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Abstract

A global existence theorem is proved for the Landau-Lifshitz-Gilbert equations with
biquadratic exchange coupling energy. The main difficulty relies in the cubic nonlinear
Neumann boundary condition satisfied by the magnetisation at the interfaces. We use
several regularization procedures to obtain global weak solutions with finite energy to
the problem.
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1 Biquadratic exchange coupling energy

We are dealing with a three layers of material constitued by two ferromagnets separeted
by a nonmagnetic spacer. The adjacent interfaces of the ferromagnets are coupled via
the so called biquadratic exchange coupling energy see [5], [6], [7] for example. The
case of bilinear exchange coupling energy was considered in [4] and [13].

In the following, the domain occupied by the ferromagnetic material is denoted
by Ω = Ω+ ∪ Ω− where Ω+ = Ω̂ × (h, l), Ω− = Ω̂ × (−l,−h) with 0 < h < l and
the nonmagnetic spacer occupies the domain Ω0 = Ω̂ × (−h, h). We denote by Γ± =
Ω̂×{z = ±h} the adjacent interfaces of the ferromagnetic material. The generic point
of Ω will be denoted by x = (x̂, z).

Let M(t, x) ∈ S2 be the magnetization of Ω at the time t ≥ 0 in the position x
where S2 denotes the unit sphere of R3. The biquadratic interlayer exchange coupling
energy acting between the interfaces Γ+ and Γ− takes the form
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Ebq(M) = Kbq

∫
bΩ(1− (M+ ·M−)2)dx̂ (1)

where M±(t, x̂) = M(t, x̂,±h) and Kbq > 0 is a physical constant . Since, by using the
saturation condition |M±|2 = 1, we have 1−(M+ ·M−)2 = 1

4 |M
+−M−|2|M+ +M−|2.

Hence Ebq(M) = 0 if and only if t M+ = M− or M+ = −M−.

Let us precise the model we shall discuss. In the ferromagnetic domain Ω the
magnetization M(t, x) ∈ S2 satisfies the Landau-Lifshitz-Gilbert (LLG) equations in
R+ × Ω {

∂tM − αM × ∂tM = −(1 + α2)M ×H(M)

M(0, x) = M0(x), |M0(x)|2 = 1 a.e.
(2)

The effective magnetic field H(M) is given by

H(M) = A∆M −∇Mψ(M) +∇ϕ (3)

where A > 0 is a fixed constant called the anisotropy exchange constant, ∇ϕ is the
demagnetizing field given by the stray equation (or magnetostatic equation)

∇ · (∇ϕ+ χ(Ω)M) = 0 in R+ × R3 (4)

χ(Ω) being the characteristic function of Ω and ∇Mψ(M) is the volume anisotropy field
associated with a regular function ψ ∈ C2(R3) satisfying ψ(X) ≥ 0 and |D2ψ(X)| ≤ C
for all vector X ∈ R3. The magnetization M(t, x) satisfies the saturation condition

|M(t, x)|2 = 1 a.e in R+ × Ω. (5)

The boundary condition satisfied by M on R+ × (∂Ω \ (Γ+ ∪ Γ−)) is given by

M ×A
∂M

∂n
= 0 (6)

while on R+×Γ± the biquadratic exchange coupling energy gives (by using the second
form of the local biquadratic energy) the boundary condition

M± × (∓A(
∂M

∂z
)± +Kbq(|M±|2M± + |M∓|2M± − 2(M+ ·M−)M∓)) = 0. (7)

In this paper we shall discuss the global existence of weak solutions with finite
energy of problem (2)-(4)-(5)-(6)-(7).

We use the following notations. L2(Q) is the vectorial Lebesgue space (L2(Q))3

with norm and scalar product denoted respectively by | · | and (· ; ·). The Hilbert
space H1(Q) is the usual Sobolev space (H1(Q))3 where Q is an open and regular set
of Rn. If Q is a bounded domain of Rn, |Q| will denote its Lebegue measure. At the
end let us announce that in the sequel C will reprent various positive constants which
are independent upon the different parameters.



32 The approximated models

Without loss of generality we set α = 1 and A = 1. The saturation condition |M |2 = 1
allows to write ∂tM = −M×(M×∂tM). Substituting into the Landau-Lifshitz-Gilbert
equation we obtain

M × (− M

1 + |M |
× ∂tM − 1

2
∂tM + ∆M −∇Mψ(M) +∇ϕ+ pM) = 0 (8)

where p is an arbitrarly scalar function depending eventually of |M |.
The idea is to obtain the solutions of our problem as a limit of approximated solu-

tions of an intermediary problem which penalizes the saturation condition. The scalar
function p plays the role of the penalization operator.

Let ν > 0 and η > 0 be two fixed small parameters. We introduce the vector
function U satisfying in Q = (0, T ) × Ω with 0 < T < ∞, the intermediary problem
(see [3]) 

1
2∂tU −∆U = Fν(U) +G(U, ∂tU) in Q

U(0) = M0, |M0(x)|2 = 1 in Ω
∂U

∂n
= 0 on (0, T )× (∂Ω \ (Γ+ ∪ Γ−))

∓(
∂U

∂z
)± +Kbq(B±

ν (U+, U−) +Rη(U±)) = 0 on (0, T )× Γ±

(9)

with the stray equation

∇ · (∇ϕ+ χ(Ω)U) = 0 in Q∞ = (0, T )× R3. (10)

We set
G(U, ∂tU) = − U

1 + |U |
× ∂tU (11)

and

Fν(U) = −∇Uψ(U) + D(U)− 1
ν
∇U (γ(|U |)) (12)

where
γ(y) =

1
2
(
√

2−
√

1 + y2)2 , y ∈ R (13)

and D is the linear opertor U 7→ ∇ϕ where ϕ satisfies (10). The boundary operators
B±

ν (U+, U−) , Rη(U±) are defined by
B±

ν (U+, U−) = ∇U±(Φν(U+, U−))

Φν(U+, U−) = 1
4ν log (1 + ν|U+ + U−|2|U+ − U−|2)

Rη(U±) = ∇U±Θη(U±)

Θη(U±) = 1
2η (s(U±)− log(1 + s(U±))), s(U±) = max(|U±|2 − 1, 0)

(14)

which is to say
B±

ν (U+, U−) =
|U±|2U± + |U∓|2U± − 2(U+ · U−)U∓

1 + ν|U+ + U−|2|U+ − U−|2

Rη(U±) =
1
η

s(U±)U±

1 + s(U±)
.

(15)



4Notice that Θη(U±) = 0 if and only if |U±| ≤ 1 as well as γ(|U |) = 0 if and only if
|U | = 1 and if we multiply the equation (10) by ϕ and integrate on R3, we get∫

Ω
D(U).Udx =

∫
Ω
∇ϕ.Udx = −|∇ϕ|2L2(R3) (16)

which leads to the estimate

|D(U)|L2(R3) ≤ |U |L2(Ω). (17)

Let W be a regular test function. Multiplying the intermediary problem (9) by U ×W
and observing that ∇U (γ(|U |)) ·U ×W = 0 then integrating by parts we get the same
weak formulation as for problem (2)-(4)-(5)-(6)-(7). Hence the intermediary problem
appears as an approximation to our problem.

In order to solve problem (9) we introduce the change of unknown function

U = ekt(V η
ν +M0) (18)

for k > 0 fixed which will be choosen later. Hence V η
ν satisfies the intermediary problem



1
2
∂tV

η
ν −∆V η

ν +
k

2
V η

ν = Fν(t, V η
ν ) +Gν(t, V η

ν , ∂tV
η
ν ) +HM0 in Q

V η
ν (0) = 0 in Ω

∂(V η
ν +M0)
∂n

= 0 on (0, T )× (∂Ω \ (Γ+ ∪ Γ−))

∓
(∂(V η

ν +M0)
∂z

)±
+KbqB

±
ν (t, V η,+

ν , V η,−
ν )

+KbqRη(t, V
η,±
ν ) = 0 on (0, T )× Γ±

(19)

with 

Fν(t, V ) = e−ktFν(ekt(V +M0))

B±
ν (t, V +, V −) = e−ktB±

ν (ekt(V + +M+
0 ), ekt(V − +M−

0 ))

Rη(t, V ±) = e−ktRη(ekt(V ± +M±
0 ))

G(t, V, ∂tV ) = ekt(V +M0)
1+ekt|V +M0|

× ∂tV

HM0 = ∆M0 − k
2M0

(20)

Problem (19) looks like a heat equation with a nonlinear Neumann boundary condi-
tion on the interfaces except that the force G depends of ∂tV

η
ν . To avoid this difficulty

we introduce the following elliptic regularization of (19) where ε > 0 is a fixed small
parameter (see [8], [9] for example)
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−ε2∂2
t V

ε
ν,η −∆V ε

ν,η +
1
2
∂tV

ε
ν,η +

k

2
V ε

ν,η =

Fν(t, V ε
ν,η) +Gν(t, V ε

ν,η, ∂tV
ε
ν,η) +HM0 in Q

V ε
ν,η(0) = 0, ∂tV

ε
ν,η(T ) = 0 in Ω

∂(V ε
ν,η +M0)
∂n

= 0 on (0, T )× (∂Ω \ (Γ+ ∪ Γ−))

∓
(∂(V ε

ν,η +M0)
∂z

)±
+KbqB

±
ν (t, V ε,+

ν,η , V
ε,−
ν,η )

+KbqRη(t, V
ε,±
ν,η ) = 0 on (0, T )× Γ±

(21)

Let us recall the role of the parameters ν, η, k and ε. The parameter ε is the elliptic
regularization parameter while k allows to obtain the L2-norm of the solution. The
parameter ν is used to penalize the saturation condition while η allows to show that
the traces of the solutions on the interfaces are in the ball of radius 1. This condition
is essential in passing to the limit in the nonlinear Neumann boundary condition.

3 Solving the regularized problem (21)

Let us introduce the weak formulation of problem (21). We set V = {V ∈ H1(Q);V (0) =
0} endowed with the usual norm of H1(Q) and define on V× V the bilinear form

aε,k(V,W ) = ε2(∂tV ; ∂tW ) + (∇V ;∇W ) +
1
2
(∂tV ;W ) +

k

2
(V ;W ) (22)

where (·; ·) denotes the scalar product of the Hilbert space H = L2(Q). We also define{
bν(V ;W ) = Kbq

∫ bQ B̃ν(t, Ṽ ) · W̃dx̂dt

rη(V ;W ) = Kbq

∫ bQ R̃η(t, Ṽ ) · W̃dx̂dt
(23)

where we set Q̂ = (0, T )× Ω̂ and

Ṽ = (V +, V −), B̃ν = (B+
ν , B

−
ν ), R̃η(t, Ṽ ) = (Rη(t, V +), Rη(t, V −)). (24)

The weak formulation of the problem (21) becomes: for all W ∈ V

(aε,k + bν + rη)(V ε
ν,η,W ) = (Fν(t, V ε

ν,η);W ) + (G(t, V ε
ν,η, ∂tV

ε
ν,η);W ) + LM0(W ) (25)

with
LM0(W ) = −(∇M0;∇W )− k

2
(M0;W ). (26)

Hereafter we will precise some useful properties satisfied by the operators interven-
ing in the weak formulation (25), 〈·; ·〉 will denote the duality product between V and
V′.

Lemma 1 The linear operator Aε,k defined from V into V′ by setting

〈Aε,k(V );W 〉 = aε,k(V,W ) (27)

is monotone continuous and coecive.



6Lemma 2 The mapping X ∈ R3 7→ Rη(X) is lipschitz continuous and monotone.
Therefore the operator Rη defined on V by

〈Rη(U);V 〉 = rη(U, V ) (28)

is monotone and satisfies the lipschitz property

|Rν,η(U)−Rη(V )| ≤ 2η−1(|U+ − V +|
L2( bQ)

+ |U− − V −|
L2( bQ)

) (29)

for all U, V ∈ V.

Proof. Indeed computing the gradient of Rη(t, .), we get easily

|∇XRη(X)| ≤ 2
η

(30)

which lead to (29). Let us verify the monotonicity. For X,Y ∈ R3, we have η(Rη(X)−
Rη(Y )) ·(X−Y ) = s(X)

1+s(X)(|X|
2−X ·Y )+ s(Y )

1+s(Y )(|Y |
2−X ·Y ) then η(Rη(X)−Rη(Y )) ·

(X−Y ) ≥ (|X|−|Y |)( s(X)
1+s(X) |X|−

s(Y )
1+s(Y ) |Y |). Writing s(X)

1+s(X) |X|−
s(Y )

1+s(Y ) |Y | = (|X|−
|Y |) s(X)

1+s(X)+|Y |(
s(X)

1+s(X)−
s(Y )

1+s(Y )) and using the inequality (|X|−|Y |)( s(X)
1+s(X)−

s(Y )
1+s(Y )) ≥

0 which holds for all X,Y ∈ R3, we get

η(Rη(X)−Rη(Y )) · (X − Y ) ≥ 0 (31)

for all X,Y ∈ R3. Thus, the proof is complete.

Lemma 3 The nonlinear operator Fν defined for all U, V ∈ H by

(Fν(V );V ) =
∫

Q
Fν(t, V ) · V dxdt (32)

satisfies the lipschitz property

|Fν(U)−Fν(V )|L2(Q) ≤ C(1 + ν−1)|U − V |L2(Q) (33)

for all U, V ∈ H with C > 0 is a a constant whis is independent of the parameter ν.

Proof. Since ∇Uψ(U) and ∇γ(|U |) are lipschitzian then using property (17) of the
operator D, we get the result.

Summarizing all these results, we obtain

Lemma 4 For all ε, ν, η > 0, the operator Lε
ν,η = Aε,k +Rη −Fν is hemicontinuous,

that is the mapping s ∈ R 7→ Lε
ν,η(U + sV ) is continuous for all U, V ∈ V. Moreover

there exists a constant kν wich depends of ν such that for k > kν the operator Lε
ν,η is

strictly monotone and satisfies the coercivity property

〈Lε
ν,η(U);U〉
|U |V

→ +∞, if |U |V → +∞. (34)



7Proof. For all U, V ∈ V it holds{
〈Lε

ν,η(U)− Lε
ν,η(V );U − V 〉 ≥ ε2|∂tU − ∂tV |2L2(Q) + |∇U −∇V |2L2(Q)

+(k − kν)|U − V |2L2(Q) + 1
4 |U(T )− V (T )|2L2(Ω)

(35)

with a positive constant kν . Indeed according to the monotonicity of Rη and the
lipschitz property of Fν , we have

{ 〈Lε
ν,η(U)− Lε

ν,η(V );U − V 〉 ≥ ε2|∂tU − ∂tV |2L2(Q) + |∇U −∇V |2L2(Q)

+(k
2 − C(1 + ν−1))|U − V |2L2(Q) + 1

4 |U(T )− V (T )|2L2(Ω)

(36)

so choosing k > 2C(1 + ν−1) + 1, we get the result.

Let us introduce the operators Bν and G defined on V respectively by

〈Bν(U), V 〉 = bν(U, V ) (37)

(G(U);V ) = −
∫

Q
G(t, U, ∂tU) · V dxdt. (38)

Unfortunately these operators are not lipschitz perturbations of the monotone op-
erator Lε

ν,η. Consequently we will consider an alternative argument involving operators
of type M . Thereby we begin by recalling some general results about such operators
(see [12] for example).

Definition 1 ([12]) Let A be an operator defined on a reflexive Banach space F into
F′. We will say that A is of type M (respectively M0) if it is continuous on finite
dimensional subset F ⊂ F and if Ui is some filter on a compact set K ⊂ F such that
Ui → U in F, A(Ui) ⇀ V in F′ weak-?, lim sup(A(Ui);Ui) ≤ (V ;U) (respectively
(A(Ui);Ui) → (V ;U)) then we have A(U) = V .

In particular we get

Lemma 5 ([12]) Let A , B : F → F′. We have

• If A is monotone hemicontinuous then it is of type M

• If A is of type M then A is of type M0

• If A is of type M0 then so is −A
• If B is continuous from F weak into F′ strong and if A is of type M0 then A+ B

is of type M0.

• If A is of type M and B is bounded (mapping bounded sets into bounded sets)
weakly continuous (that is from F weak into F′ weak-?) and the mapping U 7→
(B(U);U) is weakly lower semi-continuous (that is if we have Ui ⇀ U then
lim sup(B(Ui);Ui) ≥ (B(U);U)), then A+ B is of type M .

Lemma 6 ([12]) If A is of type M0 and coercive then A is surjective.



8We will employ these results to solve the problem (21). First we notice that the
operator Lε

ν,η defined in lemma 4 is of type M . Moreover it holds that

Lemma 7 The nonlinear operator Bν is bounded and weakly continuous on V. More-
over the mapping V 7→ 〈Bν(V ), V 〉 is weakly continuous on V.

Proof. For all V ∈ V, we have

B±
ν (V +, V −) =

1
2
|V + − V −|2(V + + V −)± |V + + V −|2(V + − V −)

1 + ν|V + + V −|2|V + − V −|2
(39)

so
|B±

ν (V +, V −)| ≤ (4ν)−1/2(|V +|+ |V −|) (40)

and hence Bν maps bounded sets into bounded sets. Let (Vn)n be a sequence of V
such that Vn ⇀ V weakly in V then V ±

n ⇀ V ± weakly in H1/2(Q̂) and then strongly in
L2(Q̂). Using the Lebesgue dominated convergence theorem, we get that for all W ∈ V

|V +
n ∓ V −

n |(V +
n ± V −

n )
1 + ν|V +

n + V −
n |2|V +

n − V −
n |2

·W± → |V + ∓ V −|(V + ± V −)
1 + ν|V + + V −|2|V + − V −|2

·W±

strongly in L2(Q̂). Therefore (B±
ν (V +

n , V
−
n );W±) → (B±

ν (V +, V −);W±) for allW ∈ V.
Similarly we get

(B±
ν (t, V +

n , V
−
n );W±) → (B±

ν (t, V +, V −);W±) , ∀W ∈ V

so Bν is weakly continuous from V to V′. For V ∈ V, if we set U = ekt(V +M0) and
Ũ = (U+, U−), we can write

〈Bν(V );V 〉 = (e−2ktB̃ν(Ũ); Ũ)− (e−ktB̃ν(Ũ); M̃0) (41)

with

(e−2ktB̃ν(Ũ); Ũ) = e−2kt |U+ + U−|2|U+ − U−|2

1 + ν|U+ + U−|2|U+ − U−|2
. (42)

Therefore if Vn ⇀ V weakly in V, the weak continuity of Bν leads to the convergence
of (e−ktB̃ν(Ũn); M̃0) towards (e−ktB̃ν(Ũ); M̃0) and in view of (42) and the Lebesgue
dominated convergence theorem we obtain (e−2ktB̃ν(Ũn); Ũn) → (e−2ktB̃ν(Ũ); Ũ). So
the proof of the lemma is complete.

Lemma 8 The operator G satisfies the same properties as Bν .

Proof. First G is bounded from V into V′ because we have |G(V )| ≤ |∂tV |, for all V in
V. Assume Vn ⇀ V weakly in V then Vn → V strongly in H and ∂tVn ⇀ ∂tV weakly
in H. Since | ekt(Vn+M0)

1+ekt|Vn+M0|
| ≤ 1 it follows that ekt(Vn+M0)·W

1+ekt|Vn+M0|
→ ekt(V +M0)·W

1+ekt|V +M0|
strongly

in H for all W ∈ H and then G(Vn) ⇀ G(V ) weakly in H and finally weakly-? in V′.
Moreover since (G(Vn);Vn) = −(G(Vn);M0) thus from what preceed we deduce that
(G(Vn);M0) → (G(V );M0) = −(G(V );V ).

Now we are able to establish the following existence theorem for problem (21)



9Theorem 1 Let M0 ∈ H2(Ω) be such that |M0(x)|2 = 1 in Ω, ∂M0
∂n = 0 on ∂Ω,

M+
0 = ±M−

0 on Ω̂ and let ε, ν, η > 0 be fixed. Then there exists k0 > 0 depending
upon ν such that for k > k0, the problem (21) admits a solution V ε

ν,η ∈ V.

Proof. We apply the result of lemma 6. In view of (41), it holds that 〈Bν(V );V 〉 ≥
−(4ν)−1/2(|Ṽ | + |M̃0|)|M̃0|, ∀V ∈ V. Since G satisfies |(G(V );V )| ≤

∫
Q |∂tV |dx and

Lε
ν,η is coercive for k > k0, then so is Lε

ν,η +Bν +G. As Bν +G verifies the fifth condition
quoted in lemma 5 then Lε

ν,η + Bν + G is of type M and since it is coercive for k > k0

then it is surjective from V into V′. Therefore there exists V ε
ν,η ∈ V solving the equation

−ε2∂2
t V

ε
ν,η −∆V ε

ν,η +
1
2
∂tV

ε
ν,η +

k

2
V ε

ν,η = Fν(t, V ε
ν,η) +Gν(t, V ε

ν,η, ∂tV
ε
ν,η) +HM0 (43)

in V′. Hence V ε
ν,η(0) = 0 and solves problem (21) in the weak sense. Moreover since

V ε
ν,η satisfies in the sense of distributions −ε2∂2

t V
ε
ν,η −∆V ε

ν,η + k
2V

ε
ν,η ∈ L2(Q) with the

traces ∂V ε
ν,η/∂N ∈ H1/2(∂Q \ ({0} × Ω)) and V ε

ν,η(0) = 0 on Ω (here N denotes the
outward unit normal to ∂Q) then using the classical result of the regularity of solutions
of elliptic mixed problems we deduce that

V ε
ν,η ∈ H2(Q). (44)

Indeed in view of the hypotheses given on M0, we can transform our problem into a
problem with zero boundary conditions according to the trace theorem [2]. Then the
geometry of the domain (0, T ) × Ω± leads by the well known reflection argument to
the H2-regularity of the solution.

Remark 1 Notice that the coerciveness property of Lε
ν,η + Bν + G does not lead to

uniform bounds of solutions V ε
ν,η with respect to ε. The regularity H2 of the solutions

V ε
ν,η will be relevant to establish uniform estimates.

4 Convergence as ε → 0

We multiply (43) by e−2kt∂tV
ε
ν,η and integrate on Q. To simplify notations, let us

temporarily write V ε
ν,η = V , U = ekt(V +M0), Ũ = (U+, U−), Θ̃η(Ũ) = Θη(U+) +

Θη(U−). First notice that

(G(t, V, ∂tV ); e−2kt∂tV ) = 0 (45)

and using integrations by parts, we get successively

(−ε2∂2
t V +

1
2
∂tV ; e−2kt∂tV ) =

ε2

2
|∂tV (0)|2 +

1
2
(1− 2ε2k)

∫ T

0
e−2kt|∂tV |2dt (46)

k

2
(V +M0; e−2kt∂tV ) =

k

4
e−4kT |U(T )|2 − k

4
|M0|2 +

k2

2

∫ T

0
e−4kt|U |2dt. (47)

Then since Φν(M+
0 ,M

−
0 ) = 0, Θη(M±

0 ) = 0, we have
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(−∆(V +M0); e−2kt∂tV ) =
1
2
e−4kT |∇U(T )|2 +Kbqe

−4kT

∫
bΩ(Φν + Θ̃η)(Ũ(T ))dx̂

−1
2
|∇M0|2 + k

∫ T

0
e−4kt|∇U |2dt+ 4kKbq

∫
bQ e−4kt(Φν + Θ̃η)(Ũ)dx̂dt

−kKbq

∫
bQ e−4kt(B̃ν + R̃η)(Ũ) · Ũdx̂dt.

Let us set for U ∈ V

τη(U±) = 4Θη(U±)− 1
η

s(U±)
1 + s(U±)

, τ̃η(Ũ) = τη(U+) + τη(U−) (48)

with s(U±) = max(|U±|2 − 1, 0). Hence τη(U±) ≥ 0 and we have
∫

bQ e−4kt(4Θ̃η(Ũ) −

R̃η(Ũ) · Ũ)dx̂dt =
∫

bQ e−4ktτ̃η(Ũ)dx̂dt− 1
η

∫
bQ e−4kt(

s(U+)
1 + s(U+)

+
s(U−)

1 + s(U−)
)dx̂dt so

∫
bQ e−4kt(4Θ̃η(Ũ)− R̃η(Ũ) · Ũ)dx̂dt ≥

∫
bQ e−4ktτ̃η(Ũ)dx̂dt− 1

2kη
|Ω̂|. (49)

Furthermore in view of (42), we have

k

∫
bQ e−4ktB̃ν(Ũ) · Ũdx̂dt ≤ (4ν)−1|Ω̂| (50)

which together with (49) give

(−∆(V +M0); e−2kt∂tV ) ≥ k

∫ T

0
e−4kt|∇U |2dt+

kKbq

∫
bQ e−4kt(4Φν + τ̃η)(Ũ)dx̂dt− 1

2
|∇M0|2 − (

1
4ν

+
1
2η

)|Ω̂|.
(51)

Since γ(|M0|) = 0, we have

(−Fν(t, V ); e−2kt∂tV ) = e−4kT

∫
Ω
(ψ(U(T )) + ν−1γ(|U(T )|))dx−

∫
Ω
ψ(M0)dx

+4k
∫

Q
e−4kt(ψ(U) + ν−1γ(|U |))dxdt+

1
2
e−4kT

∫
R3

|D(U(T ))|2dx

−1
2

∫
R3

|D(M0)|2dx+ 2k
∫

Q∞
e−4kt|D(U)|2dxdt+ k(Fν(U); e−4ktU).

Writing (∇Uψ(U); e−4ktU) = (∇Uψ(U) − ∇Uψ(0); e−4ktU) + (∇Uψ(0); e−4ktU) and
using the lipschitz property of ∇Uψ, we get

|(∇Uψ(U); e−4ktU)| ≤ C

∫ T

0
e−4kt(|U |2 + |U |)dt (52)

with a constant C > 0. Hence since |∇Uγ(|U |)| ≤ C|U | then using (17), we obtain

|(Fν(U); e−4ktU)| ≤ C(1 + ν−1)
∫ T

0
e−4kt|U |2dt+ C (53)



11which leads to

(−Fν(t, V ); e−2kt∂tV ) ≥ 4k
∫

Q
e−4kt(ψ(U) + ν−1γ(|U |))dxdt−

∫
Ω
ψ(M0)dx

+2k
∫

Q∞
e−4kt|D(U)|2dxdt− 1

2

∫
R3

|D(M0)|2dx− kν

∫
Q
e−4kt|U |2dxdt− kC

(54)

with kν = C(1 + ν−1). Combining the results obtained in (45), (46), (47), (51) and
(54), we get

1
2
(1− 2kε2)

∫ T

0
e−2kt|∂tV |2dt+ k

∫ T

0
e−4kt|∇U |2dt+ k(

k

2
− kν)

∫ T

0
e−4kt|U |2dt

+kKbq

∫
bQ e−4kt(4Φν + τ̃η)(Ũ)dx̂dt+ 4k

∫
Q
e−4kt(ψ(U) + ν−1γ(|U |))dxdt (55)

+2k
∫

Q∞
e−4kt|D(U)|2dxdt ≤ C(k, ν, η,M0)

where 
C(k, ν, η,M0) =

k

4
|M0|2 +

1
2
|∇M0|2 +

∫
Ω
ψ(M0)dx

+
1
2

∫
R3

|D(M0)|2dx+ kC + (
1
4ν

+
1
2η

)|Ω̂|.
(56)

Therefore ν and η being fixed, for k > 2kν + 1 and ε < (4k)−1/2, we get in particular

Lemma 9 For every ν > 0 and η > 0, there exists k0 > 0, ε0 > 0 and a constant
C > 0 with is independent of ε such that for k > k0, ε < ε0, the solutions V ε

ν,η of the
problem (21) satisfy

‖V ε
ν,η‖V + |D(V ε

ν,η)|L2(Q∞) ≤ C. (57)

Now we are able to pass to the limit in problem (21) when ε → 0. The bounds
given in lemma 9 imply that there exists a subsequence still denoted V ε

ν,η and V η
ν ∈ V

such that 
V ε

ν,η ⇀ V η
ν in H1(Q) weak

V ε
ν,η → V η

ν in L2(Q) strong

∂tV
ε
ν,η ⇀ ∂tV

η
ν in L2(Q) weak

V ε,±
ν,η ⇀ V η,±

ν in H1/2(Q̂) weak.

(58)

Since D is linear and ∇Uψ and ∇Uγ are lipschitzian, we have
D(V ε

ν,η) → D(V η
ν ) in L2(Q) strong

∇Uψ(V ε
ν,η) → ∇Uψ(V η

ν ) in L2(Q) strong

∇Uγ(|V ε
ν,η|) → ∇Uγ(|V η

ν |) in L2(Q) strong.

(59)

For the boundary terms, we get the following



12Lemma 10 It holds that
V ε,±

ν,η → V η,±
ν in L2(Q̂) strong

B±
ν (V ε,+

ν,η , V
ε,−
ν,η ) ⇀ B±

ν (V η,+
ν , V η,−

ν ) in L2(Q̂) weak

Rη(V
ε,±
ν,η ) → Rη(V

η,±
ν ) in L2(Q̂) strong .

(60)

Proof. We get the strong convergence of the traces thanks to the compactness of the
continuous imbedding H1/2(Q̂) ⊂ L2(Q̂). Next the lipschitz property of Rη leads to
the the strong convergence of Rη(V

ε,±
ν,η ) while the weak convergence of B±

ν (V ε,+
ν,η , V

ε,−
ν,η )

is obtained proceeding as in the proof of lemma 7.

Passing to the limit in problem (21), when ε→ 0 with ν and η fixed, we get

Theorem 2 Assume that M0 satifies the hypotheses of theorem 1 and let ν, η > 0 be
fixed. Then for any k > k0 and T > 0 (19) admits a solution V η

ν ∈ V obtained as the
limit of the sequence (V ε

ν,η)ε when ε→ 0.

5 Convergence for η → 0 and ν → 0

Let V η
ν be the solution of (19) provided by theorem 2. We set

Uη
ν = ekt(V η

ν +M0) (61)

then Uη
ν ∈ H1(Q) and satisfies the intermediary problem (9). It follows that ∆Uη

ν ∈
L2(0, T ; L2(Ω)), ∂Uη

ν /∂n ∈ L2(0, T ; H1/2(∂Ω)). Hence using the regularity property
satisfied by the solution of a Laplace’s equation we deduce that

Uη
ν ∈ L2(0, T ; H2(Ω)) ∩H1(Q). (62)

We have the following energy bound

Lemma 11 Uη
ν satisfies for t ∈ (0, T ) the energy inequality

Eη
ν (Uη

ν (t)) +
1
2

∫ t

0
|∂tU

η
ν (s)|2L2(Ω)ds ≤ E(M0) (63)

where 
Eη

ν (V ) = |∇V |2L2(Ω) + |∇ϕ|2L2(R3) +
∫

Ω
(ψ(V ) + ν−1γ(|V |))dx

+
∫

bΩ(Φν(V +, V −) + Θη(V +) + Θη(V −))dx̂
(64)

E(M0) = |∇M0|2L2(Ω) + |∇ϕ0|2L2(R3) +
∫

Ω
ψ(M0)dx (65)

and ∇ϕ = D(V ), ∇ϕ0 = D(M0).
Moreover there exists ν0 > 0 and C > 0 which depends only upon the initial data

M0 such that for 0 < ν < ν0 and η > 0, we have

|Uη
ν (t)|L2(Ω) ≤ C, t ∈ (0, T ). (66)



13Proof. Recall that γ(|M0|) = 0, Θη(M±
0 ) = 0 and Φν(M+

0 ,M
−
0 ) = 0 so if we mul-

tiply the equation (9) by ∂tU
η
ν and integrate on (0, t) × Ω we get the result stated in

(63). Therefore since the function γ satisfies the inequality s2 ≤ 4γ(s) + 3, we obtain
|Uη

ν (t)|L2(Ω) ≤ 4νE(M0) + 3 wich leads to (66).

Now we pass to the limit in (9) for η → 0 and ν fixed. There exists a subsequence
also denoted Uη

ν and Uν ∈ L∞(0, T ; H1(Ω)) ∩H1(Q) such that when η → 0 we have
Uη

ν ⇀ Uν in L∞(0, T ;H1(Ω)) weak − ?,

Uη
ν → Uν in L2(Q) strong

∂tU
η
ν ⇀ ∂tUν in L2(Q) weak

Uη,±
ν → U±

ν in L2(Q̂) strong

(67)

Moreover we have 
D(Uη

ν ) → D(Uν) in L2(Q) strong

∇Uψ(Uη
ν ) → ∇Uψ(Uν) in L2(Q) strong

∇Uγ(|Uη
ν |) → ∇Uγ(|Uν |) in L2(Q) strong

(68)

and we get

Lemma 12 When η → 0, it holds the following convergences{
B±

ν (Uη,+
ν , Uη,−

ν ) → B±
ν (U+

ν , U
−
ν ) in L2(Q̂) strong

Θη(U
η,±
ν ) → 0 in L∞(0, T ;L1(Ω̂)) strong.

(69)

Moreover Uν is such that

|U±
ν (t, x)|2 ≤ 1 a.e. (t, x) ∈ Q̂ (70)

and satisfies the energy inequality

Eν(Uν(t)) +
1
2

∫ t

0
|∂tUν(s)|2L2(Ω)ds ≤ E(M0) (71)

where 
Eν(Uν(t)) = |∇Uν(t)|2L2(Ω) + |D(Uν(t))|2L2(R3) +

∫
Ω
ψ(Uν(t))dx

+ν−1

∫
Ω
γ(|Uν(t)|)dx+

∫
bΩ Φν(U+

ν (t), U−
ν (t))dx̂.

(72)

Proof. First we get B±
ν (Uη,+

ν , Uη,−
ν ) ⇀ B±

ν (U+
ν , U

−
ν ) in L2(Q̂) weak as in the previous

section. Following the proof of lemma 7, we obtain

|Uη,+
ν ∓ Uη,−

ν |(Uη,+
ν ± Uη,−

ν )
1 + ν|Uη,+

ν + Uη,−
ν |2|Uη,+

ν − Uη,−
ν |2

→ |U+
ν ∓ U−

ν |(U+
ν ± U−

ν )
1 + ν|U+

ν + U−
ν |2|U+

ν − U−
ν |2

strongly in L2(0, T ; L4(Ω̂)) thanks to the Lebesgue dominated convergence theorem.
According to continuous imbedding H1/2(Ω̂) ⊂ L4(Ω̂) (see [1]), Uη,±

ν is bounded in



14L∞(0, T ; L4(Ω̂)) so we obtain the strong convergence of B±
ν (Uη,+

ν , Uη,−
ν ) stated in the

lemma. The strong convergence of the traces leads also to

Θη(Uη,±
ν ) → s(U±

ν ) a.e. in Q̂ (73)

but since |Θη(U
η,±
ν )|

L∞(0,T ;L1(bΩ))
≤ 2ηE(M0), we get

Θη(Uη,±
ν ) → 0 strongly in L∞(0, T ;L1(Ω̂)).

Combining these results we conclude that s(U±
ν ) = 0 a.e. in Q̂ which leads to (70).

(71) is obtained by taking the limit in (63) when η → 0.

Let W ∈ D(Q) be a test function. We multiply the equation (9) by Uη
ν ×W and

integrate by parts. Observing that ∇Uγ(|Uη
ν |) ·Uη,±

ν ×W± = 0 and Rη(U
η,±
ν ) ·Uη,±

ν ×
W± = 0, we get the weak formulation of (9)



1
2

∫
Q
∂tU

η
ν · Uη

ν ×W dxdt+
∫

Q

Uη
ν

1 + |Uη
ν |
× ∂tU

η
ν · Uη

ν ×W dxdt

+
∫

Q
∇Uη

ν · Uη
ν ×∇W dxdt−

∫
Q
(∇ϕη

ν −∇Uψ(Uη
ν )) · Uη

ν ×W dxdt

=
∫

bQ(B+
ν (Uη,+

ν , Uη,−
ν ) · Uη,+

ν ×W+ +B−
ν (Uη,+

ν , Uη,−
ν ) · Uη,−

ν ×W−)dx̂dt.

(74)

Using the strong convergence of Uη
ν and the weak convergence of ∂tU

ν in L2(Q), we can
pass to the limit in each volume integral. Moreover the strong convergence in L2(Q̂) of
the traces Uη,±

ν and B±
ν (Uη,+

ν , Uη,−
ν ) allow to pass to the limit in the boundary terms.

Hence the limit Uν satisfies the weak formulation

1
2

∫
Q
∂tUν · Uν ×Wdxdt+

∫
Q

Uν

1 + |Uν |
× ∂tUν · Uν ×Wdxdt

+
∫

Q
∇Uν · Uν ×∇Wdxdt−

∫
Q
(∇ϕν −∇Uψ(Uν)) · Uν ×Wdxdt

=
∫

bQ(B+
ν (U+

ν , U
−
ν ) · U+

ν ×W+ +B−
ν (U+

ν , U
−
ν ) · U−

ν ×W−)dx̂dt.

(75)

Now we are able to prove our main theorem

Theorem 3 Let M0 ∈ H2(Ω) be such that |M0(x)| = 1 in Ω, ∂M0
∂n = 0 on ∂Ω, M+

0 =
±M−

0 on Ω̂. There exists a solution of the Landau-Lifshitz equation with biquadratic
interlayer exchange coupling satisfying M ∈ L∞(R+; H1(Ω)), ∂tM ∈ L2

loc(R+; L2(Ω)),
|M(t, x)|2 = 1 a.e in R+ × Ω, ∇ϕ ∈ L∞(R+;L2(R3)) and the energy inequality

E(M(t)) +
1
2

∫ t

0
|∂tM(s)|2L2(Ω)ds ≤ E(M0) (76)

where

E(M) = |∇M |2L2(Ω) + |∇ϕ|2L2(R3) +
∫

Ω
ψ(M)dx+

∫
bΩ Φ(M+,M−)dx̂ (77)



15with Φ(M+,M−) = 1− (M+ ·M−)2, ∇ϕ = D(M), ϕ0 = D(M0) and the initial energy
is given by

E(M0) = |∇M0|2L2(Ω) + |∇ϕ0|2L2(R3) +
∫

Ω
ψ(M0)dx (78)

Proof. Let Uν the limit of Uη
ν when η → 0. Hence Uν satisfies the energy inequality

(71) and the trace estimate |U±
ν (t, x̂)|2 ≤ 1 a.e. in R+×Ω̂. Clearly the energy inequality

implies the following convergence for a subsequence Uν

Uν ⇀M in L∞(R+;H1(Ω)) weak− ?,

∂tUν ⇀ ∂tM in L2
loc(R+;L2(Ω)) weak,

Uν →M in L2
loc(R+;L2(Ω)) strong

U±
ν ⇀M± in L∞(R+; H1/2(Ω̂)) weak− ?

U±
ν →M± in L2

loc(R+;L2(Ω̂)) strong

(79)

for some M ∈ L∞(R+; H1(Ω)) ∩H1(Q). Moreover we have
∇ϕν ⇀ ∇ϕ in L∞(R+;L2(R3)) weak− ?

∇ϕν → ∇ϕ in L2
loc(R+;L2(R3)) strong

∇Mψ(Uν) → ∇Mψ(M) in L2
loc(R+;L2(Ω)) strong

(80)

Since |γ(|Uν |)|L∞(0,T ;L1(Ω)) ≤ νE(M0), we have

γ(|Uν |) → 0 strongly in L∞(R+;L1(Ω))

and so a.e. in R+ × Ω. Hence combining this result with the strong convergence of
Uν we get γ(|M |) = 0 a.e. in R+ × Ω that is |M(t, x)|2 = 1 a.e. in R+ × Ω. Now we
are interested by the convergence of the boundary terms B±

ν (U+
ν , U

−
ν ) · U±

ν ×W± of
the weak formulation (75). Since U±

ν is bounded in L∞(R+ × Ω̂) so is B±
ν (U+

ν , U
−
ν ) so

thanks to the Lebesgue dominated convergence theorem, we get the strong convergence

B±
ν (U+

ν , U
−
ν ) → 1

2
|M+ −M−|2(M+ +M−)± 1

2
|M+ +M−|2(M+ −M−) (81)

in L2
loc(R+; L2(Ω̂)) then

B±
ν (U+

ν , U
−
ν )·U±

ν ×W± → 1
2
(|M+−M−|2(M++M−)±|M++M−|2(M+−M−))·M×W±

(82)
for all W ∈ D(R+ × Ω). Hence M satisfies the weak formulation

1
2

∫
Q
∂tM ·M ×G dxdt+

1
2

∫
Q
M × ∂tM ·M ×G dxdt

+
∫
Q∇M ·M ×∇G dxdt−

∫
Q
(∇ϕ−∇Mψ(M)) ·M ×G dxdt =∫

bQ(B+(M+,M−) ·M+ ×G+ +B−(M+,M−) ·M− ×G−) dx̂dt

(83)

where B±(M+,M−) = −2(M+ ·M−)M±. This shows that M is a global weak solution
of LLG equations. The energy estimate satisfied by M follows from the one satisfied
by Uν by passing to the limit when ν → 0. The proof of the theorem is complete.
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