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Abstract

We study the homogenization of a Schrodinger equation with a
large periodic potential: denoting by € the period, the potential is
scaled as e 2. We obtain a rigorous derivation of so-called effec-
tive mass theorems in solid state physics. More precisely, for well-
prepared initial data concentrating on a Bloch eigenfunction we prove
that the solution is approximately the product of a fast oscillating
Bloch eigenfunction and of a slowly varying solution of an homog-
enized Schrédinger equation. The homogenized coefficients depend
on the chosen Bloch eigenvalue, and the homogenized solution may
experience a large drift. The homogenized limit may be a system
of equations having dimension equal to the multiplicity of the Bloch
eigenvalue. Our method is based on a combination of classical homoge-
nization techniques (two-scale convergence and suitable oscillating test
functions) and of Bloch waves decomposition.
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1 Introduction

We study the homogenization of the following Schrédinger equation

z’agf ~ div (A (%) Vue) + (7% (%) +d(w, %)) ue=0 inRY % (0,T)

u(t =0,7) = u’(z) in RV,

(1)
where 0 < T' < 400 is a final time, and the unknown function u, is complex-
valued. The coefficients A(y), ¢(y) and d(x, y) are real and bounded functions
defined for x € RY and y € TV (the unit torus). Furthermore, the matrix
A(y) is symmetric, uniformly positive definite, while ¢(y) and d(z,y) do not
satisfy any positivity assumption. Of course, the "usual" Schrodinger equa-
tion corresponds to the choice A(y) = Id. Other choices may be interpreted
as a periodic metric. The scaling of equation (1) is typical of homogenization
(see e.g. [3], or chapter 4 in [6]) but is different from the scaling for studying
its semi-classical limit where there is a e~ coefficient in front of the time
derivative (see e.g. [12], [15], [16], [17], [27]). In particular, this implies that
in (1) we consider much larger times than in the semi-classical limit.

The "standard" homogenization of (1) is simple as we now explain. (By
standard, we mean that assumption (5) on the initial data is satisfied.) In-
troduce the first eigencouple of the spectral cell problem

—div, (A(y)Vy1) +c(y)r = Mgy in TV, (2)

which, by the Krein-Rutman theorem, is real, simple and satisfies 11 (y) > 0
in TV. Furthermore, by a classical regularity result, v, is also continuous.
Thus, one can change the unknown by writing a so-called factorization prin-
ciple (see e.g. [3], [5], |20], [31])

_intu(t, x)
€ t, - 2 ;
ve(t,z) =e o (f)

and check easily, after some algebra, that the new unknown v, is a solution
of a simpler equation

(3)

il (%) ‘Zj —div (0rP4) (1) Vo) + () (. D) v =0 i RY 5 (0,7)

Vet =0, 7) = @) in RV,

(%)
(4)




The new Schrédinger equation (4) is simple to homogenize (see e.g. [6])
since it does not contain any singularly perturbed term, and we thus obtain
uniform a priori estimates for its solution.

Theorem 1.1 Let v° € HY(RY). Assume that the initial data satisfies
0/..\ _ T\ o
) = (2) (o) ®)

The new unknown v., defined by (3), converges weakly in L* ((0, T); Hl(RN))
to the solution v of the following homogenized problem

2% —div (A*Vo) + d*(x)v =0 in RY x (0,7)
v(t=0,2) =1(2) in RY,

(6)

where A* is the “usual” homogenized tensor for the periodic coefficients (|11 |>A)(y)
and d*(z) = [on [V1*(y)d(z, y) dy.

In other words, Theorem 1.1 gives the following asymptotic behavior for
the solution of (1)

S
ult,@) ~ e Eon (2) ot o),
€

where v is the solution of (6). Assumption (5) can be interpreted as an
hypothesis on the well-prepared character of the initial data. There are
many other types of initial data for which Theorem 1.1 is not meaningful. It
turns out that, according to heuristical results in solid state physics (see e.g.
[24], [26], [28]), there are many other types of well-prepared initial data for
which a result like Theorem 1.1 holds true, but with a different value of A*
and d*. Such results are called effective mass theorems.

Let us describe briefly one example of such an effective mass theorem
(many generalizations are treated in the sequel). We first introduce a variant
of (2), the so-called Bloch or shifted cell problem,

—(div, + 2im0) (A(y)(vy + 2m9)¢n) 4 e(y)tn = Aa(B)n  in TV,
where 6 € TV is a parameter and (\,(0), ¥, (y, #)) is the n-th eigencouple. In
physical terms, the range of \,(6), as § run in T is a Bloch or conduction

band (also called Fermi surface). Theorem 1.1 (with its special initial data
satisfying (5)) is concerned with the bottom of the first Bloch band (or ground
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state). Now, we focus on higher energy initial data (or excited states) and
consider new well-prepared initial data of the type

"z

W(z) = ¥n (%9”) 20 (). (7)

Under the additional assumption (10), which means that 6" is a critical point
of the simple eigenvalue (or energy) A, (6), we shall prove in Theorem 3.2 that
the solution of (1) satisfies

A (0™)t

L x
u(t,r) = e 2 eQm&Tzﬂn (—,9") v(t, x),
€

where v(t, x) is the unique solution of the following Schrédinger homogenized
equation

2% —div (AXVo) +di(x)v =0 in RY x (0,T)
v(t=0,2) =0%2) in RY,

(8)

with different homogenized coefficients A’ and d, depending on the param-
eter " and on the energy level n. In other words, the homogenized problem
depends on the type of initial data. If A is a scalar (instead of a full matrix),
its inverse value is called the effective mass of the particle. A typical effect
is that the effective mass depends on the chosen energy of the particle, may
be negative or zero, and even not a scalar.

To obtain the homogenized limit (8) we can not follow the above simple
idea, namely the factorization principle (3). Indeed, for n > 1 or 8" # 0
there is no maximum principle, and therefore no Krein-Rutman theorem, so
¥n(y,0") may change sign. Clearly we can not divide by 1, in a formula
similar to (3). In order to homogenize (1) for initial data of the type of
(7), we use a method which was first introduced in our previous work [3] for
systems of parabolic equations. The main idea is to use Bloch wave theory
to build adequate oscillating test functions and to pass to the limit using
two-scale convergence [2], [25].

Apart from the previously quoted references in the physical literature, to
the best of our knowledge effective mass theorems were addressed only in the
two following mathematical papers. First, two-scale asymptotic expansions
were previously performed in section 4 of chapter 4 in [6] for a slightly dif-
ferent, version of this problem: indeed, [6] put a ¢! scaling factor in front



of the time derivative in the Schrédinger equation (which corresponds to a
short time asymptotic). Second, some special cases of effective mass theo-
rems were obtained in [27] with a different method of semi-classical measures.
Let us emphasize again that the scaling of (1) is not that of the semi-classical
analysis (see e.g. [12], [15], [16], [17], [27])-

The content of this paper is the following. In Section 2 we recall some
results on Bloch theory and two-scale convergence. Section 3 is devoted
to the derivation of the homogenized Schrodinger equation (8). Section 4
generalizes the previous effective mass theorem to the case when 6" is not a
critical point of an eigenvalue A, (6), which is still assumed to be simple. This
yields a large drift of the solution (of order ¢7!) in the direction Vg, (0).
The main technical tool is a variant of the notion of two-scale convergence
due to [22] which takes into account this large drift. Section 5 is concerned
with another generalization when 6™ is a “third order” critical point of A, (6).
In such a case, the limit equation features a fourth-order operator instead of
the usual second-order one. Finally in Section 6 we discuss a special case of a
multiple eigenvalue A, (). Under the strong assumption (51), which amounts
to say that A, (6) is of multiplicity £ > 1 at # = " and made of k£ smooth
branches of eigenvalues and eigenvectors which all share the same value for
the first order derivative VA, (), we prove that the homogenized limit is
precisely a coupled system of k£ equations. However, the coupling is weak
since it occurs only through the macroscopic potential term d*(z) which is a
full £ x k tensor. It turns out that there is no coupling through the second
order operator A’. This result is reminiscent of a problem of modes crossing
analyzed in [13], [14], but is definitely different since we assume that the drift
vectors Vg, (0) are equals.

2 Bloch spectrum and two-scale convergence

We assume that the coefficients A(y) and ¢(y) are real measurable bounded
periodic functions, i.e. their entries belong to L°°(T"), while d(z,y) is real
measurable and bounded with respect to x, and periodic continuous with
respect to y, i.e. its entries belong to L> (RY; C(TY)) (other assumptions
are possible). The tensor A is symmetric and uniformly coercive, i.e. there
exists v > 0 such that for a.e. y € TV

A(y)E - € = vfé]? for any € € RY.



We recall the so-called Bloch (or shifted) spectral cell equation
—(div, + 2im6) <A(y)(Vy + 2m9)¢n) +ey)dn = M) i TV, (9)

which, as a compact self-adjoint complex-valued operator on L?(T%), admits
a countable sequence of real increasing eigenvalues (\,),>1 (repeated with
their multiplicity) and normalized eigenfunctions (v,)n>1 With ||[¢, || p2rvy =
1. The dual parameter 6 is called the Bloch frequency and it runs in the dual
cell of TV, i.e. by periodicity it is enough to consider § € TV.

In the sequel, we shall consider an energy level n > 1 and a Bloch pa-
rameter §" € TV such that the eigenvalue \,(6") satisfies some assumptions.
Depending on these precise assumptions we obtain different homogenized
limits for the Schrodinger equation (1). In Section 3 we assume that

(1)  An(0") is a simple eigenvalue, (10)
(77) 6™ is a critical point of A, () i.e., VA, (6") = 0.
In Section 4 we make the weaker assumption
An(07) is a simple eigenvalue. (11)

This assumption of simplicity has two important consequences. First, if
An(0™) is simple, then it is infinitely differentiable in a vicinity of 8. Second,
if A,,(0") is simple, then the limit problem is going to be a single Schrodinger
equation. In Section 6 we make another assumption of a multiple eigenvalue
with smooth branches. Then the homogenized limit is a system of several
coupled Schrodinger equations (as many as the multiplicity).

Remark 2.1 In one space dimension N = 1 it is well-known that all eigen-
values A\, (6) are simple, except possibly for 0 = 0 or 6 = +1/2 when there
is no gap below or above the n-th band (the so-called co-eristence case, see
[21]). In higher dimensions, A\, (0) has no reason to be simple although there
are some results of generic simplicity in similar contexts, see [1].

Remark 2.2 Concerning the existence of critical points of A\, (0), it is easily
checked that for the first band or energy level n = 1 assumption (10) is always
satisfied with 8' = 0 which is a minimum point of \; (see e.g. [6], [11]). In
full generality, there may be or not a critical point of \,(0). For example,
in the case of constant coefficients, A\, (0) has no critical points for n > 1.
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However, in N = 1 space dimension it is well known (see e.g. [21], [29]) that
the top and the bottom of Bloch bands are attained alternatively for 6™ = 0
or 0" = £1/2, and that the corresponding eigenvalue \,(0") is simple if it
bounds a gap in the spectrum. Therefore, the mazimum point 0" below a gap,
or the minimum point 6™ above a gap, do satisfy assumption (10), which
possibly holds for a non-zero value of 0™.

Under assumption (11) it is a classical matter to prove that the n-th
eigencouple of (9) is smooth in a neighborhood of " [19]. Introducing the
operator A, () defined on L?(T") by

An(0)0 = —(div, + 2in0) (A@)(vy + 2m9)¢> Fe()d— @)y,  (12)

it is easy to differentiate (9). Denoting by (ex)i<x<n the canonical basis of
RY and by (6;)i1<r<n the components of 6, the first derivative satisfies

a;g" = 2ime, A(y)(Vy+2im0)1), +(div, +2i76) (A(y)?iﬁembn)—f-alw)wm
&

An(6) 06,

(13)
and the second derivative is

Piby Oy : : Oy
An(ﬁ)aekael = 2ime, A(y)(V, + 2im0) 20, + (div, + 2i76) (A(y)2z7rek 2, )
. N : : Oy
+2ime; A(y)(Vy + 2in8) —— + (div, + 2i70) | A(y)2ime;
a0, " o8, o0,V am,
D*\
— A2 — A2 —n
4 ekA(y)el¢n AT elA(y)ekwn + 69;09k (Q)wn ( )
14

Under assumption (10) we have VA, (6") = 0, thus equations (13) and (14)
simplify for § = 6" and we find

O . 0% n
00

= —47T2Xkl, (15)

where (;, is the solution of

AL (0" = ex Ay)(Vy + 2im0™) ), + (div, + 2im0™) (A(y)exth,)  in TV,
(16)



and yj; is the solution of

A0 xm = erAy)(Vy + 2im6™)( + (divy, + 2im0™) (A(y)er)
+e,A(y)(Vy + 2im6"™) (i, + (divy, + 2im6"™) (A(y)eiCr)

1PN
47T2 09l09k

(0", in TV.

(17)
There exists a unique solution of (16), up to the addition of a multiple of
. Indeed, the right hand side of (16) satisfies the required compatibility
condition or Fredholm alternative (i.e. it is orthogonal to v,) because (
is just a multiple of the partial derivative of 1, with respect to 6, which
necessarily exists, see (13). On the same token, there exists a unique solution
of (17), up to the addition of a multiple of 1,,. The compatibility condition
of (17) yields a formula for the Hessian matrix V,VgA, (6™).

+erA(y)eh, + el A(y)erthn —

Finally we recall the notion of two-scale convergence introduced in [2],
[25].

Proposition 2.3 Let u, be a sequence uniformly bounded in L*(RY).

1. There ezists a subsequence, still denoted by u., and a limit ug(x,y) €
L*(RYN x TV) such that u. two-scale converges weakly to ug in the sense
that

lim ue(x)o(z, %) dx = /RN /]TN wo(z,y)o(x,y) de dy

e—0 RN

for all functions ¢(x,y) € L* (RY; C(TV)).

2. Assume further that u. two-scale converges weakly to ug and that
11_1’)% ||u€||L2(RN) = ||u0HL2(RN><']TN)‘

Then u. is said to two-scale converge strongly to its limit ug in the
sense that, if ug is smooth enough, e.g. uy € L? (RN;C’#(TN)), we
have

lim [ |ue(z) — uo( 2, 2 )|* dz = 0.
e—0 RN €



3. Assume that eVu, is also uniformly bounded in L>(RN)N. Then there
exists a subsequence, still denoted by u., and a limit ug(x,y) € L*(RY; H(TY))
such that u. two-scale converges to ug(z,y) and eVu, two-scale con-
verges to Vyuo(z,y).

Notation: for any function ¢(z,y) defined on RY x TV, we denote by ¢*
the function ¢(z, %).

3 Homogenization without drift

In this section we use the strong assumption (10) about the stationarity of
An(0) at 0". Physically, it implies that the particle modeled by the limit
wave function does not experience any drift and is a solution of an effective
Schrédinger equation.

Our precise assumptions on the coefficients are that A;;(y) and ¢(y) are
real, measurable, bounded, periodic functions, i.e. belong to L>(T%), the
tensor A(y) is symmetric uniformly coercive, while d(z, y) is real, measurable
and bounded with respect to x, and periodic continuous with respect to
y, i.e. belongs to L>® (Q;C(T")). Then, if the initial data u belongs to
H(RY), there exists a unique solution of the Schrodinger equation (1) in
C ((0,7); H'(R")) which satisfies the following a priori estimate.

Lemma 3.1 There exists a constant C > 0 that does not depend on € such
that the solution of (1) satisfies

[well oo ((0,7;L2(RNY) = [Jud|| 2@y,

(18)
E||vu6||Loo((0’T);L2(RN)N) < C (HUSHLZ(RN) + EHVUSHLQ(RN)N) .

Proof of Lemma 3.1. We multiply equation (1) by %, and we take the real
part to obtain

d
@ Jox lu(t, z)|*dz = 0.
Next we multiply (1) by 2% and we take the real part to get

A5 () i (n2)) )

This yields the required a priori estimates without using assumption (10). O

We obtain the following homogenized problem.

9



Theorem 3.2 Assume (10) and that the initial data u® € H'(RY) is of the
form

u(@) = o (2,07) 750 a), (19)
€
with v° € HY(RY). The solution of (1) can be written as
uft,z) = ¢ E AT 0 (1), (20)

where v, two-scale converges strongly to 1, (y, 0™")v(t, x), i.e.

lim
e—0 RN

wlt ) — o (207 o, x)f dz =0, (21)

uniformly on compact time intervals in RT, and v € C ((O,T); L*(RYN )) is
the unique solution of the homogenized Schrodinger equation

z% —div(A:Vo) +di(x)v=0 inRY x (0,T)

(22)
v(t=0,2) =0%2) in RY,

with A} = 5 VeVoAa(0") and dy(x) = [on d(2,y)[n(y)]* dy.

In the context of quantum mechanics or solid state physics Theorem 3.2
is called an effective mass theorem [24], [26], [28]. More precisely, the inverse
tensor (A%)~! is the effective mass of an electron in the n-th band of a periodic
crystal (characterized by the periodic metric A(y) and the periodic potential
c(y)). Since we did not assume that 6" was a minimum point, the tensor
Af = 8%V9V9)\n(9") can be neither definite nor positive, which is quite
surprising for a notion of mass (but this fact is well understood in solid state
physics [24], [28]).

Remark 3.3 Theorem 3.2 does mot fit into the framework of G- or H-
convergence (see e.g. [23], [30]). Indeed these classical theories of homoge-
nization state that the homogenized coefficients are independent of the initial
data, which s not the case here. There is no contradiction in our result
since H-convergence does not apply because we lack a uniform a priori esti-
mate in L*((0,T); H'(RY)) for the sequence of solutions u., as required by
H -convergence.
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Remark 3.4 Assumption (19) can be slightly weakened for proving Theorem

4

T

3.2. For example, it still holds true if we merely assume that u®(x)e " =<
two-scale converges strongly to v, (y,0™)v°(x).

On the other hand, if (19) is replaced by the even weaker assumption that
ug(x)e_%”gn% two-scale converges weakly to 1, (y, 0™)v°(z) (which is always
true up to a subsequence), then Theorem 3.2 is still valid provided that its
conclusion is modified by replacing the strong two-scale convergence of v. by

a weak two-scale convergence.

Remark 3.5 In the case n =1 and 0" = 0 (bottom of the first Bloch band),
Theorem 3.2 still holds true if we add a non-linear term of the type g(x, T, u.)
where g(x,y,€) is a Caratheodory function (i.e. measurable in y € TV and
continuous in (z,£) € RN x C) such that g(z,y,0) = 0, the product g(x,y,£)E
is real and depends only on the modulus ||, i.e.

g(w,y, )€ = g(,y,€)E for any |¢] = |€],

and g satisfies some growth condition with respect to &. A first example is a
uniformly Lipschitz function

l9(z.y, &) — g(z,y,£)| < ClE-¢|.

A second example is

9(z,y,€) = goz,y) €772 with go(z,y) > C >0 and p > 2.

In such a case, it is well-known that the non-linear Schrédinger equation
admits a unique solution in C ((0,T); H'(RY)) which satisfies the same a
priori estimates of Lemma 3.1 [8]. Then, using the factorization principle (3)
we obtain a non-linear equation for v. which is again simple to homogenize.
The homogenized equation is similar to (22) with an additional non-linear
zero-order term which s

s le0) = [ o6y 0i0.00)5,(0,0) d

However, we do not know if such a result holds true for higher order Bloch
bands n > 1.
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Proof of Theorem 3.2. This proof is in the spirit of our previous work |[3].
Define a sequence v, by

An(6™) _om.
Ve(t, ) = uc(t,z)e " fem2imtTE

Since |ve| = |ue|, by the a priori estimates of Lemma 3.1 we have
||Ue||L°°((0,T);L2(RN)) + EHVUeHLQ((O,T)XRN) <C,

and applying the compactness of two-scale convergence (see Proposition 2.3),
up to a subsequence, there exists a limit v* (¢, z,y) € L? ((0,T) x RY; H'(T"))
such that v, and eVv, two-scale converge to v* and V,v*, respectively.
Similarly, by definition of the initial data, v.(0,x) two-scale converges to

Un (y,0™) 0" ().
First step. We multiply (1) by the complex conjugate of

X An(0™)t 2% o™z
€

Eo(t,r, =)e'” @ "
€

where ¢(t,x,y) is a smooth test function defined on [0,7) x RY x TV, with
compact support in [0,7) x RY. Integrating by parts this yields

;2 07¢ —2ix "z
dtd
1€ / cpe — 1€ / /RN ST

/ / A (eV + 2im0™)v, - (€V — 2imf™)¢" dt da
RN

+/ / (¢f = Ma(6™) + EdYv¢” dt da =0.
o Jry

Passing to the two-scale limit yields the variational formulation of
—(div, + 2i0") <A(y)(Vy + 2i7r9”)v*> +e(y)vt = A(6")0*  in TV,

By the simplicity of A,(0"), this implies that there exists a scalar function
v(t,z) € L? ((0,T) x RY) such that

v (t, z,y) = v(t, ), (y, 67). (23)
Second step. We multiply (1) by the complex conjugate of

An(O™E . g x
\116 — T2 Zim =% (=, t
e e <¢ (E Z ) i ( ))

k=

12



where ¢(t, ) is a smooth test function with compact support in [0, 7) x RY,
and ((y) is the solution of (16). After some algebra we found that

/ AVu, - VU dx = / AV + 2z'7r9—)($v6) (V= QM%)%
RN RN €
@ -
+e . AV + 2”?>(a—:ckve> (V= 2271'?)<k
_/ Aeek%w (V= 2i7r9—)%2
R €

N al’k

n

o 95 .
[ a1 27220 e
ka

RN €
_ AEUGV% ) ek@;
RN axk
J— e
—/RNA UEVa—xk - (eV = 2im0"™)(,,
+ [ AC(eV + 2imf™)o, - Va—¢
RN axk

(24)
Now, for any smooth compactly supported test function ®, we deduce from
the definition of v,, that

/ AV + 2im e - (V — 2in) @ 4+ L / (¢ — (0T = 0, (25)
RN € € RN

2
and from the definition of (j

n

AV + zme—n)g,g (V- 2m9—)6 4L / (¢ = X(6M)Ci® =
€ € RN

RN 62

et / AY(V + 2i7re—)@b; cep® — et / Aceptps - (V — 2i7r8—)5.
RN € RN €
(26)
Combining (24) with the other terms of the variational formulation of (1),
we easily check that the first line of its right hand side cancels out because of
(25) with ® = ¢v,, and the next three lines cancel out because of (26) with

o = %Uﬁ‘ On the other hand, we can pass to the limit in three last terms

13



of (24). Finally, (1) multiplied by ¥, yields after simplification

- r 09 00 —e
Z/RN u Y (t =0)dx Z/o /RN Ve (wn T —l—eaxkat(k) dt dx

T
— / AEUEV6—¢ . ek%Zdt dx
o JrN

ka
T ag
—/ A% Va— (eV — 2im™)C, dt dx: (27)
/ / AC,(eV + 2im™)v, - Va—¢dt dx
RN axk

+/ / dv. U, dt dz =0.
0o JrN

Passing to the two-scale limit in each term of (27) gives

z/ ¢n 0, ot = )d$dy—z/ /RN " Vv, agbdtdxdy

/ / Awnvv ¢ - ept, dt dw dy
RN JTN

—/ / / A@ban— (V, = 2im0™)(,dt dx dy
0 JRN JTN Oxy,

T . . . a¢
+ ACL(Vy + 2im™ )pv - V—dt dz dy
RN JTN ox Tk

T
" /0 [ [ dyinit, ez ay - (z

Recalling the normalization [y |¢,|*dy = 1, and introducing
2 (A:;)jk = / <A¢n€j : ekﬂn + Aey, - ej@n
TN
+Ane; - (Vy — 2im0™) (), + Athney - (V, — 2i7n9”)zj
— ATV + 200" Y - 5 — AT, (Vy + 20" b - e )y,

(29)
and df (z) = [ov d(z,y W)n( )2 dy, (28) is equivalent to

2/ 0 pdr— z/ / dt dr— / A*0-VVodt d:]c—l—/ / d*(x)vodtdr =0
RN RN RN RN
14



which is a very weak form of the homogenized equation (22). The compat-
ibility condition of equation (17) for the second derivative of v, yields that
the matrix A}, defined by (29), is indeed equal to £V VoA, (6"), and thus
is symmetric. Although, the tensor A’ is possibly non-coercive, the homoge-
nized problem (22) is well posed. Indeed, by using semi-group theory (see e.g.
[7] or chapter X in [29]), there exists a unique solution in C((0,7); L*(RY)),
although it may not belong to L?((0,7T); H(RY)). By uniqueness of the so-
lution of the homogenized problem (22), we deduce that the entire sequence
v, two-scale converges weakly to v, (y,0™) v(t, ).

It remains to prove the strong two-scale convergence of v.. By Lemma
3.1 we have

[ve() | z2@yy = Nue@)lr2@yy = ludll2@yy = 190n0®] L2@a xrvy = [0°] 2@y

by the normalization condition of ¢,,. From the conservation of energy of the
homogenized equation (22) we have

[0(8) || 2@y = [[0°] 2@y,
and thus we deduce the strong convergence (21) from Proposition 2.3. O

Remark 3.6 As usual in periodic homogenization, the choice of the test
function V., in the proof of Theorem 3.2, is dictated by the formal two-scale
asymptotic expansion that can be obtained for the solution u. of (1), namely

N
A i T ov z
ud(t @) e (wn(e,e)v(t,x>+e;axk<t,x>ck<€>,

where v is the homogenized solution of (22). The purpose of the corrector (y
1s to compensate by its second derivatives the first derivatives of 1. Since (j
is proportional to O, /00y, the rule of thumb is that derivatives with respect
to x correspond to derivatives with respect to 6.

Remark 3.7 Our method applies also to systems of equations (see [3]). We
never use the fact that (1) is a single scalar equation.
4 Generalization with drift

The Schrédinger equation (1) can still be homogenized when 6" is not a
critical point of A\,(#). In other words we generalize Theorem 3.2 by weak-
ening assumption (10) that we now replace by (11), i.e. \,(0") is simple.
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This yields a large drift in the homogenized problem associated to the group
velocity

1 n
V = = Voh(6"). (30)

To begin with, we shall show that assumption (11) leads to a drift of velocity
V at the small time scale of order e. Looking at such a e time asymptotic is
equivalent to replace the original Schrédinger equation (1) by

i (4(2) 7+ () o)) v R

u(t =0,7) = ul(x) in RY,

(31)
with the new ¢! scaling in front of the time derivative (this is precisely the
scaling of semi-classical analysis).

Proposition 4.1 Assume that the initial data u® € HY(RY) is of the form
W(w) = o (5,0") 70 @),
€
with v° € L*(RY). The solution of (31) can be written as

AR (6™) . _gn.
u(t,z) = €7 2T Ty (1 1),

where v (t, x) two-scale converges strongly to ¥, (y,0™)v(t,z) andv € C ((O, T); L2(RN))
s the unique solution of the following transport equation

P V. Vu=0 inRYx(0,T),
v(t=0,2) =0%z) inRY,

(32)

which admits the explicit solution v(t,x) = v° (z + Vt), and we have

dr =0,

lim

‘2
e—0 RN

ve(t, x) — Py, <£, 6") 0 (x + Vt)
€
uniformly on compact time intervals in RT.

Proof. First of all, the a priori estimates of Lemma 3.1 still hold true since
its proof does not depend on the assumption made on A, (6™) neither on the
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time scaling of the equation. As in the first step of the proof of Theorem 3.2
we obtain that the sequence

n(0™) gng
Ue(tax) :ue(t,x) - f te_QWQT

two-scale converges to a limit ¢, (y,0") v(t,z). Then, in a second step we
multiply (31) by the complex conjugate of

N

An (™)t LIPS €x
U, =cet e e e | (=, t 33
€e e <¢ (6 Z )G ( )) (33)

k=
where ¢(t, ) is a smooth test function with compact support in [0,7) x RY
and (. (y) is defined by

Ny, ,

a6, = 247 (..
Note that ¢}, is different from (j, the solution of (16), since it is a solution of

A (0", = e A(y)(Vy + 2im0™) iy, + (divy, + 2im0™) (A(y)extdy)
i O\ (34)

—— (0", inTV

and VyA,(0") # 0. After integration by parts and some algebra similar to
that in the proof of Theorem 3.2 we obtain

/ 0Ol 2p(t = dx—z/ /RNUEJa‘bdtdx

1 o\,
_% 89k/ /RN ”6xk _0<1)’

where o(1) denotes all other terms going to zero with e. Passing to the
two-scale limit in (35) gives a variational formulation of (32). The strong
two-scale convergence is obtained as in the proof of Theorem 3.2 by using
the energy conservation of the original and homogenized equations. O

We now come back to the original time scale of the Schrédinger equation

(1)
2061:; —div (A (%) Vu6> + <€_26 (%) +d (x, %)) ue =0 inRY x (0,7),

u(t =0,7) = u’(z) in RY,

€

(36)
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where the macroscopic zero-order term is assumed to satisfy

lim d(z,y) = d>*(y) uniformly in T". (37)

|| =00

Actually, assumption (37) could be weakened by stating that the limit exists
for any fixed direction in x but may vary. Using the following extension of
the notion of two-scale convergence (see [2], [25]), which has been introduced
in [22], it is possible to homogenize (36).

Theorem 4.2 Let V € RY be a given drift velocity. Let (uc)eso be a uni-
formly bounded sequence in L*((0,T) x RY). There exists a subsequence, still
denoted by €, and a limit function uo(t,z,y) € L*((0,T) x RN x TV) such
that u,. two-scale converges with drift weakly to uy in the sense that

T
lim/ / ue(t,x)o <t, T+ B15, z) dt de =
e—0 0 RN € €

T
0 RN JTN

for all functions ¢(t,z,y) € L* ((0,T) x RY; C(TV)).

(38)

Recall that, TV being the unit torus, the test function ¢ in (38) is (0, 1)"-
periodic with respect to the y variable. Remark that Theorem 4.2 does not
reduce to the usual definition of two-scale convergence upon the change of
variable z = = + %t because there is no drift in the fast variable y = %.
The proof of Theorem 4.2 is similar to the proof of compactness of the usual
two-scale convergence, except that it relies on the following simple lemma.

Lemma 4.3 Let ¢(t,z,y) € L* ((0,T) x RN; C(TY)). Then

r Vo o2\ T
lim/ / ) (t, x+ —t, —) dtdx = / / / \p(t, z,y)|2dt dx dy.
e—0 0 RN € € 0 RN JTN

It is not difficult to check that the L?-norm is weakly lower semi-continuous
with respect to the two-scale convergence (see Proposition 1.6 in [2]), i.e., in
the present setting

P_I)% HUEHLQ((&T)XRN) > ||U0||L2((0,T)xRN xTN)-

The next Proposition asserts a corrector-type result when the above inequal-
ity turns out to be an equality.
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Proposition 4.4 Let (u.)~o be a sequence in L2((0,T) x RY) which two-
scale converges with drift to a limit uo(t, z,y) € L2((0, T)xRY xTY). Assume
further that

lim el 220,y <Ny = ||tol| L2((0,1) xRN xTVY.-

Then, it is said to two-scale converges with drift strongly and it satisfies

T
lim
e—0 0 RN

if uo(t, z,y) is smooth, say uo(t,z,y) € L* ((0,T) x RY; C(TV)).

V

2
ue(t, x) — ug <t, x+ —t, E) dzdt =0,
€ €

The proofs of Theorem 4.2 and Lemma 4.3 can be found in [22]. That of
Proposition 4.4 is a simple adaptation of Theorem 1.8 in [2].

Under assumption (11) we obtain the following generalization of Theorem
3.2.

Theorem 4.5 Assume that the initial data v’ € H'(RY) is of the form

o™ .x
€

ud(z) = Uy <§, «9") 20 (2), (39)

with v° € HY(RY). The solution of (36) can be written as

An(0™)t 2% o

ue(t,.iE):ei < e ¢ ,Ue(twr)v (40)

where v.(t,z) converges strongly in the sense of two-scale convergence with

drift to ¢, (y,0™)v(t, x), i.e.

T
lim
e—0 0 RN

andv € C ((0, T); LQ(RN)) is the unique solution of the Schrédinger homog-
enized problem

2
ve(t, ) — iy, <%, 9") v (t, x+ %t) ' dxdt =0, (41)

z% — div(A,Vo) +dyo =0 in RY < (0,7), (42)
v(t =0,2) =" (2) in RY,

with AY = 8%VQV(;)\,L(Q”) and & = [ d®(y)|n(y)|? dy.
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Remark 4.6 For the longer time scale of equation (36), the transport equa-
tion (32) can still be seen in the large drift V /e of formula (41).

Proof of Theorem 4.5. The proof is similar to that of Theorem 3.2 and
Proposition 4.1. Nevertheless, we do not use, as before, the usual two-scale
convergence but rather the two-scale convergence with drift. In a first step,
by multiplying (36) by a test function

V TN 2t g 0
€2¢ (t ]J—f— 62 ) €2z7r <,

where ¢(t,x,y) is a smooth test function defined on [0,7) x RY x TV, with
compact support in [0,7) x RY, we prove that the sequence
An (™) 9"
0ty ) = uelt, we” T e
two-scale converges with drift to a limit ¢, (y,0") v(¢, ). Then, in a second
step we multiply (36) by the complex conjugate of

Y . oM. N
U, = i i <¢n(§ ")o(t, x + _t Za—¢ tr+ — )Ck( )) ;

which is different from the previous test function (33) by the e factor, the
time scale of the phase, and mostly the large drift in the macroscopic variable.
Integrating by parts we perform a computation which is identical to that in
the proof of Theorem 3.2 except that two new terms arise and cancel out
exactly, namely the term

1 ox, [T — 09
- U, = dtd
29Te 69k /0 /RN v ¢n al’k .

which comes from the new equation (26) satisfied by (}, and the same term
with positive sign which arises in the integration by parts of

T
/ / i%@dt da.
0 RN at

The rest of the proof is as in Theorem 3.2, provided the usual two-scale
convergence is replaced by the two-scale convergence with drift which relies
on test functions having a large drift in the macroscopic variable. O
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5 Fourth order homogenized problem

By changing the main assumption on the Bloch spectrum it is possible to
obtain a fourth order homogenized equation instead of the usual Schrédinger
equation. Specifically we consider

Oue . _ :
i€ 5;5 — div <A <£) Vue) + <6 %c (f) + é%d <x, f)) ue =0 in RY x (0,7T)
€ € €
u(t =0,7) = ul(x) in RY.
(43)
Remark that the time scaling in (43) is not the same than that in (1): this
means that we are looking for an asymptotic for longer time of order €2 in

(43), compared to (1). Instead of (10), we now make the following assumption

{ (i)  An(6™) is a simple eigenvalue,

(i1) Vohn(07) = 0.VoVorn(07) = 0, VoVeVorn(07) =0, (43

which means that " is a "third order" critical point of A,(#). We do not
know if assumption (44) is satisfied for any practical example but it seems
"reasonable". Under assumption (44) the first eigencouple of (9) is smooth
at 0". Recall that, for § = 0", the two first derivatives of 1, are given by

Mn . 1y,
agk - 2Z7TC]€)

= —47? 4
96,00, Xkl (45)

where (j is the solution of (16) and xy; is the solution of (17) (remark that
this last equation simplifies since VyVyA,(0") = 0). Similarly, the third

derivative is 5
N S 46
00,0000, " Somts (46)

where
A" m = e;A(y)(Vy + 2imb") X + (divy + 2im6") (A(y)e;xim)
+erA(y)(Vy + 2im6™)x ;0 + (divy, + 2im6") (A

+erA(y)(Vy, + 2im0™) xx; + (div, + 2i76™) (A

+erA(y)ed; + e A(y)es + exA(y)e; G-

?/)ekal)

(
(47)
(

y)elej)

There exists a unique solution of (47), up to the addition of a multiple of
. Indeed, the right hand side of (47) satisfies the required compatibility
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condition (i.e. it is orthogonal to 1),,) because all derivatives of A, (), up to
third order, are zero at 6 = 0™.

Theorem 5.1 Assume that the initial data u® € L*(RY) are of the form
u(@) = v, (2,07) e
€

with v° € HY(RY). The solution of (43) can be written as

“0(a), (48)

An (0™)t .z

uc(t,x) =€ 2 Uﬁ(t x), (49)

where v, converges strongly in the sense of two-scale convergence to 1, (y, 0™)v(t, )
and v € C ((0, T); LQ(RN)) is the solution of the fourth-order homogenized
problem

z% +divdiv (A:VV) + di(z)v =0 in RN x (0,7)
v(t=0,2)=02) in RY,

(50)

with A = 44,V9V9V9V9)\ (0") and di(x) = [on d(z,y)|n(y)]? dy.
Proof. The proof is similar to that of Theorem 3.2 since we have the same
a priori estimates as in Lemma 3.1. The first step is identical: the sequence

2@t g 0"
Ve =uee A e e

two-scale converges to a limit v(t, z)u,(y, 0™). In the second step, we multiply
(43) by the complex conjugate of

N
An (™)t L
B o et (wf, zai ()
2
2 0%¢ e
1; B2 (t,x Xk:l Z 8@8@8@ (t x)f]kl(ﬁ)) ;

where ¢(t, z) is a smooth test function with compact support in [0,7) x R,
C(y) is the solution of (16), xx(y) is the solution of (17), and &;i(y) is the
solution of (47). After some tedious algebra we can pass to the two-scale limit
and find a variational formulation of (50) (see [3] where a similar computation
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is done for a parabolic system). We obtain a fourth-order homogenized tensor
which is (up to symmetrization)

(A;';)jklm — / < — AYpem - exXj — Apen, - (V, — 2i7r9”)ﬁjkl
TN
+ AN 1 (Vy + 200" )y, - em> dy.

The compatibility condition of the equation giving the fourth derivative of

1, shows that this tensor A* is actually equal to WVQV(;V(;V@)\H(@”). O

Remark 5.2 Similarly we could derive a third-order homogenized problem,
if we replace assumption (44) by the hypothesis that 6™ is a "second order”
critical point of A\, (0), and if we change the time scale in (43) by writing
the time derivative as ieaa%. More generally, any p-order critical point of
A (0) yields a p-order (in space) homogenized equation. This is a well-known
consequence of the duality between derivatives in the physical space and mul-

tiplication by Fourier variables (or more precisely here Bloch variables).

6 Homogenized system of equations

In this section we investigate the case of a Bloch eigenvalue which is not
simple. Physically speaking it can be interpreted as a crossing of modes.
The semi-classical limit of this problem yields the so-called Landau-Zerner
formula, recently analyzed in [13], [14]. Our study is different in two respects.
First our scaling is not that of semi-classical analysis. Second the crossing is
tangential, i.e. the drift or velocity vectors Vy\, () are assumed to be the
same for each mode. To simplify the exposition we consider an eigenvalue of
multiplicity two, but the argument works through for any multiplicity. We
replace assumption (10) by the following one: for n > 1, we consider a Bloch
parameter 0" € TV such that

(1) Aul0") = Aaga(67) # A(6") VE #n,n+1,

(17) locally near 0", \,(0) and \,;1(0) form two
smooth branches of eigenvalues with corresponding (51)
smooth eigenfunctions 1, () and v,,1(0),

(113) VoA (0") = VoA 41(0") = 0.

By a convenient abuse of language we still denote by A, (6) and \,;1(0)
the two smooth (local) branches of eigenvalues passing through 6™ (this is
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equivalent to a pointwise relabeling of these two eigenvalues, not necessarily
following the usual increasing order). In dimension N = 1 a double eigenvalue
can only occur when there is no gap between two consecutive Bloch bands
and assumption (51) is automatically satisfied [21]. However, in dimension
N > 1 it is not even clear that, near a double eigenvalue, one can find two
smooth branches because 6 is a vector-valued parameter (see [19]). Therefore,
(51) is a very strong mathematical assumption which is physically not very
relevant in dimension N > 1.

Theorem 6.1 Assume (51) and that the initial data v® € H'(RY™) are of
the form

ul(@) = (7.6") @70 @) v (707) T ), (52)

with v?,v9 € HY(RY). The solution of (1) can be written as

u(t, ) = G i (t,x) (53)

where v, two-scale converges strongly to ¥, (y, 0™)v1(t, ) +ni1(y, 0™)va(t, x),
i.e., uniformly on compact time intervals in R,

2

ve(t, x) — Yy, <§, 6") v1(t, ) — Wnaq (%, 8”) va(t, x)’ dx =0, (b4)

lim
e—0 RN

and (v1,v2) € C ((0,T); L*(RN)?) is the unique solution of the homogenized
Schridinger system of two equations

i div (A4, Vo) + diy (@) v+ dip(@) i =0 inRY x (0,T)

ot
2'% —div (AL, Vo) + diy () vy + dip(2) vy =0 in RY x (0,7)
(v, 02)(t = 0,2) = (v, 09) () inRY.

(55)
with A;: = S%VQVQAYL(QTL), A;:+1 = #VQVQAWA_I(Q”) and

dii(z) dip(z) \ _ T Un (y)%_(y) wn(y)wnil(y)
(@@c&@)‘éﬂ“”(%mwmwwwwmm@)@'

Remark 6.2 The main point in Theorem 6.1 s that the homogenized system
is of dimension equal to the multiplicity of the eigenvalue \,(6™). However,
the homogenized system (55) is coupled only by zero-order terms since the
diffuston operator is diagonal.
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Proof of Theorem 6.1. Introducing a sequence v, defined by

An (6™) } .
Ve(t, o) = u(t, 2)eE e 2

which satisfies the same a priori estimates as u., and applying Proposition
2.3, there exists a limit v*(¢,z,y) € L? ((0,T) x RY; H'(TV)) such that, up
to a subsequence, v, and eV, two-scale converge to v* and V,v*, respectively.
First step. We multiply (1) by the complex conjugate of

An (™)t LN
A ‘ n(z) 27’7!,661

ot z, =)e e
€

where ¢(t, z,y) is a smooth test function defined on [0,7) x RY x TV, with
compact support in [0,7) x RY. Integrating by parts and passing to the
two-scale limit yields the variational formulation of

—(div, + 2im0) <A(y)(Vy + 2i7r9)v*> +e(y)ot = A(@M)o*  in TV,

Since A, (6™) = A\,4+1(0") is of multiplicity 2, there exist two scalar functions
vi(t, z),va(t,x) € L* ((0,T) x RY) such that

U*(tv Z, y) =l (t7 x)wn(yv en) + 2 (t7 $)¢n+1(y, en) (56)

Second step. We multiply (1) by the complex conjugate of

Z'An(gn)t o™z
€

HERTEE (42,061 (4,2) + Yo (5,0 a(2)
N a a
+€Z <£(t,x}§é(%) + ﬁ(t,x)éi(f)) )
k=1

al’k

V. =c¢

where ¢y, ¢ are two smooth test functions with compact support in [0,7) x
RY, and (}(y) is the solution of (16) with 1), in the right hand side (respec-
tively, (?(y) with t,,1). Note that at this point we strongly use the assump-
tion on the smoothness of the eigenfunctions since ¢} (y) (respectively, (?(y))
is defined as the partial derivative of 1), (respectively, 1,1) with respect
to 0. We integrate by parts and we pass to the two-scale limit using the
same algebra as in the proof of Theorem 3.2. We also use the orthogonality

property
Qpn@n—i—l d?/ = 07
TN
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to obtain

0P 9,
i/RN (v191(0) + V5, (0 dx—z/ /RN( (’bl 5;2) dt dx

// ZAvp.vvathdx
RN

p,q=1
+ / / A(thn0r + s 02) By + Ty 1Bo) dt de dy o,
0 RN JTN

(57)
where A}, = A7 and A5, = A’ ,, defined by (29), and Aj, is defined by

2 (Aikz)jk = /]I‘N (Albn@j : ekﬂnﬂ + Adey - ej%n-i—l
+AYe; - (V) — 270" + Athey, - (V, — 2in0™)C;

—ACH(Vy + 200" ), - e — AT (Vy + 20w )b, - ek>dy,
(58)
with a symmetric formula for A%;,. Recall that A% = £5V,Vy),(0") because
of the compatibility condition of equation (17) for the second derivative of
. This compatibility condition is obtained by multiplying (17) by v, and
remarking that

/ A (0" Xwt),, dy = / Xkt Ay (07) 1, dy = 0
TN ™™

because A,,(6™)1,, = 0. However, the same holds true if we multiply (17) by
¢n+l

/ A (0" Xk dy =0
TN

because A, (0")1,41 = 0. Therefore, we deduce that (58) is equivalent to

) 1 &N,
2 (A12>lk = / 471'2 a‘gla‘gk (8 )wn¢n+l dy =0

by orthogonality of ¢, and 1, 1. Thus A}, = A}, = 0 and (57) is a weak for-
mulation of the limit system (55) which is thus coupled only through the zero-
order terms. It is easily seen that (55) is well-posed in C ((0,T); L*(RY)?).
The rest of the proof is as for Theorem 3.2. O
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Remark 6.3 Of course, Theorem 6.1 can easily be generalized in the case
of a common drift V = VoA, (0")/2m = VoA,11(0™) /27 # 0. If assumption
(17i) in (51) is not satisfied, i.e. if there are two different values of the drift
velocity, VoA, (0™) # Vor,11(0™), then we obtain an uncoupled limit system,
i.e. each branch of eigenfunctions yields a different homogenized Schrédinger
equation. We safely leave the details to the reader.

Acknowledgments. This work was partly done when A. Piatnitski was
visiting the Centre de Mathématiques Appliquées at Ecole Polytechnique.
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