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Abstract

We study electromagnetic diffraction by a dielectric object surrounded by a
nonlinear thin layer. The geometry of the problem is two dimensional and
the incident wave is TM polarized. We derive a first order expantion of the
fundamental field, then we derive the leading term of the second harmonic
field. Our approach is based on layer potential techniques through integral
representation formulas of the fields.

1 Introduction

In this paper, we study the electromagnetic theory of diffraction from nonlinear
thin layers in the undepleted-pump approximation. Since its birth in the early
1960s, rapid and continuous andvances have been made in the field of nonlinear
optics. One of the many important applications of nonlinear optical phenomena
is a method for obtaining coherent radiation at a wavelength shorter than that
of available lasers, through the process of second-harmonic generation (SHG).

All optical media are nonlinear. However, the nonlinearity is generally so
weak that it is impossible to be observed without the use of high intensity
laser beams. Mathematical modeling of nonlinear optics in thin layers is more
difficult than that of linear optics studied in the literature by many authors
[10, 11, 12, 3, 4]. In the nonlinear case, the electromagnetic wave propagation
is now governed by the system of nonlinear Maxwell’s equations, i.e., nonlinear
PDEs need to be studied. Also, the amplitude of the incident wave, which has
no role in the linear case, plays an important role in the nonlinear case. Further,
since nonlinear material properties are usually characterized by tensors, vectorial
models become inevitable in the general situation.

The main aim of this paper is to rigorously derive the effect of thin layers of
nonlinear material in the undepleted-pump approximation. In this approxima-
tion, the nonlinear Maxwell equations reduce to two coupled Helmholtz equa-
tions for the fundamental and the second-harmonic fields. We derive asymp-
totic formulas for two-dimensional fundamental and second-harmonic fields as-
sociated with thin layers of nonlinear materials. Our approach is based on
layer potential techniques through integral representation formulas of the fields,
avoiding the use (and the adaptation to our context) of the highly-nontrivial
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regularity results of Li and Vogelius [24]. See for a similar approach Beretta
and Francini [10].

Our interest in such asymptotic formulas owes to the fact that they provide
extremely powerful tools to solve optimization problems [9, 25, 26]. In [31, 6, 5,
3], asymptotic expansions of this kind for electromagnetic inclusions (of linear
material) of small diameter have been already derived. However, they are by
nature completely different from those derived in this paper. The degeneracy of
the curves associated with the thin layer complicates a mathematically rigorous
derivation, based on layer potentials, of the leading-order perturbations in the
fundamental and second-harmonic fields.

This paper is organized in the following way. In Section 2 we formulate the
problem and state our main results. Section 3 is devoted to the proof of existence
and uniqueness of the fundamental and second-harmonic fields that are solution
of two coupled Helmholtz equations. In Section 4 we review some well-known
properties of the layer potentials and prove some useful identities. In Sections
5 and 6 we give an integral representation of the fundamental field and prove
a regularity result necessary to show existence of the second-harmonic field. In
Section 7 we provide a rigorous derivation of the leading-order perturbation
term in its asymptotic expansion due to the nonlinear thin layer. Our aim in
Sections 8 and 9 is to provide a rigorous derivation of leading-order term in the
asymptotic expansion of the second-harmonic field.

2 Problem formulation

We start from the following Maxwell’s equations, which are the general laws
governing electromagnetic fields interacting with (nonmagnetic) matter

VxE:—%H, (2.1)

V xH= %(E +4nP), (2.2)

where c is the speed of light, w is the angular frequency, E and H are the electric
and magnetic fields, respectively, and P is the polarization.
These two Maxwell equations combine into

2
VxVxE—%ﬂE+MH:&

It is obvious that we need the information on the relationship between P and E
to proceed further. This is where the optical nonlinearities are introduced. In
general, the nonlinear responses are orders of magnitude smaller than the linear
response and the displacement vector of a medium can be expanded according
to the power of the applied electric field E. The case of most general interest,
which is the subject of the investigations described later in the paper, is the
second-harmonic generation (SHG). In this case we have

47P = (e — 1)E + x?(2,w) : EE,

where € is the dielectric coefficient, and x(?) is the second-order nonlinear sus-
ceptibility tensor of third rank, i.e., x(?) : EE is a vector whose jth component

is Y412 X5t : EEr.



For simplicity, we assume that the nonlinear polarization term P contains
only the sum-frequency generation of the second-harmonic from the fundamen-
tal frequency and ignore all other x(?) phenomena such as difference-frequency
generation, optical rectification, or cascaded nonlinear effects, as is consistent
with the undepleted-pump approximation. Thus the polarization P at the fun-
damental frequency w; = w and the second-harmonic frequency ws = 2w may
be written as

47TP(IE,LU1) = (6(.’1),&)1) - 1)E($7w1)7

and
4P (z,w2) = (e(z,w2) — 1)E(z,wa) + X (2,ws) : E(z,w1)E(z,w).

Assume that the depletion of energy from the pump waves (at the fundamen-
tal frequency wy) may be neglected. Then, using the above expression of the
undepleted-pump nonlinear polarization, we can decompose the Maxwell equa-
tions (2.1)-(2.2) into two sets of coupled partial differential equations at the
fundamental and second-harmonic frequencies.

Suppose all fields to be invariant in the z3 direction. In the linear case,
in transverse electric (TE) polarization the electric field is transversal to the
(z1,22)-plane, and in transverse magnetic (TM) polarization the magnetic field
is transversal to the (z1,z2)-plane. In the nonlinear case, however, the polar-

ization is determined by group symmetry properties of x(?) = (ng)l)i, ji=1- In
this work, we assume that the electromagnetic fields are TM polarized at the
fundamental frequency w; and TE polarized at the second-harmonic frequency
ws. This polarization assumption is known to support a large class of nonlinear
optical materials, for example, crystals with cubic symmetry structures. See
[30].

Therefore,

-

H(z,w1) = u(z1, 22, w1)¥3,
E(z,w2) = v(w1, T2, w2)Ts3.

Define for the sake of simplicity

€j = €(IB1,.’L’2,CO]'), .7= 1727
Wi

n,-:f €, Sk; >0, j=1,2.

At the fundamental frequency wi, the system (2.1)-(2.2) can be simplified
to

1
V- (—2Vu> +u=0.
K1
We deduce the expression of the electric field at the fundamental frequency w;

c

E(mawl) = ’l.CU1€1V X H($7w1)
C
= iwiel (6z2u7 _6z1ua 0)



Hence the second-harmonic field satisfies

At )y o _Ames @) E (E
(A+nr3)v = = D Xop(@,w)(E(z,wn)); (B(z,w))
J,1=1,2,3

= Y XjOs;udsu,

=12

where ;i = (—1)7+ (167 /€3)x ) (z, ws).-
Then (u,v) satisfies in the nonlinear material the following two coupled
Helmholtz equations

1
V- (—QVU)-FU = 0, (2.3)
K1

Av+ kv = Z Xj10z,; U0z, u. (2.4)
Jil=1,2

Let us now specify the geometry of the problem. Let €2 be a bounded C2-
domain in R?. Let 7(z) and v(z) denote a unit tangential and a unit (exterior to
Q) normal field to Q. For a function f defined on R? \ 812, we denote [f(x)]aq =

fl+ = fI- where fl; = lims0+ f(z + dv(z)) and f|- = lims_o+ f(z — 6v(x)),
if the limits exist.
We consider a layer of nonlinear material of the form

Os = {w+nu(m) tx €00, € (0,6)},

where the thickness, § > 0, is a small parameter. Let Q% = QUO;, Q% = R? \Q_jS

Os Qg

@

Figure 1: The dielectric medium.

Throughout this paper we suppose that the susceptibility tensor is of the
form

le($+77’/)=)2jl<$;g); $€6970<77<5;
where x;; € L>(Oj) are independent of §, and define
k1 forxz e,
k(z) =< ko for z € Oy,
ko for x € Qf,



where ki, ko, kg are positive constants. We also introduce the function k'(x)
defined analogously with positive constants ki, kb, k). We assume in all what
follows that ko # k1, k2 # ko, k5 # ki, and k) # k.

By 09, for 1 € (0,6), we denote

o, = {a:—}-nu(x) 1T E 89},

with the convention 9Qy = 9. We denote by p(z) the curvature at the point
z € 00. If ds denotes the surface measure on 92 then the corresponding surface
measure on 0f), is related to ds at the point z € 0 through the relation
dsy(z +nv(x)) = (1+np(x)) ds(x).

Consider an incident plane wave given by ur(z) = Ure'*1'® where k; € R? is
the wave-vector with |kr| = ko and Ur € R is a positive constant. Then (u,v)
is solution of the following problem

( 1

V- k—2VU +u = 0,

Av+ k2 = Z X;10z,;u0z,ulo;,
J\l=1,2
{
: ou—ur) .
1 \/ — % —jko(u — = 0
om Vil ( ] holu—ur) ’
ov
Nal [ 2V = 0
[ e VI <a|a:| ' ) ’

where I, is the characteristic function of Os. (29)
The equations (2.5) may alternatively be formulated as follows
((Au+kiu=0 in Q,

Au+ku=0  in Os,
Au+kiju=0  in Qf,
¢ [uloq = [ulons =0, (2.6)

Tow _[rew] _
k20v]aq  [K2OV]hg,

tim /o] | 2 )

—iko(u —ur)| =0, uniformly in

z
|z|”



and ) )
Av+k*v=0 inQ,

Av + klfv = Z X;j10z; U0z, u in Oy,
Jl=1,2

Av+kiv=0  inQf,

[v]sq = [v]aqs =0,

50) 0~ (360,
o | 0 ov | g0, ’

lim /] | 2

T

In the remainder of this paper U shall always refer to the solution of

—ikyv| =0, uniformly in

\

(AU+KU=0 inQ,
AU +kU=0 inR*\Q,
[U]aQZOa

‘ [IBU]

———| =0,

k2 0v | oq

6(U - 'LLI)

o] —iko(U — ur)

=0, uniformly in

x
||’
where the function k(y) is given by
- k1 fory € Q,
k(y) = -

ko foryeR*\Q.

Before giving a precise formulation of the main results of this paper we
need to introduce some additional notation. By GG, we denote the fundamental
solution of the following transmission problem

(A,G(z,y) + k5 G(x,y) = 8:(y) fory e R*\Q,
AyG(z,y) + K G(z,y) =8,(y) foryeq,
[l::zG(w, )] =0 ondQ,

)

]20 on 0N ,

OG(
lim /]y ‘ (2,9) _ ikoG(z,y)| =0, uniformly in Y.
{ ly/=o0 Ayl lyl



We will also need the function G’ that is the solution to
(A,G(@,y) + (k)°C'(a,y) = 3uly) fory e B2\ T,
A,G'(z,) + (K)°G'(z,y) = 5, (y) foryeQ,
[G'(z,)] =0 ondQ,

< [%] =0 on o,

lim \/—‘6G z y —ZkéGl(-'an) =0, uniformly in ia

where the function &’(y) is defined analogously to &(y).
Define the symmetric matrix A(z),z € 99, by

A has eigenvectors 7(z) and v(z),

the eigenvalue corresponding to 7(z) is (-2)> — 1

) (2.9)

k
the eigenvalue corresponding to v(z) is 1 — (—=)2.
0
It is clear that A is positive definite if ky > k2, and negative definite if ky < k».
We also need the matrix A'(z),z € 99, defined by

A’ has eigenvectors 7(z) and v(z),

the eigenvalue corresponding to 7(z) is 1, (2.10)

k
the eigenvalue corresponding to v(z) is (k_2)2
0
The main achievement of this paper consists in the following asymptotic
formulas concerning the perturbation, u — U, and the second-harmonic field v,
enhanced by the thin layer of nonlinear material Qs in the undepleted-pump
approximation.

Theorem 2.1 Let u and v be the solutions to (2.6) and (2.7), respectively, and
let A and A' be the matrices defined by (2.9) and (2.10), respectively. Then,
for z € R? \ Q bounded away from 05, the following pointwise expansions hold:

u(z) =U(x) + 6 V,G(z,y)| - AVU(y)| ds(y) +0(9) , (2.11)
o0 + +
and
v(z) = 5j7h21’2 o G'(z,y) N
Lo / : (2.12)
(s 500 80) (4v00)| ) (AV0W) ) &
+0(9) ,

where the remainder terms o(0) are independent of x.



It is worth noticing that from the nature of our derivations it follows that
we cannot expect the remainder terms in (2.11) and (2.12) to be uniform in
R? \ 0. Rather, these terms are uniform at fixed distance away from 92, but
with the estimates (2.11) and (2.12) degenerate as x approaches Q. Indeed,
the transmission problem for U and the first order correction

uy = VyG(ZU,y)
o0

- AVU (y)
+

ds(y)

+

are not posed on the same domain — the transmission problem for U is posed on
the whole R?, but the one for u; is naturally posed on R? \ 9Q2. This significantly
complicates our mathematically rigorous derivation of the expansions (2.11) and
(2.12) and makes our analysis nontrivial.

3 Well-posedness

In this section, we will prove existence and uniqueness of the fundamental field
u. Even though these results are classical we give their proof for the reader’s
convenience. The proof of existence and uniqueness of the second-harmonic field
v is exactly the same as for the fundamental field u since, as will be shown later
in Corollary 6.1, 3=, ,_; 5 X;10z;u0y,u belongs to L*(Oj).

We start by formulating the problem (2.6) in a bounded domain. Consider
the disc Bg centered at the origin with radius R large enough to have Q C Br
and denote by Sg its boundary. The scattered field u — us satisfy in R? \ Bgr
the Helmholtz equation

A(u—ur) +kj(u—ur) =0,

together with the (outgoing) radiation condition

lim /7 (Q(“T_TUI) —ikg(u—u1)> =0.

r—-+00
Taking the Fourier series (u™ — u})(r) with respect to the angular variable
0, where (r,6) are the polar coordinates, we get

’I’L2

("™ —u})'(r) + %(u” —u)'(r) + (kg — T—Q)(u" —uf)(r) =0 forr > R.

Therefore
(u™ —uf)(r) = AnHﬁbl)(kor) + BnHﬁbz)(kor) ,
where A,, and B,, are constants, and HT(LI) and HT(LQ) denote the Hankel functions

of the first and the second kind, respectively. However, only Hﬁl)(kor) satisfies
the above radiation condition. Thus,

(u—uy)(r,0) = Z A HO (kgr)e™  forr > R and 6 € [0,2n) .
nez
O(u —uy)

Using this Fourier expansion we can express the trace of (u—uy) and 3
v

on Sg as follows

(u—ur)(R,0) = A, HV (koR)e™

nez



W(R, 6) = > AakoH' (ko R)e™ |
neEL

from which we readily get that

(5(u - u,))” () =k HY (koR)

o “nom

Let Cgr be the mapping defined by
Cr: H'/2(SR) — H7%(Sg)
HY' (koR)

f= Znezf”eina — CR(f) = Wékomfneina )

The proof of uniqueness of a solution to (2.6) relies on the following classical
properties of the so-called Dirichlet-to-Neumann map Cg.

Lemma 3.1 The mapping Cr defines a bounded operator from H'/?(Sg) into
H~'Y%(Sg). Furthermore, we have

S| Crwu>0 Yue HY?(Sg),u#0, (3.13)
Sr

R [ Crwu<0 YueHY?(Sg). (3.14)
Sr

Now we can formulate (2.6) in the bounded domain Bp using the Dirichlet-
to-Neumann map Cg. Introduce the following transmission problem

((Au+ku=0 in Q,
Au+k3u=0 in Oy,
Au+kju=0 in Q5 N Bg,

< [U]BQ = [U]BQS =0, (315)
Loul _[Lou] 4
R20v]sq  [K20V]sg,
0
| 5, =Cr+g  on Sk,
BuI
where g := B Cr(ur) on Sg.

Lemma 3.2 To each solution u to the problem (2.6) corresponds one and only
one solution u'® to the problem (3.15) that is its restriction to Bg.

Proof. Let u be a solution to (2.6). Since (u — uy) satisfies the Helmholtz
equation A(u —uy) + kg (u —us) = 0 in R? \ Bg and the radiation condition, it
immediately follows that

O(u — uy)

5 =Cgr(u—ur) on Sg,

10



which is equivalent to

0
B_:j =Cgr(u)+g on Sg.

The restriction of u to Bpg is then a solution to (2.6).
Conversely, let u* be a solution to (3.15). Let f = u’|s,. It is well known
from the potential theory that the following exterior problem

Auf + kgu® =0 in R? \ Bp,
u® = f —uy on Sg , (3.16)
6 e
|w1|i£>noo V| WZ' —ikou®| =0 uniformly in |i_|’
has a unique solution u¢. Define u by
’U,i in BR ,
u= _
u®+ur in R?\ Bg,
It is easy to check that u satisfies (2.6). d

We are now ready to prove the well-posedness of the problem (3.15). We
introduce the bilinear form a(u,w) on H'(Bg) x H'(Bg) by

1 1

a(u,w) = —Vu -V — / U — 75 Cr(u)w . (3.17)
Br k Br kO Sr

We can immediately see that a function u € H!(Bg) is a weak solution to (3.15)

if and only if it is a solution to the variational problem

1
a(u,w) = k_z/s g Yw € H' (Bg). (3.18)
0 R

The following existence and uniqueness result holds.

Proposition 3.1 There ezists a unique weak solution to the problem (8.15) in
H'(Br).

Proof.  Since k?(z) is bounded away from 0 and oo, there exists a constant
C > 0 such that

Ra(u,u) > C |Vu|2—/ uf?. (3.19)
Br Br

It is also obvious that the bilinear form a is bounded. Since the embedding
of H'(Bg) into L?(Bg) is compact, the Fredholm alternative holds and the
existence will follow from the uniqueness.
In order to prove the uniqueness, suppose that there exists u € H'(Bg)
satisfying
a(u,w) =0 Yw € H'(Bg) .

Therefore

Sa(u,u) =0=S Cr(u)u,
Sr

11



and thus, using (3.13), we deduce that u belongs to H}(Bg) and satisfies

1
5Vu Vm—/ ww =0 ,Yw € H'(Br) . (3.20)
Br Br

This means that u is a weak solution to

1
V-k—ZVu—}-u:O in Bg,
u=0 onSg,

ou

— =0 onSg.

ov R
Finally, since k2 is piecewise constant in Bg, the unique continuation theorem
for the Helmholtz equation applies to ensure the uniqueness of a solution. The
proof of the proposition is complete. O

4 Preliminary results

Let us first review some well-known properties of the layer potentials for the
Helmholtz equation and prove some useful identities.

Let k > 0 be a given constant and let 'y, and T’y be the fundamental (out-
going) solutions of A + k2 and A, respectively, which are defined by

i
Tu(e) = L Hi (klal), =€ R,

To(e) = 5 log(lal), @€,
2
for x # 0.
Let n > 0 be small enough. We define the slightly modified single layer
potential S¥ and double layer potential D% for a density ¢ € L*(09) by the
following

Sko(z) = /BQ Tr(z —y — )L +np(y)ey) ds(y), =€k,

k _ Olp(x —y —nr(y))
an(m) B a0 ov(y)

We also define the operators K}, its L*-adjoint (K))*, and M} by

k(2 —y + n(v(z) - v(y)))

(L +npW)e(y) ds(y), = €R\0Qy,

Kro(z) = ., () (1+np))e(y) d(y), =€,
(K5 p(a) = [ FEZIEIED O s p)et)at) o € o0,
oQ v\r
Mo = [ (555 + ey T = v+ @) = )

(1 +np))e(y) ds(y) ,

12



for z € 09.
Finally, we introduce the following notations for n,d > 0 small enough and
x € 0N
S,’;dgo(:c) = 5717“90(:1: +ov(z)), =zeR2,
and
D} so(z) = DEo(z + 6v(z)), z€ R\ 0.

The functions Sﬁgo and Dﬁgo are in fact the single and double layer potentials
of the density ¢(y + nv(y)) = ¢(y) on the curve 0%,
We recall the following classical result.

Lemma 4.1 For any k > 0, the function T'y — Tg is continuous.

Proof. From
A(Ty, —To) + k*(T, — To) = —k°Ty

and since T is in L (R?), we deduce by applying classical results on elliptic
regularity [17] and the Sobolev embedding theorem [2] that 'y, — Iy is a contin-
uous function. O

From the properties of S) and D, see [13], we can obtain that

6(5;;]775)1(@ - (:l:%] + (K,’;)*) o(r), ae z€dQ,  (421)
(Dhp)s(z) = (%I + Kﬁ) o(z), ae z€d0, (4.22)
for ¢ € L2(3Q), where
6%‘3* (2) = lim v(z) - Vu(s £ hv(z)) ,

and

From the standard potential theory, we also have the following results.
Lemma 4.2 For n > 0 small enough, the following operators
Skt L*(0Q) — H'(09) ,
k kyx . 12 1
Ky, (Kp)* : L*(0Q) — H (09) ,
MF, 8,8k )+, (D) )+ : L?(09Q) — L*(09) ,

are bounded.

We can prove that the following expansions hold. See Appendix A.2 for the
proof.

Lemma 4.3 For any n > 0 small enough and for any ¢ € L?(09), we have
Ss.s0(x) = Sgow(@) + 6 (Kge(z) + (Kg)*¢(x) + S§o(pp)(2)) + 0O(8%)
(K§) p(z) = (Kg)*p(z) + 8 (Mgp(z) + (K§)* (pe) () + O(8%) ,
where O(82) is in H'(0N) in the first equation and in L2(8Q) in the second one.

13



The following lemma is of importance to us. We refer the reader to Appendix
A3 for its proof.

Lemma 4.4 There exists €5 > 0 satisfying gin(l) es = 0 such that for any ¢ €
—
L2(09Q) and s = 0,1, the following estimates hold:

||S(I)c,590 - Sg,o@”mﬂ(an) < esllellasa9) >

||5§,580 - 5§,090| w+1(00) < &sllellmso9)

H 3(5(1)9,590) 0(S5,0)+

< esllellasa9) >

ov ov Hs(09)
H A(Sksp)-  O(Skop) H < esllll = (o0
v W Algeaa) ~

The estimates for s = 1 hold under the assumption that 0Q is of class C3.
The following result on the spectral radius of K} is also of use to us.

Lemma 4.5 For any A satisfying |A| > % and any k > 0, the operator \I +
(Kﬁ)* defined from L2(0Q) into L2(0Q) is invertible.

Proof. It has been proved by Kellog in [22] that when |A| > 1, the operator
Al + (KQ)* is invertible on L*(99). Lemma 4.1 shows that (K¥)* — (K0)* is
compact on L2(0f2). Therefore the Fredholm alternative holds. It remains then
to prove the injectivity of AT + (KF)*. Let us suppose that we have ¢ € L?(99)
satisfying

AT+ (K5)*)e=0.

Define u on R? by u(z) = S,’;cp(a:). Tt is clear that u satisfies the Helmholtz equa-
tion in R? \ 9, together with the radiation condition as |z| — 400. Moreover,
it can be easily seen that

uyr =u_ on o8, , (4.23)

1 1
I Aay(u)_ =7 /\6,,(u)+ =¢ ondQ,. (4.24)

-1 1

Consequently
12
3 / oy = L3 o, w
a0, —5— lo

-

1o
= 259 (Mum+|VuP) =0.
—3 = Clo

Applying Lemma A.1.2, we obtain that v = 0 in Q7. From the expression of
0y (u)+ we finally conclude that ¢ = 0 which ends the proof. O

14



5 Representation formula for the fundamental
field

In this section, we state and prove a representation formula of the solution of
(2.6) which will be the main tool for deriving the asymptotic expansions of the
fundamental and second-harmonic fields. A similar representation formula for
the transmission problem for the harmonic equation was found in [19, 20]. See
also [3].

By X and Y let us denote

X :=L*00)?*, Y :=H'09Q) x L*(09).

The following theorem is of particular importance to us for establishing our
representation formula.

Theorem 5.1 Suppose k3,k2 are not Dirichlet eigenvalues for —A on Q. There
exists &g > 0 such that, for 0 < & < &, for each (f1, f2,91,92) € Y2, there exists
a unique solution ® = (1, 2,12, p0) € X? to the system of integral equations

( 55}0901 - S(I)C,20902 - S§,20¢2 = f,

10(Soher)- 1 9(Sghpe)r 1 A(Sgave) _

k2 ov Y 2 o

— N . (5.25)
So.s2 + 9552 — S5 500 = 91,

1 0(Sahee) | 1 0(Sve)- 1 0(Sghe0) _

\ k3 ov k3 ov k2 ov =92

on 0N.

To prove this theorem, we need some preliminary results. First, define the
operator T from X2 into Y2 by T(®) = (f1, f2,91,92) where (fi, f2,91,92)
is given as in (5.25), and let the operator Tp from X? into Y2 be given by
To(®) = (f1, f2,91,92) where

( Sober — 8o = 1,
ia(séﬂfo@l)f _ i3(5§fo¢2)+ _
k2 Ov k2 Ov 0
< k2 _ qk2 —
55’6¢2 55,6900 =91,
10(S53¢2)- 1 8(S5500)+
\ k3 Ov Kk ov -9

on 0f).
Then the following lemma holds.

Lemma 5.1 The operator Ty : X2 — Y2 is invertible.

Proof. Let us solve the equation To(®) = (f1, f2,91,92). Since the two first
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equations are decoupled from the two last ones, we start by solving the system
S — Sops = fi

i@(Sg,ZoSOl)— B i@(S(’fng@)Jr y on 9.
k2 dv k2 o = f2

Since k3 is not a Dirichlet eigenvalue of —A in (, the operator Sg% : L2(99) —
H'(89) is invertible and so we have

-1
1 =2+ (S(Iffo) fi.

Substituting this into the second equation, we get

() (o2 () )

where ) is given by

1
Since |\ > 3 for any positive constants k1 # k2, applying Lemma 4.5 yields

that AT + (K(If’%) : L2(00) — L2(69) is invertible. We can then express @2 in

terms of (f1, f2), and the expression of ¢; follows immediately.

On the other hand, it is well-known that for § small enough, k2 is not a
Dirichlet eigenvalue of —A in Q U Og. See, for example, [21]. We can then
express analogously (12, o) in terms of (g1, g2). d

Lemma 5.2 The operator T — Ty : X2 = Y? is compact.
Proof. Let ® = (1, 02,12, 0) € X2, then (T — Ty)® is given by
(Sg,lo - 5(119,20) P1 - S(’{%«ﬁz

k1 ko
i@ ((50,0 _50,0)901)_ _ i65§7%¢2
k2 v k3 ov

St — (855 - 55) v

(T -To)® =

k k
i@S(’ffé(pQ B ia ((56,% - 55,25)<PO)+

k2 Ov k2 v

Since T, — Ty, is smooth, we can easily see that SF — Sk : L2(6Q) — H'(9Q)
Sk )+ A(Sk)

is a compact operator, and so is 8"1’/" - "l’/" T L2(09) — L2(89). Tt

is also clear, since the layer potential of a curve is smooth away from its curve,
) oSk, 0Sk; ) 5

that S§ 5, S¥, : L?(89Q) — H'(09) and 61/, ’6—1/, : L*(09) — L*(090) are
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compact operators which ends the proof. O

Now we are ready to prove Theorem 5.1.
Proof of Theorem 5.1. Since Ty is invertible and T'— Ty is compact, the Fredholm
alternative holds and existence follows from uniqueness.

Let @ = (p1,p2,%2,00) € X? satisfy T® = 0. Consider the function u
defined as follows

S(’)“gol(a:) x €N,
u(z) =4 S¥2pq(z) + ngzbz(x) z €Oy,
S(’;Ocpo(m) z € Q.
This function satisfies the equations in (2.6) with the incident field uy = 0.
Moreover,
oul| _ ki ou| _
5197 + 2 JOQs _
k?)/ 2 20,12 k%/ Ou| _
= — Vul|* = k5|ul?) dy + — —| uds
8 Jo, (VeF Rl e [l
k?)/ 2 2|, (2 k(z)/ ou| _
= = Vul|” = k3lul|”) &y + -5 | uds
1 Jo, IV~ H00) &+ [
kg 2 120,12 k3 2 120,12
= 12 (|Vul]® = k3|ul?) &y + 7 (IVul> = kf|ul?) dy.
2 Os 1 Q
Thus P
%/ 2 Gds =0.
Qs 61/ +

Since v satisfies the radiation condition, using Lemma A.1.2 we deduce that
u = 0 in €§. Then, u satisfies the Helmholtz equation in Os with u = g—:j =0
on 0Qs. By the unique continuation theorem, we conclude that u = 0 in Oy
and in the same way we get u = 0 in Q.

Now let us define @ by

i(z) = S po(z) for x € R,

Then @ is a solution to Ad+kja = 0 in Q} with the Dirichlet boundary condition.
Since kZ is not a Dirichlet eigenvalue for —A on Q, there exists §o > 0 such that,
for 0 < & < &, kZ is not a Dirichlet eigenvalue for —A on Q%, and for such 4,
we have necessarily & = 0 in Qf;. From the jump of the normal derivative, we
obtain
_oa ol
vo= ov|, Ov
Consider now the function ¥ defined by

#(x) == Sg>pa () + S4pa(z)  for x € B2,

=0 on 9.

which satisfies the Helmholtz equation on QUO;USQ§ together with the radiation
condition. Since #(x) = 0 on 0, it follows by Lemma A.1.2 that ¢ = 0 in .
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We also notice that @ = 0 on 0). Since k2 is not a Dirichlet eigenvalue for —A
on ), 7=01in Q, and so ¥ = 0 in R2. Then, we get

_0@).  0)- _
P2 = o EP on 0f).
_ 0@+ 9(0)- _
Yy = o ov =0 on 99s.
Define 6(x) = S¥ ¢y () in R?. Tt is already proved that ¢(z) = 0 and
a(S§ 1), \ _
o @=0
k1
on 99. We deduce by Lemma A.1.2 that 6(506751”(3:) = 0 on 0. It then
follows that . .
Qo = 9(So 1)+ _ 9(Sp 1) -0 on 9.
Ov Oov
This ends the proof of the theorem. O

At this point we have all the necessary ingredients to state and prove the
following representation formula.

Theorem 5.2 Suppose k3, k3 are not Dirichlet eigenvalues for —A on Q. There
exists 69 > 0 such that for 0 < § < &, if u is the solution of the problem (2.6)
and ® = (1, 02,12, 00) € X? is the unique solution of

( Solow1 — Soiawz — Syats = 0,

1 0(Sper)- 1 O(Sphw)+ 1 O(S5ive) _
k? ov k2 ov k2 ov 7

S&%p0 + S§5tbs — S8%500 = us(x + dv(x)),
19(S%92) | 10(S5w2)- 1 0(S55¢0)+ 1 dur

B o TR o R o Ra @)
(5.26)
where x € ON), then u can be represented as
SE ) (2) forx e,
u(z) = 56“2 pa(x) + S§2w2 () forxz e Os (5.27)
ur + S¥ () , for z € Qf .

Proof. 1In fact, the function defined as in (5.27) clearly satisfies the Helmholtz
equations, the transmission conditions and the radiation condition in (2.6). O
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6 Regularity result

In order to rigorously derive the asymptotic expansions of the fundamental
and the second-harmonic fields v and v, we will need to prove a more refined
regularity result for the solution ® in X2 of the system of integral equations
(5.26).

Lemma 6.1 Let ® be the solution in X? of the system of integral equations
(5.26), then @ € (C*(60))".

Proof. From (5.26), we have
S5z + (S5 = Sab)er

10S2y 1 o
gt () = &3 e

TO@ - k k k
—Skapr + (S8 = 555 o + uiz + ov(=))

1 65(1;’25902 1 Ko\ ko 1 duy
"o TR ((Ka )" = (K5?) )) ¢0+%E(m+6l/(w))

Since 00 is C?2 we can deduce from the right-hand side of the previous iden-

tity that To® € (C*(09) x cl(an))Q. Another immediate consequence of the
regularity of 9 is that the following operators

Sko = CHOR) = C2(09),
A+ (Kko)* = CH09) - CH(09),

with [\ > % and k > 0, are invertible with bounded inverse. The proof can be
found, for example, in [22].

From the expression of (T) ™! in the proof of Lemma 5.1 we can then deduce
that & € (C*(80))". m

As a direct consequence of the previous lemma and the following integral
representation for v in Og:

u(x) = S5*pa(x) + S5*2(2)
the following regularity result holds.
Corollary 6.1 Let u be the solution to the problem (2.6). Then Vu € L>(Oy).

This result is important to us for establishing the well-posedness of problem
(2.7).

Corollary 6.2 Let & be the solution in X2 of the system (5.26), then ® €
(H(00))".

With this higher regularity for ®, we can define higher-order derivatives of
the single layer potential. The following lemma holds.
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Lemma 6.2 Let ¢ € H'(0Q). Then the first and second order normal deriva-
tives of the single layer potential exist and are continuous from H'(0Q)) into
HY(09Q) and L?(0N), respectively. In particular, we have

a(Sk
Sksp = Shap+ o200tk o),
955 5 3(S§.0%)+ 0*(S80%)+
ov N ov +0 ov? +0(0)
A(Sk o)
Stop = Skyp+ 62D L5,
0S50 8(SEsp)- 0% (SEow)-
ov N ov +9 Ov? +0(9)

where o(8) is in H*(0Q) in the first and third equations and in L*(0Q) in the
remaining ones.

7 Asymptotic expansion of the fundamental field
Given sufficient regularity of 0, we rigorously establish in this section the

asymptotic formula (2.11) for the fundamental field u. We first introduce some
notations. Define the operators s, Rs and W; from X into Y by

1 0(Skhe)- 1 0(S55¢)+
_ k1 _ ako = 0,0 o 3,0
Qs(p,¥) = <So,080 55,5% k2 v k2 v )
Ri(pw) = (<s§; St + (55 - S,
10 ko ko ko k2
15 (5659) = (SEae)+ + (S50)- — (k) |
ks b, 1 0(S539)+ 1 0(S5av)
W5((,0,¢) - <SO,OSO+ S6,0¢7 k% v + kg v )
o\, = 0,0¥ 0,0%> k% o kg Y s

and the function U on 8 by

6u1

Ul (z) = (uI(x—}—(Su(x)),%E(m—kéu(x))) .

The following lemma holds.

20



Lemma 7.1 Let ® = (p1,p2,%2,00) € X2 be the unique solution of (5.26),
then (p1,90) and (p2,12) are solutions of the following equations

U}s - R6(902,¢2) y

1 3(Sk1<P )7 (7.28)
Wis(p2,92) = <(S§}0901)’k_2%vl -
1

Qé((pla 900)

In order to expand ® with respect to the thickness §, we need to prove a stability
result when § goes to 0, provided 0f2 is sufficiently regular.

Proposition 7.1 The operators Qs and Ws converge uniformly to Qo and Wy
respectively. Moreover, assuming 0S) of class C3, Qo and Wy are invertible from
X into Y and from (H'(09Q))? into H?(0S) x H'(09).

Proof. The uniform convergence is a consequence of Lemmas 4.3 and 4.4. Let
us prove the invertibility of Qg. We write Q¢ as

1 0(Skoe) iaw{fwn)

_ k1 _qQk i _
Qolp,¥) = (So,o@ 50,0 ’kf o kg o

v ( (8t - Sy,

_1.0((S5% — So0)¥)+
k2 ov ’

where the first operator is invertible and the second one is compact. The Fred-

holm alternative holds. It remains then to prove the injectivity of (Jo. Let

(p,1) € X be satisfying Qo(¢,%) = 0. We define u in R? by

Sk o(x) for z € Q,
u@={ _
Ssot(x) for z € R%\ Q.

In a similar way as for Theorem 5.1, we prove that

g [ Mgy,
o0 61/

from which we get that, since u satisfies the outgoing radiation condition, u = 0
in R? \ Q and so, by the unique continuation theorem, we obtain that u = 0 in
R?. Since k3 is not a Dirichlet eigenvalue for —A on Q, it follows that S = 0
in R? and from the jump of its normal derivative on 9, we can deduce that
1) = 0. We prove in a similar way that S(’)“cp =0 in R? and then from the jump
of its normal derivative, we get ¢ = 0. The invertibility of Qg is then proved.

To prove that Wy is invertible, let us suppose that we have (p,) € X? and
(f,9) € Y satisfying

Se%p + Sex = f,
1 9(Ssop)+ | 1 0(Sead)-
k2 ov k2 Ov -7
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Then we deduce from the first equation, since k2 is not a Dirichlet eigenvalue
of —A on , that

k —
e+ = (S f-
Inserting this into the second equation together with the expression of the jump
of the normal derivative of the single layer potential, we obtain

1 . _
o= K9 — (=5 + (K55S 1),
which gives us the expression of ¢ and proves the invertibility of Wy.

The invertibility of Qo and Wy from (H'(09))? into H?(8€) x H'(0Q) can
be proved in the same way. O

Proposition 7.2 Suppose that O is of class C3. Let ® = (1, 02,%2,00) € X2
be the unique solution of (5.26), then there exists a constant C > 0 such that

1@ 1 (a0t < C' .

Proof. Since Wy converges uniformly to Wy and since Wy is invertible from
(H'(0%2))? into H2(0Q) x H'(8NQ), then in view of (7.28) it can be seen that
there exist two constants C,C; > 0 such that

A(Sk 1)
(s 2502

< Clleilla ooy -

(@2, ¥2)llzr1 (a2 < Ch

H2(0Q)x H1(89)

Combining the facts that Q)5 converges to ()¢ uniformly together with the fact
that Q) is invertible, we show that there exist constants C',C] > 0 and €5 small
such that for § small enough, we have from Lemma 4.3 that

||(901)900)||(H1(89))2 S C{ “U? + R6(802’1/}2)||H2(89)XH1(69)
< Cr+eésllerllman) -

Here e5 — 0 as § — 0. It then follows that o1 and ¢o are bounded in H'(99)
which also implies that ¢, and 102 are bounded in H!(952). O

Proposition 7.3 Let ®° = (¢9,03,v3,08) € X? be the unique solution of

(5.26), then (9, ¢0) and (93, 43) converge to (¢9,¢]) and (p3,49) respectively
in (H1(09Q))? where (0,03, ¢3,v3) are the unique solutions to the decoupled
systems of integral equations

QO(SO(IJawg) = U? )
and

(7.29)

1 9(Spl¢?)-
k3 v ’

Wo (99, 49) = ((55,1080(1])7 %) 0

22



Proof. Recalling that ¢ and 3 are bounded in H'(81), we have
U? — Rs(ipa,2) = U?

uniformly in H2(8Q) x H'(01). Since Qs converges uniformly to Qo, (9, ¢3)
converges to (¢9,¢9) in (H'(02))2. Tt follows that, since W; converges uni-
formly to W, (¢3,13) converges to (¢9,9) in (H'(00Q))? which ends the proof
of the proposition. O

It is worth noticing that the limit (9, ) represents the solution of the
problem without the thin coating. In fact, if we define U by

{ Ser 9 () forz e Q,

U(z) := ko 0 2\ Q
0’wo(z) +ur(z) forzeR*\Q,

(7.30)

then U is the unique solution to the problem (2.8).
The following proposition is a direct consequence of Lemmas 4.3 and 6.2.

Proposition 7.4 The following expansions hold.

Qs(,%) = Qolp,¥) —0Q1(¥) +0(%), Vo,pe H'(99), (7.31)
Rs(p,9) = ORi(p,9) +0(0), Vv €H(0Q), (7.32)

where the remainder terms O(82) and o(d) are in H'(09) x L?(09), and

d(Sk2 » d(Sk2 ) _
Biow = (PChek . 2 (733
1 [ 0(Sshe)+  O(SEad)-  O%Seh(0+%) 5o
k_%(p 61/ +p 61/ + 67'2 +k250,0(g0+¢)) )
9(S5%¢)
Q1(p) (# +55%(pp) + (DE%®) + (7.34)

ov or?

1 ( B(Sehp)+  02(Si%e)
—f P P
1% 1%

A(SEupe)+ (D)
2 - — (i) + 00 DM )

Proof. Since, for ¢ € H(0Q), S§¢ satisfies the Helmholtz equation in R? \ 6Q
then

0*(SEop)x _ _ O(S5op):  8*(S§op)
ov? Y or?
and equation (7.32) follows immediately from Lemma 6.2. Here we have ex-
pressed the Laplacian in the local coordinates
P, 9, 0
a2 " Pay T o2

Applying Lemma 4.3, we obtain (7.31) for

- k'zS(’]“,Ocp on 09,

A= on 09. (7.35)

(g, 1) € (L*(0%))? with
1
K

Q1) = (K!;zp KB+ SE o (), = (ME + (K{:)*w») .
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It remains then to prove that for 1 € H'(9Q) this expression is identical to the
one defined in (7.34).
In view of identities (4.21) and (4.22), it is easy to see that

o(SE
b+ (150 = 229 k.

On the other hand, by using the local coordinates (7.35) it follows that

A(Seae)+  0*(SE%e)

M+ (BE) (o) = —p=20t 20 i (stg)
+3(5§?opso)+ N d(Dg%¢)
ov ov '
as desired. The proof is complete. O

Proposition 7.5 Let (go}’é,go(l)"s) € X be defined as

d 0 J 0
16 16y ._ [P1—%1 Po— %o
(301 » Po ) ( 5 ) 5 ) .
1,6 1,6 . . 1,0 1,0 .
Then, for 6 — 0, (;°,¢y°) converges in X to the pair (¢, ¢y ) which sat-
isfies

Qo(er°, 90°) = Up(@) + Q1(¢d) — Z(¢?) , (7.36)
where
ou 1 Ou 1 6%u
Vi) = (@)= par gt @)~ e @ - u@)) , aeon,
0 0
 (RASEhe) - 1 B(Sehe)-  10%S5h(9)
2) = (ET"E’) v TR o 0@

Proof. Since (¢$,v3) converges to (¢9,49) and (49, p3) converges to (¢, 9)
in H(09), the following equation holds.

Qo(e1’,¢6”) = Uj(z) + Q1(93) — Ru(3,42) +o(1) ,

where o(1) is in Y. We can then state that (go}"s, cptl)"s) converges to (¢, goé’o)
that is a solution of

Qolp1 % 0p°) = Up(z) + Q1(p)) — Ru(¢3,49)

From equation (7.29), we see that

SEh( +49) = Sghed
O(Soae9)+ , DSod¥d)- _ K3 O(Sahel)-
ov ov Ok ov ’

which gives
Ri(p3,43) = () -
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The proposition is then proved. O

Finally, the following proposition provides the expansion of (,¢3) as §
goes to zero.

Proposition 7.6 The following expansions hold.

ol = W +dn’ +o(0),
05 = )+ +0(d) .

Proof of formula (2.11) in Theorem 2.1. From the representation
formula and the expansion of (¢1, o) we can write

u(z) = U(z) + dui(z) + o(d) ,
where

(@) Si o1 () for z € 0,
up\r) = —
S oh°(z) + DI d(x) + SE(ppd) () for 7 € B\ T

Consider now the unique solution to the following problem

( Aw; + kiw; =0 for z € 0,
Aw1+k§w1=0 fOI‘aZElR2\ﬁ,
) [wi]oe = (Dg%%d)+ + Si%(pe0) on 09, (737)
Low]  _ 1 9Ssh(ee)r | 1 0(Dopwh) o 50
k> Ov | a0 ki ov kX ov ’
\ w; satisfies the (outgoing) radiation condition.

The function w; can be expressed using the Green’s function G as follows

oG
wi(@) = - [ S>(2.9) <(D§?0<P8)+ + Sé“,"o(pcpg)) ds(y)
a0 OV
1 9(Se%(pel))+ 1 0(Dg%el)
2 1 9Lo0,0P¥0 1 0,040
+ . kO (G(.’E, y))-i— (kg v + kg v dS(y)
On the other hand, we can see that
0 forx €,
wi(z) = ko, 0 k 0 2\ 0
Dy°po(2) + S5°(ppp)(z) forz € R\ Q,

since this last function satisfies all the conditions in (7.37). We also introduce
the function wy defined on R? by

wa(z) =

Skl (2) forz e Q,
Skope(x) forz e R2\ Q.
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Since ()°, cp(l)’o) satisfies the system (7.36), we can express w» using G as follows

oG
Wa2l\T = X
@) = | G

Our 6(5(1)9?0900) k3 6(&?0@1)

(5 +  ov + So D(pwp) + (Do 0%0)+ kz T d(y)
2 1 Our 1 0%ug 1 3(S5hve)+

+ | oG v)+ (kgp v O T e @t gy
+i32(5(l)c,00908) +(Ske 0) — 1 9(S5%(ped)) + 1 d(Dgipf)

K or 0.0%0) " 1z 5y B ov

1 9(Sgoet)- 1 S5u(Ah) i, o
_EpT - k—%T - 50,0(401) ds(y)-

Since
ul(w) = 11)1(1') + 11)2(1') )

we conclude that
oG 1 /oU
_ 2 12

_ (% _ k%) . ké(%(m,y)hz—g(y)} ds(y) ,

which ends the proof of the first asymptotic expansion in Theorem 2.1. |

8 Representation formula for the second-harmo-
nic field

In this section, we derive a representation formula for the solution of (2.7). The
formula is essentially the same as for the fundamental field. However, we give
its proof in order to make sure that the assumptions ks # ko and ky # ki do
not play any role in the proof of Theorem 5.2.

The following holds.

Theorem 8.1 Suppose klo s k'2 are not Dirichlet eigenvalues for —A on Q.

Then, there exists 8o > 0 such that, for 0 < § < &, for each (f1, f2,91,92) € Y2,

there ezists a unique solution & = (@1, P2, P, Po) € X2 to the system of mtegml
equations

( 5(1)6:10‘?31 - 55%0‘732 - S(’sg,%@ = fi,
A(SE ) (S Gy B(SEa)
G - o T o T fa,
< k? kL~ k! (838)
So5P2 + S5 52 — S55P0 = g1,
O(Stp2)  O(SEada)-  B(SES@o)+
+ - = 92-
¥ v ov Ov
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The proof of this theorem is basically the same as the one of Theorem 5.1.
First, we define the operator T" from X2 into Y? by T'(®) = (f1, f2,91,92)
where (f1, f2,91,92) is given as in (8.38), and the operator T} from X? into Y2
by

Ky - Y
50,0901 - SO,O‘PZ

O(Soar)-  O(Spade)+
ov ov
Syta = S0

O(Sasta)-  O(Sy5d0)+

ov ov
Then the following lemma holds.

Lemma 8.1 The operator Ty : X? — Y2 is invertible.

Proof. Let us solve the equation Tj(®) = (f1, f2,91,92). Since the two first
equations are decoupled from the two last ones, we start by solving the following
system of integral equations

K o ok o
So,o‘Pl - So,o‘PZ = f1,

O(SonP1)- _ O(Synpa)+
ov ov

= f2

Since kl22 is not a Dirichlet eigenvalue of —A in , the operator Sg,éo : L2(09) —
H'(89) is invertible and we have

_ _ k! —1
P1=¢2+ (50,20) fi.
Substituting this into the second equation, we readily get
. ]_ ! * ! —1
B =—fo + (—5 + (K3?) ) (63) fi-

The expression of ¢; follows immediately. Analogously, we can easily express
(12, Po) in terms of (g1, 92)- O

Lemma 8.2 The operator T' — T} : X2 — Y? is compact.
Proof. The proof is exactly the same as the one of Lemma 5.2. O

Proof of Theorem 8.1. Since T} is invertible and T — T} is compact, the
Fredholm alternative holds and existence will follow from uniqueness.

Let ® = (@1, P2, 02, P0) € X2 satisfy T'® = 0. Consider the function v
defined by

Sgllgbl(:c) for z € Q,
v(z) = Sgécﬁz(w) + Sgézzg(x) for z € O, (8.39)
S(I;cs@o for z € Q.
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This function satisfies the equations in (2.7) where the source term

Z X;j10z;u0z,u = 0.

3,0=1,2

Moreover, we can easily prove in a similar way as for the fundamental field u

that
/ —v ds =0,
a9 0

from which we obtain, by using Lemma A.1.2, that v = 0 in Q, since v satisfies
the outgoing radiation condition. Thus, v satisfies the Helmholtz equation in Oy
with v = Jv/dv = 0 on 0Qs. By the unique continuation theorem, we deduce
that v = 0 in O; and in the same way, we get v = 0 in Q.

Then, as for Theorem 5.1, there exists do > 0 such that, for 0 < § < o, ké]z
is not a Dirichlet eigenvalue for —A on Qf, and, for such &, we have necessarily
S§6¢0 = 01in Qf. From the jump of the normal derivative of S§6¢0 on 025, we
immediately deduce that ¢ = 0. , ,

Then we can easily find that S(’f Pa(z) + Sk%zz = 0 in Qf. The jump of
the normal derivative of this function on 0 glves 1/12 0. Silnce k;Z is not
a Dirichlet eigenvalue for —A on (2, we arrive at SO Pa(z) + Sk%Zg =0in Q.
From the jump of 1ts normal derlvatlve on 9N, we arrive at P = 0.

Flnally, since SO $1 has a null trace on 012, we obtain from Lemma A.1.2
that SO @1 = 0in R2\ Q and from the jump of its normal derivative on 6, we
deduce that @; = 0. The uniqueness of @ is then proved which ends the proof
of the theorem. |

Theorem 8.2 Suppose (k})?, (k5)? are not Dirichlet eigenvalues for —A on .
Let V' be the unique solution of

AV + 52V = 3 xjpudpulo, in R,
J)l=1,2
with the outgoing radiation condition, and let Vo = Vl]sq, Vs = Vlsas, Vg =

ov
EL{)Q and Vy = EL:)QJ'

Then, there exists 6o > 0 such that for 0 < § < do, if v is the solution of the
problem (2.7) and ® = (P1, 2,2, Po) € X2 is the unique solution of

r 55}0951 - S(I)C,IQOS52 - Sg,%¢2 =W,
O(S0f1) - _ O(Soada)e  O(Ssads) _
- - — V0>
. o . 8: o (8.40)
So’sP2 + Sssth2 — S55p0 = —V5,
0(S0is02) | O(Ssatn)-  OSo0)s _
. v v v e
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then v can be represented as

Sgllcﬁl(m) forzeQ,
v(@) =3 V(z)+ SP2@a(x) + SE0u(z)  forz € 0, (8.41)
S;é’cﬁo(w) for z € Qf .

Proof. Recalling Corollary 6.1, we can express explicitly V' by setting
V(z) = / Ty (@ — Z Xj10z;u(y) 0z, u(y) dy . (8.42)
Os j,l 1,2

Then it is clear that the function defined as in (8.41) satisfies the Helmholtz
equations, the transmission conditions and the radiation condition in (2.6). O

9 Asymptotic expansion of the second-harmonic
field

We pgoceed as for the fundamental field u. We first define the operators Qg, R5
and W; from X into Y by

o e O(SEE) . a(SE).
Qs(,9) = (Sé“,bso—sf,%% " o ’

Rs(3,9) = ((S(’fi; — So2)® + (S55 — S52)9,

3 ! - ’ - !~ o~
- ((S558) — (Sta@)+ + (S539)- — (S5 ))) ,

o a(S’“ész») (Sk24))
oy o= (stho s, 2ePe , 200 ).
. G TSI TR T A
Wo(@,9) = < 00<P+ 00 > (5(1)/ hs + (gloj s

and the function V9 on 89 by

%:2 <V;5_VE]7V:§I_VOI) -

The following proposition holds.
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Proposition 9.1 Let ® = (cél,gbz,@z,cﬁo) € X2 be the unique solution of
(8-40), then (p1,Po) and (P2,12) are solutions of the following equations

Qs(@1,P0) = —V5— Rs(@2,12) , (9.43)
i . .Sk
Wis(@2,¢2) = ((Sclf,lo@l); (06%1)) - (Vo, V) - (9.44)

In order to expand ®, we need to prove its stability when § goes to 0.

Proposition 9.2 Let u be the solution to problem (2.6). Then, for § small
enough, there exists a constant C > 0 independent of & and 0 < n < & such that

Proof. Tt is easy to prove that (¢9,¢9) and (3,9) belong to (C'(69))?. The
inequalities in Lemma 4.4 are also true when replacing the norms in L?(92)
and H'(0Q) by C°(09Q) and C*(01Q), respectively. See, for example, [13]. Anal-
ogously to Proposition 7.5 we then deduce that

[u(@ +nv(2)) = U(@)lleron) < CF,

Ou(z +nv(z)) _ k3 0(U)+

co(59)

[l — 90(2]“(:0(39) < (9,
sz - ¢g“c0(39) < ¢4,
for some constant C' > 0. It then follows that
u(+v(@) =SS+ SEs

= SE(¢S+43) + 0(d)

= Ulz) +0(9),
where O(6) is in C1(0Q). We also have
duix +nw(e) _ OSner , OSi
ov B ov ov
A(Sohe)+ | O(Sgavd)-
= % + o + 0(9)
_ B
= b @00,
where O(0) is in C°(8€2). The proposition is then proved. O

Now we give an expansion for the source term defined for z + nv € Ojs
(x € 00 and 0 < n < J) by

II(z) = Z X100z ;u(2) 0z, u(x).

7,01=1,2
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First, we recall the following assumption on the susceptibility tensor

le(w+nV)=>ij($,g), zed,0<n<d,

where x;; are independent of §. We define then Iy on 02 by
1
Mo(z) = > ( / %ir(x,0) de) w(z)w) (z)
ji=1,2 V0
where w?° is given by

o U k2 O(U)
w(@) = G @)re) + g, ).

The next proposition is a direct consequence of the expansion of the funda-
mental field wu.

Proposition 9.3 The following expansion holds.

Oz u(z + () 0y, u(z + nu(z)) = v (z)w] (z) + O(9)
where € 0Q, 0 < n < 4, and O(4) is in C°(69).
Now, we give expansions of the function V' defined by (8.42).

Proposition 9.4 There exists €5 — 0 as 6 = 0 such that

Vo — 5S§,zoﬂo||H1(aQ) < esd,

(S ) _
Vo — 57(’91/ lz2(00) < €56,
Vs — Vollaiany < €56,
V5 = Vg — 0ol 2(00) < €56 -

Proof. Recall that
6 17
Viz) = / Sp*l(z)dy for xz € Os
0
to obtain that for x € 012,
5
Vow) = [ STl + (o) dy
0
= 0853 0o(z)

[

+ /06(5,’;§0 — 8oz + () dy + Sty (/0 (L + (@) ~ To(x)) d”) '

But II is uniformly bounded in L?(Os). Therefore, as an application of Lemma
4.4, the argument of the integral in the second term can be bounded in H!(952)
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by &5 and the second term is bounded by des. Concerning the third term, we
notice that

5
/0 (I(z + v (z)) — Ho(z)) dy
5
= Z/ Xt (z + nv(x))0z;u(x + v (x)) 0z, u( + nv(z)) dy
g 0
-> 0 Xi(,0) d ) wh (z)w] (z) dy

)
=zl: / xit(@ + mu(2))

<o
~~
8
SN—r
g
~o
~—~
8
S—r
v
&

(é)wju(a: + g (x))0g,u(z + nv(z)) — w?

Therefore, it follows from Proposition 9.3 that

4
/0 ((z + nr(z)) - o(2)) dy <Co,

L2(89)

for some constant C. Hence, the third term in the previous expression of V; is
bounded in H(0f2) by C§2. The first inequality is then proved. The second
inequality can be proved in exactly the same way.

Now we turn to the last two inequalities

6 7 I
V@) = Vo(w) = [ (Sph = S + @) i

5, , o )
- / (8% — SEa )Tz + nw(z)) dy + / (Sk2) — S5 VTI(z + nu(2)) dy.

Since II(z +nv(z)) is bounded in L2(81Q), it follows that the arguments of each
integral is bounded in H'(8f2) by €5 and Vs — Vp is bounded by des. Thus

5198k ok
Vita) = V(o) = [ (52 - S5 i+ (o)) dy
[0Sk (S,
= [ (52 - 2524 Yo + o)) ay

[ 8 S’klZ B 65"“’2
+/0 ( (anyn) - BZ’O)H(:U-i-nV(x))Cb)

+ /06 (H(az + (@) — Ho(ar)) dy + 0TIy ().

Again, since II(z + nv(z)) is bounded in L?(92), the argument of the first and
second integrals are bounded in L?(99) by &5 while we have already proved that
the last integral is bounded in L?(02) by C§2. This proves the last inequality
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in the proposition. ]

Next, we state and prove the following convergence result for o.

Proposition 9.5 Let ®° = (cpl,cp2,¢2,g00) € X2 be the unique solution of

901 ‘ﬁo ‘Pg ¢2 . ~1 =1 ~1 71
(8.40). Then (51, 22) and (22, %2) converge in X to (51, @h) and (g, 0)),
respectively, where
Q0(¢%7¢(]j) = _(071-[0) )
Ly O(SenEh)- b (SETT) (9.45)
(%ﬂﬂz) 500 I’T - SOOHOuT .

Proof. The proof is very similar to the one of Proposition 7.3. From Proposi-
tions 9.4 and (7.28) it follows that
L2(39)> '

s (A ¢
‘Q<61 50)

On the other hand, (9.44) yields
L2(89)

~5 7.0
v (P2 Yo
HW‘S(é’a)y

where Cy, C] and C), are some positive constants independent of § and e5. It is

902

o
Hoen * 15

<y +&‘5(

L2(89)

@9
1)

< Ci+Cy

901 952 'LZO 953 T2
then easy to see that and "5 are bounded in L?(09). Therefore

8§67 67
58 8
lim || Ry 22,0 0,
d—0 5§’ Y
and (9.45) is straightforward. O

Now we can give an expansion of the second-harmonic field away from the
thin layer of nonlinear material Os.
Theorem 9.1 Let v be the solution to problem (2.7). Then, the following ex-
pansion holds uniformly in HY (R? \ 09):

v(z) = dvo(z) + 0(9) , (9.46)
where vg is given by
Sk1 P1(x) forz e,

vo(z) = y _ (9.47)
Sot@e(z) forz e R2\Q.

Proof. From the representation formula (8.41), we have

Sgllcﬁl(x) for x € Q,
v(z) = )
Sfoc,bo(m) for x € Qf .

Recalling (9.45) we immediately obtain (9.46). O

The proof of the asymptotic expansion (2.12) is now immediate.
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10 Appendices

A.1 Uniqueness results

We recall the following important result from the theory of the Helmholtz equa-
tion known as Rellich’s lemma.

Lemma A.1.1 Let Ry >0, Bg = {z : || < R}, and Sgp = {z : |x| = R}. Let
u satisfy the Helmholtz equation Au+ks = 0 for |z| > Ry. Assume, furthermore
that

li 2 ds(z)=0.
i o |u(z)|” ds(x)

Then, u =0 for |z| > Ryo.
Let W,-?(R? \ Q) denote the space of functions f € L2, .(R? \ Q) such that

loc
hf e WH(R? \Q),V h € C°(R* \ Q) .
The following uniqueness result is a consequence of the previous lemma.
Lemma A.1.2 Let Q1 be a bounded Lipschitz domain in R2. Let u €
WL (R2 \ Q) satisfy

loc

[ Au+kiu=0 mR\Q,

—ikou| = O(|x|3/2) as |z| = +oo  uniformly in Al

|z| °

ou
0|z|

%/ ﬂ@ds’:O.
\ o OV

Then, u =0 in R? \ Q.

A.2 Proof of Lemma 4.3

In view of Lemma, 4.1 it suffices to prove Lemma 4.3 for kK = 0. We have
253 5p(x) = /89 log |z —y +d(v(z) — v(y))I*(L + dp(y))p(y) ds(y)

- /8 10g(la = yf? + &u(@) v +20 < v(o) = vly).7 = >)
(14 6p(y))e(y) ds(y)
= 258 0() + 2658 4 () ()

_ _ _ 2
‘f 1og(1+25<"<$> Yooy > | ol u<2y>|>
o0 |z -y |z — y|

(1+3dp())e(y) d(y) -
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are bounded.

_ _ _ 2
Since 09 is of class C?, <v(z) - vly)z—y> and lv(z) — v(y)l

lz -yl |z —y|?
Therefore,

<v(z)—v(y),z—y>

S.50(x) = S5.0p(x) + 655 0 (p)(2) + 6 -
aQ |z — 1y

+0(6%)
= Sp00(x) + 85 4 (pp) (z) + 6(K7)*p(x) + §Kgp(z) + O(6?) .

o(y) ds(y)

On the other hand,

. _ [ <v(@),z-y+diw()-vy) >
oot = [ S
:/ <v(z),z—y >+ <v(x),v(z) —viy) >

an |z —y|?

(1+6p)e(y) ds(y)

<v(x) —v(y),z-y> 2
(1- 2= I 1k bp)ot) o) + O

or equivalently,

<v(z),z—y>?2

o0 |z —y|*

o(y) ds(y)

(K9)*p(z) = (Kg) () + 8(K7)* (pp) (z) — 26

w(y) ds(y)

<v(z),z—y><v(y),z—y>
0 |z —y|*
<v(x),v(z) —v(y) >
80 |z —yl?
= (K9)*¢() + 3(KQ)* (pp) (z) + Mg p(z) + O(5%) .

+26

+6 e(y) ds(y) + O(8°)
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Indeed, for § > 0 small enough and k& = 0, we have

8SY 59 9(S5,0¢)
(T2 4 DR+ 3500) ) (0) — 2 I 1 (DR ).

_ <v(z),x—y+ov(z) >
+88alp0) ) 0) = [ SHIEZNERD > ) aiy

_ <v(y),z—y+ov(z) >
/39 FRSER iy s wp AR C)

B /8 ) <v(z)-v(y),z—y Z o(y) ds(y) + S25(p) (@) — S0(p0) ()

|z —y[?

_ <I/(.’L‘)—Ij(y)7$ ( ) y >
- /ag |a: P+ (1 B 25m> P(y) d(y)

§ <v(z) —v(y),v(z) > v(z),x —y >
¥ oo |z—y|2 T (1w T e 4w

/39 <@ =vWhT=y> o g + 652 (@) + 8(KS)" () () + 0(0)

|Hf—y|2

é <v(z)—v(y),z—y>
aq |z —y|* + 62 |z —y[?
—26/ <1/(a:),a:—y>2 +25/ <v(x x—y><u(y),2x—y>
o (jz—yP+o7) (lz —yI* + %)

o) i)+ [ ”ﬂj:y”éyl’ "D 2 o) diy)

o [ <wv() —v(y)v(e) ><v(@),z—y>
26 /8Q (2 —yP 1 5)’ o(y) ds(y)

+3(KD)* (pp) (@) + 0(8) = 6Mgp(z) + 6(KG)" (pp) () + 0(0) -

Here we have used the fact that

=5 o(y) di(y) + 052 (x)

<v(z) —v(y),z—y>
|z —y|?

— p(z) wheny — x.

A.3 Proof of Lemma 4.4

We start by proving the inequalities for s = 0. Since the normal derivative of
3(S§,O¢)+

% exists and is bounded from L2(89) into L?(992), we have

158 s — S§ollL2(00) < Collell2(a0) »

oSk sk
for some C' > 0. It remains then to show that ‘ 0.59 009 goes

ar  or £2(69)
uniformly to 0 as § — 0. Once again, in view of Lemma 4.1 it suffices to prove
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this result for k¥ = 0. Denoting by ¢ the Cauchy principal value, we compute
6566’590(:17) _ 6S§’O¢(x) _ / <7(x),x—9y >
or salz—y2+d82+20 <v(z),z—y>

or
(1 =dp(2))p(y) ds(y) — 729 <T(|:::)_+my|—2y>

w(y) ds(y)

_ <7(x),z—y> B <v(r),r —y> 3 B 52 9
T (B 4 e - o+ 0)
o(y) ds(y)

— o5 g ST@hr—y> ooyl <v@e o> 5000 d)

sa |z —yl? |z —y|2 +82 |z—y|>+ 82
<7(x),x —y > 52 ) <7(@),z—y>
Jee -yl Jz—y2+ 42 wly) dy) +0 560 WO(U

e(y) ds(y).

The two first integrals can be bounded by dl|¢||2(sq) while the last one is
bounded by €5|¢ ()| L2 (s0) for 6 < d. This ends the proof of the first inequality.
Let us now prove the third inequality. We write

dSE 5 B 0(S5.0)+ _ / <v(z),z —y+ov(z) > o) )
ov v ot —yP+ 2120 <v(@),s—y>
<viz),xr—y > 1
- [ SR o) ) - et
Jsa  lz—ylP+4? |z — y2 + 62 ply) asty
<V($)>$—y> _1
/BQ o gz YW Bl 50
= g <V(37)a$—y>
= sa |z —y2+62 |z —y? (y) ds(y)
<v(@),x—y>+8 [  <v(z)z—y>
0 sa  |lT—yl?+462 ( iz — y? + &2 +0(8) ) p(y) ds(y)

J 1
" /89 m‘p(y) &(y) — 59(@) -

Since the Poisson kernel [17]

0
/m PEE 52 PW) &)
converges uniformly in L?(9Q) as § — 0, the first integral is bounded by Cdp(z),
the second integral is bounded by C4(||¢||r2(a0) + ¢(2)), and the last one is
uniformly bounded by e5p(z). Here C is a positive constant independent of x
and es > 0as d — 0.

The second and the last inequalities can be proved in a very similar way.
For the reader’s convenience we give here the proof for the second one, that is,

S!{&P - Szlsc,o‘P = (Stlic,é - S(I)c,o)ﬁo + (Sg,é - S!{O)go - (Sg,é - 55,0)90 .
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Using Lemma 4.3, the first and the third terms can be bounded uniformly
in H'(09) by esll¢llL2p0).- Then, in view of Lemma 4.1, we only need to
investigate the second term for k = 0. We compute

2(59, — 8%0) () = / log (|2 — > — 26 < v(y),z —y > +67)
a2

(1+60)p(y) dsly) — /8 10g (J =37 +28 < v(a).o =y > +)ply) b(0)
=5 / log (|7 — > — 26 < v(y),z —y > +6)poly) di(y)
oQ

<1/(x),x—y>>
log (1426202 — 97
+/m og( +20 T =y T e(y) d(y)

<v(y),z—y>
_/69 log (1 - 25m) e(y) ds(y)

_ 5/ log (| — yI? + 8%)pp(y) ds(y)
o0

<viz)+v(y),z—y>

% | S e W) ) +0)

=0 /89 log (|z — y|> + 6%)pp(y) ds(y) — 20K0p(z) + 26(KQ)* ()

_9452 ) <I/(:L')+I/(y),x—y> )
? /ag |z —y? + 62 [z —y? o(y) ds(y) +0(67) .

The first integral converges uniformly to Sg o (pe) in H'(9€2) and the last integral
converges uniformly to % in H'(09). The proof is then complete.

For s = 1, we need to suppose that 9Q is C® or equivalently that p is C'.
For the first inequality, we need then to proof that

‘ 0”55 5% R Y <es Oy
0%S§ 59
Let us then study the term 3 >—. We rewrite this term as
T
2 0
50,590
2 or? (2)
9 / 0 + 0 log(|z — y|*> + 6% + 28 < v(z),z —y >)p(y) ds(y)
97(@) Jo 0r@) ~ or(y)) oY T SRE
0 / 2 2 9¢(y)
+— log(|lx —y|* + 6+ 26 <v(z),z —y > ds
5] o oelle —u (@),2 =y >) 354 @)

. . . : 05 8 O(a‘r ‘P)
The second term in the above identity converges uniformly to ————— for

-
0, bounded in L?(0Q). It remains then to find the limit of the first term that
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we denote by 215. Direct computations give

<7(z),z—y>
|z —y|?2 +82+20 <v(z),z—y>

<7(x),xr—y>
-0 ds
or@) [ e ) ()

+(1— <5p(w))/89 (67-8(3;) * 6T(?y))

<7(z),x—y>
|z —y]2+ 62+ 20 <v(z),z—y>

o(y) ds(y)-

In a similar way as done for s = 0, we show that the first term in the expression
of I5 is uniformly bounded in L2(81Q), for ¢ in the unit ball of L2(8Q), by

<7(z),xr—y>
807 (4 7{ — 5
( )p(x) a0 |z —y?

p(y) ds(y) -

We look now into the integral in the second term of I5 which we denote by Js.
We have

= p(z) <v(z),z —y >
hos /em Ty + P+ 2 <v@),e—y> W W
<7(x),7(x) —7(y) >
i /BQ |z —y|2 + 62 +20 < v(z),z—y ><P(Z/) ds(y)

<7(z),z—y><7(x) —7(Y), 2 —Yy >
R e e e e iR
<7(x),x—y > (p(x) < 1(x),z—y >+ < 7(x),v(x) —Vv(Yy) >)

20 (lz —yl|* + 6%+ 26 < v(z),z —y >)?
e(y) d(y).

The last term is uniformly bounded in L?(8R), for ¢ in the unit ball of L?(9),
by

+26

<7(x),z—y>px)<7(™),z —9y >+ <7(2),v(r) —V(Y) >
1) |z —y? |z — y?

5 o(y) ds(y) -

We prove then in a similar way as done for s = 0 that .J5 converges uniformly
in L2(89Q), for ¢ in the unit ball of L2(8Q) to .Jy, given by

I = / plx) <v(z),z—y > o) ds(y)+7{ <7(x),7(x) —7(y) >
o0 o2

|z — y|? |z — y|?

<p(y) ds(y)_gf <T($)7$_y><7($)—’r(y)7x_y>

y) ds(y).
o0 |z —yl? |z —y? #lb) &)
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250 2 g0

b S
Therefore, it follows that 0’2690 converges uniformly to 80’2080
T T

for ¢ in the unit ball of L?(9Q), since it can be easily checked that

in L%(09Q),

SRop, . _ 9Ra(0r¢) p(z) < vla)z —y >
I O e e )
< 7(@), 7(z) ~ (y) >
+j€m P o(y) ds(y)

<7t@),xr—y><7(x)—-1WY),r—y >
2 7{99 |z —y? |z —y? Pl) B

The proofs for the other inequalities essentially follow the same arguments.
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