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Modeling photonic crystal fibers

Sofiane Soussi *

Abstract

We study guidance of electromagnetic waves in photonic fibers. Both transverse
magnetic and transverse electric polarizations are investigated. We caracterize
guided modes in the fiber as eigenfunctions of compact integral operators and
prove their exponential decay in the cladding. Then, we prove the possiblity of
opening gaps in the spectrum of the background spectrum making it possible
to guide electromagnetic waves with suitable cores.

1 Introduction

Optical fibers are today finding wide use in areas covering telecommunications,
sensor technologies, spectroscopy, and medicine [7].

Ordinary optical fibers guide light by total internal reflection, which relies
on the refractive index of the central core being greater than that of the sur-
rounding cladding. This physical mechanism has been known and exploited
technologically for many years. However, within the past decade the research in
new purpose-built materials has opened up the possibilities of localizing and con-
trolling light in cavities and waveguides by a new physical mechanism, namely
the photonic band gap effect (PBG).

The PBG effect may be achieved in periodically structured materials having
a periodicity on the scale of the optical wavelength. Such periodic structures are
usually referred to as photonic crystals, or photonic band gap structures. By
appropriate choice of crystal structure, the dimensions of the periodic lattice,
and the properties of the component materials, propagation of electromagnetic
waves in certain frequency bands (the photonic band gaps) may be forbidden
within the crystal [40].

In [27], Knight and colleagues describe a fundamentally different type of
optical fiber, one that has a core with a lower refractive index than the cladding
and so rules out the possibility of internal reflection. Instead, light is guided by
a mechanism which allows it to be piped through air.

The core of the new fiber is essentially a defect surrounded by a periodic
array of air holes running along the entire length of the fiber. The defect acts
like the core of an optical fiber. Light, which is expelled from the periodic
structure surrounding the core, can only propagate along it. The new fiber
operates truly by the photonic band gap effect. We refer to such a structure as
a photonic crystal fiber (PCF).
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In this paper we model the propagation of electromagnetic waves in pho-
tonic crystal fibers. We give a mathematical framework for understanding their
very unusual properties compared with the conventional fibers, attributed to
an operation of the well-known mechanism of total reflection, and develop the-
oretical tools for the modeling of these photonic crystal fibers. We show the
conditions under which the guided mode exist, and the nature of such modes.
We study their dispersion properties and verify the exponential confinement of
guided modes. In particular, we show that there exists a discrete set of these
modes parameterized by a wave-number parameter.

The paper is outlined as follows. Sections 2 and 3 state the photonic fiber
problem and give the main equations governing electromagnetic propagation in
the fiber. In sections 4 and 5 we give some general results from the Floquet
theory and PDE’s with periodic coefficients. We then formulate the guidance
of electromagnetic waves with integral equations in section 6 and we study the
corresponding operators in section 7. A caracterization of guided modes is given
in section 8. In section 9 we present an asymptotical case under which gaps open
in the spectrum of the background medium making it possible to create defect
modes. Of course, this is not necessary, (we can get gaps in the background
spectrum without resorting to such asymptotics), however, it is very useful,
since it makes it possible to guide waves with much more general structures.
Finally, in section 11, We illustrate the main findings of the investigation in
numerical examples.

2 Problem statement

We consider a 2-D photonic crystal, that is a medium characterized by a dielec-
tric permittivity being periodic in two normal directions and invariant in the
third normal direction. More precisely, the dielectric permittivity is given by a
L*> and away from 0 measurable function €, (z). This means that there exist
e_ and e positive constants such that:

0<e_<e(z)<er <0, ae zeR. (2.1)

The bounds e— and €, are supposed to be reached. The function €, is assumed
to be independent of xz3 and unit-periodic in the 3 = 0 plane:

ep(T1+1,22) = p(21,22),  €p(T1,22 + 1) = (21, 22) - (2.2)

To this perfect 2-D photonic crystal, we introduce a line defect which is
represented by a perturbation to the dielectric function (d¢)(z1,z2). The per-
turbation is confined to the domain Q:

(0e)(z1,22) =0, ze€N°.
Then the medium with defect has the dielectric function
ep(21,22) = e(@1, 22) + (de) (21, 22) - (2.3)

Our goal is to find the guided modes in this structure, i.e., frequencies for
which there exist solutions to the time-harmonic Maxwell equations that are
propagating along the defect and which energy is confined to the defect area.



3 Maxwell equations

The electromagnetic fields (E, H) satisfy the following time-harmonic Maxwell
equations:
VxH = —iwe(x)E,
{ VxE = iwH. (3.4)
However, this system can be studied from two scalar equations. Actually,
the geometry of the medium and its dielectric function are independent of the
third space coordinate z3. Since we are looking for guided waves along the third
direction, we take F and H with fixed exponential variation in the coordinate 3
of the form €3, This means that the electromagnetic field have the expression
(EeP?s HetP?3) where E and H depend only on (z1,z32). As we can see that,
under such assumption, the curl operator reduces to

O _ipm,
Ora
V x (He?3) = ePes | j8H, — % ) (3.5)
oH, OH,
Oz Oz

Consequently, the harmonic Maxwell system is now decoupled in two inde-
pendent subsystems. The solutions to the first one:

: B? O0H;

iw (s(m) -3 E, + e 0,

. B2 0H3

iw (e(w) -z E, — o 0, (3.6)
. OE, OE;

—iwH _— — — =
wilsg + 6.731 8.’1)2 0 s

are called transverse electric (TE) and have the property E3 = 0. The solutions
to the second one:

0H, O0H;

iwe(z)E3 + 8—.1'1 - 6—.1132 = 0,
Ciwf1- P 0B _

iw (1 e H, + i 0, (3.7
w1\, 9B _

w (1 wzs(x) H2 8.’1}1 =0 ,

are called transverse magnetic (TM) and have the property H3 = 0. In both
cases, solutions can be computed from a unique scalar function (resp. Hj or
Es3) which satisfies one of the following equations:

1
V:———5 VHs +w’H; =0,
e(z) — o=
o(z)” (3.8)
sVE3 +we(x)Es = 0
(@) - &

The problem consists then in finding (w?, 8%,u) € R x Rt x L?(R?) such
that 42 < w?¢_ and u is solution of

1
Vi——Vu+w?u=0, (3.9)



in the TE case and of

— Y Vu+we(z)u=0, (3.10)

in the TM case.

4 Periodic operators and Floquet theory

As we look into the equations (3.9) and (3.10), we notice that they are partial
differential equations with almost periodic coefficients. More precisely, these
are spectral problems of partial differential operators with coefficients that are
compactly supported perturbations of periodic functions. Let us then consider
the periodic operators.

For a? < e_, we define the unbounded operators AP and BP as

AP L2(R?) — L*(R?)

u —» Ay=-V.——Vu, (4.11)
&p(z) —a®
and
Br:[*(R*) — L*(R?)
u o Bru=— L o &) o, (4.12)

e(z)  elz)—a?

These are self-adjoint partial differential operators with periodic coefficients.
The self-adjointness character of BP is seen in the weighted Sobolev space
LA(R?, ep(z) ).

Let us start by considering AP. This is an acoustic operator. It is also the
operator governing the propagation of TE-polarized electromagnetic waves in a
2-D medium with a virtual dielectric permittivity e, — a?. Its spectrum has a
band structure depending on the parameter a and it is well known that such
operators can have band gaps, i.e., intervals of values of w that do not belong
to the spectrum of AP and so propagating waves at frequencies w can not exist
in the virtual 2-D photonic crystal with dielectric permittivity €, — .

The case of BP is slightly different. This is not an operator governing
the propagation of TM-polarized in some dielectric medium since it is not a
Helmholtz operator. However, it still has band-structure spectrum. Actually,
since it is elliptic and self-adjoint, when applying the Floquet transform we find
a collection of operators defined on the unit cell, depending continuously on the
dual variable and with point spectrum in the positive half-real axis accumulat-
ing at infinity. Then it is clear that the spectrum of BE has a band-structure.
The other question that we can ask is can it have gaps?

The answer is yes. First, we notice that when a = 0, B} is a Helmholtz
operator. It is well known that for suitable periodic dielectric function €, the
Helmholtz operator

BY:IX(R?) — L2(R?)

u o Blu=— (4.13)

Au ,
€p(2)

can exhibit band gaps. It remains to prove the continuous dependence of the
spectrum of B? on a to conclude that, at least for o close to 0, BE has gaps



in its spectrum. The continuity can be seen with the dependence on « of the
point spectrum of the Floquet transformed operators.

In what follows, we suppose that €, is such that AP or BY (depending on
which polarization is considered) has a gap for a? belonging to a non-empty
open subset of (0,e_).

5 The Green’s kernel

Here we define the Green’s kernel for the operators AP and BE when they have
gaps.

5.1 The TE polarization

Let us suppose that for some a € (0,6_), the operator AP has gaps in its
spectrum. We denote by ¥, the spectrum of AP. Let w? be in Rt \ £,. We
can then define the Green’s kernel G,(w?;x,y) as the solution to

1
V- ana(WZQ%Q) + w2Ga(w23$ay) =d(z—y). (5.14)
One of the main properties of the Green’s kernel is stated in the following
lemma.

Lemma 5.1 There ezist positive constants C1 and Co depending on o and w?
such that for any w? €]0,wd[\Zq:

|Ga(w2;w,y)| < CleCQdiSt(wz,Ea)W—y‘ , |$ — y| — 400 . (515)

This explains why an incident wave with frequency lying in the gap is reflected
by the photonic crystal and decays exponentially inside it. It also gives a justi-
fication to the exponential localization of modes created by adding a compactly
supported defect in the crystal.

The exponential decay is obtained by using a Combes-Thomas [10] argument
to get the appropriate estimates on the resolvent. It is known however that the

radius of localization )

Codist(w?,3,)

is not optimal close to the spectrum. More precisely, let ]a, b[ be a gap of AP,
i.€.,

la,b[NEy =0 and a,b€X,,

then it has been proved that we have a decay estimate of the form:
e~ CVIw?=allw?=bllz—y|

This is obtained by a general operator-theoretic approach. The main idea con-
sists in using the Paley-Wiener theorems for the Floquet transform and the
exponential decay of functions for which the Floquet transform has analytic
dependence on the dual variable in a neighborhood of the real axis.

Another property of the Green’s function is its weak singularity when z = y.



Lemma 5.2 Let D be a bounded domain in which €, is constant. Then the

function

2
€ —«

Go(w?;2,y) — log |z — y| (5.16)

is continuous for z,y in D when |z —y| — 0.
Proof. We recall that
1
Af—1 — =d(z—vy). 1
(55 1o8ke —31) = 00— (5.17)

Let us define K by

€p — a?
2
We remark that K satisfies the following Helmholtz equation:

K(‘Z';y) = Ga(UJZ;.’L',y) -

log|z —y| .

A A o (6p — a?)?
AK(z,y) + w?(ep — o®)K (z,y) = —wsz log |z —y| . (5.18)
Since log |z — y| is L-integrable, we deduce that K, considered as a function of
y for a fixed =, is in H?(D) and is continuous when |z — y| — 0. O

5.2 The TM polarization

Again, the case of the TM polarization is not exactly similar to the TE polariza-
tion. Since the operator BP is not a Helmholtz operator, the Green’s kernel is
different form the one of Bf. We use the same notations as done in the previous
section calling %, the spectrum of BE and G, (w?;x,y) the solution to

%vGa(WQ;may) + w2€p(x)Ga(w2;$7y) = 5($ - y) . (519)

Nevertheless, the analogous results to the ones cited in the previous section
hold. Actually, Lemma 5.15 relies on a Combes-Thomas argument [10] that can
still be used. We have just to modify the duality in L?(R?) defining it as

(u,v) = /Wu(x) U(x) ep(z) dr .

The analogous result to the one in Lemma 5.2 is that the function

2
€p —

—1 — 2
e losle 3] (5:20)

Ga(w2;xay) -

is continuous for z,y in D when |z —y| — 0.

6 An integral formulation of the photonic fiber
problem
Now we introduce a compactly supported perturbation to the dielectric function

of the medium which is transformed into e(z) defined in (2.3) and we look for
guided modes (w?, 82,u) € Rt x Rt x L?(R?) solutions of (3.9) or (3.10).



6.1 The TE polarization

We consider here the TE polarization. Suppose that we have a guided mode.
This clearly means that u is an eigenfunction of A for the eigenvalue w? where

A, is the operator defined for a? < e_ as

Ay LX(R?) — L*(R?) 1 621

Agu==-V-—— Vu.
u = u \% E(w)_a2Vu

It is then interesting to look for the spectral properties of the operator A, and
for a practical characterization of its eigenvalues when they exist. The following
proposition is a consequence of a classical result in spectral theory.

Proposition 6.1 For any o € (0,e_), the operators AP, and A, have the same
essential spectrum.

This is a consequence of the Weyl’s theorem since it can be proved that A, — AP
is a relatively compact perturbation of AP .

Then the spectrum of A, lying in the gaps of AP will consist in eigenvalues of
finite multiplicity that can accumulate only at the edges of the gaps. Moreover,
A, has the same continuous spectrum as AP. An interesting question is: what
about the existence of eigenvalues of A, in the continuous spectrum? There
is no result for the moment answering whether such eigenvalues can appear or
not. In the case that such eigenvalues exist, the behaviour of the corresponding
eigenfunctions is not obvious. On one hand, they should be localized due to the
local character of the perturbation and on the other hand, it has enough energy
to propagate along the medium.

We suppose here that the guided mode we consider is such that w? & X 5.

Recalling that €, and € are piecewise constant, we define the finite parti‘:ion
(D;)ier of Q as the disjoint subdomains of Q in which €,, € and thus (de) are
constant. We also define IT = U;c;0D;. We suppose that the curves D; N D_J
and D; N Q¢ are smooth.

The following proposition holds.

Proposition 6.2 The guided modes (w?, 5%,u) € Rt x Rt x L%(R?) satisfying
w? € X are exactly the functions u satisfying

1
|:—ﬁ261,u:| =0 s

and are solutions of the following integral equation:

uw) = [ (ef—%c;g(w?;x,y)u(y)@ (6.22)

Iy
+/HG5(w2;$,y)[(ep 52)] e 52)6,,u(y)dly,

where Oyu is the normal derivative of w on II and [f] represents the jump of f
across I1 in the v direction.




Proof. Suppose that u satisfies the conditions above. It is clear then that u
satisfies (3.9) in 2¢. Now let us consider u in a domain D;. Since €, € and (Je)
are constant in D;, we have:

# w2 w2'$ —M T —
(6(w)_ﬁ_zAz+ )Gg( ;T,Y) = s(w)—f)—z(s( y) (6.23)
09 o a
6($)—§—2G§( ) 7y);

for any z € Q\II and any y € R?. Tt follows that for any i € I and any = € D;,
we have:

1 2 _ wz (65)(1‘) u
(7 g7 ) = T
L@ [0 o,
? e(x) - & /Q (ep — f—Z)Gé(w s, y)u(y) dy
(2 ((56)(1‘) 9 ((56) 1
w 5(,2;')_ 5_2 AGg(w 7$,y)|:(€p_5_z):| (E_g_z)&,u(y)dly
=0.

Then u solves equation (3.9) in R? \ II. Recalling the jump relation it satisfies,
we conclude that u solves (3.9) in RZ.

Conversely, let us suppose that u solves equation (3.9). Then u satisfies the
jump relation

1
[7(5 - 5_2)8,,11] =0
on II.
Moreover, we have:
wn) = [ (VT e Gai ) d
= o TE O Ve d
+w® RZGﬁ(wQ;w,y)U(y)dy
(5)(w) )
- / ) = D)ely) = By CeWhoy Ve d
R L
+ [ G @y d
(55) ) )
T 4 L o= B = V) Vel d



Denoting by €}, ¢* and (de)* the values of €, € and (d¢) in D;, we get

_ _ @) 1
uz) = Z/D Y V) d
Y [ etsay— o a,

N I IR
= W L(ep(y)_%)Gf(waxay)u(y)@

which ends the proof. O

6.2 The TM polarization

Now we consider the TM polarization for which the results are mainly the same.
Suppose that we have a guided mode. Then u is an eigenfunction of B for the

eigenvalue w? where B, is the operator defined for a? < e_ as

B, : L*(R?) — L*R?)
1
u = Byu=--V- ;Vu . (6.24)
e e(x)—a?
The counterpart of Proposition 6.1 is the following.

Proposition 6.3 For any a €]0,e_][, the operators B2 and B, have the same
essential spectrum.

We consider only guided modes for which w? € 5. The following proposi-
tion holds.

Proposition 6.4 The guided modes (w?, 8%,u) € RT x R* x L%(R?) satisfying
w? € X are exactly the functions u satisfying

3
|:—B281,’U/:| =0 y

and are solutions of the following integral equation:

wr) = o [ OOS G ) (6.25)
,6’_2 2 (d¢) €
t o2 /HGg(w N L(ep_ 5_2)] (E_g_z)c’?uu(y)dly,

where 8yu s the normal derivative of u on II and [f] represents the jump of f
across I1 in the v direction.

10



Proof. Suppose that u satisfies the conditions above. Then it is clear that u
satisfies (3.10) in ©°. Now let us consider u in a domain D;. Since ¢, €, and
(d¢) are constant in D;, we have for any z € D; and any y € R?:

(i)ﬁzAz + w2e(x))Gﬂ (W z,y) = oz —y) (6.26)
&( ¢

Z')—F

from which we deduce in a similar way as done in the TE case that u satisfies
equation (3.10) in Q\II. Recalling the jump relation it satisfies, we deduce that
u satisfies (3.10) in R2.

Conversely, suppose that u solves equation (3.10). Then u satisfies the jump

relation
€

NER
[

on II.

Moreover, we have:
— 23¢)) 2 2
u(r) = v 7=V +wiey) |Gs Wz, y)uly) dy
R? ep(y) — o= “

+ [ sty 2 vu) 4

R2® e(y) — o2
i R2 Gg(OJQ;:I:,y)u(y)ep(y) dy
B[ 0 ey —
= w? zeZI/D' Ei(eé _ g_i)Gg(w ;2,y)V e - g_z)vu(y)(ﬁ/
s (3e)’ N
PN ey e AL

4 [ G i u)62)0) &

11



and therefore

uw) = Y [ LGPt 4

g (52’ :
"B o G BB b
+o? G @i yuy)0e)(y) dy
N 2 ep(y) 2.
= [ o S B O @) 0) &

+5—z/HGg(w25ﬂ’ay)[(€p (:55%)6] (e(y) - 52)

The proposition is then proved. O

7 Preliminary results

We introduce in this section new integral operators that will be useful for finding
guided modes. We start by orienting the curves D; N D; and D; N Q¢ and define
a normal vector v on each one.

Definition 7.1 We define the operator A, 5 for w?> € ¥ by

Aup:L2(Q) x L*(I) — L*() x L*(T)
(’U/,QO) = -Aw,ﬂ(uv (P) = (Ua¢) ;

such that
ow) = o [ %Ggw%x,y)u(y) @ (r.27)
(d¢)
+/HG§(w2;ar,y)[@]90(y)dlya reQ,
and 1

for some p € {+,—}, where for x € Il and f defined on a neighborhood of II,
) = lirgi flz + 1),
T—

In fact, the parameter p has just to take a fixed value + or — on each component
D;ND; and D; NQ°, 4, j in I. The following proposition holds.

Proposition 7.1 The operator A, g is compact.

Proof. Let (v,¢) = Aup(u,9). It is obvious that in each subdomain D;,
v solves a Helmholtz equation with an L? right hand side. It follows that v €

12



[Lic; H*(Dy) and ¢ € [[; ;e; H/*(DinD;) x[1;c; HY/?(D;N2¢). The compact-
ness of A, g is then a consequence of the compact embedding of [],., H*(D;)
in L2(Q) and of [[; ;¢; H/*(Di N Dy) x [[;c; H?(D; N Q) in L2(T). O

Now we define the analogous operator that will be useful in the TM polar-
ization.

Definition 7.2 We define the operator B, g for w2 € S5 by

Bog:L*(Q) x L*() — L*(Q) x L*(TI)
(’U/,QO) = Bw,ﬂ(ua(p) = (Ua¢) 3

such that
o) = ot [ PO ) (7.29)
+%/rIG§(w2;m,y)|:ﬁ:|(p(y)dly, z e,
and
bw) = —I_gpo@), se, (7.30)

e(@) — 5
for some p € {+,-}.
The following proposition holds.
Proposition 7.2 The operator B, g is compact.

The proof is exactly the same as for A, 3.

8 Guided modes in the photonic fiber

Now we are going to give the main result of this paper. Actually, we characterize
the guided modes in the photonic fiber as a spectral problem on a compact
operator.

Theorem 8.1 The guided modes (w?, 3%, u) in the TE-polarization satisfying

w? € X 42 are exactly the solutions to the following spectral problem:

w

Au,p(u, ) = (u, ) (8.31)

for some ¢ € L?(R?).

Proof. Suppose that (w?, 8%, u) is a guided mode and that w? & ¥ 42. Then
o2

from Proposition 6.2, we have

Aw.p (u, (8.32)
£

@B
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Conversely, suppose that (u, ¢) is an eigenfunction of A, g for the eigenvalue
1. Then, recalling Proposition 6.2, we need only to prove that

gl

to establish that (w2, 3%, u) is a guided mode.
From the equation satisfied by G s (w?;z,y) we deduce that for any z € TI

and any y € Q \ II we have

1
|: 32 6VGE(w 5$7y):| =0 (833)
€p o2 @
It follows that
1 €p ﬂ_z 1 2
a GB("J 7 Ty y) ﬂwz 52 aﬁGé(w 7:1:3:1/) (834)
g — — g — oz Gg — o2 e
Let us consider
[ (d¢)
285/G wz;l’;y (72] y)dl
- s ( )_(ep—f—Q) e(y) dly
From Lemma 5.2 we deduce that
(d)
0 / Gs(Wiz,y [ > y) dl
el _ 82 5 ( ﬂ ) (P( ) Y
e o -5 (%)
- [ 708 (G i) = 25 logla =l ) | |l dly

met — 55 © 2 (ep — 55)
k-5, (d¢)

MRS S R

) S g |z —yl - &) p(y) dl,,
The following identity is a classical result in the potential theory

(8.35)

1 1 1
aﬁ/n 3108 lz —yle(y) dly = ngp(z) +/H 5.0y loglz —yle(y)

Therefore

50l /Gﬁ w? T,y [( (%) )]cp(y)dly

- fstmaosetien| ey

er — B

e —
2
Let — 251 (6¢)
+N2 N_ﬁz[p_ﬁ_i](p(-’ﬂ)

1 p—51 1
B
6—— E_F GP_F
2
1€p—ﬁ 1 €p—F (66)
+<["§e—ﬂ—2]‘“§[s—ﬁ Pl A
) @ P o2



After making the necessary simplifications, we get

1 e A
[—528,,11] = [ P o ] o SO0Mu— | . (8.36)
oz R TS\t
The second identity in A, g(u, @) = (u, ) gives the desired result. O

Here is the analogous result concerning the TM polarization.

Theorem 8.2 The guided modes (w?, 3?,u) in the TM-polarization satisfying
w2 € ¥4 are exactly the solutions to the following spectral problem.
o2

B.,,p(u, ¢) = (v, ) , (8.37)

for some ¢ € L?(R?).

Proof. If (w?,$2,u) is a guided mode and w? ¢ ¥ 42, then from Proposition
el
6.4, we have clearly

1 1

maﬁ u) = (u, maﬁu) - (8.38)

Bw,ﬁ(ua

Conversely, suppose that (u, @) is an eigenfunction of B, g for the eigenvalue
1. Recalling Proposition 6.4, we just have to prove that

3
|:—B281,’U/:| =0.

From the equation satisfied by G s (w?;z,y) we deduce that for any = € II
and any y € Q \ II we have

[eipma,,Gg (w?; x,y)] =0. (8.39)

(:'p—wz

As a consequence, we have

62
€ -2
[—E © ang(wz;a:,y)] - [ © EQ)L ©O4Gs(wT,y) . (340)
) p

ep(e — F) b

Using again the classical potential theory result mentioned in the previous proof,
we get

mer — 25 e(ep — 57)
Lt =5 [ (de)
2eh(em — ‘3—2) [E(EP - g_z)]cp(z)



We deduce the expression of the jump we are looking for:

2
[—E 15) u] = [E(ep _ %)] % otu
62 v - ﬂZ o ﬁZ v
€— = 613(5_ﬁ) €p — 2

2
1e(e, — f—)
+ [Mipiﬁj] —H
€p(€ — F)
and therefore we get

_ By ep(er _ B2
[Lﬂz&,u]:[g(ep wi)]ep(g wz)( E“ﬂza,’fU—w)- (8.41)

e— (e — B5) len(eh - 55)

P T
The second identity in B, g(u,p) = (u, ) gives the desired result. O

In both cases, because of the exponential decay of the corresponding Green’s
function, it is clear that the guided modes are exponentially confined.

9 Gaps opening in Y¥,: TE polarization

In this section we are interested in the existence of gaps in the spectrum of
the operator AP and especially in the asymptotic behaviour under some limit
conditions on a.

Our approach is inspired by the work of Hempel and Lienau in [23] where
almost all the results of this section can be found with weaker conditions on the
smoothness of what will be denoted the domain 2. We give here all the proofs
adapting them to our problem for the sake of clarity.

The structure of the 2D-photonic crystal considered here is simple, but the
results could be generalized to many other structures.

9.1 Medium description

For n = (ny,ns) € Z2 we define Q,, = (n1,n1 + 1) x (na,n2 +1). Let Oy be a
connected open domain with smooth boundary such that Oy CC Qg. We define

On=0¢+n,

O = Unez20n ,

0101:@11\0_11;
and

O°=R*\0O.

Finally, 0D denotes the boundary of the domain D.
We consider the photonic crystal which dielectric permittivity is given by
ep(z) that satisfies

1 zeQ°,
ep(:c)z{ e+1 z€0, (9-42)

where € is a positive constant.

This dielectric function represents a photonic fiber made of rods of dielectric
14 e > 1 with section Oy placed periodically in air or more generally in a
homogeneous dielectric medium with permittivity strictly lower than that of
the rods (after scaling, we come back to the problem with €, (z)).
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Figure 1: Section of the photonic fiber cladding.

9.2 The spectral problem

We are interested in the spectrum X, of the operator AP and more precisely
in the existence of gaps in ¥,. Our idea is the following: suppose that a? goes
to 1, then the coefficient of AP that takes the value 1 — a? < 1 in O° and
€+ 1—0a? ~ e >0 will have a very high contrast. It can then be expected to
find gaps in the corresponding spectrum. Of course, this is very far from the
final proof, since we do not even know where these gaps will appear. It can for
example appear around values that diverge which will be useless since we look
for gaps around finite values of w?.
Our original spectral problem is then

P -

Since a2 = 17, we introduce the small positive parameter n =1 — a?. We also
define the operator A, as

Ay =-V-(1+ %Xoc)w , (9.44)

and the new spectral parameter A = (e + n)w?.

A, = (e+mn)AR. )
Our new spectral problem consists now in finding gaps in the spectrum 3,
of A, when 7 goes to 0F.

It can be easily seen that

9.3 Asymptotic behaviour of the spectrum

We introduce the quadratic form a,[u], also denoted a,[u,u], in the Hilbert
space L?(R?) defined by

aplu] = /Rz(l - %Xoc)wuﬁ dr , (9.45)

for u € D(a,) = H'(R?), the usual Sobolev space with the norm |lu|; =
llul| L2(r2) 1| Vull L2(r2) - It is obvious that this quadratic form is positive, densely
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defined and closed. Tt then defines a unique self-adjoint operator in L?(R?) that
is A, since
(Apu,v) = ayu,v], uweD(A,), veD(a). (9.46)

The operator fln is then uniquely determined by its quadratic form. This
allows us to study the limit of the quadratic form a, in order to determine the
limiting spectrum of A,).

It is clear that the quadratic form a,, whose domain is independent of 7,
increases monotonically when 7 — 0F. The monotone convergence theorem for
an increasing sequence of quadratic forms [36] yields a closed quadratic form ag
defined by

D(ag) = {u € H'(R?) ;sup aylu] < oo}, (9.47)
n>
and
aolu] = lirél ap[u] =supay[u] , u € D(ap) . (9.48)
n—0+ n>0

Furthermore, this quadratic form defines a unique self-adjoint operator Ay which
satisfies B B
A, — Ay in the strong resolvent sense, 17 — 07 . (9.49)

This operator acts in a (possibly smaller) Hilbert space given by the closure of
D(ao) in L%(R?), and we think of the resolvent of Ay as the zero operator on
the orthogonal complement of D(ag) in L?(R?).

We recall that /L, converges to Ag in the strong resolvent sense if and only
if:
A+ D7 f > A+ D7V, VfeL*(R?). (9.50)
Now let us prove that Ag is the Dirichlet Laplacian on O.

Lemma 9.1 Suppose u € HY(R?) is such that a,[u] < C for alln > 0 and
some positive constant C. Then u =0 a.e. in O°.

Proof. Suppose that u € H'(R?) is such that for any n > 0 and for some
positive constant C' we have a,[u] < C. It follows that

%/ |Vul?d&r <C, VYnp>0. (9.51)

This implies that Vu = 0 a.e. in O° which is connected and so u is constant in
O¢. Since u € L?(R?), it follows that u = 0 a.e. in O°. O

As a consequence, we have the following corollary.

Corollary 9.1 The domain of ag is the space
HYO) = {u € H'(R?) ; u(z) =0 a.e. in O}, (9.52)

which coincides with the classical space H} (O) defined as the closure of C°(O)
in the || - ||1 -norm provided O is regular, which we suppose (note that an exterior
cone condition is sufficient).

This determines the self-adjoint operator Ajg.
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Corollary 9.2 The limiting operator Ay is the Dirichlet Laplacian in the do-
main O denoted — Ao with the domain given by the closure of H*(O) in H}(O).

The following proposition holds.

Proposition 9.1 The operator A, converges to —Ap = @ (—Ap,) in the

nez2
strong resolvent sense.

It is clear that the operator —Ap, has compact resolvent and then its spec-
trum consists in a sequence of discrete eigenvalues of finite multiplicity. We
denote these (repeated) eigenvalues, ordered by min — max, as dx, k € N*, or

0<01 <6< <6 <Opp1 <0, keN, (9.53)

where 0 — +00 as k = +00. The spectrum of —Ap is then the set {J;, , k €
N*}, each point in the spectrum being an eigenvalue of infinite multiplicity.

Determining the strong resolvent limit is however not sufficient to determine
the limit of the spectrum of Aﬂ. Actually we need a norm resolvent convergence
to determine the uniform limit of any compactly supported part of the spectrum
of 4,.

Let us now turn to the Floquet theory and look into the operator fln as the
“direct integral” of the operators fig:

A, = / i Ay dy, (9.54)
Y

e(—m,m]?

where /Ig denotes the operator V - (1 4+ )V acting on L2(Qo), the subspace

of L?(Qo) with y-periodic boundary condition. We denote by a} its associated

quadratic form which domain is the space of y-periodic functions in H*(Qo).
It is obvious that each A’,; has compact resolvent. Let ()\Z,k)keN* be its

(finite multiplicity) eigenvalues ordered by the min —max, i.e., )‘Z, )‘n, kgl

We recall that the (continuous) spectrum of A, consists in the union of the

intervals corresponding to the range of each v — )‘:/, , When v varies in (-7, 7]?,
i.€.,

En = Uken~ {)‘Z,k | v E (_77771-]2} . (955)

Let us now introduce the Dirichlet and Neumann operators on (Jg, denoted

by A(D) and A(N) respectively, acting like —V - (1 + %)V on L2(Qo) and their

respectlve associated quadratic forms a( ) and ag,N), with domains H{ (Qo) and
H'Y(Qo), respectively.

As for /1;,’, the operators /L(f)) and /L%N) have compact resolvent and we de-

note by )‘571,? and )\,(7{\,? their respective ordered eigenvalues. From the min — max
principle, we deduce that
MY <A <A keN, ye(-mal?, n>0. (9.56)
It follows that
Spc J AN (9.57)
keN*
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Again, we apply the monotone convergence theorem for quadratic forms to

the forms a7, ag,N), and a%D) and we obtain the limiting quadratic forms ag, aéN),

and a((,D) , respectively. The self-adjoint operators associated to these quadratic
forms are A7, fl(()N), and A(()D), respectively.

The operator /I(()D) is a self-adjoint operator on Hg(Op) and /L(]N) acts on the
subspace H} (Og) ® 1¢, of the functions u = 4 +c € H'(Qo) where & € Hj(Op)
and c € R is a constant.

The operators Ag, fl(()N), and A(()D) are the strong resolvent limits of flg, /I%N),

and /LSD), respectively. We recall that these operators have compact resolvent
and then purely discrete spectrum. By a result of Kato [25] (cf. [Thm. VIII-
3.5]), compactness implies the convergence in the norm resolvent sense. Then
we have

/1;77 — AJ,  in norm resolvent sense, 71— 0, (9.58)

for each v € (—m, )%, and
A%D) — A(()D) , A%N) — /L()N) , in norm resolvent sense, 7 — 0. (9.59)

Let us denote by (vg)ren the eigenvalues of the operator A(()N) ordered by
the min — max principle.

O=n<vr, <y <--- <y <y +1<---, keN . (9.60)
From equation (9.59) we deduce that
/\7(7]’\,;)—)1/;6, n—0, keN. (9.61)
(V)

We recall that the domain of the form limit a; ’ is the subspace of the functions

in H'(R?) that are constant in Qg \ Op and then the operator A(()N) is not the
Neumann operator on Oy. 3
The following proposition gives the operator limit of A}.

Proposition 9.2 (i) The limit of the Dirichlet operator A%D) is the Dirichlet

operator A(D) = —Ao . Moreover,
0 0

MO =0, no0,keN . (9.62)
(i) For any v € (=, 7]%\ {(0,0)}, we have A] = A(()D) = —-Ap, and
N =8, 10, keN, y#/(0,0). (9.63)
(iii) For vo = (0,0), we have A1 = AN and

Ak vk, n—0,keN. (9.64)

Proof. From (9.58) and (9.59) it follows that we only need to identify the
limiting operators that is equivalent to identifying the corresponding quadratic
forms.
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It is obvious that, since all the quadratic forms considered are defined by
the same expression

/ 1+ VP
o n

we only need to determine the form domains of the limiting quadratic forms.
Concerning A(()D), it is clear that it is defined for the subspace of H}(Qo) of
the functions with null gradient in Qg \ Op, which corresponds to Hj (Op). We

deduce then that fl((]D) =—-Agp,.
Now let us consider a) for v # 7o. The form domain of aj is the subspace of

y-periodic functions in H'(Qo) that are constant in Qo \ Og. Since v # (0,0),
this constant is necessarily 0 and the form domain of aj is then H}(Qo). It
follows that for v # o, 47 = A”) = —Ag,.

Finally the form domain of aj° is the subspace of periodic functions in
H'(Qo) that are constant in Qg \ Op or simply the subspace of functions in

H'(Qo) that are constant in Qg \ Op, that is exactly the form domain of /I(()N).
O

Now we can state the following result on the convergence of the spectrum of
A,.
Theorem 9.1 The spectrum of AP, converges to Ugen+[e vk, €7 10;] asa — 1,
in the sense that if [)\;k,)\;,k] is the k' band of the spectrum of AP, then

Ak =€ Ve, Ay =€, 0. (9.65)

The convergence of the spectrum of AP is uniform on any compact of RT, i.e.,
for any compact I of RY and any C > 0, there ezists 0 < ag < 1 such that if
ag <a<l,
distn(Za NI, | €7 v, e 6N T) < C. (9.66)
keN~

Here disty (E, F') denotes the Hausdorff distance between the subsets E and F.
Now we can see clearly the emergence of gaps in X, as a goes to 1.

Corollary 9.3 Suppose that for some k € N*, §, < vgy1, then for any compact
I CC (e 10k, e tvgyt), there exists ag > 0 such that for any ap < a < 1,

S.NI=0. (9.67)

9.4 Existence of gaps in the limiting spectrum

The existence of gaps in X, for a close enough to 1 is an obvious consequence
of the existence of £ € N* such that §; < vg41. In a first step, let us prove that
the eigenvalues v and dy are enlaced.

Proposition 9.3 The eigenvalues vy and 0 of the operators respective A(()N)
and A((]D) enlace, i.e.,

0=un <(51SVQS(SQS"-SVkS(skSI/k+1§(5k+1S--' . (9.68)
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Proof. Recalling the inclusion of the form domains D(a(()D)) C D(aéN)), we
deduce immediately that for any k£ € N*,

(N)
k

Let us denote u, ’ the eigenvector of fl(()N) related to the eigenvalue v;. We
(V)

recall that v; = 0 and ugN) = 1¢g,. Let D,(CN) = Vect(y; ’)i<i<k- From the
definition of D(u(()N)) there exist constants ¢; € R for [ > 2 such that ul(N) =
clugN) + ﬁl(D), where ﬂl(D) € H(0y). It is also obvious that the dimension of
ﬁ,gD) = Vect(ﬁl(D))zgskH is k and that D,(CD) - D,(cji)l

Finally, since

a§”[a] = afV[i] < viallil3a0,) »  VaE DY, (9.70)

we deduce that
5k S Vi+1 (9.71)
which ends the proof. O

Now we give a condition for the existence of gaps in f]n when 7 is sufficiently
small.

Proposition 9.4 Let (dx)r>0 be the eigenvalues of A((]D) ordered by the
min — max principle where formally 69 = —00. Suppose that for some k,m > 0,

6k—1 < 519 == 6k+m < 6k+m+1 . (9.72)

(i) If there exists an eigenvector ug € Hy(Op) corresponding to the eigenvalue
Or and satisfying

/ wods # 0, (9.73)
Oo

then
vy, < O, , 6k+m < Vgim41 - (9.74)

(i) If all functions u € ker(A(()D) — dx) have zero mean value, then
Vv = (5k , or 6k+m = Vk+m+1 - (9.75)

The proof of this proposition can be found in [23, Proposition 3.4.].

10 Gaps opening in X>,: TM polarization

In the TM polarization we have exactly the same results replacing the Hilbert

space L%(R?, dr) by the weighted Hilbert space L?(R?, e,(x) dr).

Theorem 10.1 The spectrum of B converges to Upen[e 1vg, e 18] asa — 1,

in the sense that if [/\;’k,)\;,k] is the k*® band of the spectrum of AR, then
M= e v, Ny—=etd, n=0. (10.76)

The convergence of the spectrum of BY is uniform on any compact of R, i.e.,
for any compact I of RT, there exists a positive constant C independent of
such that
distu(Sa NI, | J[e tvr, e 'a]NT) < C. (10.77)
kEN
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The eigenvalues (d;) and (v;) are exactly the same as those defined in the
previous section. This is because ep(2) = €+ 1 in O and so the modification of
the Hilbert space does not change the limiting operators.

11 Numerical experiments

In this section, we consider only the TE polarization. The periodic structures
considered here are conformal to those in the previous section. The dielectric
permittivity takes the value 5 in the domain Oy and 1 otherwise. We give
numerical results for different shapes of the domain Jy. The numerical tool
used here is the MIT Photonic-Bands (MPB) package [24].

We compute the continuous spectrum of AP, for different values of a € [0, 1].
The 16 first bands are represented. The results are shown with the corresponding
periodic medium in the figures below. The dark regions correspond dielectric
permittivity 5.
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Figure 2: Spectrum of the structure with discs of radius 0.15.

All the structures shown here have no gaps for planar propagation, i.e. a = 0.
Figure 9 shows the bands of the structure with discs of radius 0.3 in the planar
propagation. These bands are computed on the boundary of the irreductible
Brillouin zone.

We notice clearly the appearance of one or more gaps in the spectra of each
structure when o? approaches 1 (a? > 0.9). The bottom of the first gap goes to
the first eigenvalue of the Dirichlet-Laplacian in the domain Oy when o? — 1.
Actually, if fo is the limit of the bottom of the first gap and d3 is the first
eigenvalue of the Dirichlet-Laplacian in Op, then

1
2rfo = 7Ed0 ; (11.78)

where € is defined in the previous section and is equal to 4 in our case.

When the size of Oy increases, the midgap defect decreases and the width
of the gap which corresponds to the interval (d1,12) (defined in the previous
section) increases.
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Figure 3: Spectrum of the structure with discs of radius 0.3.
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Figure 4: Spectrum of the structure with discs of radius 0.45.

When the gap is wider, the exponential decay of the electromagnetic energy
in the periodic structure is higher which allows the use of very few periods in
the cladding of the photonic fiber.

Next, we introduce a defect to the structure shown in Figure 3 and we
compute the spectrum for different values of a?. Two defects are investigated,
the first one called “negative” consists in removing one rod from the structure,
the second one called “positive” consists in increasing the radius of one rod in
the structure. The way we call the defect comes from the sign of (d). The
method used for determining the spectrum is the “supercell” method. The size
of the supercell is 5 or 7.

The parameter o? takes values in [0.75,0.90] for the negative defect and in
[0.80,0.93] in the positive defect. When a? is too close to 1, the contrast between
the coefficients is too high (more than 50) which, added to the complexity of
the supercell, makes it impossible to get convergence to reliable results. For
such limits we need dedicated preconditioners. We find one defect state for each
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Figure 5: Spectrum of the structure with ellipses of axes 0.50 and 0.80.
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Figure 6: Spectrum of the structure with ellipses of axes 0.85 and 0.35.

case. The corresponding spectra are shown in Figures 10 and 11.

We notice that the defect frequency goes from the top to the bottom of the
gap when o2 — 1 in the positive defect and from the bottom to the top of the
gap in the negative defect. When it is too close to the edge, the decay of the
electromagnetic energy away from the defect is very weak.

Figures 12-19 represent the energy distribution of the defect modes in the
supercell. The horizontal graduations represent the limits of unit cells.

Finally, we give in Tables 1-2 the percentage of the electromagnetic energy
located in the defect region and the four closest dielectric rods.

12 Conclusion

We gave a rigorous proof for the origin of polarized guided modes in a photonic
fiber. For a parameter a and a defect frequency wq , the corresponding guided
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Figure 8: Spectrum of the structure with ellipses of axes 0.85 and 0.55.

mode will have the propagation constant 8 = awq-

It is also important to notice that we can get gaps and guide electromagnetic
waves without any need to high dielectric contrast nor thin structures which is
hard to achieve. The dielectric perturbation in the core of the fiber can be either
positive or negative while the case of the classical fiber we can guide waves only
with positive defects.

The integral formulation of guided modes could be used to achieve numer-
ical tools for determining the defect frequencies in the fiber. This represents
an alternative to the supercell method that could have some advantages. Actu-
ally, the supercell method does not distinguish defect eigenvalues from regular
eigenvalues and computes all. But the degeneracy of the regular eigenvalues
grows as the square of the supercell size. This fact added to the growth of
the computational domain makes the method slow. In the integral formulation,
however, we have to compute an approximation of the Green’s function once for
every « value and then with this function we can determine the defect modes

26



frequency
o o
(2] [e<] =

o
~

o
)

Figure 9: Band spectrum of the structure with discs of radius 0.3 in the planar

At)
wave number

propagation.
a? | defect frequency | % of energy around the defect
0.80 0.650 72.9
0.85 0.659 70.6
0.90 0.660 70.9
0.93 0.662 74.8

Table 1: Energy of positive defect modes located around the defect area.

for different defects.

a? | defect frequency | % of energy around the defect
0.75 0.617 87.7
0.80 0.639 92.9
0.85 0.656 95.1
0.90 0.685 64.0

Table 2: Energy of negative defect modes located around the defect area.
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Figure 11: Spectrum of the structure with negative defect.
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Figure 12: Energy density of the positive defect mode (a2 = 0, 80).
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Figure 13: Energy density of the positive defect mode (a? = 0, 85).
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Figure 14: Energy density of the positive defect mode (o = 0, 90).

Figure 15: Energy density of the positive defect mode (a? = 0,93).
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Figure 16: Energy density of the negative defect mode (a? = 0,75).
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Figure 17: Energy density of the negative defect mode (a2 = 0, 80).

31



1.6

14

1.8

Figure 18: Energy density of the negative defect mode (a? = 0, 85).
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Figure 19: Energy density of the negative defect mode (a? = 0,90).

32



References

[1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] H. Ammari and H. Kang, Boundary layer techniques for solving the
Helmbholtz equation in the presence of small inhomogeneities, to appear
in J. Math. Anal. Appl. (2004).

[3] H. Ammari and F. Santosa, Guided waves in a photonic bandgap structure
with a line defect, to appear in STAM J. Appl. Math. (2004).

[4] J. Arriaga, J.C. Knight, and P.St.J. Russell, Modelling photonic crystal
fibres, Physica E., 17 (2003), 440-442.

[5] W. Axmann and P. Kuchment, An efficient finite element method for com-
puting spectra of photonic and acoustic band-gap materials. I. Scalar case,
J. Comput. Phys., 150 (1999), 468-481.

[6] J.M. Barbaroux, J.M. Combes, and P.D. Hislop, Localisation near bad edges
for random Schrédinger operators, Helv. Phys. Acta, 70 (1997), 16-43.

[7] A. Bjarklev, Optical Fiber Amplifiers: Design and System Application,
Artech House, Boston, 1993.

[8] J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, Photonic crystals
fibers: a new class of optical waveguides, Optical Fiber Technol., 5 (1999),
305-330.

[9] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory,
John Wiley, New York, 1983.

[10] J.M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for
multiparticle Schrodinger operators, Commun. Math. Phys., 34 (1973),
251-270.

[11] S.J. Cox and D.C. Dobson, Band structure optimization of two-dimensional
photonic crystals in H-polarization, J. Comput. Phys., 158 (2000), 214-224.

[12] D.C. Dobson, An efficient method for band structure calculations in 2D
photonic crystals, J. Comput. Phys., 149 (1999), 363-376.

[13] D.C. Dobson, J. Gopalakrishnan, and J.E. Pasciak, An efficient method for
band structure calculations in 3D photonic crystals, J. Comput. Phys., 161
(2000), 668-679.

[14] D. Gilbard and N.S. Trudinger, Elliptic partial differential equations of
second order, Springer-Verlag, 1983.

[15] A. Figotin and Y.A. Godin, The computation of spectra of some 2D pho-
tonic crystals, J. Comput. Phys., 136 (1997), 585-598.

[16] A. Figotin and A. Klein, Localization of light in lossless inhomogeneous
dielectrics, J. Opt. Soc. Am. A, 15 (1998), pp. 1423-1435.

[17] A. Figotin and A. Klein, Localized classical waves created by defects, J.
Stat. Phys., 86 (1997), 165-177.

33



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

A. Figotin and A. Klein, Midgap defect modes in dielectric and acoustic
media, STAM J. Appl. Math., 58 (1998), 1748-1773.

A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic
dielectric and acoustic media. I: Scalar model, SIAM J. Appl. Math., 56
(1996), 68-88.

A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic di-
electric and acoustic media. II: 2D photonic crystals, STAM J. Appl. Math.,
56 (1996), 1561-1620

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals. Mold-
ing the Flow of Light, Princeton University Press, 1995.

S.G. Johnson and J.D. Joannopoulos,Photonic Crystals. The Road from
Theory to Practice, Kluwer Acad. Publ., 2002.

R. Hempel and K. Lienau, Spectral properties of periodic media in the large
coupling limst, Comm in Part Diff Eq. 25 (2002), 1445-1470.

S.G. Johnson and J.D. Joannopoulos, Block-iterative frequency-domain
methods for Mazwell’s equations in a planewave basis, Optics Express, 8
(2001), 173-190.

T. Kato, Perturbation Theory for Linear Operators, Die Gundlehren der
Math. Wissenschoften, Bard 132, Springer-Verlag, New York, 1966.

J.C. Knight, Photonic crystal fibres, Nature, 424 (2003), 847-851.

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russel, Photonic band gap
guidance in optical fibers, Science, 282 (1998), 1476-1478.

P. Kuchment, The mathematics of photonic crystals, in Mathematical
Modelling in Optical Science, Bao, Cowsar and Masters, eds., 207-272,
Frontiers in Appl. Math. 22, STAM, Philadelphia, PA, 2001.

P. Kuchment and B.S. Ong, On guided waves in photonic crystal waveg-
uides, Contemporary Math. (2003).

0O.A. Ladyzhenskaya and N. N. Ural’Tseva, Linear and quasilinear elliptic
equations, Academic press, 1968.

N.A. Mortensen, Effective area of photonic crystal fibers, Optics Express,
10 (2002), 341-348.

J.C. Nédélec, Acoustic and Electromagnetic Equations. Integral Represen-
tations for Harmonic Problems, Springer-Verlag, New-York, 2001.

R. Reed and B. Simon, Methods of Modern Mathematical Physics I: Func-
tional Analysis, Academic Press, New York, 1975.

P. Rigby, A photonic crystal fibre, Nature, 396 (1998), 415-416.

K. Sakoda, Optical Properties of Photonic Crystals, Springer Verlag, Berlin,
2001.

34



[36]

[37]

[38]

[39]

[40]

[41]

B. Simon, A canonical decomposition for quadratic forms with applications
to monotone convergence theorems, J Func. Anal. 28 (1978), 377-385.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Miiller, J.A. West,
N.F. Borrelli, D.C. Allan, and K.W. Koch, Low-loss hollow-core silica/air
photonic bandgap fibre, Nature, 424 (2003), 657-659.

S. Soussi, Convergence of the supercell method for defect modes calculations
in photonic crystals, preprint 2004.

T.P. White, R.C. McPhedran, L.C. Botten, G.H. Smith, and C. Martijn
de Sterke, Calculations of air-guided modes in photonic crystal fibers using
the multipole method, Optics Express, 9 (2001), 721-732.

E. Yablonovitch, Inhibited spontaneous emission in solid-state physic and
electronics, Phys. Rev. Lett., 58 (1987), 2059.

Z. Zhu and T.G. Brown, Analysis of the space filling modes of photonic
crystal fibers, Optics Express, 8 (2001), 547-554.

35



