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Abstract

We revisit the old problem of finding the stability and instability intervals of a second-
order elliptic equation on the real line with periodic coefficients (Hill’s equation). It is
well known that the stability intervals correspond to the spectrum of the Bloch family of
operators defined on a single period. Here we propose a characterization of the instability
intervals. We introduce a new family of non self-adjoint operators, formally equivalent
to the Bloch ones but with an imaginary Bloch parameter, that we call exponential. We
prove that they admit a countable infinite number of eigenvalues which, when they are
real, completely characterize the intervals of instability of Hill’s equation.

1 Introduction

We consider the following Hill’s equation

−{a(x)u′(x)}′ + Σ(x)u(x) = λσ(x)u(x) x ∈ R, (1.1)

with real, piecewise continuous, periodic coefficients, and where λ ∈ C is a parameter (or an
eigenvalue). We also assume that a(x) and σ(x) do not vanish. One of the main concern
of Floquet theory is to classify the solutions of (1.1) according to the value of λ. Indeed,
restricting λ to R, it is proved [8], [15] that there exist intervals of R such that, if λ belongs
to them, then any solution of (1.1) is bounded (and said to be stable), while, if λ belongs to
a complementary family of intervals, then any solution of (1.1) is unbounded (and said to be
unstable). We refer to Section 2 for a precise statement.

There is a well-known connection between Floquet theory and the so-called Bloch spectral
problems which, for any Bloch parameter θ ∈ (−1/2,+1/2], is concerned with the eigenvalues
and eigenfunctions of

{
−(∇ + i2πθ)a(x)(∇ + i2πθ)φ(x; θ) + Σ(x)φ(x; θ) = λ(θ)σ(x)φ(x; θ) in (0, 1],

φ(x+ 1; θ) = φ(x; θ) ∀x. (1.2)

Indeed, the (closure of the) stability intervals of (1.1) are exactly the range of all eigenvalues
of (1.2) when the Bloch parameter runs in (−1/2,+1/2].

Our main contribution in this paper is to characterize in a similar way the instability
intervals of (1.1). To do so, we introduce new spectral problems, similar to (1.2), that we call
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exponential spectral problems. Actually there are two such families parameterized again by
θ ∈ (−1/2,+1/2]

{
−(∇ + 2πθ)a(x)(∇ + 2πθ)φ(x) + Σ(x)φ(x; θ) = µ(θ)σ(x)φ(x; θ) in (0, 1],

φ(x+ 1; θ) = φ(x; θ) ∀x, (1.3)

and
{

−(∇ + 2πθ)a(x)(∇ + 2πθ)φ(x) + Σ(x)φ(x; θ) = ν(θ)σ(x)φ(x; θ) in (0, 1],
φ(x+ 1; θ) = −φ(x; θ) ∀x. (1.4)

We prove that these non self-adjoint, compact problems on L2(0, 1) admit a countable infi-
nite number of eigenvalues (that may be complex), and that the (closure of the) instability
intervals of (1.1) is precisely the range of their real eigenvalues. Problems (1.3) and (1.4) are
coined “exponentials” because upon multiplication by e2πθx their solutions are (unbounded)
solutions of (1.1).

There are many well-known motivations for studying (1.1) (see e.g. [8], [15]) but let us
explain our motivation for introducing the exponential problems (1.3) and (1.4). A common
feature of periodic media, perturbed by some defaults, is to exhibit localized solutions, i.e.
solutions which decay exponentially away from the defaults. For example, this property is
used in photonic crystals to create wave guides. A photonic crystal is a periodic media in
which polarized electromagnetic waves propagate according to an equation of the type (1.1).
Actually only those waves having a frequency compatible with the stability intervals of (1.1)
do propagate, the other ones being quickly attenuated. However, if there is a perturbation of
the periodic microstructure localized along a line or a plane, then it is possible that waves,
having a forbidden frequency for the purely periodic crystal, propagate along the perturbation
and decay exponentially away from it. In one space dimension, such localized solutions can
be built by combining solutions of (1.3) and (1.4) in the periodic bulk. This idea is not new.
It was used in control theory for exhibiting counter-examples to the uniform controllability
of periodic media [2], or in diffusion problems to decide in which cases the fundamental mode
is localized or not [1].

Another possible occurrence of (1.3) and (1.4) is in the study of boundary layers in
periodic homogenization (see e.g. [3], [14]). A classical result states that the boundary layers
stabilize exponentially fast away from the boundary. Once again the solutions of (1.3) and
(1.4) could be used to build such boundary layers. Problem (1.3) has also some connections
with homogenization theory for non self-adjoint equations (see section 5.8 in chapter 4 of [4],
[6]). Nevertheless, our goal here is not to study applications but rather to give a detailed
description of all solutions of the exponential spectral problems (1.3) and (1.4). The contents
of the paper is as follows. Section 2 is a brief overview of classical results on Hill’s equation.
Similarly, Section 3 recalls known results in Bloch wave analysis. Our main results are given
in Section 4.

2 Some results on Hill’s equation

In this section we recall some classical results (see [8] or [15]). Let us first consider the
following Hill’s equation without parameter

−{a(x)u′(x)}′ + q(x)u(x) = 0, (2.1)

where we assume that a(x) is real, uniformly coercive, i.e. a(x) ≥ a0 > 0, q(x) is complex-
valued, and both are piecewise continuous and have the same normalized period 1, i.e.,
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a(x + 1) = a(x), q(x + 1) = q(x) for any x ∈ R. The study of this equation is known as
Floquet theory [9]. A first useful lemma in this work is (see [8] pp. 1):

Lemma 2.1 There exist at least one non-zero constant ρ and one non-trivial solution u of
(2.1) which satisfy

u(x+ 1) = ρu(x), ∀x ∈ R. (2.2)

We are interested in Hill’s equation when q(x) involves a parameter λ ∈ C in the form

q(x) = λσ(x) − Σ(x)

where σ(x) and Σ(x) are real-valued and piecewise continuous with period 1 and there is a
constant σ0 > 0 such that σ(x) ≥ σ0. Now, equation (2.1) is

−{a(x)u′(x)}′ + Σ(x)u(x) = λσ(x)u(x). (2.3)

Considered as an ordinary differential equation, (2.3) has a basis of two linearly indepen-
dent solutions that depend on the parameter λ. It is convenient to introduce the so-called
normalized solutions y1(x, λ), y2(x, λ) of (2.3) which satisfy the following initial conditions

y1(0, λ) = 1, a(0)y′1(0, λ) = 0,
y2(0, λ) = 0, a(0)y′2(0, λ) = 1.

(2.4)

The discriminant of (2.3) is defined as

D(λ) = y1(1, λ) + a(1)y′2(1, λ). (2.5)

Recall that amay be discontinuous, so y ′ may also be discontinuous and only ay ′ is continuous.
Lemma 2.1 implies the following classical result on Hill’s equation (see [8] pp. 5–9 or [15]):

Lemma 2.2 For λ ∈ C, there exist two complex constants ρ1 and ρ2, called the characteristic
multipliers of (2.3), such that ρ1ρ2 = 1, D(λ) = ρ1 + ρ2, and ρ1, ρ2 are continuous functions
of λ. Moreover, there exist two non-trivial solutions u1 and u2 of (2.3) such that, if ρ1 6= ρ2,

u1(x+ 1) = ρ1u1(x) and u2(x+ 1) = ρ2u2(x), (2.6)

and, if ρ1 6= ρ2, either (2.6) is satisfied or

u1(x+ 1) = ρ1u1(x) and u2(x+ 1) − ρ1u2(x) = ρ1u1(x). (2.7)

When we restrict ourselves to λ ∈ R, it is possible to classify the solutions of (2.3): a
solution is said to be stable if it is uniformly bounded, and unstable if it is unbounded.
According to [8], [15], there exist a countably infinite sequence {αn}n≥1 of real roots of
D(λ) = 2 and a countably infinite sequence {βn}n≥1 of real roots of D(λ) = −2 such that

−∞ < α1 < β1 ≤ β2 < α2 ≤ α3 < β3 ≤ β4 < · · · → +∞,

and the collection of disjoint open intervals

]α1, β1[, ]β2, α2[, ]α3, β3[, ]β4, α4[, · · ·
are called the stability intervals of (2.3). Their union is called the region of stability

S =]α1, β1[∪]β2, α2[∪]α3, β3[∪]β4, α4[∪ · · · ,
and

U =] −∞, α1[∪]β1, β2[∪]α2, α3[∪]β3, β4[∪ · · ·
is called the unstable region. Accordingly, |D(λ)| < 2 for λ ∈ S, and |D(λ)| > 2 for λ ∈ U .
As a consequence of Lemma 2.2 one can identify the stable and unstable solutions of (2.3),
which is the central result of Floquet’s theory [8].
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Figure 1: Intervals of stability or instability on the real line for Hill’s equation (2.3). In this
sketch we assume that there is no gap between the 4th and 5th Bloch bands.

Theorem 2.3

(i) For λ ∈ S there exists a unique θ ∈]0, 1[ such that (2.3) has two linear independent
solutions of the type p1(x)e

i2πθx and p2(x)e
−i2πθx with p1, p2 1-periodic, and ei2πθ,

e−i2πθ are the characteristic multipliers defined in Lemma 2.2.

(ii) For λ ∈ U there exists a unique θ > 0 such that (2.3) has two linear independent
solutions of the type p1(x)e

2πθx and p2(x)e
−2πθx with either p1, p2 1-periodic, or p1, p2

semi-periodic, and e2πθ, e−2πθ (or e2πθ+iπ, e−2πθ−iπ, respectively) are the characteristic
multipliers defined in Lemma 2.2.

In both cases θ depends continuously on λ.

Recall that a function p(x) is said to be semi-periodic if p(x+ 1) = −p(x) for any x ∈ R.
The next result covers the case of the end points of the intervals in S and U .

Theorem 2.4

(i) If α2i < α2i+1, then, for λ = α2i and for λ = α2i+1, (2.3) has two linearly independent
solutions of the type p1(x) and xp1(x) + p2(x) with p1, p2 1-periodic. If α2i = α2i+1,
then, for λ = α2i = α2i+1, (2.3) has two linearly independent 1-periodic solutions.

(ii) If β2i−1 < β2i, then for λ = β2i−1 and for λ = β2i, (2.3) has two linearly independent
solutions of the type p1(x) and xp1(x)+ p2(x) with p1, p2 semi-periodic. If β2i−1 = β2i,
then, for λ = β2i−1 = β2i, (2.3) has two linearly independent semi-periodic solutions.

Remark 2.5 If λ ∈ C \ R, then any solution of (2.3) is unstable (i.e. unbounded).

3 Bloch spectrum

In this section we recall other classical results of a somewhat different theory on the eigenvalue
structure of (2.3), known as the Bloch decomposition theory [5]. If we consider (2.3) as a
spectral problem posed in L2(R), it is a natural question to determine its spectrum. To
this end, we consider the following Bloch spectral problem parameterized by θ ∈ R: find
λ = λ(θ) ∈ R and ψ = ψ(x; θ) (not identically zero) such that

{
−{a(x)ψ′(x; θ)}′ + Σ(x)ψ(x; θ) = λ(θ)σ(x)ψ(x; θ) in R,
ψ(·; θ) is (θ, 1)-periodic, i.e, ψ(x+m; θ) = ei2πmθψ(x; θ) ∀m ∈ Z, x ∈ R.

(3.1)

It is clear from (3.1) that the (θ, 1) periodicity condition is unaltered if we replace θ by (θ+q)
with q ∈ Z and θ can therefore be confined to the dual cell θ ∈ Y ′ =] − 1/2, 1/2]. It is well
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known (see [4] and [7]) that for each θ ∈] − 1/2, 1/2], the above spectral problem admits a
discrete sequence of eigenvalues with the following properties

{
0 ≤ λ1(θ) ≤ · · · ≤ λm(θ) ≤ · · · → ∞,
∀m ≥ 1, λm(θ) is a Lipschitz function of θ ∈ Y ′.

We can write ψ(x; θ) = eix2πθφ(x; θ), φ being 1-periodic in the variable x. Thus, (3.1) is
equivalent to:

{
−(∇ + i2πθ)a(x)(∇ + i2πθ)φ(x; θ) + Σ(x)φ(x; θ) = λ(θ)σ(x)φ(x; θ) in R,

φ(·; θ) is 1-periodic
(3.2)

By taking the complex conjugate of (3.2) it is clear that λm(θ) = λm(−θ) for any m ≥ 1.
Furthermore, by writing the min-max variational principle, λm(θ) is a Lipschitz function of
θ. We define the Bloch spectrum as

σB = {λm(θ) | θ ∈ Y ′ m ≥ 1} =
⋃

m≥1

[min
θ∈Y ′

λm(θ),max
θ∈Y ′

λm(θ)].

The following result relates the Bloch spectrum with the stability intervals of (2.3).

Proposition 3.1 For any i ≥ 1, αi = λi(0), βi = λi(1/2), and

σB = [α1, β1] ∪ [β2, α2] ∪ [α3, β3] ∪ [β4, α4] ∪ · · ·

In particular, λ2i−1(0) (respectively λ2i(0)) is the minimum of λ2i−1(θ) (respectively maximum
of λ2i(θ)), while λ2i−1(1/2) (respectively λ2i(1/2)) is the maximum of λ2i−1(θ) (respectively
minimum of λ2i(θ)).

Proof. For θ = 0, the pair (λm(0), φm(x; 0)) satisfies (2.3) with λ = λm(0) and u(x) =
φm(x; 0). Then, thanks to (i) Theorem 2.4, we get that

αm = λm(0) ∀m ≥ 1.

For θ = 1/2, the pair (λm(1/2), eixπφm(x; 1/2)) satisfies (2.3) with λ = λm(1/2) and u(x) =
eixπφm(x; 1/2) where eixπφm(x; 1/2) is semi-periodic. Then, thanks to (ii) Theorem 2.4, we
get that

βm = λm(1/2) ∀m ≥ 1.

Now, let λ ∈]α2k+1, β2k+1[ k = 0, 1, . . . Thanks to (i) Theorem 2.3, there exists an unique
θ ∈]0, 1[ such that (2.3) has two linear independent solutions of the type p1(x)e

i2πθx and
p2(x)e

−i2πθx with p1, p2 1-periodic. Then, p1 and p2 satisfy (3.2) with λ(θ) = λ and λ(−θ) =
λ, respectively. Thus, since λ2k+1(0) = α2k+1, λ2k+1(1/2) = β2k+1 and λ2k+1(θ) is a Lipschitz
function of θ ∈ Y ′, we get

[α2k+1, β2k+1] = {λ2k+1(θ) | θ ∈ Y ′} k = 0, 1 . . .

Analogously, we have

[β2k, α2k] = {λ2k+1(θ) | θ ∈ Y ′} k = 1, 2, . . . ,

and we conclude the proof.

Remark 3.2 It is also known [12], [16], [17] and [18] that, upon a suitable relabeling, the
eigenvalues λm(θ) are analytic (holomorphic) functions of θ. If one insists in using the usual
labeling by increasing order, then each λm(θ) is analytic except possibly at θ = 0 or θ = 1/2
when the eigenvalue is of multiplicity two.
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4 Exponential spectrum

In this section we define the exponential spectrum of (1.1). Let us consider the following
two spectral problems parameterized by θ ∈ R: find µ = µ(θ) ∈ C and φ = φ(x; θ) (not
identically zero) such that

{
−(∇ + 2πθ)a(x)(∇ + 2πθ)φ(x) + Σ(x)φ(x; θ) = µ(θ)σ(x)φ(x; θ) in R,

φ(·; θ) is 1-periodic,
(4.1)

and find ν = ν(θ) ∈ C and φ = φ(x; θ) (not identically zero) such that

{
−(∇ + 2πθ)a(x)(∇ + 2πθ)φ(x) + Σ(x)φ(x; θ) = ν(θ)σ(x)φ(x; θ) in R,

φ(·; θ) is semi-periodic.
(4.2)

These problems are compact in L2(0, 1) but not self-adjoint: for a given θ the adjoint of (4.1)
or (4.2) is simply the same problem with the opposite parameter −θ. Nevertheless, we shall
prove that they admit a countable infinite number of eigenvalues (that may be complex).
The range of their real eigenvalues is called the exponential spectrum of (1.1).

The existence of the first eigenvalue of problem (4.1) has already been addressed in [4],
[6]. In particular, Lemma 4.1 in [6] (based on the Krein-Rutman theorem) implies:

Lemma 4.1 For any θ ∈ R, there exists a minimal first eigenvalue µ1 for (4.1) which is
real, simple and such that

θ −→ µ1(θ) is analytic, concave and even, µ1(θ) = µ1(−θ),
lim

|θ|→+∞
µ1(θ) = −∞,

max
θ∈R

µ1(θ) = µ1(0) = λ1(0) = α1.

This lemma shows that the first unstable interval of (2.3) is {µ1(θ) |θ ∈ R∗} =] −∞, α1)
which is thus part of the exponential spectrum of (1.1). To continue with the description of
the exponential spectrum structure, we use the following spectral continuity result (see e.g.
[10] p. 14).

Theorem 4.2 Let {An}n≥1 be a sequence of compact operators in a Hilbert space H con-
verging uniformly to a compact limit A. Let γ be a smooth contour enclosing j eigenvalues
of A (counting their multiplicity) and such that any λ ∈ γ does not belong to the spectrum of
A. Then, there exists n0 such that, for any n ≥ n0, γ contains exactly j eigenvalues of An.

We shall apply Theorem 4.2 to the Hilbert spaces H = L2(T) and H = L2(Ts) which
denotes the subspaces of L2

loc(R) made of 1-periodic or semi-periodic functions, respectively.
Theorem 4.2 allows us to characterize the other unstable intervals of U . There are two
different type of instability intervals: [β2k−1, β2k] and [α2k, α2k+1] for k ≥ 1.

Proposition 4.3 Assume that β2k−1 < β2k. Then, there exist θ2k−1,2k > 0 such that, for
θ ∈]− θ2k−1,2k, θ2k−1,2k[, there exist ν2k−1(θ) and ν2k(θ), real and simple eigenvalues of (4.2)
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which satisfy

θ −→ ν2k−1(θ), ν2k(θ) are analytic and even,

ν2k−1(θ), ν2k(θ) are strictly monotone on [0, θ2k−1,2k[,

min
θ∈[0,θ2k−1,2k[

ν2k−1(θ) = ν2k−1(0) = λ2k−1

(
1

2

)
= β2k−1,

max
θ∈[0,θ2k−1,2k[

ν2k(θ) = ν2k(0) = λ2k

(
1

2

)
= β2k,

lim
|θ|→θ2k−1,2k

ν2k−1(θ) = lim
|θ|→θ2k−1,2k

ν2k(θ) = ν2k−1,2k,

{ν2k−1(θ) |θ ∈ [0, θ2k−1,2k]} = [β2k−1, ν2k−1,2k],

{ν2k(θ) |θ ∈ [0, θ2k−1,2k]} = [ν2k−1,2k, β2k].

The assumption β2k−1 < β2k means that there is a gap in the spectrum. When β2k−1 =
β2k, i.e. there is no gap here, we extend the notations of Proposition 4.3 by taking θ2k−1,2k =
0.

Proposition 4.4 Assume that α2k < α2k+1. Then, there exist θ2k,2k+1 > 0 such that, for
θ ∈]− θ2k,2k+1, θ2k,2k+1[, there exist µ2k(θ) and µ2k+1(θ), real and simple eigenvalues of (4.1)
which satisfy

θ −→ µ2k(θ), µ2k+1(θ) are analytic and even,

µ2k(θ), µ2k+1(θ) are strictly monotone on [0, θ2k,2k+1[,

min
θ∈[0,θ2k,2k+1[

µ2k(θ) = µ2k(0) = λ2k(0) = α2k,

max
θ∈[0,θ2k,2k+1[

µ2k+1(θ) = µ2k+1(0) = λ2k+1 (0) = α2k+1,

lim
|θ|→θ2k,2k+1

µ2k(θ) = lim
|θ|→θ2k,2k+1

µ2k+1(θ) = µ2k,2k+1,

{µ2k(θ) |θ ∈ [0, θ2k,2k+1]} = [α2k, µ2k,2k+1],

{µ2k+1(θ) |θ ∈ [0, θ2k,2k+1]} = [µ2k,2k+1, α2k+1].

If α2k = α2k+1 (no gap), we extend the notations of Proposition 4.4 by taking θ2k,2k+1 = 0.

Proofs. We prove Proposition 4.4. The proof of Proposition 4.3 is similar.
First, we study the case of the eigenvalue problem (4.1) with θ = 0. Thanks to (i)

Theorem 2.4, (4.1) with θ = 0 has only two simple real eigenvalues in [α2k, α2k+1] that we
denote by µ2k(0)(= α2k) and µ2k+1(0)(= α2k+1), respectively.

Applying Theorem 4.2 in a vicinity of θ = 0, problem (4.1) admits a unique simple eigen-
value µ2k(θ) close to µ2k(0) = α2k. Similarly (4.1) admits a unique simple eigenvalue µ2k+1(θ)
close to µ2k+1(0) = α2k+1. If these eigenvalues were not real, since (4.1) has real coefficients,
they would go by complex conjugate pairs, µ2k(θ) 6= µ2k(θ) or µ2k+1(θ) 6= µ2k+1(θ), which is
a contradiction because Theorem 4.2 implies that there is one and only eigenvalue of (4.1)
close to µ2k(0) or µ2k+1(0). Therefore, µ2k(θ) and µ2k+1(θ) are real and simple for θ near
0. Thanks to the perturbation theory of eigenvalues in a finite-dimensional space (see [12]
pp. 62–63 and [17] pp. 29–39), simple eigenvalues are analytic (holomorphic) functions of θ.

By (ii) of Theorem 2.3, it is immediate that

µ2k(θ) = µ2k(−θ) and µ2k+1(θ) = µ2k+1(−θ).
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Furthermore, θ → µ2k(θ), µ2k+1(θ) are strictly monotone for θ > 0 or θ < 0, since otherwise
we would have obtained two different values θ and θ̃ (having the same sign) yielding the same
eigenvalue λ ∈]α2k, α2k+1[, which is impossible by (ii) of Theorem 2.3.

Now, we can continue this perturbation argument for larger and larger values of θ until
it breaks down, namely until the eigenvalues µ2k(θ), µ2k+1(θ) remain simple and real. The
only possibility for a change in their multiplicity is when they are equal. More precisely, let
us prove that

{µ2k(θ) | s.t. θ > 0} ∪ {µ2k+1(θ) | s.t. θ > 0} =]α2k, α2k+1[. (4.3)

We define
θ2k = max{θ | s.t. there exists µ2k(θ) ∈ R}, (4.4)

which satisfies θ2k > 0, and analogously we define θ2k+1 > 0.
We can not have µ2k(θ2k) < µ2k+1(θ2k+1) because, for any λ ∈ (µ2k(θ2k), µ2k+1(θ2k+1)),

part (ii) of Theorem 2.3 implies the existence of θ > 0 such that either λ = µ2k(θ) or
λ = µ2k+1(θ), which is a contradiction with the definition of θ2k or θ2k+1. Thus, µ2k(θ2k) =
µ2k+1(θ2k+1), and by uniqueness of the exponent θ > 0 in part (ii) of Theorem 2.3 we also
have θ2k = θ2k+1 < +∞ and we denote their common value by θ2k,2k+1 = θ2k = θ2k+1. This
proves (4.3).

Remark 4.5 As a consequence of the results of Section 3 on the Bloch spectrum, of Lemma 4.1
and Propositions 4.3, 4.4, we obtain a complete characterization of (the closure of) the in-
stability region (or equivalently the complement of the Bloch spectrum)

R = σB ∪ σe, σB ∩ σe =

+∞⋃

i=1

{αi} ∪ {βi},

where σe is the exponential spectrum defined by

σe = {µ1(θ)|θ ∈ R}
⋃

k≥1

{µ2k(θ), µ2k+1(θ)|θ ∈ [0, θ2k,2k+1]}∪{ν2k−1(θ), ν2k(θ)|θ ∈ [0, θ2k−1,2k]}.

Now, we study the eigenvalue problems (4.1) and (4.2) for θ > θ2k−1,2k and θ > θ2k,2k+1,
respectively.

Proposition 4.6 For k ≥ 1, let θ2k−1,2k and θ2k,2k+1 be defined in Propositions 4.3 and 4.4,
respectively. Then,

(i) for |θ| > θ2k,2k+1 there exist two complex (non-real), simple eigenvalues µ2k(θ) and
µ2k+1(θ) of (4.1),

(ii) for |θ| > θ2k−1,2k there exist two complex (non-real), simple eigenvalues ν2k−1(θ) and
ν2k(θ) of (4.2).

Moreover, θ −→ µk(θ), νk(θ) are analytic, even functions which satisfy

µ2k(θ) = µ2k+1(θ) and ν2k−1(θ) = ν2k(θ),

lim
|θ|→∞

|µk(θ)| = ∞ and lim
|θ|→∞

|νk(θ)| = ∞,

and none of these branches of eigenvalues intersects another one.
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Figure 2: Spectrum of (4.1) and (4.2) in the complex plane, as the θ varies in R. In this
sketch we assume that there is no gap between the 3rd and 4th Bloch bands.

Proof. We prove (i) (the proof of (ii) is similar). First, we observe by Proposition 4.4 that,
for θ2k,2k+1, (4.1) admits a double eigenvalue

µ2k(θ2k,2k+1) = µ2k+1(θ2k,2k+1).

Applying Theorem 4.2, in the vicinity of θ2k,2k+1 (4.1) admits two eigenvalues µ2k(θ) and
µ2k+1(θ), which are continuous with respect to θ. By definition of θ2k,2k+1, these two eigen-

values can not be real. Now, if µ2k(θ) ∈ C is eigenvalue of (4.1), then µ2k(θ) is also eigenvalue
of (4.1). Therefore, µ2k+1(θ) = µ2k(θ) and both are simple non-real eigenvalues. Furthermore,
by Lemma 2.2, µ2k(θ) = µ2k(−θ).

We can reiterate the application of the perturbation argument of Theorem 4.2 and define
two branches of eigenvalues µ2k and µ2k+1 for any θ > θ2k,2k+1.

Now, we check the behavior of µ2k(θ) as θ → +∞ (the same argument applies to µ2k+1(θ)).
Assume that there exists a sequence θn → ∞ such that {|µ2k(θn)|} is bounded. Therefore,
the sequence of normalized solutions of (2.3) {y1(x, µ2k(θn)), y1(x, µ2k(θn))} and its derivative
are bounded in [0, 1]. However, by definition of the discriminant in Lemma 2.2, we have that

D(µ2k(θ)) = y1(1, µ2k(θn)) + a(1)y′2(1, µ2k(θn)) = e2πθ + e−2πθ.

Thus, D(µ2k(θn)) → ∞ as θn → ∞ and we get a contradiction.
Finally, we check that µ2k(θ) remains a simple eigenvalue for θ > θ2k,2k+1. First, we

remark that a branch of eigenvalues µj(θ) can never intersects a branch of νl(θ) for, if it were
true, we would obtain both periodic and semi-periodic solutions of (2.3), which is impossible
by virtue of Theorems 2.3 and 2.4. Second, µ2k(θ) and µ2k+1(θ) obviously do not intersect
since µ2k+1(θ) = µ2k(θ). Then, two branches µj(θ) and µl(θ) (with (j, l) 6= (2k, 2k + 1))
can not intersect because in between there is another branch νm(θ) which can not cross
them either. Therefore, since the branch µ2k(θ) starts at θ2k,2k+1 as simple and never meets
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another eigenvalue, it remains simple for all θ > θ2k,2k+1. Finally, since they are simple, the
eigenvalues µk(θ) and νk(θ) are analytic (holomorphic) functions of θ.

Remark 4.7 Globally, for θ ∈ R, thanks to the perturbation theory of eigenvalues in a finite-
dimensional space (see [12] pp. 62–63 and [17] pp. 29–39), the eigenvalues µk(θ) and νk(θ)
are analytic functions of θ with only algebraic singularities. In particular, each µ2k(θ) and
ν2k(θ) are holomorphic except where the eigenvalue is of multiplicity two, i.e., in |θ| = θ2k,2k+1

and |θ| = θ2k−1,2k, respectively, which are the only possible singularities.

Remark 4.8 In higher space dimensions, some of our results (but not all of them) still hold
true. Of course, in such a case the periodicity condition in (4.1) and the semi-periodicity
condition in (4.2) have to be understood for each component of the space variable. In par-
ticular, Lemma 4.1 about the existence of the first eigenvalue is still valid [6]. To prove the
existence of higher order eigenvalues of (4.1) and (4.2) we used a perturbation argument that
still works in higher dimensions under additional assumptions. More precisely, if we assume
that the bottom of the odd Bloch bands (respectively the top of the even bands) are uniquely
attained at the Bloch parameter θ = 0, that the bottom of the even bands (respectively the top
of the odd bands) are uniquely attained at the Bloch parameter θ = (1/2, ..., 1/2), and further
that the corresponding eigenvalues are simple, then our perturbation argument still allows to
prove a local version of Propositions 4.3 and 4.4, i.e., the existence of simple real eigenvalues
for θ close to 0.

5 Example: The model of Krönig-Penney

In this section we illustrate our previous analysis by computing the spectrum of the so-called
Krönig-Penney model (see [13]). This is an example of Hill’s equation for which there exists
an infinite number of gaps or instability intervals (see [11] and [16] p. 381). We consider (1.1)
with the following coefficients (extended by 1-periodicity)

a(x) =

{
1, 0 ≤ x < δ,
a2, δ ≤ x < 1,

Σ(x) =

{
Σ1, 0 ≤ x < δ,
Σ2, δ ≤ x < 1,

σ(x) =

{
σ1, 0 ≤ x < δ,
σ2, δ ≤ x < 1.

Without loss of generality we assume that Σ1/σ1 < Σ2/σ2. Clearly any solution u of the
Krönig-Penney equation (1.1) is continuous and smooth in each interval (n, n + δ) or (n +
δ, n+ 1), for n ∈ Z, and its derivative satisfies the following jump conditions:

a2u′(n+ δ+) = u′(n+ δ−), u′(n+) = a2u′(n−), ∀n ∈ Z.

First, we consider the case λ ∈ R in (1.1). The spectrum of Krönig-Penney’s model can
easily be computed by solving the Cauchy problem for (1.1) with the two initial data (2.4).
Introducing the 2 × 2 matrix

T =

(
y1(1, λ) a2y′1(1

−, λ)
y2(1, λ) a2y′2(1

−, λ)

)
, (5.1)

the trace of which is the discriminant D(λ) defined by (2.5), λ belongs to the Bloch spec-
trum (defined in Proposition 3.1) if and only if T has one eigenvalue exp(i2πθ) with θ ∈
(−1/2,+1/2]. On the other hand, λ belongs to the exponential spectrum (defined in Re-
mark 4.5) if T has one eigenvalue exp(2πθ) or − exp(2πθ) with θ ∈ R. In other words, if
−2 ≤ D(λ) ≤ 2, then there exist a unique integer m ≥ 1 and a unique Bloch parameter
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Figure 3: Discriminant D(λ), defined by (2.5), when σ1 = σ2 = 1, Σ1 =
√

2, Σ2 =
√

5,
a = 0.25, δ = 0.5.

θ ∈ [0,+1/2] such that λ = λm(θ) = λm(−θ), satisfying 2 cos(2πθ) = D(λ). If D(λ) < −2,
then there exist a unique integer m ≥ 1 and a unique exponential parameter θ > 0 such
that λ = µm(θ) = µm(−θ), satisfying 2 cosh(2πθ) = D(λ). Finally, if D(λ) > 2, then
there exist a unique integer m ≥ 1 and a unique exponential parameter θ > 0 such that
λ = νm(θ) = νm(−θ), satisfying 2 cosh(2πθ) = −D(λ). The discriminate D(λ) is plotted on
Figure 3 for one instance of the coefficients. There are five regimes in the explicit formula for
D(λ) when λ runs in R.
1. Assume λ ∈ (−∞,Σ1/σ1). We define two real numbers

w1 =
√

Σ1 − λσ1, w2 =
√

Σ2 − λσ2. (5.2)

In such a case the discriminant, defined by (2.5), is precisely

D(λ) = 2 cosh(w1δ) cosh(w2(1 − δ)/a) + 2 cosh(log(aw2/w1)) sinh(w1δ) sinh(w2(1 − δ)/a),

which satisfies D(λ) > 2. Thus, (−∞,Σ1/σ1) is included in an unstable interval and in the
exponential spectrum.
2. Assume λ = Σ1/σ1. In this case, the discriminant is

D(Σ1/σ1) = 2 cosh(w2(1 − δ)/a) + aw2δ sinh(w2(1 − δ)/a) > 2,

with w2 =
√

Σ2 − (Σ1σ2/σ1). Thus, λ = Σ1/σ1 is unstable.
3. Assume λ ∈ (Σ1/σ1,Σ2/σ2). Now, the discriminant is

D(λ) = 2 cos(w1δ) cosh(w2(1 − δ)/a) + 2 sinh(log(aw2/w1)) sin(w1δ) sinh(w2(1 − δ)/a),

with
w1 =

√
λσ1 − Σ1, w2 =

√
Σ2 − λσ2.

Remark that the minimal eigenvalue α1 = λ1(0) of the Bloch spectrum belongs to this
region, i.e., α1 ∈ (Σ1/σ1,Σ2/σ2). Therefore, there is at least one stability interval that
intersects (Σ1/σ1,Σ2/σ2). The precise number of Bloch intervals in this region depends on
the parameters of the model.
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Figure 4: Three views in the complex plane of the function λimag → D(λ)/2 when λreal =
Σ2/σ2, a = δ = 1/2, σ1 = σ2 = 1 and Σ2 = 2. We zoom the picture from right to left:
λimag runs into (0, 200), (0, 50), (0, 10), and the unit scale of the graphic is 200, 000, 200, 2
respectively.

4. Assume λ = Σ2/σ2. The discriminant is

D(Σ2/σ2) = 2 cos(w1δ) − (1 − δ)w1a
−2 sin(w1δ),

with w1 =
√

Σ2σ1/σ2 − Σ1.

5. Assume λ ∈ (Σ2/σ2,∞). The discriminant is

D(λ) = 2 cos(w1δ) cos(w2(1 − δ)/a) − 2 cosh(log(aw2/w1)) sin(w1δ) sin(w2(1 − δ)/a),

with
w1 =

√
λσ1 − Σ1, w2 =

√
λσ2 − Σ2, (5.3)

and there exists an infinite number of gaps in this region.

Second, we study the case λ ∈ C \ R in (1.1). This allows us to compute the branches of
eigenvalues in the complex plane for the exponential problems (4.1) and (4.2). The matrix
T , defined by (5.1) is now complex valued, and λ = µm(θ) = µm(−θ) if T has a positive
eigenvalue exp(2πθ), while λ = νm(θ) = νm(−θ) if T has a negative eigenvalue − exp(2πθ),
with θ ∈ R.

Applying Lemma 2.2, there exist ϑ ∈ C and two complex solutions u1 and u2 of (1.1)
such that

u1(x+ 1) = e2πϑu1(x), u2(x+ 1) = e−2πϑu2(x),

and e2πϑ is an eigenvalue of T which satisfies

cosh(2πϑ) = D(λ)/2 = cos(w1δ) cos(w2(1−δ)/a)−cosh(log(aw2/w1)) sin(w1δ) sin(w2(1−δ)/a),
(5.4)

where w1, w2 ∈ C are defined by (5.3). We are interested in finding those values of λ ∈ C \R

such that cosh(2πϑ) ∈ R. If cosh(2πϑ) > 1, then θ = ϑ ∈ R and λ = µk(θ) for some k ≥ 2.
Otherwise, if cosh(2πϑ) < −1, then θ = ϑ− i/2 ∈ R and λ = νk(θ) for some k ≥ 1.

Introducing λ = λreal + iλimag, we draw on Figure 4 the function

λimag −→ D(λ)/2 (5.5)

which looks like a spiral when λreal is fixed and λimag runs into R
+. If λreal ≤ ν1(θ1,2) (the

largest first real eigenvalue of (4.2)), the intersection of this spiraling function with the real
axis correspond to the following values of λ: ν1(θλreal,1), µ2(θλreal,2), ν3(θλreal,3), µ4(θλreal,4),
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Σ1 =

√
2, Σ2 =

√
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and so on, which all belong to the exponential spectrum. If ν1(θ1,2) < λreal ≤ µ2(θ2,3), the
intersections with the real axis are obtained when λ is equal to the exponential eigenvalues
µ2(θλreal,2), ν3(θλreal,3), µ4(θλreal,4), and so on. Increasing further λreal decreases step by step
the number of obtained exponential eigenvalues. A similar result is obtained when λimag

runs into R
−. By varying λreal and plotting the values of λimag for which D(λ)/2 is real, we

obtain the behavior of two first non-real branches of exponential eigenvalues ν1(θ) and µ2(θ)
in Figure 5.
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