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Abstract

We present a rigorous study of the convergence of the supercell method used for
determing defect modes in photonic crystals with compactly supported pertur-
bations. Transverse electric and transverse magnetic polarized waves are inves-
tigated in 2-D structures. We prove an exponential convergence of the defect
frequencies with the supercell size and give a justification of the quasi indepen-
dence of the corresponding eigenfunctions on the wave vector. We also give a
characterization of the supercell eigenvalues corresponding to the background
photonic crystal.

1 Introduction

Photonic crystals are periodic structures composed of dielectric materials and
designed to exhibit interesting properties, such as spectral band gaps, in the
propagation of classical electromagnetic waves. In other words, monochromatic
electromagnetic waves of certain frequencies do not exist in these structures.
Media with band gaps have many potential applications, for example, in optical
communications, filters, lasers, and microwaves. See [18, 19, 28, 23] for an
introduction to photonic crystals. While necessary conditions under which band
gaps exist in general are not known, Figotin and Kuchment have produced an
example of high-contrast periodic medium where band gaps exist and can be
characterized [16, 17]. Other band gap structures have been found through
computational and physical experiments. See [9, 8, 10, 2, 12].

In order to achieve lasers, filters, fibers, or waveguides, allowed modes are re-
quired in the band gaps. These modes are obtained by creating localized defects
in the periodicity and correspond to isolated eigenvalues with finite multiplicity
inside the gaps. The defect mode frequency strongly depends on the defect na-
ture. Figotin and Klein rigorously proved that when a defect is introduced into
the periodic structure, i.e., a perturbation with compact support, it is possible
to create a defect mode, which is an exponentially confined standing wave whose
frequency lies in the band gap [14, 15, 13]. See also Ammari and Santosa [1]
and Kuchment and Ong [24] for the issue of existence of exponentially confined
modes guided by line defects in photonic crystals.
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The defect modes as well as the guided modes associated with compact and
line defects, respectively, are computed via the supercell technique. This tech-
nique consists in restricting the computation on a domain surrounding the defect
with sufficient bulk crystal, called the supercell, with periodic conditions on its
boundary. The boundary conditions on the supercell are, in principle, irrelevant
if the mode is sufficiently confined. Since one would like to compute only the
defect or the guided modes in the band gap, without the waste of computation
and memory of finding all the eigenvalues associated with the supercell belong-
ing to the continuous spectrum, one states the problem as one of finding the
eigenvalues and eigenvectors closest to the mid-gap frequency.

The supercell method demonstrates very good concordance with experimen-
tal results and seems to be very accurate. However, analytic studies and rigorous
proofs of convergence of this technique are essentially absent.

In this paper we address some of the basic issues of the supercell method
and prove the convergence of this technique. Although one can obtain analo-
gous results for the case of full Maxwell equations, we only address the cases
of transverse electric (TE) and transverse magnetic (TM) polarized electromag-
netic waves in two-dimensional photonic structures.

The outline of this paper is as follows. In the next section we review some
basic facts on the spectra of periodic elliptic operators, emphasizing the Floquet-
Bloch theory. We then describe in Section 3 the supercell method and investigate
its mathematical foundations in the TM case. Section 4 is devoted to the TE
case. Finally in Section 5 the results of numerical experiments are presented to
illustrate our main findings.

2 Notation and preliminary results

Consider a photonic crystal characterized by its dielectric permittivity €, that
is a real valued, piecewise constant and periodic function belonging to the set
{ep € L®°(R?/Z?) : 0 <& <€, < ey ae.} where €1 and e, are constants. The
magnetic permeability is supposed constant and equal to unity in all this paper.

We assume that the crystal is periodic with period [0,1]?, i.e., that e,(z +
n) = e(z) for almost all z € R? and all n € Z2.

The propagation of electromagnetic waves is governed by the Maxwell’s equa-
tions. It is common to reduce these equations in a 2-D medium to two sets of
scalar equations in the transverse magnetic (TM) and the transverse electric
(TE) cases. Each one can be solved by solving one scalar partial differential
equation and the other scalar functions follow immediately from that solution.

These equations are the Helmholtz equation:

Au+wlepu=10, (2.1)
for the TM polarization, and the acoustic equation:
1 2
V-—Vu+wu=0, (2.2)
€p

for the TE polarization.
We now recall some well-known results on the spectrum of the TM and
TE operators in the periodic medium. Since we deal with a partial differential



equation with periodic coefficients, it is natural to make a Floquet transform
and apply the Floquet-Bloch theory.

We first briefly present the Floquet-Bloch theory applied to the TM and TE
operators in periodic media.

Let A(x, D) denote the TM or TE operator on L?(R?) in a periodic medium
characterized by €, where D = —iV. This operator is invariant with respect to
the discrete group of translations Z2 acting on R2. It is then natural to apply
the Fourier transform on Z2, that is the transform assigning to a sufficiently
decaying function h(n) on Z?2, the Fourier series

hE) =3 h(j)e€d

jez?

where ¢ € R?. However, since we deal with functions defined on R?, we use the
Floquet transform that is the appropriate transform in this case.

Consider a function v defined on R?, sufficiently decaying at infinity. We
can then define its Floquet transform by

Fo(z,§) = Z v(z — j)e®d = v(??) . (2.3)

jez?

It is easy to check that Fuv(-,&) is £-quasi-periodic with respect to the first
variable, that is:

(Fo)(x +n,€) = (Fu)(z,6)e*™, VreR ,nel’.

Moreover, it is periodic with respect to the variable &, called quasi-momentum,
with period lattice [0,27]2. It is then sufficient to know the function Fv for
(z,€) €Y x B, where Y = [0,1[2 and B = [—7, [ (called in the literature the
first Brillouin zone), to recover it on R? x R2.

It turns out that the Floquet transform commutes with partial differential
operators with periodic coefficients. In particular, we notice that

F(A(z,D)u) = A(z,D)(Fu) .

The Floquet transform allows us to represent a function on L?(R?) as a
continuous sum of quasi-periodic functions. In fact, the Floquet theory defines
an isometric mapping between L?(R®) and L*(B,L{(R?)), L{(R?) being the
space of é&-quasi-periodic L?- functions. The inverse of the Floquet transform is
given by the following formula:

-1 = i v(x
(F o)) = 7 [ o0 (24)

for any v in L*(B, L} (R?)).

The isometric character of the Floquet transform, together with its commu-
tation properties on partial differential operators with periodic coefficients make
it very useful to study spectral problems. Indeed, the spectral problem for the
operator A(z, D) becomes a family of spectral problems for operators A¢(z, D)
(having formally the same expression but with domains depending on &), act-
ing on functions defined on a bounded set (the period lattice of the photonic
crystal), with &-quasi-periodicity.



An alternative version to the Floquet transform is the transform ® defined
as

du(z, &) = z v(z — §)e” @70 = ¢~ Fy (g, €) .
jez?
The function ®v is periodic with respect to z and (—=x)-quasi-periodic with
respect to £ with 27-quasi-period:

{ dv(z +n, &) = dv(z,§) , n € 72,

dv(z, £+ () = e 2du(x, &), (€2nZ2. (2.5)

With this transform, we deal now with functions defined on a fixed space
L?(B, L?>(R? /Z?)), while the operator A(z, D) is splitted into a sum of operators
Az, D — £), depending on &:

®(A(z.D)u)(z,8) = Az, D — §)(Pu)(x,8) -

The transform @ is still an isometric mapping between L?(R?) and L?(B,
L?(R?/Z?)), and its inverse transform is:

-1 -1 e Sy(x
@ 0@ = g [ oot 0t

Let ¥ be the spectrum of A(z, D) on L?(R?) and X¢ the spectrum of A(x, D—
&) on L*(R? /Z?), then we can deduce immediately the following identity:

¥ = UgenXt . (2.6)

Now, with these tools, we are in the position to explore the spectrum of the
TM and TE operators in periodic media.
In the case of the TE polarization, the operator we are studying is:

A(x,D)z—v-eiv.
P

After the transform &, we get the following spectral problem:

~(Va =€) - —(Vo —i)v(z,€) = wv(2,8) , v(-€) € L(R*/Z%) . (2.7)

1
€p
We remark that A(z,D — &) is an elliptic self-adjoint operator on L?(R2/Z?)
with compact resolvent. It follows that its spectrum is discrete with countably

many positive eigenvalues denoted A, (€) and ordered increasingly. It is easy to
prove the continuity of A,(£) on £ € B. Finally, defining the intervals I,, by

I, = [Igleig An(6)s max An(8)]

we deduce the spectrum of the TE operator:
YT = UnENIn .

We then see clearly the band structure of the spectrum since it is a union of
the intervals formed by the values of each eigenvalue when the quasimomentum
varies in the Brillouin zone. In fact, if two successive intervals are disjoint, which



means that the maximal value of an eigenvalue is smaller than the minimal value
of the following one, then there is a gap in the spectrum X g and no propagation
is possible for TE waves at the corresponding frequencies. This makes all the
interest of photonic crystals.

Another important property of photonic crystals is a consequence of the
characterization of the decay of functions in L?(R?) in terms of the smoothness
of their Floquet transform in the same spirit as the Paley-Wiener theorem.
Suppose that the spectrum contains some gaps, that is ¥7r # R? and let w
be a frequency lying in a band gap. Let G, be the Green’s function of the TE
operator defined by

1
V- —VGy(win,y) + 0 Gywim,y) = —y), T€R . (28)
P

It has been established in [7, 3] that the Floquet transform of G}, is analytic
with respect to w in a complex neighborhood of the real axis. In view of Paley-
Wiener-type theorems, the analyticity of Gy, is the key ingredient of the proof
of the following result [14, 15, 13].

Lemma 2.1 There exist two positive constants Cy; and Cy depending only on
wg > 0 such that for any w? ¢ S1E,

|Gp(w; z,y)| < Cle*CQdiSt(“{ZTE)l“y‘ , for|z—y|—> +o00. (2.9)

Remark 2.1 The behaviour of the Green’s function at infinity is the essential
feature of PBG materials: it explains why localized defects in photonic crystals
may act as perfect cavities, when the frequency lies in a band gap. FElectromag-
netic waves can be represented in terms of G and thus inherit the exponential
decay property.

In the case of the TM polarization, the operator we are studying is:

A(w,D) = — LA .

€p

Taking the transform ®, we get the following spectral problem:

(Ve = i) (Ve — i€)0(a,€) = Po(@,€) , o) € IA(R/Z?) . (2.10)
P
The difference with the TE case is that this operator is elliptic, self-adjoint with
compact resolvent on the weighted space L?(R?, e, (z) dr).
The results are therefore the same as for the TE case, and we get a spectrum
with band structure:
YoM = UnenIn ,

where (I,)nen are defined in the same way as for the TE case.

Analogous properties to the TE case hold. In particular, Lemma 2.1 holds
with the Green’s function associated with the TM polarization.

From now on and until otherwise mentioned, we deal with TM-polarized
electromagnetic waves. We consider a background medium characterized by its
dielectric permittivity ep.

First, we introduce some simplified notations.



Definition 2.1 We define the operator A, by

A =—LA

p = , on L*(R?),
€p

and denote by Xy, its spectrum.
For ¢ € [0,2n[* we define A§ on L*(R? /Z?) by

Af = _l(vz — &) - (Vg — &),

€p
and denote by Ef, its spectrum.

We create a perturbation of the background medium by modifying its di-
electric permittivity into € as follows:

£(x) = ep(x) — (Be)xa(e) , (2.11)

where (8¢) is a real constant and 2 is a bounded domain in R2.
The perturbation of the dielectric permittivity induces a modification of the
TM operator into

A= —%A , (2.12)

and, consequently, the spectrum ¥ of A is different from the spectrum X, of
A,. However, it has been proved that the perturbation of the TM operator is
relatively compact and therefore it keeps unchanged the essential spectrum of
Ap. See [14]. Since the spectrum X, is purely continuous, the perturbation will
result in the addition of eigenvalues of finite multiplicity to Xp.

The following theorem from [14] is of importance to us.

Theorem 2.1 Suppose that the spectrum X, of the operator A, has a gap and
suppose that the defect (Q, (5¢)) has created an isolated eigenvalue w? in the gap.
Let u be an associated eigenvector. Then, there exists two constants C1 and Cs,
depending only on the distance of w? to the spectrum X, such that

lull2(s,) < Cre~C2 A8 jy|| o0

where By is the ball of center © and radius one.

Proof. The eigenmode u is solution of the following equation:
Au+ w?e(z)u=0. (2.13)

It is easy then to see that u is solution of the following integral equation:

u@=%W4%w%m@@- (2.14)

The proof of the theorem is then a direct consequence of the exponential decay
of the Green’s function in Lemma 2.1. O

Remark 2.2 This theorem has very important consequences. It explains why
we can confine electromagnetic waves in defects or guide them along a defect.
The use of dielectric material that has very low loss and the erponential de-
crease of the electromagnetic field away from the defect ensures a very efficient
confinement with o cladding of few periods of the photonic crystal.



3 The supercell method

We start this section by giving a mathematical description of the supercell
method.

3.1 Definitions and preliminary results

We consider the background and perturbed media introduced in the previous
section with their corresponding TM operators and spectra. Since the perturbed
medium is not periodic, the Floquet’s theory does not apply.

To recover a periodic medium, we define an artificial medium in the following
way. Without loss of generalization, we can suppose that the defect support 2
is centered at 0. For N € N large enough to have €] — N, N[, we define the
(2N)-periodic L*-function ex by:

en(z) =e(x), Vz€]—N,N[?, (3.15)
en(z+2Nj) =en(z), VreR® VjeN. :
Definition 3.1 We define the operator An on L?(R?) by:
1
Ay = ——A (3.16)
EN

and let X be its spectrum.
For € € By = [~ 5%, 5|, we define the operator A, on L?(R? /2NZ?) by:

A== (V-it) (V- if),

N
and denote by E?V its spectrum.

The function ey defines a photonic crystal formed by the defect repeated
with a 2N-period inside the original photonic crystal. It is therefore obvious
that the spectrum X is an absolutely continuous spectrum. The question is:
what does it happen when N goes to infinity?

A natural answer is that since the repeated defects will be away from each
other, they will not interact and, in the neighborhood of one defect, the operator
will see almost an infinite crystal. We expect then a kind of convergence of ¥
to the spectrum ¥ corresponding to one defect in the infinite photonic crystal.
So for N large enough, after taking the Floquet transform in the supercell and
computing the spectrum, we will find a spectrum divided into wide bands very
close to those corresponding to the background medium and very narrow bands
(almost a horizontal line when plotted against the quasi-momentum) that should
correspond to the defect modes of the perturbed crystal. This is what will be
proved in the following subsections.

To give a characterization of the convergence of the spectrum of the supercell,
we will use the Hausdorfl distance denoted disty, that is a measure of the
resemblance of two (fixed) sets.

Definition 3.2 Let E and F be two non empty subsets of a metric set. We
define the Hausdorff distance denoted disty, between E and F as

disty (E,F) =inf{d > 0; V(z,y) € E x F, dist(z, F) < d and dist(y, E) < d}.



This means that if disty(E, F) = d, then any point of one of the two sets is
within distance d from some point of the other set.

Finally, we give in the following proposition an important result from the
spectral theory, see [27], that will be useful for the convergence results.

Proposition 3.1 Let A be a self-adjoint operator with a domain D(A) and a
spectrum o(A), then, for u € R:

I(A = pD)¢|l

dist(p,0(A)) = min
(o) = ot ™ ol

(3.17)

3.2 Convergence of the “continuous spectrum”

Here we give a characterization of the convergence of the part corresponding to
the spectrum of the unperturbed crystal.

Theorem 3.1 For any wg > 0 and Ny € N, there exists C > 0, depending only
on wy, No and Q, such that

. C
max dist(w?,2%,) < —
2 ¢+kn/N 2 TUNS = N2
w eUke[—N+1,N—1[2nN22P N[o,wg]

(3.18)

for any N > Ny and any £ € By .

Proof. Let k € [-N+1,N—1]2NN? and £ € By Let w? be in S5/~ [0, w2].
Since £ + kv /N € B, there exists ¢ € L?(R? /Z?) with unit norm such that

<V—i(5+%”)> . (V—i(§+ %”))¢+w2ep¢=o. (3.19)
Let ¢ be defined in L?(R? /2NZ?) as
B(z) = pla)e Fhe (3.20)
We have ||<;3|| L2(R?/2Nz2) = 4N 2 and it satisfies the following equation.
(V—i€) - (V—i)p+wed=0, (3.21)
which can be rewritten as follows

(V —i€) - (V —i&)d + w?ed = —xa(de)w’d . (3.22)

Let C1 be the minimal number of unit squares in which { can be strictly in-
cluded. Since the L?2—norm of ¢ in a unit square is 1, we have:

||<73||L2(9) <C.
Thus

I(V = i&) - (V — &) ¢ + w?ed|l L2mey2n)z2)

||<5||L2(R2/2sz)

1911220

= (de)uw? """

19l L2(2/2n72)
Cs

< N2



where Cy = |(¢)|wiCh.

The operator —1(V — i) - (V —if) is self-adjoint in (L?(R? /2NZ?),e(x)dz).
Then, from Proposition 3.1, the distance of w? to Ef\, is at most equal to the
following expression divided by the norm of ¢ in L?(R? /2NZ?). We have

2
/]'-IVJV[2

i (v-i)d-w?d| e

€

= [ lv-ig-(V-igp+aed S
]-N,N[2 g

C -
< m||¢||L2(R2/2Nz2) ;

Cs
min, g1 N, N[2 e(z)"

It follows from Proposition 3.1 that there exists an eigenvalue wg belonging

where C' =

to the spectrum Ef\, of the operator A?V such that

c
|w2—wg|gm7

which ends the proof. O

Remark 3.1 This theorem tells us that card(EfVﬂ [0,wd]) for & € By will grow
at least as fast as N? card(Ef,’ n[o, wg]) for any &' € B. So when we use the super-
cell method to determine the defects modes, we are in front of a dilemma. Larger
is the size of the supercell, better is the approximation of the defect eigenvalues.
But this will take much more time and need much more memory size because
of the size of the computational domain and the growing number of useless (in
the sense that they do not correspond to the defect) eigenvalues. It is important
then to determine the convergence rate of the eigenvalues corresponding to the
defect.

Since we know that the spectrum Xn = Ugepy, E?V is absolutely continuous,
we deduce that each connected component of (R% \ L) NE, N[0, wo] has a width
smaller than 12\,—(’;

In practice, because of the growth of degeneracy of the eigenvalues located in
Y, with N, there will be almost no visible gap inside the bands of ¥ but the
remark remains useful for the perturbation brought to the edges of the bands. In
particular, it is useful to check if a perturbation of the edges of a band in X is
due to the presence of o defect eigenvalue in X close to the band or not.

3.3 Convergence of the defect eigenvalues

Here we are concerned with the behaviour of the part of the spectrum Xy
that will give us an approximation of the defect modes (eigenvalues with finite
multiplicity in X). Let us first try to give a characterization of this part.

Definition 3.3 For n > 0, we define EZ,N as the union of the connected com-
ponents of X that are at least n-distant from Y.
We also define Xq as the set of the defect eigenvalues of the perturbed pho-
tonic crystal:
Sa=3\%,.

10



Finally, we introduce 23’5’\, and X7 as
Eﬁ’f]v ={w? e %Y, : dist(w?, ) > 1} .
1 = {w] € q : dist(w], p) >n} -
The following proposition holds.

Proposition 3.2 For every gap la,b[ in X, (0 < a < b) satisfying la,b[NE =0,
there exists Ny € N such that, for N > Ny, XyN]a, b[= 0.

Proof.  Suppose that the proposition is false. Then for any Ny € N there
exists N > Ny and w% €]a,b[NEy. This means that there exist {x € By and
¢n € L*(R%/2NZ?) with unit norm such that

(V —ién) - (V —ién)dn + wiendn =0 in L*(R*/2NZ?) . (3.23)

Now, we define ¢ in L?(R?) by

on(z) = LG(w%;w,y)e’iﬁN'y¢N(y) d . (3.24)

The following lemma is needed.

Lemma 3.1 There exist Ny > 0 depending only on a, b and Xy,such that for
N > Ny, we have:

DN | =

lon |2 (rz) >

Proof. From the expression of ¢ we deduce:
(be)wndn(z) = (de)wi / G(Wiie,y)e N Yon(y) dy
Q

= /. G(wi; 7,y) (A + wivep) (74N Yoy (y)) dy

e G(wi;2,9) (A +whe) (e “V VN (y)) dy

= [ @+ wka)Glkinne ©Tox0)
R2
- [ Grsaye e
R2

((v _iEn) - (V — iEn) + w%ve) o (y) d
= e *V79n()

‘/ ) (G(w?v;w,y+Nj)e"Ng”'j)e’f”'%w(y)dy-
Q

JEZ2,j#0

Let us now prove that the L?—norm of the last term in ] — N, N[? converges
to 0. From the exponential decay of the Green’s function, we deduce that there

11



exist positive constants C; and C depending only on the distance of a and b to
¥, such that, for any w? €la, b, we have [1]:

Z |G(w2;a:,y + Nj)| < Cre 2N | Vo €] - N,N[®, Vy € Q. (3.25)
JEZ?,j#0

It follows then, since [|¢n||L2—n,np2) = 1, that for any 2 €] — N, N[, we have:

‘/ > (G(va;w,y+Nj)eiNg”'j)eif”'y¢N(y)dy‘
Q

JEZ2,j#0

IA

Cre N /Q on ()] dy
Cre= N2 ||pn || 120

Cre= N Q)3 .

IN A

We then deduce that:

J!

Hence, recalling that ||e=®~ "¢y (2)||2—n,n[z) = 1, there exists No > 0 such
that for any N > Ny, we have:

) (G(w}zv; z,y + Nj)e_iNEN'j> e NN (y)dy

JEZ2,jF0

L3(]-N,N[?)

< |QIEPNCie N .

én L2 > Il L2q—n,nE) > (3.26)

DN | =

Lemma 3.1 is then proved. O

12



We now turn to the proof of Proposition 3.2. We have

Adn +wiedn = /Q(Az +wne)Gwisz,y)e N Vo (y) dy

/Q<Az )Gl 2, y)e S Vg () dy
—(56)X9($)W?V/ G(wi;T,y)e N Yon(y) dy
Q
= xa(@)e N TPy (z)
~xal2) / (Wi 2,9) (A + whep) (€ Vo (y)) dy
RZ
xal@) [ Ghizn)(a, +wka)e on ) d
= xa(@)e ¥ TPy (z)
—xala) [ (8, + ke Gluia)e Vo) d
+xa(z) AQG(w%;w,y)e’ig”'y
((v _iEn) - (V — iEn) + wfve) o (y) dy
= (Ge)wxal@)

Al

Using estimate (3.25), we deduce the existence of positive constants C; and Cs
depending only on the distance of a and b to X, such that

G(WRizy + Nj)e—iﬁNwN“) o (y) dy
JEZL2,j#0

Y. Giiay+ Nj)e W) < Crem ™V, (3.27)
JEZ2,57#0
for any z,y € 2. We then obtain that

/Q( > G(w%;x,ywj)e"EN‘“N”)m(y)@‘

JEZ2,j#0

< Cre” N0/ |l z2(a)
< Cre N3 .
This yields the following result:
[A¢N +wivedn |2z < |(0e)|wi|Q]Cre 2N . (3.28)
Lemma 3.1 yields the estimate
(6e)[ b [€]
ming ey, N2 €(7)

from which we conclude that dist(]a, b[,X) = 0. This is a contradiction with the
assumption. The proof of the proposition is complete. a

dist(w3, %) < Cre N |

13



Now we can prove the following result concerning the convergence to the
defect modes.

Theorem 3.2 Suppose that the perturbation has created defect eigenvalues.
Then, there exist ng > 0 and Ny € N such that for any n < 19 and N > Ny,

ny% A0, VEEBy.

Moreover, for any wg > 0 and n < no, there ezist two positive constants C1
and Cy depending only on wg and n such that for any & € By :

disty, (zg;% N [0,w2], 51N [o,wg]) < Cre=CaN. (3.29)

Proof. Let w3 be a defect eigenvalue in X4. It follows that there exists a
function v in L?(R?) with unit norm such that

Au+wieu=0 inR*. (3.30)
Let & be in By . We define ué in L2(R? /2NZ?) by
u(z) = Y ula + Nj)elt =TV .
JEZ2

Then for z €] — N, N[?, we have

(V-9 (7 -i6) + wiew )u )
= Y e EEN(A + wien)ule + Nj)
jez?
= Z ei-(=+NI) (A + wie(x + Nj))u(a: + Nj)
jez?
+(6e)w? z et (@+Ng) (EN(SU) —e(z+ Nj))u(a: + Nj)
jE€z2
= —(@ewixa(e) Do e Du(z+ Nj) .
JEZ2,j#0

On the other hand, for z € R?,

6(z — y)uly) dy

R2

= /R?:(A + 6w3)G(wi; 7, y)u(y) dy

g G(wd; =, y) (A + epwd)uly) dy

= (6e)d /Q (W22, y)uly) d.

14



Therefore
((V _ig)-(V —i€) + wasN) ()

= —wixo@) [ (Y G+ N Yl dy

JEZ2,j#0

From (3.25), it follows that there exist two positive constants C; and Cs, de-
pending only on w3, such that

‘/( ) G(wﬁ;w+Nj,y)e"5'(“”+Nj’)U(y)d.’u‘ < Cle*@N/IU(y)Idy
¢ Njez2,j#0 ¢
< Crem N |92l 2
< |Q]2Cre %N .

Therefore

H(V—z{)-(V—if)uf(x)+w§5Nu5(m) < (8e)2wi|Q|Cre 2N | (3.31)

L2(]-N,N[?)
Since
ut(z) = u(z)e® + Z u(z + Nj)et @+NI) ] - N, N[?,
JEL2,j#0
i llu@e -z =1,
and

IS ule+ Nj)esCHND || oy npzy < [QENCre %N
JEZ2,j#0

we deduce that for IV large enough,

1
|| L2, N72) > 3

Thus, we conclude that
dist(w3, T%) < Cre=O=N |

for two positive constants C; and Cs, depending only on w3.
It is clear that we can choose these constants such that

. 2 & —CaN
wdeggl%)[%,wg] dist(wg, Xy) < Cre” 727, (3.32)

uniformly for £ € Byr. Hence, any defect eigenvalue w? € %4 is a limit point of

25) .
(NNEN

Let 7 > 0 be small enough to get X # 0. Applying Proposition 3.2, we may
see that there exists Ny € N depending only on wé and 7 such that Eg’j\,n [0, wd]
has at least as many connected components as card(E7N[0,w3]) for N > No. To

15



prove this, we take a neighborhood of £ N [0,w3] formed by disjoint intervals
and that are away from X, each one of them containing exactly one defect
eigenvalue. Then from Proposition 3.2, we deduce that for N large enough, the
edges of these intervals will be strictly distant from . On the other hand, we
have proved here that for NV large enough, the intersection of every interval with
E?V is not empty. This means that Efl” v is not empty if we take i small enough
and then let N be large enough. By the same way, (3.32) can be written as

ax  dist(w?,T57) < Cre @2V | 3.33
udeggl’m[o,wg] ist(wg d,N)— 1€ ( )

uniformly for £ € Byr. The proof of the first part of the theorem is then done.

Now, let £ € By and let w? € Efi’,?v- There exists ¢ € L*(R? /2NZ?) with
unit norm such that

(V—i)-(V-i&)p+w’eng=0.

Then, we define u in L?(R?) by
u(@) = [ Gz note <

Q

Let us now find a lower bound for [|u||z2r2). We compute
(be)wiu(z) = / G(w?z,y) (A + W) (p(y)e™%Y) dy
R2

B /Rz G 2,9) (A +w’e) (d(y)e™™Y) dy
= P(z)e **
— | Gz,y)e YV ((V —if) - (V — i) +w’e) (y) dy

R2

= pa)eicr

—(0e)w? /Q

Since there exist positive constants C; and Cs, depending only on 7 and w?,
such that

(Gw; 2,y + Nj)e—’f'<y+Nj>) o(y) dy -

JEZ2,5#0

Z (G(wz;w,erNj)e"E'(U+NJ'))‘ < Cre N ¥z e]-N,N[®> ,VyeQ,
JEZ2,j#0

(3.34)
for any w? € [0,w3] such that dist(w?,p) > 1, we deduce that
H/ ) (G(wz;w,y +Nj)ei5'(”+Nj’)¢(y) & < NCye @V,
Q2 5e7.2,540 L2(]-N,N[2)
(3.35)

where the constants C; and Cs are different from the previous ones but have the
same dependence. Recalling that ||¢||z2q—n,n2) = 1, we deduce the existence
of Ny > 0 such that

. (3.36)

N | =

9l z2®2) > |llL2q-~,Np2) >

16



On the other hand,

(A +weu(z) = /Q(Az +we)G (W 2,y)p(y)e Y dy

Xa()o)e C — (oa) —ee) o [ Gl n)dwe Y d
Q
= xa@)@)e ¢ ~ xa@@e)? [ Gtz o d

= xa(z)¢(z)e™**

_XQ(:L') ‘/']R2 G(w27$7y) (A +w26p) ((ﬁ(y)e_’fy) @
+xa(z) /R2G(w2;:c,y) (A +w25) (¢(y)e*i§-y) dy

= XQ($)¢($)eﬂ‘g.z
() /m (Ay +w’e) Gz, y)d(y)e ™V dy

0(@) [ G e (V=i6)- (7 =i6) +4) (1) d

= xa(z)(de)w? G(wz;w,y)e"‘%(y)( > XQ(y—NJ')> dy

2
R JEZ2,j#0

= Xo(@)(@)w? /

(G ,y + Nje €00 o) dy
Q

JEZ2,j#0
Therefore, it follows from (3.34) that
|Au(z) + wPeu(@)| < |(0e)|w2|Q|2 Cre==N
for any z € Q. Consequently,
|Au + w’eul|2(r2) < |(0e)|wi|Q|Cre= 2N . (3.37)
From (3.36), we readily get
dist(w?, ) < Cre= 2N |

where C and (s are different from the previous ones but have the same depen-
dence.
Since dist(w?,¥,) > 71, we easily arrive at

dist(w?, ) < Cre 2N,

which ends the proof of the theorem. O

An immediate consequence of this theorem is the following.

Corollary 3.1 Suppose that the perturbation has created defect eigenvalues.
Then, there exists ng > 0 and Ny € N such that EZ,N # 0 forn < no and
N > Np.

Moreover, there exists N1 € N depending only on n such that the number
of connected components of 3 N [0,w3] s at least equal to card (T2 [0,wd])
and the width of each component decays exponentially with N .

17



Proof. The proof follows immediately from the facts that each eigenvalue in
Eg’, v is continuous with respect to &, and

Yy = UEEBNE% .
O

Remark 3.2 These results are very important and practical for determining the
defect modes of 2D-photonic crystals. Indeed, after identifying the background
continuous spectrum by computing numerically Ef, for € € B, we have the gaps
and we can have constants C1 and Cy depending on dist(w?,¥,) such that

|G(w2;x,y)| < Cre N,

Then we compute E?V for some & € Byr, and from the eigenvalues that are not
located in ¥, we deduce an approzimation of the defect eigenvalues.

4 The TE polarization

In this section we deal with the TE polarization. The same results hold, but
the proofs are slightly different. This is a consequence of the dependence of the
domain of the acoustic operator on the inverse of the dielectric function. So

1 1
when we perturb ¢, into ¢, the operator —V.—V is transformed into —V.-V

€ €
and we see clearly that, in general, these operators do not have the same domain.
So the proofs have to be adjusted.

4.1 Definition and preliminary results

First we introduce some analogous notations to those in Definition 2.1.

Definition 4.1 Let A, be the operator defined by

A, = —v.lv , on L*(R?),
€p

and let ¥, denote its spectrum.
For ¢ € [0,2n[* we define A§ on L*(R? /Z?) by

A= ~(Vo—i6) —(Va—if).

P
and denote by Ef, its spectrum.

We perturb the background periodic medium on a bounded domain as done
in (2.11).

It has been proved that the spectrum of A, is absolutely continuous and
that the perturbation is relatively compact and so does not affect the essential
spectrum of A,. The perturbation will then result in the addition of eigenvalues
of finite multiplicity to X.

We define en, An, A?V, YN, and Ef\, in the same way as in Section 3.1. To
avoid the problem of the dependence of the domain on ¢, we introduce a new
operator that will have the same spectral properties as those of Ap.

18



Definition 4.2 Let B, be the operator defined on L*(R?)? by

1
B,=——VV-.
€p

For ¢ € [0,2n[* we define BS on L*(R? /Z%)* by

By =~ (V- it)(V—if)

€p
We also define By and Bf\, analogously as done for Ap.

The operator By, is a self-adjoint periodic differential operator on
(LQ(]R2 /Z%)? €, dz:) .

However, since its kernel has infinite dimension it is not elliptic. Actually, the
kernel is the subspace of divergence free vectors. We can not apply the same
technique as for A, to prove that the spectrum of Bg is a set of positive eigen-
values that accumulate at infinity and that the spectrum of By, is an absolutely
continuous spectrum with band structure located in R*. It is however possible
to extend this operator into a larger elliptic self-adjoint operator that will co-
incide with By, on a subspace that is complementary with the kernel of By, (see
[23]). We can deduce then that the spectrum of B, in Rt \ {0} is absolutely
continuous and that 0 is an eigenvalue with infinite multiplicity. This technique
is used to prove the band structure of the Maxwell operator. Another way to
characterize the structure of the spectrum of B, is to relate it to the spectrum
of A,. This is given by the following theorem.

Theorem 4.1 For any £ € [0,2n[?, the spectra of Bg, By, BJEV, By and B are
Eg U {0}, %, Efv U {0}, Xn, and X, respectively. Moreover,

(1) The operators Bf, and Bf\, have ezactly the same eigenvalues as Af, and
A?V respectively, except for 0 which is an eigenvalue of Ag and A% of
multiplicity 1 and is not an eigenvalue of Af) and A?V when & # 0 while it
is an eigenvalue of Bf, and va for any & with infinite multiplicity.

(ii) The spectra of B, and By are absolutely continuous spectra in Rt \ {0}
and 0 is an eigenvalue of infinite multiplicity.

(iii) The operators A and B have the same absolutely continuous spectrum and
the eigenvalues have exactly the same multiplicity for A and B except for
0 that is an eigenvalue of B with infinite multiplicity.

Proof. Let £ € [0,2n[? and w? > 0. Suppose that either £ # 0 or w? # 0 and
that w? is in the spectrum of A§. Then there exists ¢ € L?(R*/Z?) such that

¢ # 0 and
(V—it) (V- i€)p+u?$ =0,

P
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We can easily see that since ¢ and w? are not simultaneously equal to 0, (V —

i€)p #0. Let ¢ = el(v —i¢)¢ € L*(R?/Z?)%. Then
P

(V—i&)(V —i&) - p+wepp =0,

which means that w? is an eigenvalue of Bf,. Moreover, if ¢; and ¢, are two
linearly independent eigenvectors related to the same eigenvalue w? # 0, then
P = é(v —i&)¢1 and ¥ = é(v — &) ¢y are linearly independent.

We conclude that all the eigenvalues of Af, except for the eigenvalue 0 of Ag
aroe eigenvalues of Bf,. We will see that 0 is an infinite multiplicity eigenvalue of
AD.

’ Conversely, let w? be an eigenvalue of BS and let ¢ € L*(R*/Z?)* be such
that ¢ # 0 and satisfies

(V—i&)(V —if) - +w?epp =0.

Suppose that (V — if) -4 = 0. Then, since 1) # 0, we have w? = 0. We also
obtain that V.(e"%24)) = 0, or equivalently, that there exists a € L?(R?/Z?)
such that

e 8T =V x (ae”%7)

where V x a = (02, —01 ). It follows that

¢:an—i< _521 )a.

Hence, 0 is an eigenvalue of Bf, with infinite multiplicity.
In the case where (V —i€) -9 #0, let ¢ = (V —i€) -9 € L?(R? /Z?). Then,

(V—if) —(V-i)p+w’d=0,

1
&
which means that w? is an eigenvalue of Af,. We can also show that if ¢y and 1),
are two linearly independent eigenvectors of Bf, related to the same eigenvalue
w? #0, then ¢; = (V —i€) -1 and ¢ = (V —i€) - 1) are linearly independent.

The same proof holds for A%, and B, and for the eigenvalues of A and B.
g

As a consequence of the above theorem, we can recover the properties of
the spectra of Af\, and Ay by studying those of Bf\, and By to which we can
apply mainly the same technique as in the TM case since their domain does not
depend on &.

To this end we need to give an analogous result to Lemma 2.1 for the operator
B,.

Lemma 4.1 For any z ¢ ¥, and l > 0 we have
9 :
X R(2)xwal < (5) VMoV for all z,y € R, (4.38)

with
n

m, = ,
4 2| + )

(4.39)
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where 1 = dist(z,%p), €. = mingcr2€,(x), and xq,; is the characteristic func-
tion of the cube {y = (y1,y2) € R? : |y1 — 31| < % and |yz — z2| < %}

Proof. The proof is exactly the same as the one for the Helmholtz operator
which uses a Combe-Thomas argument and can be found in [14, 15, 13].
Let B, denote the operators formally given by

B,=e""B,e” ", acR®, (4.40)

as the closed densely defined operators (uniquely) introduced by the correspond-
ing quadratic forms defined on C}(R?) by

1

()

Ba[y] = (V- (") (V—a)-9) . (4.41)

V) = (T4, s

We also introduce the quadratic form Q, as

Qaly] = Ba[y)] — Bo[¢]

1 1
= <a'¢;€p(—m)v'¢)_<v'¢;@a'¢>
1
<a ’ ¢7 ep(m)a : ¢)

Since

(@ V0] < gl (W s+ (T 500 L @)

" ep(T) B " €p() () ’

we have

|Qa[¥]] < lalBol¢] + lal(1 + |al)e—[¢|*  for all ¢ € Cg(R?) . (4.43)

Then we require |a| < 1 and use Theorem VI.3.9 in [21] to conclude that B,
is a closable sectorial form and define B, as the unique m-sectorial operator
associated with it. If in addition 2z € ¥, and

A =2|(la|(1+ |al)e=" + |alBp)(Bp — 2I) || < 1, (4.44)

we can conclude that z ¢ 3, (the spectrum of B,) and

MRl (4.45)

|Ra(2) = Ro(2)|| < A=A)2

where R,(z) = (B, — 2I)7!.
Since

>
Il

2 H(|a|(1 + la))e=t + |a|2)(Bp — 2I)™* + |a|“

2|al (((1 +la))e=t +[2))n + 1)

IN

IN

2lal ((25:1 e+ 1) ,
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it is sufficient to take

n
al < , 4.46
lal 22" + |2 + 1) (4.46)

to ensure A < 1. In fact, we take

n
al <m, = , 4.47
lal 4(2e"t + |2| + 1) (4.47)

so that we get A < 1. It follows that

4A

IR < (14 e ) 1R < (1.48)

I | ©

Now, let g, y0 € R%, [ > 0, and take

my

a=———(T0 — Yo) -
|To — Yol )
We have
”Xzo,lRO(z)Xyo,l” = ”XZO,le_a'wRa(z)ea'wao,l”
= e mlmomwly, 1em ETTI R (2)e (o) y |
9
S _e—mz'|$0—y0|”XwO’le—a'(m—mo)||Oo||Xy0’le—a'(z_y0)||oo X
We also notice that .
l[Xaoae=" @) < eva™*
and since m; < 1, the theorem is proved. O

As a consequence, the matricial Green’s kernel of B, has a similar exponen-
tial decay as the Green’s kernel of A,. Let w? € ¥, we define the matricial
Green’s kernel K (w?;z,y) as the solution to

VV - K (w?*2,y) + w?e, K (W z,y) = §(z — y) ( (1) (1) ) . (4.49)

Here we shall impose an outgoing radiation condition on V- K in order to ensure
uniqueness. As a direct consequence of the previous lemma the following result
holds.

Corollary 4.1 There exist two positive constants C1 and C2 depending only on
wd > 0 such that for any w? € ¥,,

|K (w?;z,y)| < Cre= 2 dist(w”,Zp) 2yl ,  for|z—y| = +oo. (4.50)

Now we are ready to prove the analogous results to those concerning the TM
polarization.
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4.2 Convergence of the “continuous spectrum”

As done for the TM polarization, we give an estimate of the perturbation
brought to the continuous spectrum of A, by the supercell method.

Theorem 4.2 For any wg > 0 and Ny € N, there exists C > 0, depending only
on wo, No and Q, such that

. C
max dist(w?,5%,) < —
2 SEHkR/N 0 o PONS = N2
WoE€Upe[— N+1,N—1[2nN22p N[o,wg]

(4.51)
for any N > Ny and any & € By .

Proof. Letk € [-N+1, N—12NN? and ¢ € By Let w? be in 5™V 1[0, w2].
If w2 = 0, then necessarily ¢ = 0 and k& = 0 and in that case we now that 0 € Ef\,.
Let us consider now w? # 0. From Theorem 4.1, we deduce that w? is in the

E+km /N
spectrum of By .
Since £ + km/N € B, there exists ¢ € L?(R? /Z?)? with unit norm such that

(V—i(§+ %)) (V—i(§+ kﬁw)) P+ wepd=0. (4.52)
Let ¢ be defined in L2(R? /2NZ?)? as
$(x) = p(z)e T (4.53)
We have ||<;3|| L2(R2/2NZ2)2 = 4N 2. and it satisfies the following equation.
(V—i&)(V—i€) ¢+ wed=0, (4.54)
which can be written as
(V—i)(V = i&) - ¢+ w’ed = —xa(de)w’ . (4.55)

We prove then in the same way as done for the TM case that there exists an
eigenvalue wg belonging to the spectrum of va, that is Efv U {0}, satisfying

C
|w2—w§|gm.

Since we considered w® # 0, for N large enough w? # 0 and then wf € ¥4
This means that c

N2
The theorem is then proved. |

dist(w?, %) <

4.3 Convergence of the defect eigenvalues

Analogously to the TM polarization, we give a characterization of the part of
the spectrum ¥y corresponding to the defect eigenvalues of ¥. We use the
notations introduced in Definition 3.3. The following proposition holds.

23



Proposition 4.1 For every gap la,b[ in X, (0 < a < b) satisfying la,b[NE =0,
there exists Ny € N such that, for N > Ny, X¥yN]a, b[= 0.

Proof. Suppose that the proposition is false. Then for any Ny € N there exists
N > Ny and w% €]a,b[NEy. This means that w? is in the spectrum of By.
Then there exist £y € By and ¢n € L?(R? /2NZ?)? with unit norm such that

(V —ién)(V —i€N) - on + wiendny =0, in L*(R*/2NZ?*)?.  (4.56)
Now, define ¢ in L?(R?) as

dn () = /Q K(Ws)e S Vo (y) d - (4.57)

Using ¢x, we prove in a similar way as for Proposition 3.2 that

; , -
IVV - én + whednllL2r2)2 < Cre=CaN | (4.58)

|6 1l22(r2)2
for some positive constants C; and C5. Since w%\, is away form 0 then
dist(w%, %) < Cre 2N | (4.59)

which leads to a contradiction. O

Now we give the main result for the TE case about the convergence of the
eigenvalues of the supercell corresponding to the defect.

Theorem 4.3 Suppose that the perturbation has created defect eigenvalues.
Then, there exists ng > 0 and No € N such that for any n < ny and N > Ny,

SN A0, VEEBy.

Moreover, for any w§ > 0 and 1 < 1o, there exists two positive constants Cy
and Cy depending only on wg and n such that for any & € By :

disty, (zg;N N [0,w2], 7N [o, wg]) < Cre=CaN (4.60)

Proof. Since we deal with a part of the spectrum that is away from 0, the
statements are exactly the same when considering the spectra related to By
instead of Ap. The proof becomes then similar to the one of Theorem 3.2. O

Note that the Corollary 3.2 holds for the TE polarization.

5 Numerical experiments

The numerical simulations presented in this section are computed with the MIT
Photonic-Bands (MPB) package [20]. We consider a 2-D photonic crystal in
which the dielectric permittivity takes the values of 1 and 12. The structure of
the crystal is shown in Figure 1 where the dark area corresponds to dielectric
permittivity 12.
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Figure 1: The periodic structure.
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Figure 2: TE-spectrum of the periodic structure.

We investigate only the TE polarization. We compute the TE-spectrum of
this structure for the first 8 bands. This is shown in Figure 2 where we notice
the presence of two gaps between the first and the second bands and between
the second and the third bands. The singularities of the last band come from the
fact that it crosses the following band which is not represented on the diagram.

Then we introduce a defect to this periodic structure by changing the dielec-
tric permittivity in one disc from 1 into 12. The corresponding 7x7 supercell
is represented in Figure 3. We compute the TE-spectrum in the supercell for a
fixed wave number and for different sizes of the supercell (3,5,7). The results are
shown in Figure 4. The horizontal dashed lines delimit the gaps of the periodic
medium.

We notice clearly the presence of two defect eigenvalues in the second gap.
The values of the defect frequencies and the relative difference with the 7x7
supercell results are shown in table 1.

The convergence of the continuous spectrum is in 1/N but the multiplicative
constant depends on the dispersion of the band considered (the differential of the
frequency with respect to the wave vector). This explains why the convergence
in the first band (the most dispersive) is the lowest.
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Figure 4: TE-spectrum of the supercell.

In Figure 5 we plotted the defect frequencies against the wave number. In
the 3x3 supercell, the defect frequencies oscillate with an amplitude about 1%
while the oscillation is about 0.1% in the 5x5 supercell and about 0.05% in the
7x7 supercell.

Finally, in Figures 6-9 we represent the energy distribution and the magnetic
field for the defect modes in the case of the 7x7 supercell.

6 Conclusion

We presented in this paper a rigorous proof of the convergence of the super-
cell method. The convergence speed is related to the exponential decay of the

Supercell size 3x3 5x5 <7
Defect frequency 1 | 0.3706 0.6% | 0.3687 0.05% | 0.3685
Defect frequency 2 | 0.3574 0.3% | 0.3563 <00.3% | 0.3563

Table 1: Defect frequencies and relative difference with the 7x7 supercell.

26



frequency

frequency

N 1 1

o e

i
. : i i 7
wave number wave number wave number

(a) 3x3 (b) 5x5 (c) 7x7

Figure 5: Dependence of the defect frequencies on the wave number.
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Figure 6: Energy distribution in the first defect mode.

Green’s function. If (w?,w?) is a gap of the photonic crystal (w?, w? belong to
the spectrum), then it was proved that for w? € (w2, w?), the exponential decay
of the Green’s function is of the form

O(exp(—C’\/k,u2 — w?||w? — w?| |z])). (6.61)

It follows that the convergence of the defect eigenvalues will be slower when
they are closer to the edges of the gap. This is not an important problem since
these modes are useless. Actually, we are interested in the localization property
of the defect modes which is weak for such eigenvalues.

Finally, we remark that this method becomes very costly when looking for
defects lying over few bands. For example, if we look for a defect eigenvalue lying
in a gap between the fourth and the fifth band, when computing the spectrum
of the 5 x 5 supercell, every band will contribute with 5% eigenvalues and the
defect eigenvalue will be the 1015t eigenvalue which costs a lot of calculations.
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Figure 7: Energy distribution in the second defect mode.
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Figure 8: Magnetic field distribution in the first defect mode.

We believe that it should be possible to determine such eigenvalues in a faster
way with integral operator methods.
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Figure 9: Magnetic field distribution in the second defect mode.
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