I
0,k+1 · pm

0,k+1 and
αI,I

0,k+1 ·p0,k+1 have to be replaced respectively by ΦN (PN,m
tN

) and ΦN (PN
tN

). The
definitions of AM

l,k(α) and DM
k are still valid. For convenience, we write XM w→

if the (possibly vector or matrix valued) sequence (XM )M weakly converges to
a centered Gaussian variable, as M goes to infinity. For the convergence in
probability to a constant, we denote XM P→. Since simulations are independent,
observe that the following convergences hold:

(AM
l,k(αi,I

k ), BM
k , V M

k )i≤I−1,l≤q,k≤N−1
P→,

GM = (CM
k (αi,I

k ), DM
k )i≤I−1,l≤q,k≤N−1

w→ . (39)

Note that limM→∞ V M
k

a.s.= Id is invertible. Linearizing the functions f and
ρ̂N,m
0,k+1 in the expressions of θi,I

k = E(vk[αI,I
0,k+1.p0,k+1 + hfk(αi−1,I

0,k , · · · , αi−1,I
q,k )])

and θi,I,M
k given by (30) leads to

|V M
k

√
M(θi,I,M

k − θi,I
k )−DM

k θi,I
k − CM

k (αi−1,I
k )

−BM
k

√
M(αI,I,M

0,k+1 − αI,I
0,k+1)− h

q∑
l=0

AM
l,k(αi−1,I

k )
√

M(αi−1,I,M
l,k − αi−1,I

l,k )|

≤ 1k<N−1
C√
M
|αI,I,M

0,k+1 − αI,I
0,k+1|

2
M∑

m=1

|vm
k ||pm

0,k+1|2

+
C√
M
|αi−1,I,M

k − αi−1,I
k |1+β

M∑
m=1

|vm
k ||pm

k |1+β . (40)

To get Theorem 4, we prove by induction on k that ([
√

M(θi,I,M
j −

θi,I
j )]j≥k,i≤I ,GM ) w→. Remind that θ0,I,M

j = θ0,I
j = 0 for any j. Con-

sider first k = N − 1, for which BM
k = 0, and i = 1. In view of (39-40),
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clearly ([
√

M(θi,I,M
N−1 − θi,I

N−1)]i≤1,GM ) w→. For i = 2, we may invoke the
same argument using (39-40) and obtain ([

√
M(θi,I,M

N−1 − θi,I
N−1)]i≤2,GM ) w→ pro-

vided that the upper bound in (40) converge to 0 in probability. To prove
this, put MM = M−1−β/2

∑M
m=1 |vm

N−1||pm
N−1|1+β and write 1√

M
|α1,I,M

N−1 −
α1,I

N−1|1+β
∑M

m=1 |vm
N−1||pm

N−1|1+β = |
√

M(α1,I,M
N−1 − α1,I

N−1)|1+βMM . Since
[
√

M(α1,I,M
N−1 − α1,I

N−1)]M is tight, our assertion holds if MM converges to 0 as
M →∞. Note that |vN−1||pN−1|1+β ∈ L 2+ε

2+β (P). Thus, the strong Law of Large
Numbers, in the case of i.i.d. random variables with infinite mean, leads to∑M

m=1 |vm
N−1||pm

N−1|1+β = O(M
2+β
2+ε +r) a.s. for any r > 0. Consequently, from

the choice of r small enough it follows MM → 0 a.s..
Iterating this argumentation readily leads to ([

√
M(θi,I,M

N−1 − θi,I
N−1)]i≤I,GM ) w→.

For the induction for k < N − 1, we apply the techniques above. There is an
additional contribution due to BM

k , which can be handled as before.

4 Numerical experiments

To use the algorithm, we need to specify the basis functions that we choose at
each time tk. In all the cases described below, assumption (H4) is fulfilled.
Thus, we can take advantage of the Lipschitz continuity of yN

k (·) and
√

hzN
k (·)

(cf. Proposition 2) to choose the basis functions. Firstly, as yN
k (·) and

√
hzN

k (·)
have the same regularity, we take the same basis pl,k for 0 ≤ l ≤ q.
Suppose that PN

tk
takes its value in Rd′ . To define the finite basis p0,k, we

consider a bounded domain Dk = {x ∈ Rd′ : ∀i, 1 ≤ i ≤ d′, |xi − x̄i,k| ≤ Rk}
centered4 in x̄k, that we partition into small hypercubes of edge δ (of course,
when some components of PN

tk
are known to take their values in particular sub-

domains, these sub-domains are considered). We denote this partition (Di,k)i.
As basis functions we consider the indicator functions of the small hypercubes.
To analyze the error of projections on this particular basis, observe that for any
arbitrary point xi in Di,k, we have

E
(
Rp0,k

(Y N
tk

)2
)
≤ E

(
|Y N

tk
|21Dc

k
(PN

tk
)
)

+
∑

i

E
(
1Di,k

(PN
tk

)|yN
k (PN

tk
)− yN

k (xi)|2
)

≤ Cδ2 + E(|Y N
tk
|21Dc

k
(PN

tk
)),

using (8) for the second inequality. To evaluate E(|Y N
tk
|21Dc

k
(PN

tk
)), note that, by

adapting the proof of Proposition 2, we have |Y N
tk
|2 ≤ C(1 + |SN

tk
|2 + Ek|PN

tN
|2).

Thus, if E|PN
tk
|α < ∞ for α > 2, we have E(|Y N

k |21Dc(PN
tk

)) ≤ Cα,k

Rα−2
k

, with an

explicit constant Cα,k. The choice Rk ≈ h−
2

α−2 and δ = h leads to

E|Rp0,k
(Y N

tk
)|2 ≤ Ch2.

The same estimates hold for E|Rp0,k
(
√

hZN
l,tk

)|2. Thus we obtain the same ac-
curacy than in Theorem 1. Observe that quantization techniques [3] could help

4the center x̄ should be chosen approximately equal to E(P N
tk

).
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in defining a better partition of the domain Dk at each time tk.
Moreover, we may expect that the conditional expectations (4) and (5) define
very smooth functions yN

k (·) and
√

hzN
k (·), which would justify to take more

regular basis functions. But it seems to be difficult to control uniformly (in h)
the high order derivatives of yN

k (·) and
√

hzN
k (·). Thus, we only exploit their

Lipschitz continuity property.
Concerning the Picard iterations, note that performing I iterations is as costly
as only one iteration, because the regression matrix V M

k (which requires most of
the computational efforts) is computed once for all the Picard iterations. Note
also that computing each V M

k (and its inverse) on parallel processors is feasible
and certainly speeds up the method.

Call option in a perfect market model. Here we consider a call option
with maturity T , strike K on an underlying asset (d = 1) whose dynamics
is given by the Black-Scholes model with drift µ and volatility σ. We take
T = 0.25, K = S0 = 100, µ = 5%, σ = 20% and r = 2% for the interest rate.
The associated Black-Scholes price (BSP) equals C(K, r) = 4.23. The goal in
considering such a simple case is to compare the results of our algorithm with a
reference value. As basis functions, we take a slightly different basis compared
to the description above. To avoid the restriction to the domain Dk, we consider
at time tk the interval defined by the extremes of SN,m

tk
over m. Then we divide

it into smaller intervals of size δ = h. This idea is relative to histograms with
fixed or random bandwidth as described, for example, in [5].

To test the algorithm, we compare Y N,I,I,M
0 (I = 3) with the BSP. We test

different values of N and M and report the CPU time (in seconds) : the results
have been obtained with a 2 GhZ processor. As Y N,I,I,M

0 satisfies a central limit
theorem (Theorem 4), we estimate its accuracy by calculating the bias and the
standard deviation of the price given by the algorithm. More precisely, we launch
100 times the algorithm : from the collected values, we estimate the empirical
mean and standard deviation (in parenthesis below). We obtain the following
results:

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

2 Price 4.32 (0.37) 4.28 (0.13) 4.29 (0.07) 4.27 (0.03)

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

4 Price 4.14 (0.25) 4.22 (0.10) 4.25 (0.06) 4.25 (0.03)

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

8 Price 3.73 (0.54) 4.12 (0.10) 4.20 (0.03) 4.23 (0.02)

N M 100 (< 1s) 400 (< 1s) 1600 (1s) 6400 (6s)

16 Price 2.71(2.01) 3.83 (0.24) 4.15 (0.07) 4.19 (0.02)

These results highlight several features, which are coherent with previous the-
oretical estimates. Firstly, the convergence w.r.t. h holds, but it is surprisingly
fast. It is presumably due to the simplicity of the example (constant coefficients
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and linear driver). Secondly, for any given value of N , the standard deviation
decreases as 1√

M
as it can be expected from Theorems 3 and 4. Thirdly, for N

large, we need more and more simulations to obtain an accurate price : this is
coherent with Theorem 3, where the upper bound of the error explodes as N
tends to infinity, M and the basis functions being fixed.
Note that for a given value of M , the standard deviation is smaller than for the
direct Monte-Carlo method. For example, for N = 8 and M = 6400, the stan-
dard deviation of the price given by our algorithm is 0.02 and 0.08 for the usual
Monte-Carlo method under the risk neutral probability. This is not surprising
because at each time tk, the term ZN,i,I,M

tk
∆Wk plays the role of a control vari-

ate.

Different interest rates [4]. We now consider the same option, with the same
dynamics for St, but the seller of the option have two different interest rates: R
for borrowing and r for lending with R > r. Here, the driver f in (2) is no more
linear and takes the form f(t, x, y, z) = −{yr + zθ − (y − z

σ )−(R − r)} where
θ = µ−r

σ . To test the algorithm, we take r = 0.02 and R = 0.04. As mentionned
in [11], the price for the option must be the Black-Scholes price C(K, R) = 4.48
since one has to permanently borrow money to replicate the option. We make
the same tests as before and report the mean price and the standard deviation.
We obtain:

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

4 Price 4.30 (0.27) 4.43 (0.11) 4.46 (0.04) 4.47 (0.02)

For other values of N , the results are quite similar to those obtained for the
previous case of R = r: the linearity or non linearity of f seem not to modify
the accuracy of the algorithm.
Call spread. Now, we test the algorithm in the case of a call spread option
with payoff (ST −K1)+− (ST −K2)+. The dynamics of St, T , r and R are still
the same and we take K1 = 95 and K2 = 105. The results are:

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

4 Price 5.09 (0.17) 5.13 (0.08) 5.14 (0.04) 5.14 (0.02)

We note that the price of the algorithm converges to the difference of the
Black-Scholes prices 5.15 = C(K1, R) − C(K2, R). It means that in this case,
the seller of the option always has to borrow money to replicate the option. It
is thus of interest to see what happens when the seller sometimes borrows and
sometimes lends money to replicate the option. We consider a call spread option
with payoff (ST − K1)+ − 2(ST − K2)+. We put r = 0.01 and R = 0.06 to
increase the impact of different interest rates. We obtain:

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

4 Price 3.05 (0.3) 2.97 (0.18) 2.92 (0.07) 2.91 (0.03)

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

8 Price 3.29 (0.3) 3.02 (0.11) 2.96 (0.05) 2.95 (0.03)
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N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

12 Price 2.48 (9.36) 3.12 (0.14) 3.00 (0.06) 2.96 (0.02)

Here the impact of different interest rates can not be neglected. Indeed, the
price is higher than either 2.76 = C(K1, r) − 2C(K2, r) (i.e. one always lends
money to replicate the payoff) or 2.75 = C(K1, R)− 2C(K2, R) (i.e. one always
borrows money to replicate the payoff).

Asian option. Here, we consider a discrete Asian option, with payoff
( 1
5

∑4
i=0 Sti

− K)+ where ti = iT
4 . The model parameters are set to those

of the first example. The risk-neutral price is calculated via a standard Monte-
Carlo method with M ′ = 1000000 paths. The price is 2.30 (0.003). The basis
functions are still chosen as described above, except that now we define squares
in R2 instead of intervals in R1.

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (< 1s)

4 Price 2.57 (7.53) 2.12 (0.15) 2.25 (0.04) 2.29 (0.01)

N M 100 (< 1s) 400 (< 1s) 1600 (< 1s) 6400 (8s)

8 Price 0.8 (11.3) 1.43 (2.69) 2.33 (0.76) 2.26 (0.03)

As expected, the algorithm price converges towards the reference price. In
this two-dimensional case, the previous remarks are valid. In particular, the
greater N is, the slower the convergence with M is, according to Theorem 3.

5 Conclusion

In this paper, we design a new algorithm for the numerical resolution of BSDEs.
At each discretization time, it combines a finite number of Picard iterations (3
seems to be relevant) and regressions on function bases. These regressions are
evaluated at once with one set of simulated paths, unlike [6] where one needs as
many sets of paths as discretization times. We mainly focus on the theoretical
justification of this scheme. We prove L2 estimates and a central limit theorem
as the number of simulations goes to infinity. To confirm the accuracy of the
method, we only present few convincing tests and we refer to [19] for a more
detailed numerical analysis. Even if no related results have been presented here,
an extension to reflected BSDEs is straightforward (as in [6]) and allows to
deal with American options. At last, we mention that our results prove the
convergence of the Hedged Monte Carlo method of Bouchaud etal. [7], which
can be expressed in terms of BSDEs with a linear driver.
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