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Abstract

In the natural gas market, many derivative contracts have a large degree of flexi-
bility. These are known as Swing or Take-Or-Pay options. They allow their owner to
purchase gas daily, at a fixed price and according to a volume of their choice. Daily,
monthly and/or annual constraints on the purchased volume are usually incorporated.
Thus, the valuation of such contracts is related to a stochastic control problem, which
we solve in this paper using new numerical methods. Firstly, we extend the Longstaff-
Schwarz methodology (originally used for Bermuda options) to our case. Secondly,
we propose two efficient parameterizations of the gas consumption, one is based on
neural networks and the other on finite elements. It allows us to derive a local optimal
consumption law using a stochastic gradient ascent. Numerical experiments illustrate
the efficiency of these approaches. Furthermore, we show that the optimal purchase
is of bang-bang type.

Key words: Swing options, Monte Carlo simulations, bang-bang control, parametric
consumption, stochastic gradient.

Introduction

Since natural gas is a physical asset, the associated energy market is different indeed from
the non-physical equity markets. In fact, the model needs to incorporate specific features,
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such as seasonality effects: we refer for these aspects to the paper by Jaillet, Ronn and
Tompaidis (2004) and references therein. Another difference, on which we focus in this
work, comes from the nature of financial contracts written on gas. These latters are aimed
at accommodating the uncertain volume of energy purchased by the end user and then,
include many flexibilities of delivery. Namely, the owner of such a contract is usually
allowed to purchase some amount of gas at some dates. The purchase may be daily, or at
a fixed number of dates chosen by the owner. The volume of gas is subject to daily as well
as periodic (monthly or annual) constraints. Moreover, the purchase price may be fixed or
predetermined according to some factors, such as the past values of the crude oil. These
options are known as Swing or Take-or-Pay options (see the description in Thompson
(1995)). They are also traded on other energy markets (e.g. electricity). However, as we
will consider in the sequel the case of storage contracts that are specific to the gas industry,
we will mainly focus on this asset in our discussions. The aim of the paper is to propose
new numerical approaches for the pricing of Swing options and to compare them with
existing methods.

The valuation of such contracts is known to be a challenging task: their price depends on
the price of the underlying asset and the cumulative consumption. Actually, it may be
written as a solution of a dynamic programming equation (see Thompson (1995); Lari-
Lavassani, Simchi and Ware (2001); Clewlow, Strickland and Kaminski (2001); Raikar and
Ili¢ (2001); Jaillet, Ronn and Tompaidis (2004)) with a two-dimensional state variable (see
Paragraph 2.1 for a better description). At each date, given a value of the underlying
asset and the cumulative consumption, the price is computed by maximizing over the
possible consumptions the immediate payoff plus the expected cash flows. In practice, a
methodology extending the usual binomial tree method can be performed: it is the so-called
forest tree approach (see the references above). This can be successfully implemented in
the case of a one-factor model on the forward prices. However, this discretizes a continuous
dynamics in space and thus incorporates errors in relation to this discretization procedure.
Furthermore, for multi-factor models, the computational complexity blows up and the
method is not feasible in practice. For these reasons, it may be more efficient to combine
the backward dynamic programming equation with a forward simulation of the underlying
asset, analogously to what can be done for Bermuda options (where only one exercice
date has to be determined in an optimal way). So here, we propose an adaptation of
the Longstaff-Schwarz methodology (Longstaff and Schwartz (2001)) to our case (where
optimal volumes at each date have to be computed). This adaptation is discussed in
Section 2.

One inherent feature of the dynamic programming equation is that we have an idea of the
price today, only when all the intermediate optimal consumptions have been computed,
in any state, between the current date and the maturity. As the purchase frequency
increases (it is daily in our numerical examples), this iteration takes more and more time
and the exact resolution of this nonlinear problem turns out to be too costly. So, instead of
computing the optimal consumption, we may prefer to identify a fairly good consumption
rule which would provide a price close to the optimal one. This is the so-called policy search
algorithm, which transforms a stochastic control problem into a parametric optimization
one (see Kushner and Yang (1991)). This approach is developed in Section 3. The success
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of this method depends strongly on our ability to find a nice parameterization of the
consumption. Under some assumptions, the Pontryagin principle enables us to prove that
the optimal consumption is of bang-bang type: this new result is justified in Appendix A.
Then, based on this observation, we derive two relevant parameterizations and test them

numerically.

1 Statement of the problem and notations

Here we give the notation which will be used throughout the paper.

We consider contracts with maturity 7'. Since the spot price of the gas does not correspond
to a tradable instrument, the valuation and the hedging of contracts on gas are performed
through the use of forward contracts with different maturities ¢ € [0, 7] (see the approach
given in Jaillet, Ronn and Tompaidis (2004)): their prices are denoted by (F(s,t))o<s<t-
The interest rates are assumed to be constant, equal to r and for the sake of simplicity, we
consider a one-factor yield, as in Jaillet, Ronn and Tompaidis (2004):

dF(s,t)

— se—c(t—s) < s<t 1.1
Fs.1) oe dW,, 0<s<t (1.1)

In the last expression, the initial condition is defined by the forward curve (F(0,1))o<s<T
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Figure 1: Gas Forward Curve

(corresponding to the seasonality, as shown on Figure 1). It would be easy to incorporate
extra factors or a convenience yield term, without major modifications to what follows.
Within our framework, the spot price at time ¢ is given by F; = F(¢,¢). In Equation
(1.1), the dynamics is given directly under the usual risk-neutral probability measure Q.
W defines a linear Brownian motion and so, the probability Q transforms the forward
contract processes (or equivalently the discounted option prices) into martingales.

Now, let us describe a general Swing contract. We assume that energy is purchased at
some fixed dates 0 =ty < --- < t; < --- <ty =7T. The volume at time ¢; is denoted by
qi; and subject to the constraint

Gmin < qt; < Gmax- (1.2)
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The cumulative volume purchased up to time ¢; is given by @, = Z;;B qt;- It must satisfy
the terminal constraint

Qmin S QT S Qmax- (13)

To simplify, the purchase price is assumed to be constant, equal to K. However if necessary,
it can be extended to a deterministic time function. Hence, the buyer of the contract gets
qi; (Fy, — K) at time ¢; . Furthermore, when the global purchase constraints are violated, he
may apply some penalties at maturity. These can be proportional to the spot price Fr at
maturity and to the over or under-consumption: —A Fr [Q7—Qmin]—-—B Fr [QT—Qmax]+,
where A and B are positive constants. To be concise, we denote this penalty by Pr(Fr, Qr)
in the sequel. For a given consumption strategy ¢ = (gs;)o<i<n, the fair price is thus given
by

N-1
J(q) =B (Z e gy (Fy, — K) + e " Pr(Fr, QT)) (1.4)
i=0
(the expectation is performed under the risk-neutral probability measure Q).

Case 1 In the further numerical experiments about Swing contracts, we shall consider
the same following set of parameters: o = 70%, a = 4, r = 0%, gmin = 0, gmax = 6,
Qmin = 1300, Qmax = 1900, K = 20, T' = 1 year with daily exercise (N = 365). We will
use the forward curve described in Figure 1. To discuss the impact of seasonality in the
numerical procedure, we will also consider a flat forward curve F(0,t;) = 20,V0 <7 < N.

The preceding description has to be slightly modified for storage contracts. In this case,
an empty tank is rent to the owner of the contract and allows him to either buy some gas
on the market and inject it in the tank, or withdraw it and sell it on the market. At each
date, the profit is given by

—qt;(Fy; +cr)  if g; > 0 (Injection),
'lﬁ(Fti,Qti) = —qt; (Fti - CW) if qQ; <0 (Withdra'wa'l)a
0 if g;; = 0 (Same level for the storage),

where ¢; > 0 (resp. ¢ > 0) denotes some strictly positive injection (resp. withdrawal)
cost. Moreover, the tank capacity has some volume limitations, which imposes constraints
like 0 < fi(t) < Q¢ < fo(t) for some deterministic functions fi; and fy. For the next
optimization problem, we can formulate these physical constraints in terms of a smooth
penalization : —C' 1 e ™5[(Qy, — f1(t:)) 12— C N o e "5 [(Qy; — f2(t:)) 1%, with a large
constant C. If we consider this penalization as a financial penalty, the fair price of this
storage contract is then given by

N
j(q) =E (Z \Ijti(qthtia Qtl)> ) (15)
i=0

where  Uy(q,F,Q) = e " (¢(F,q) —Cl(Q — f(t)-]* = CUQ — f2(t))4]?) if
t <ty and Uy (¢, F,Q) = e ™ (=C[(Q — f1(tn))-]* — C(Q — faltn))+]?).
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Case 2 The storage contract we will consider in the next numerical experiments is such
that the tank is empty at the maturity of the contract (Qmin = Q@max = 0) and the tank
capacity equals 20 units say (this determines the function fa). The parameters will be
set as follows: o = 10%, a = 4, 1 = 0%, ¢min = —0.2, gmax = 04, f1 = 0, fao(t;) =
min(gmax?, 20, gmin (i — N)), ¢; = 0.6, ey = 0.2, K = 20, T = 1 year with daily ezercise
(N = 365). As for the Swing contract, we will use the forward curve on Figure 1, but also
the flat forward curve F(0,t;) = 20.

These descriptions of Swing options and storage contracts can be unified within the fol-
lowing formulation of the price

N-1
J(g) =E (Z Uy, (gt Fry, Q) + PT(FT,QT)) : (1.6)
i=0

In the above, ¢ is a given consumption strategy, ¥.(-) denotes some appropriate instanta-
neous profit and Pr(-) some terminal penalty.

To price these instruments, we make the crucial assumption that the consumption decisions
are taken according to the sole evolution of the underlying asset, and not the real needs in
gas. So, the price is given by

Sup J(q).

It is a stochastic optimal control problem. In the next section, we state the associated
dynamic programming equation (see Bertsekas and Shreve (1978), Bertsekas (1995)) from
which we derive some numerical methods.

2 Numerical methods based on dynamic programming equa-
tion

First, for both theoretical and numerical purposes, it is better to rewrite (F;)o<t<7 using
an extra state variable X = (X;)o<<r defined by X; = ge™ fg e*“dW,. Note that X is
an Ornstein-Uhlenbeck process, which solves dX; = —aXdt + cdW;. Yet, this property
will not be really used in the sequel. Moreover, an immediate application of Ité’s formula
yields F(s,t) = F(0,t) exp[e" =9 X, — %(6_20‘“—8) — e~29%)]. We particularly have

2

Fy, = F(0,t:) exp (X, — 5= (1 - 7). (2.7)

2.1 Writing the Dynamic Programming Equation

As already mentioned, the valuation of Swing contracts can be embedded into a stochastic
control framework. Indeed, the dynamics of the system is described by a discrete-time
Markov chain (F};, Qy)o<i<n that is controlled by the local consumption (gy;)o<i<n—1-
Given a time ¢; and a state (F, Q), the price is given by

N-1

P(tZ,F;Q): sup E(Z\Ijtj(qtj’th’Qtj)+PT(FT7QT)|Fti :F7Qt7; :Q)
(qt;)i<j<n—1 =i
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In the last expression, the sup is taken over all admissible consumptions. A standard result
states that, under mild assumptions, there exists an optimal Markovian consumption, given
by the dynamic programming equation (also known as Bellman’s equation).

Proposition 2.1 Assume that for some positive constants p and C, the following inequal-
ities hold for any li € [OaT]: F> O; qge [qmin, Qmax] and (Qa QI) € [_N(Qmin)—a N(Qmax)+]-'

Vs, (g, F, Q)| + [Pr(F,Q)| < C(1+ FP),
[T, (q, F, Q') = ¥y (q, F,Q)| < C(1+ FP)|Q" - Q.

Then, there exists an optimal Markov consumption q*(t, F, Q), which is given by the argmaz
in the following dynamic programming equation :

P(tiaFa Q) = qE[qma)q( ] [\Ilti(% Fa Q) + E(P(ti+1)Fti+1’Q +Q)|th = F)]a (tz < T)a

Note that this result holds for both Swing and storage contracts.

PROOF. This is an immediate application of Proposition 8.5. in Bertsekas and Shreve
(1978). First, the conditions on the growth of instantaneous and terminal profits together
with the classical estimates E(supy<;<p FT) < oo enable us to check assumptions (F)
and (F~) in Proposition 8.5. Then, it remains to prove that the supremum in (2.8) is
attained. This immediately follows from the continuity of P(t;y1, F,Q) w.r.t. @ (which is
a easy consequence of our Lipschitz continuity hypothesis). Finally, since the dynamics of
the forward contracts does not depend on (g,);, the usual conditional expectation w.r.t.
(Fy;, Qt;) can be simplified using the relation Qy,,, = Qy; + qi;- It provides the dynamic
programming equation as expressed in (2.8).

O

Paragraphs 2.2 and 2.3 respectively implement the max | operation and the com-

qminquax]

putation of E(:|F;, = F) for solving approximately the dynamic programming equation
(2.8).

2.2 Towards an implementation of the dynamic programming equation

As usual, solving the dynamic programming equation (2.8) is far from being trivial because
of the conditional expectation and the optimization w.r.t. ¢ at each time. For a numerical
resolution, this formulation must be simplified. To do so, we first discretize the set of
admissible values of ¢, : g1, € {gmin, gmin + AG, ..., gmax — Ag, gmax} Where Ag denotes a
positive consumption step.Consequently, the purchased cumulative volume @Q;; = Zj-;% qt;

belongs to a set of possible values {Q} ,Q? ,..., Q?_/f "1 where M;, denotes the number of
possible cumulative volumes that are f)urc}llased upzto time ¢;. If it is not allowed to break
the global purchase constraints Qmin and Qmax (i.e. the applied penalties are infinite), the
set A = {(t;, Q) : 0 < i < N} of admissible cumulative consumptions can be efficiently
limited. This will be extremely useful to speed up the resolution of (2.8). For example, let
us consider a contract with the characteristics Qmax = 1, @Qmin = 0, AG = @max = 1 and
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The admissible cumulative volume purchased
as time goes on

amount taken
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Figure 2: Restriction of the set of admissible purchased volumes when the global constraints
can not be violated.

Gmin = —2, over the period {tp = 0,%1,...,t4 = T}. The set A is represented on Figure 2.
For a given couple (i, Qy;), denote by Adm(t;, Qy;) the set of discrete admissible values
of g,. If the constraints can be broken, then Adm(¢;, Q) = {gmin; Gmin + A, - - -, Gmax —
Ag, gmax }- Otherwise it can be much smaller (see Figure 2). Thus, for any (¢;, Q) € A,
(2.8) becomes

P(tiaFath;) = max [\Ijti(an’Qti)+E(P(ti+1aFt¢+1aQti +Q)|th, :F)] (29)
q€Adm(t;,Qx;)

In light of (2.9), we should compute as many functions P(¢;, -, Q;) as elements in the set A.
However, this latter can be quite large (see Example 1), and thus much time consuming.
This is an inherent drawback of this approach and as we will later see, we do not meet
these issues with the approaches based on parameterized consumptions.

Example 1 Consider a storage contract where, the initial level of gas is 17 units, the
mazimum possible volume is 24 units and the final volume can take any value between 2
units and 17 units. The set A represented on Figure 3, gives an idea about the complexity.
The daily injection capacity is one unit per exercise whereas the withdrawal capacity is
two units. We consider in this ezample 20 possible exercise dates. Here, g, can take any
integer value between -2 and 1. We can yet speed up the resolution if we further assume
that the consumption is of bang-bang type (see Theorem 3.1 below). In this case, we can
simply take Ay = gmax — Gmin-

To complete the resolution of the dynamic programming equation (2.9), we develop in the
sequel two different strategies.

1. Using a trinomial tree to describe the evolution of (Fy)o<i<n. It leads to the so-
called forest of trees algorithm (see Lari-Lavassani, Simchi and Ware (2001); Jaillet,
Ronn and Tompaidis (2004)).

2. Using Monte Carlo simulations of (Fy)o<i<ny, which are much more adapted to
multi-factor models. They enable to compute conditional expectations involved in
(2.9) (with another representation) using regression techniques (analogous to the
Longstaff-Schwartz approach (2001) for Bermuda options). This approach has not
been used in the existing literature on Swing options.
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Figure 3: States where the price function P(¢;, Qy,,-) should be computed

2.3 Forest of trees
2.3.1 Description of the algorithm

In light of (2.7), we need to construct a trinomial tree, in order to describe how (Xy,)o<i<n
(and therefore (Fy,)o<i<n) evolves. We briefly remind the construction of such a tree (for
details, see Lari-Lavassani, Simchi and Ware (2001)). Each node can either go up, or go
down or even stay in the same physical state. Three kinds of branches are then available
to fit the mean-reverting behavior of X. See Figure 4, where case 2 and 3 correspond
respectively to the top and the bottom of the trinomial tree. The spacing between nodes

space

[ -

<Nz .

Case 1 Case 2 Case 3

LV Vi e

time

Figure 4: On the left, three possible branches. On the right, trinomial tree.

is equal to ov/3A;, where A; denotes the discretization time step. Table 1 gives the
probabilities on each alternative branching. These latters are computed in order to match

the first two moments, and their sum is naturall)f equal to one. As probabilities must not

be negative, we deduce that necessarily jmax = %}Asﬂ, and this bounds the tree’s width
since j € [—Jmax, Jmax)- Denote by Xfi the value of X;; on node j in the trinomial tree, and

by L, the number of nodes at time ¢;. To each point (ti, Qgtl) u on the graphic,
v jtizl,---, t;
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Case 1 Case 2 (5 = Jmax) Case 3 (j = —Jmax)
Pop | § = 50300+ 5[0 AN | § — §aiA+ oA | G+ FajA+ 5lajA
1
6

Pmiddle 2 —[ajAy)? + 200 Ay — [ A | —5 — 25 — [ajA)?
Pdown | &+ 30i + S[ajA]? SO + S A | T+ 3ai A+ SajA)?

Table 1: Probabilities depending on the vertical position j in the tree.

corresponds a range (ng) . of nodes in the tree (at time ¢;). Formula (2.7) gives the
J=1y t;

corresponding spot prices of gas (ng ) . Consider now the algorithm for the forest
J=1y bty

of trees. By Equation (2.9), the price P(ty, Ftlo, Q%O) of the option is computed backwards
in the forest, in the following way.

¢ Initialization. Compute the terminal values P(¢n, FfN,QfN) forj=1,...,L, and
k= 1, ey Mt

N

e Tteration. Assume now that the values P(ti+1,Fj 1,in+1) for j=1,...,Ls,, and

tiyt
k=1,..., My, areknown. Hence, for each possible cumulative volume (ti, Q,’i) with
a spot price equal to F} , we compute the value ¥y, (g, F}, QF)+E(P(tiy1, Fyyy,, QF +
q)|FY), for any ¢ in Adm(t;, QF.), using the probabilities in the tree (see Table 1).

The maximum over q gives P(t;, F{, Qfl)

Then, iterating till time ¢y provides the price of the contract.

2.3.2 Numerical results

We give numerical results for the two cases described in Section 1. We also plot the
optimal gas consumption with respect to a natural gas sample path. We observe a bang-
bang behavior for the optimal consumption, as it is theoretically justified in Section 3.1.
Example 1: Swing contract. The values of parameters are set to those of Case 1. In
the table below, both forward curves are considered. To have comparable results with
different consumption frequencies, we adjust gqmin and gmax. For instance, with a weekly
consumption, we set gmin = 0 and gmax = 6 X 7.

Consumption period | Flat forward curve | Real forward curve
7 days 2700 4439
3 days 2691 4587
2 days 2704 4607
1 day 2717 4611

Example 2: storage contract. The values of parameters are set to those of Case 2.
For both cases, the price converge as the consumption frequency increases. The conver-

gence is slower with the real forward curve because of the high seasonality. In the sequel,

the above values are taken as references for the other numerical methods. We also note
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Figure 5: Swing contract. Optimal gas decision for a natural gas sample path. On the left,

with a flat forward curve. On the right, with the real forward curve of Figure 1.

Consumption period | Flat forward curve | Real forward curve
7 days 66.69 224.9
4 days 67.36 239
2 days 67.75 242.2
1 day 67.92 242.3

that the realized optimal consumption is often of bang-bang type (this is theoretically
confirmed by Theorem 3.1).

2.4 Monte Carlo method using Longstaff-Schwartz methodology (2001)
2.4.1 Description of the algorithm

We need to simulate Np¢ independent realizations of F' = (Fy,)o<i<n. To do so and
in view of (2.7), it suffices to simulate (X3 )o<i<n, which can be done by writing X;, =
oe~ i E;;B gj, where g; = féj*l e®"dW,. Then, since (g;); are independent Gaussian
eZatj_H 7e2atj
2a ’
the simulation of (Xy,)o<i<n is standard. Note that an extension to multi-factor models

. . . t;
random variables with a zero mean and a variance equal to ft?“ e2tdy =

is straightforward with this approach (even if we do not present related results here).
We now explain how the algorithm is devised. Once the optimal consumption q:i’m for
the m-th path determined, the price is computed via a Monte Carlo approximation of the

form N Vet
1 43 - *,m m *,M m *,m
m=1 =0

For this, we first have to find at any given date ¢;, the optimal strategy for all simulated
paths (F™)1<m< Ny and all admissible cumulative consumptions @ (i.e. (¢;, Q) € A). We
therefore need to measure the quantity

N-1

R(tlaF7Q+Q) = E( Z \Iltj(qz;-athaQ:‘fj) +,PT(FT7Q;)|F% = FaQtH_l = Q+Q)a
j=i+1



Pricing of Swing options: C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, D. Reboul-Salze ].].

optimal gas decision with optimal gas decision for
the natural gas sample path a natural gas sample path

w

a

]

]

(.

]

'

MM
"

P — 432 - ‘h.--_..

20
B ’kﬁm M'“E s " r,H]w 15 _
® 20 ! £ ] £
e IO i1 & 15 AL . 11 B
515 “\‘ gl j \w 05 '§ L v 05 '§
® ¥ WM 3 ® 3
% . o £ % 0 o 1o £
£ mej T £ ) ; Lus®
5

=]
n
=]
n

100 . a0 300 0 100 . a0 300
time time

o

Figure 6: Storage contract. Optimal gas decision for a natural gas sample path. On the
left, with a flat forward curve. On the right, with the real forward curve of Figure 1.

where (gf;)j>; denotes the optimal control at time t; and (Qj,)j>: the corresponding cu-
mulated consumption. This is the best expected return from date #;41 till the end of
the contract. Assume, for a while, that R(t;, F,Q + ¢) is numerically approximated by
fm’(ti, F,Q + q), using Nj;c Monte Carlo simulations. Then the optimal strategy, at time
t;, for the m-th path and the admissible cumulative consumption @ is determined by:
¢, (F",Q) = arg__ max [y (q, F{", Q) + R(t:, F",Q + q)].
geAdm(t;,Q)

Hence, by estimating the conditional expectation R(t;, F,Q + q) for each date and each
possible cumulative consumption ), the optimal exercise strategy is completely specified
along each path. Following the Longstaff-Schwartz methodology, we fix (¢;, @) and approx-
imate the random variable R(%;, F:,, Q) as the Ly-projection of Z;V:_Zil Wy, (q;“] s By Q;“j) +
Pr(Fr,Q}), on the space spanned by a set of selected basis functions [®;(Fy;)]o<i<r- It
leads to R(t;, F,Q) = EIL:() &(ti, Q)®i(F), where the coefficients [dy(t;, @)]o<i<r solve the
least-squares problem

Nyo N-1 L 2
arg min Z \:Dtj (qz;-’ma FtT, Z’m) + PT(ija Q;“’m) - Z al(I)l(FtT)
() 22 \ ;55 1=0

with an initial consumption Qy,,, = @ + q. Various methods are available to solve numer-
ically this problem, depending on the volatility and the exercise frequency. For a general
reference on least-squares problems, see Golub and Van Loan (1996). Iterating the proce-
dure, we obtain backwards an approximation gj; (Ft’?, Q) along all simulated paths and all
possible cumulative consumptions. The price of the contract easily follows.

2.4.2 Numerical results

The pricing has been performed with 5000 simulations (plus antithetic), with the first four
canonical polynomials (®(z) = 2%, 0 < 4 < 3) and with various consumption frequencies.
We have not reported any result for periods smaller than 4 days, since the resolution of
the least-squares problems usually generates instabilities for small initial times ¢;.
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Consumption period Flat forward curve | Real forward curve
15 days 2450 4410
10 days 2510 4450
5 days 2560 4480
4 days 2640 4510
Forest of trees (daily purchase) 2717 4611
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Example 1: Swing contract. For the following results, the statistical errors due to
Monte Carlo simulations are about 100 units at the 95% level. Hence, this approach gives
good results.

Example 2: storage contract. The values of parameters are set to those of Case 2. We

directly plot the results w.r.t. the frequency.

Storage contract with flat forward curve
5 4

Storage contract with daily forward curve
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Figure 7: Flat forward curve on the left. Real forward curve on the right.

Concerning the functions basis, we have observed that the numerical values are quite

insensitive to the number of polynomials from the moment that the degree 3 is achieved.
The statistical error due to simulations limits any possible improvement (when we take
more basis functions).
Moreover, in our numerical experiments (similarly to the forest method), it appears that the
consumption is of bang-bang type. To prepare the connection with the further consumption
parameterization approach, we plot on Figure 8 the optimal injection threshold for the
storage contract (see Paragraph 3.3.1). Here, we take the flat curve rescaled at level 1
for convenience. The two first axes stand respectively for the time and the volume of
stored gas. The surface shows the dependence of the gas price w.r.t the volume and the
optimal time for injection. Note that the price for which we have to inject decreases as the
volume of the stored gas increases. When the tank is empty, we inject at any cost. On the
contrary, when the tank is almost full, the price must be much lower to inject some more
gas. These observations are intuitively satisfying. Irregularities of the optimal frontier are
due to statistical errors in the Monte Carlo algorithm. However, the overall shape seems
quite smooth. Thus, modeling this optimal frontier with a smooth parameterization may
lead to efficient procedures. This is developed in the sequel.



Pricing of Swing options: C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, D. Reboul-Salze ].3

injection optimal decision

spot price 1.1

105

Figure 8:

3 Parametric approximation

In this section, we develop numerical procedures based on parameterized consumptions.
The purpose is to avoid using the dynamic programming equation (2.8), whose resolu-
tion can be much time consuming. The approach below leads to accurate estimations of
sup, J(q), provided that the parameterization is relevant enough. To this end, we first
determine some intrinsic properties of the optimal consumption, which will help in setting
the parameterization.

3.1 Theoretical results: bang-bang consumption

Hereafter, we state a remarkable theoretical result concerning the necessary optimality con-
ditions satisfied by the optimal consumption, in the Swing contract (with a penalty a little
smoother than Pr(F, Q) = —AF [Q — Qmin|- — BF [Q — Qmax|+)- The proof is relegated
to Appendix A. It states that the optimal consumption is of bang-bang type under some
assumptions. This has been numerically observed with the procedures presented before.

Theorem 3.1 Consider Problem!(1.6) with Uy, (q,F) = e "ig(F — K) and Pr(F,Q) =
—e"TFP(Q), P being a continuously differentiable function.
If the following condition holds

P[e " (F, — K) +E (e ""FrP(Q7)|Fy, Qr;) = 0] =0, (3.10)
the optimal consumption at time t; is necessarily of bang-bang type and given by

*(y *\
q (tz; th;a Qtl) _Qma.x]-efrti (Fti_K)+E(E_TTFTP’(Q})‘Fti,Q:i)>0

+ qminle—rti (Fti _K)+E(e—TTFTP'(Q§“)|Fti =QZ¢') <0’

'For the storage contract, we have not been able to derive analogous rigorous results because of the lack
of smoothness of ¥y, (g, F) w.r.t. g. However, formal computations show that the optimal consumption
essentially takes three values {gmin, 0, gmax }-
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Condition (3.10) appears to be hard to check since it involves the unknown optimal con-
sumption. However, it can be expected (even if we have not been able to prove it) that for
t; < T, the law of the random variable e~ (Fy, — K) + E(e™" FrP'(Q})|F,;, Q},) has a
density w.r.t. the Lebesgue measure. Then, 0 will be a null point and Condition (3.10)
will be satisfied.

Note that Theorem 3.1 is strongly related to the stochastic maximum principle (Pontryagin
principle) for optimal control problems. However, this latter strictly holds in the contin-
uous case (both in time and space). Since the cumulative consumption has a continuous
state space, it has been possible to derive optimality conditions in our context.

Moreover, for less smooth penalties of the form P(Q) = —A [Q — Qmin]|- — B [Q — Qmax)+,
one can easily see that there are certain regions where the derivative of the terminal penalty
does not depend any more on the whole consumption. The proposition below explicitly
characterizes the consumption threshold in these special cases.

Proposition 3.2 Consider the Swing contract described by (1.4).

1. If Q € [Qmin — gmin (N — 1), Qmax — gmax (N — ©)], the terminal constraints will
be satisfied whatever happens (Qr € [Qmin, @max)|). The consumption threshold is
therefore equal to the strike K and the optimal consumption takes the following form
(see Zone 1 in Figure 12)

9t; = Gmax 17, >K + qmin 17, <K-

2. If Qi + gmin (N — 1) > Qmax, we are certain to be in over-consumption at the
time horizon and P'(Qr) = —A. Then using the relation F(t;,T) = E (Fr|Fy,), the
optimal consumption is in the form of (cf. Zone 2 in Figure 12)

4t = 9dmax 1e—’“ti(F,gi—K)—A e~"TF(t;,T)>0 T dmin 1e—’“ti(Fti—K)—A e "TF(t;,T)<0-

3. If Qi + gmax (N — 1) < Qmin, we are certain to be in under-consumption at the time
horizon and P'(Qr) = B. The optimal consumption is given by (cf. Zone 3 in Figure
12)

gt = gmax 1e_”i(Fti—K)+B e="TF(t;,1)>0 T gmin 1e_”i(Fti—K)+B e~ "TF(t;,1)<0"

In order to improve optimization procedures, these specific cases have been taken into
account in the parameterization of the gas consumption.

3.2 Using a neural network
3.2.1 Description and motivations

We first propose a nonlinear parameterization of the consumption function ¢; = q(t, Fy, Q¢),
using a neural network (see Haykin (1994) for general references on neural networks).
We have selected for our study a one-hidden-layer neural network, whose architecture is
described in Figure 9. The input layer (z;)1<i<3 is connected to the state and time variables
:x1 =1, 9 = F; and 3 = Q. There is one hidden layer with L neurons, and the output
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Figure 9: Architecture of the neural network.

layer returns the level of optimal consumption at time ¢. Actually, the number of hidden
units to use is far from clear. It is related to the complexity of the underlying function that
the network is trying to model. A good starting point is to choose a number of units equal
to half the sum of the number of input and output units. We have conducted a certain
number of experiments with different configurations and finally selected a network with 4
hidden neurons, in preference to a larger one with a negligible improvement. The network
is defined by a matrix and a vector of weights (the parameters) : the input weights { }CI;
and the output weights {6"*}. The output of the network is given by

4 3
y=> 0"s (Z O xk) :
=1 k=0
in

where ( Ol)l are the bias weights (we set g = 1) and s is the Sigmoid function: s(z) =

1
14e—2°

The local consumption is then defined by

q = Qmin + (Qmax - Qmin) 3('!/); (3.11)

which still belongs to the range [gmin, ¢max|-

The motivation of such a parameterization is the following. First, neural networks are
very sophisticated techniques capable of modeling extremely complex functions (in par-
ticular, nonlinear ones with large numbers of variables), and at the same time, the level
of the user knowledge needed to successfully apply neural networks is much lower than
would be the case using, for example, some more traditional nonlinear statistical meth-
ods. In addition, the expected payoff J(g) defined in (1.6) becomes J(6), with 6 =
( ;c‘;, v 0<k<3;1<I< 4), and in the sequel the optimization w.r.t. 8 will be per-
formed using an estimation of the gradient V. 7(#). This justifies why we here consider a
smooth parameterization. However, thanks to Theorem 3.1, we may expect the optimal
consumption to be of bang-bang type. This behavior can be seen as a limit case where the
output weights tend to infinity. It means that y represents in a nonlinear way the bang-
bang threshold : for large positive values of y, ¢ &= gmax and for large negatives values of

Y, 4 = gmin-
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3.2.2 The gradient algorithm

From an initial random configuration of weights, the stochastic gradient algorithm makes,
in expectation, a move towards points of higher values in the search space, in order to
locate a local maximum (see Benveniste, Metivier and Priouret (1990), Kushner and Yin
(1997) for general references on stochastic approximation algoritlgli We thus diﬁﬁ a
recursive sequence of parameters (6,,) by setting 0p+1 = 0, + 71,V JT (6r), where Vo T (6,,)
is a gradient estimator of the mapping 6 — J(@) and (7,) is a suitable sequence of
nonnegative step sizes. We have chosen to fix -, to a constant throughout our numerical
experiments, but the difficult part is to decide how large the steps should be. Large steps
may converge more quickly, but may also overstep the solution or go off in the wrong
direction. In contrast, very small steps may go in the correct direction, but they also
require a large number of iterations. The correct setting for the step size is application-
dependent, and typically chosen by experiments. The algorithm stops in a high point,
which is a local maximum. Throughout the numerical experiments we have performed,
the values to which the algorithm has converged were all very close to the global optimum
(presumably given by the method of Section 2.3). As for VyJ(0), it has been computed by
a classic Monte-Carlo approach, using a path-wise method (see Kushner and Yang (1991)
and recently Gobet and Munos (2002)). It is thus expressed as an expectation :

N-1
vﬂj(e) =E ( Z VﬂQ(ea ti7 Ftp Qti)aqqfti (qtz ) Ftp Qtz)

1=0

+ 30Qt¢ BQ\Ptl (Qtz ) Ftp Qtl)> + E (e_TTaHQTaQPT (FT7 QT)) - (312)

The quantity Vq(0,t;, F, Q) results in differentiating the parameterization of the consump-
tion defined in (3.11), which is straightforward. For the Monte Carlo evaluations of V.7 (0),
we need to simulate (0pQy;)o<i<n. It is obtained using the equation Qy,, = Qi + qu,
from which we deduce

a@QtH_l = athi + BG(I(Ha tia Ftia Qtl) + aQq(oa tia Ftia Qtz) aGQtp

with an initial condition dypQg = 0.

3.2.3 Numerical results

Example 1: Swing contract. As can be seen in section 3.1, we expect the optimal
consumption to be of bang-bang type. Thus in order to take into account this (remarkable)
result, a threshold function can be additionally applied to the output unit :

Gthreshold = Gmax 1

amax+amin T ¢min 1 gmax+4qmin *
Gnetwork > P) nin q Inetwork < P) min

In the above expression, gnetwork and Gthreshold Stand for the output neuron and the threshold
value, respectively. Here, the parameters are the ones given in Case 1. We also consider
A = B = 1. The step size for the stochastic-gradient algorithm is constant and equal to 3.
Denote by
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Figure 10: Price of the Swing contract w.r.t. the number of iterations. On the left, with

a flat forward curve. On the right, with the forward curve of Figure 1.

Neural network
before thresholding

Neural network
after thresholding

Forest of trees

Flat forward 2659 4+ 28 2681 £ 28 2717
curve
Real 4555 + 31 4584 + 31 4611

forward curve

Table 2: Final price of the Swing contract, before and after thresholding the consumption
(the values after + equal the half of the 95% confidence interval width).

e Njysc the required number of Monte Carlo simulations to calculate an estimator of
the gradient, for a given set of parameters,

e Njir the number of iterations on the parameters in the optimization stage.
The algorithm can therefore be split into two stages:

1) a first optimization stage, where we set for example Njsc = 100 and a large number
of iterations Ny = 3000, so that the algorithm presumably converges.

2) a second pricing stage with the last set of parameters and a much higher Ny¢ (it
can be set equal to 100000 for example), in order to reduce the confidence interval
on the price.

Results are reported in Table 2. Note that for both forward curves, the results are far by
1% from the optimal price computed by the tree method, and thresholding at the exit of
the neural network seems to be relevant. Furthermore, we can see that these two tests
provide powerful insights concerning the type of convergence that may be observed in the
optimization algorithms (independently of the selected parameterization). For the first
forward curve, we can see that the algorithm requires only 1000 iterations to converge,
and thus it is useless to go until 3000 iterations. On the contrary, for the second forward
curve, we have a slower optimization, which is even performed in two steps (as if a local
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optimum were reached at an intermediate stage). The quality of results and the type of
convergence are thus strongly related to the selected forward curve.

Example 2: storage contract. The values of parameters are set to those of Case 2. The
step size for the stochastic-gradient algorithm is constant and equal to 0.1. The terminal
penalties are always satisfied in this case. In fact, as already mentioned, the constraints in
the storage case can be formulated as follows

f1(t) < Q¢ < fot),Vt € [0,T].
Denote by gparams(t) the output of the neural network at time ¢.

o Q¢ > fi(t) for every t € [0,T]. Thus as soon as |Q¢ — f1(t)| < |gmin| dt, we replace
the output of the network by :

otherwise.

1 _ Qparams(t); if 9params (t) + Qi dt > f1 (t)
%=\ h®)-Q
.
0 Q; < fa(t) for every t € [0,T]. Thus if gidt + Q¢ > f2(t), we replace i by %.
Finally, the retained control at time ¢ takes the form of

gt = min [qtl, W] = min [max (QPara,ms(t)a fl(t)dt_ Qt) ) fQ(t)dt_ Qt:| .

Note that the above consumption is not of class C; any more. However, the stochastic
gradient algorithm is still applicable, since there is only a finite set of points where the
function is not differentiable.

Neural network | Forest of trees

Flat forward 64.7 +0.4 67,9
curve (N7 = 3000)
Real 218.7 + 0.6 242.3

forward curve (N = 6000)

Table 3: Final price of the storage contract (the values after + equal the half of the 95%
confidence interval width).

The results reported in Table 3 are computed with Ny = 3000 (resp. Ny = 6000)
iterations for the flat forward curve (resp. for the forward curve from Figure 1), still
using Nprc = 100000 paths for the final value. Note that the neural network gives a less
satisfying price in the case of the real forward curve. The strong seasonality component
of the curve is undoubtedly an important explaining factor. Adding more hidden neurons
certainly improves the quality of the price, but also implies longer computing times.

Let us finally stress that no thresholding at the output of the network has been applied
here. Unlike the Swing contract, we have not been able in this case to find a relevant
thresholding rule at the output of the network.
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Figure 11: Price of the storage contract w.r.t. the number of iterations. On the left, with
a flat forward curve. On the right, with the forward curve of Figure 1.

3.3 Direct parameterization of the purchase threshold
3.3.1 For the Swing contract

Unlike the previous approach with neural networks, here the parameterization of ¢(t;, F, Q)
does not need to be smooth with respect to parameters. We rather focus on the bang-bang
behavior which can be expected from Theorem 3.1. Thus, we here assume that

o ¢*(ti, Fy;, Qy;) takes only two values ¢min and gmax,
o ¢*(t;, Fy,, Q) is an increasing function w.r.t Fj,.

The second property is heuristic : we expect that a higher price of gas will lead to a higher
consumption at a fixed price K. Previous algorithms based on the dynamic programming
equation (see Section 2) give results that confirm this heuristic. From these two properties
we deduce that if ¢ is optimal, there exists a threshold S* depending on both ¢; and Qy,
such that

Qi = Gmax {7 >5%(:,Qr)} T dminl{F, <5+ (2:,Qu;))-
Our approach is to model this optimal threshold price as a function of ¢ and @;. We can
divide the set of couples (t;, Q) into four zones.

e Zone 1 corresponds to a consumption such that the consumer is sure to respect the
global constraints. The optimal threshold is equal to the strike K.

e Zone 2 (resp.3) corresponds to an over (resp. under) consumption. In these two cases
the optimal threshold is an explicit function of ¢;. If the global penalties are infinite,
these two zones are useless.

e Zone 4 is the only one where the threshold has to be found.

Even if Fy, fluctuates a lot, we expect that the threshold S* changes a little with respect
to t; and @y;. For instance, in the special case where Fj, is deterministic with r = 0, S$* is
constant. Consequently, S*(¢;, Q¢;) may be approximated by a smooth function of (¢;, Qt,).
Figure 8 about the injection optimal decision confirms that the threshold surface may be
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Figure 12: Parameterization of the threshold as a function of both (¢,Q;) and (¢t —
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approximated by a smooth one for these contracts. Actually, it is more efficient to express

. Qtl_q X 1 .
(Z_$,Qti_Qminxz ’

gmax — gmin

S* as a function of

the support of the function S§* being now a rectangle. The parameters 8 of the function
S* are values of the threshold at a fixed position spread, on a uniform grid with a chosen
size (5 x b for example). The value of S* outside the grid is equal to the strike if the
couple (;,Qy,;) is in Zone 1, and to a bilinear interpolation of the four nearest neighbors,
otherwise.

3.3.2 Optimization of parameters

With this parameterization, the function J(6) to maximize is not smooth, and a specific
optimization procedure has to be carried out.

Since parameters 8 are threshold values, they can be initialized near the value K. The
idea of the optimization is the following. With a given set of simulations, we can evaluate
J (0) for any value of 8. We are looking for the optimal parameter by applying coordinate-
wise iterative perturbations of the parameters. The size of the perturbation equals € and
parameters are iteratively chosen according to a statistical test based on the empirical
mean and variance of the improvement. To get better and better parameters we increase
the size of the set of simulations in several stages. We start with [ = 0 and Nas¢ = 10000.
We define 0;; = (61,...,0j, +¢€,...,04) and 8, = (01,...,0;, —€,...,04). The algorithm
can be described as follows.

e Stage [

— Simulate a set of 2! N3z independent paths (Fy,)i-

— Denote by 6(X) the empirical standard deviation of X computed with this set
of paths.

— While J(6) is improved
+ Compute the empirical mean of J(0) using this set of paths.

* For each parameter coordinate 6,
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- if J(0F) — T(0) > 1.65 x (T (6]) — T (6)) or

L if J(85,) — T () > 1.65 x 6(J(8},) — T(9))
change the value of 6, and continue the optimization with the best of these
three sets of parameters.

o [ > [+1.

Iterations are stopped when 2! Njs¢ is too large for computations or when there is no more
improvement.

3.3.3 Applications to storage contract

A similar strategy can be used for the storage contract, since we expect that the optimal
consumption q(t, Q¢, F;) takes only three values. In this case we build two surfaces associ-
ated to the two thresholds, using the same method. We choose a size of grid and change
the values of nodes, one by one, at each optimization step: nodes of the first surface, then
nodes of the second one. Since the previous change of variables is useless, we parameterize
the two surfaces with ¢; and Qy, .

3.3.4 Results

Example 1: Swing contract. For different forward curves, the solution and the optimal
parameters computed with this algorithm do not depend on the initial set of parameters.
Furthermore, no local maximum phenomenon has been noticed. The quality of results
mainly depends on the forward curves. With a 4 x 4 grid we can reach, in the best cases,
98% of the performance obtained by a dynamic programming approach. The following
results are computed with ¢ = 0.1, [ = 5 steps (corresponding to a maximum set of 320
000 different simulations) and 95% confidence intervals.

Forward curve | Size of grid J Forest of trees
real 4 x4 4565 + 25 4611
real 10 x 10 4578 + 25 4611
flat 4 x4 2696 + 23 2718
flat 10 x 10 2692 + 23 2718

Example 2: storage contract. These results mainly depend on the choice of € and the
size of grids. e needs to be small enough to have reliable results but a too small value
of € may also generate heavy computations. In our case grids were too coarse to use a
very small value of . Adaptive grids, which become more precise as t grows, may be
more efficient than uniform ones. In the storage contract, a grid that ensures continuity
of the threshold surface at edges of Zone 1, gives good results as well. It appears that
initialization and order of parameters #; in the optimization procedure are not crucial.

Forward curve | Size of grid J Forest of trees
real 4x4 2253+ 1.2 242.5
real 10 x 10 230+ 1.2 242.5
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4 Conclusion

In the paper, we have presented several numerical methods to price Swing options. The
well-known forest of trees method allows to deal efficiently with one factor models. We
have extended the Longstaff-Schwartz method (initially used for Bermuda options) to our
framework. This authorizes multi-factor models. These two procedures take advantage
of the dynamic programming equation and thus, lead to accurate valuations of the Swing
contract. Numerical experiments confirm this feature. We develop alternative algorithms
based on relevant parameterizations of the consumption. These new methods can also
handle multi-factor models. Moreover, unlike the previous ones, they have the advantage
to give intermediate prices throughout the optimization stage.

To guide our choice of parameterization, we have proven that the optimal purchase is
of bang-bang type. The first parametric method is based on a neural network, which
can asymptotically reproduce the bang-bang behavior. The objective function is smooth
w.r.t. parameters and gradient stochastic methods can be used for the optimization. The
results are quite satisfying. The second parametric method directly models the bang-bang
threshold as a function of the time and the cumulative consumption. This seems to be
particularly adapted to the problem and thus leads to better results.

A Proof of Theorem 3.1

Let ¢(.) be an optimal control and g(.) an admissible control in [gmin, ¢max|- For € € [0,1],
we define a third admissible control

€ { Qti_*_e(Qti_qti) j:Z’
qtj -

qtj .7 7£ i.

The objective function corresponding to ¢¢ is given by

N-—1
J(@)=E|> e g (F, - K)+e " FrP(QF)
i=0

Since ¢ is optimal, we get J(q°) < J(q), for every € € [0,1], and therefore 8\76(35) le=o < 0.

We can easily compute this derivative and obtain
0J(¢), _
Oe €l0 €
= E{(q —a) [e7"(F, — K) + e " FrP'(Qr)] }
=E {(Qtz —qt;) [e_”i (Fy, —K)+ E (e_TTFTPI(QTNthQti)] } <0.

The above inequality holds true for all admissible control ((jtj )j, thus in particular for
@; = qt; + (g — q1;) 1, >01i=j, where

Hy, = e "(F, — K)+E (e7" " FrP(Qr)|Fy;, Qu,)
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and Ay, = (¢ —qy;)Hy; (¢ € [gmin, gmax] being fixed). This gives E (1)\”>0)\ti> < 0. In other

words, A;; is negative outside some negligible sets. Thus we have proven the following

optimality condition

(¢ —

qtq;) [e_rti (Ftl - K) +E (e_rTFTPI(QT)‘Fthti)] < O,V qc [Qmin; Qma.x]a

and the desired result follows at once.
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