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Abstract
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The shortcomings of diffusion models in representing the risk related to large
market movements have led to the development of various option pricing models
with jumps, where large returns are represented as discontinuities of prices as a
function of time. Models with jumps allow for more realistic representation of
price dynamics and a greater flexibility in modelling and have been the focus of
much recent work. A review of financial modelling with jump processes may be
found in [9].

Exponential Lévy models, where the market price of an asset is represented
as the exponential St = exp(rt + Xt) of a Lévy process Xt, offer analytically
tractable examples of positive processes with jumps which are simple enough
to allow a detailed study both in terms of statistical properties and as models
for risk-neutral dynamics i.e. option pricing models. Option pricing with expo-
nential Lévy models is discussed in [9, 14, 16, 19]. The flexibility of choice of
the Lévy process X allows to calibrate the model to market prices of options
and reproduce a wide variety of implied volatility skews/smiles. The Markov
property of the price allows us to express option prices as solutions of partial
integro-differential equations (PIDEs) which involve, in addition to a (possibly
degenerate) second-order differential operator, a non-local integral term which
requires specific treatment both at the theoretical and numerical level.

Such partial integro-differential equations (PIDEs) have been used by several
authors to price options in models with jumps [3, 8, 22, 13] but the derivation of
these equations is omitted in these works. We explore in this paper the precise
link between option prices in exponential Lévy models and the related partial
integro-differential equations (PIDEs) in the case of European and barrier op-
tions in exponential Lévy models. We first discuss the conditions under which
options prices are classical solutions of the PIDEs and show that these condi-
tions may fail in pure jump models. The notion of continuous viscosity solution
allows to cover this case: we give sufficient conditions on the Lévy triplet for
the option price to be continuous and show that in this case it is the unique
viscosity solution of the PIDE.

Section 1 recalls some basic facts about Lévy processes and exponential
Lévy models. Section 2 derives the PIDE verified by option prices in a heuristic
manner and discusses sufficient conditions for this derivation to hold. Section
3 gives two examples illustrating the lack of smoothness with respect to the
underlying in pure jump models and gives sufficient conditions on the Lévy
triplet for option prices to be continuous. In Section 4 we define the notion
of viscosity solutions for PIDEs and give a characterization of option prices in
terms of viscosity solution to a PIDE. Section 5 concludes by discussing relations
with previous work, possible extensions and applications.

1 Exponential Lévy models

We consider here the class of models where the risk neutral dynamics of the
underlying asset is given by St = exp(rt + Xt) where Xt is a Lévy process.
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1.1 Lévy processes: definitions

A Lévy process is a stochastic process Xt with stationary independent incre-
ments which is continuous in probability (but may have discontinuous trajecto-
ries). Without loss of generality we assume X0 = 0. The characteristic function
of Xt has the following Lévy-Khinchin representation [27]:

E[eizXt ] = exp tφ(z), φ(z) = −σ2z2

2
+ iγz +

∫ ∞

−∞
(eizx − 1− izx1|x|≤1)ν(dx),

where σ ≥ 0 and γ are real constants and ν is a positive Radon measure on
R− {0} verifying

∫ +1

−1

x2ν(dx) < ∞,

∫

|x|>1

ν(dx) < ∞.

The random process X can be interpreted as the independent superposition
of a Brownian motion with drift and an infinite superposition of independent
(compensated) Poisson processes with various jump sizes x, ν(dx) being the
intensity of jumps of size x.

In general ν is not a finite measure:
∫

ν(dx) need not be finite. In the
case where λ =

∫
ν(dx) < +∞, the measure ν can be normalized to define a

probability measure µ which can now be interpreted as the distribution of jump
sizes:

µ(dx) =
ν(dx)

λ
.

The jumps of X are then described by a compound Poisson process with λ as
jump intensity (average number of jumps per unit time) and jump size distri-
bution µ(.). More generally, if

∫ |x|ν(dx) < ∞, the (possibly infinite) sum of
jumps is absolutely convergent with probability 1 and Xt can be represented as
a pathwise sum of a Brownian motion plus jumps:

Xt = σWt + γ0t +
∑

0<s≤t

∆Xt (1.1)

where γ0 = γ − ∫
|x|≤1

xν(dx). In this case the compensation of small jumps is
not needed and the Lévy-Khinchin representation reduces to:

φ(z) = −σ2z2

2
+ iγ0z +

∫ ∞

−∞
(eizx − 1)ν(dx).

In the case where
∫ |x|ν(dx) = ∞ the jumps have infinite variation and small

jumps need to be compensated.
A Lévy process is a (strong) Markov process; the associated semigroup is a

convolution semigroup and its infinitesimal generator L : f → Lf is an integro-
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differential operator given by:

Lf(x) = lim
t→0

E[f(x + Xt)]− f(x)
t

=

=
σ2

2
∂2f

∂x2
+ γ

∂f

∂x
+

∫
ν(dy)[f(x + y)− f(x)− y1{|y|≤1}

∂f

∂x
(x)] (1.2)

which is well defined for f ∈ C2(R) with compact support.

1.2 Exponential Lévy models

Let (St)t∈[0,T ] be the price of a financial asset modelled as a stochastic process
on a filtered probability space (Ω,F ,Ft,P). Ft is usually taken to be the price
history up to t. Under the hypothesis of absence of arbitrage there exists a
measure Q equivalent to P under which the discounted prices of all financial
assets are Q- martingales; in particular the discounted underlying (e−rtSt) is a
martingale under Q.

In exponential Lévy models, the (risk-neutral) dynamics of St under Q is
represented as the exponential of a Lévy process:

St = S0e
rt+Xt .

Here Xt is a Lévy process (under Q) with characteristic triplet (σ,γ,ν), and the
interest rate r is included for ease of notation. The absence of arbitrage then
imposes that Ŝt = Ste

−rt = exp Xt is a martingale, which is equivalent to the
following conditions on the triplet (σ,γ,ν):
∫

|y|>1

ν(dy)ey < ∞, γ = γ(σ, ν) = −σ2

2
−

∫
(ey − 1− y1|y|≤1)ν(dy). (1.3)

We will assume this relation holds in the sequel. The infinitesimal generator L
then becomes:

Lf(x) =
σ2

2
[
∂2f

∂x2
− ∂f

∂x
] +

∫ ∞

−∞
ν(dy) [f(x + y) − f(x) − (ey − 1)

∂f

∂x
(x)].

(1.4)

The risk-neutral dynamics of St is given by

St = S0 +
∫ t

0

rSu−du+
∫ t

0

Su−σdWu +
∫ t

0

∫ ∞

−∞
(ex−1)Su−J̃X(du dx), (1.5)

where J̃X is the compensated random measure describing the jumps of X [25].
(St) is also a Markov process with state space (0,∞) and infinitesimal gen-

erator:

LSf(x) = rx
∂f

∂x
(x)+

σ2x2

2
∂2f

∂x2
(x)+

∫
ν(dy)[f(xey)−f(x)−x(ey−1)

∂f

∂x
(x)].

(1.6)
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While in principle one can have both a non-zero diffusion component σ 6= 0
and an infinite activity jump component, in practice the models encountered in
the financial literature are of two types: either we combine a non-zero diffusion
part σ > 0 with a finite activity jump process (in this case one speaks of a
jump-diffusion model) or one totally suppresses the diffusion part, in which
case frequent small jumps are needed to generate realistic trajectories: these are
infinite activity pure jump models. Different exponential Lévy models proposed
in the financial modelling literature simply correspond to different choices for
the Lévy measure ν, see [9, Chap. 3] for a review.

2 Partial integro-differential equations for op-
tion prices

The value of a European option is defined as a discounted conditional expecta-
tion of its terminal payoff H(ST ) under risk-neutral probability Q:

Ct = E[e−r(T−t)H(ST )|Ft].

From the Markov property, Ct = C(t, S) where

C(t, S) = E[e−r(T−t)H(ST )|St = S]. (2.1)

Introducing the change of variable τ = T − t, x = ln(S/S0), and defining:
h(x) = H(S0e

x) and f(τ, x) = erτC(T − τ, S0e
x), then

f(τ, x) = E[h(x + rτ + Xτ )]. (2.2)

If h is in the domain of the infinitesimal generator L of X given by (1.4), then
we can differentiate with respect to τ to obtain the following integro-differential
equation:

∂f

∂τ
= Lf + r

∂f

∂x
, on (0, T ]× R; f(0, x) = h(x), x ∈ R. (2.3)

Similarly, if f is smooth then using a change of variable we obtain a similar
equation for C(t, S):

∂C

∂t
(t, S) + LSC(t, S)− rC(t, S) = 0; C(T, S) = H(S). (2.4)

This equation is similar to the Black-Scholes partial differential equation, except
that the second-order differential operator is replaced by the integro-differential
operators LS .

However, the above reasoning is heuristic: the payoff function h is usually
not in the domain of L and in fact it is usually not even differentiable. For
example h(x) = (K − S0e

x)+ for a put option and h(x) = 1x≥x0 for a binary
option.

If f is a smooth solution of (2.3), by applying the Ito formula to f(t,Xt)
between 0 and T one can show [6, 23] that f has the probabilistic representation
(2.2):
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Proposition 1 (Feynman–Kac representation for Lévy processes). As-
sume σ > 0 or ∃a > 0 such that

∫
|x|>1

exp(a|x|)ν(dx) < ∞. If f ∈ C1,2 is a
classical solution of (2.3) and its derivatives are bounded by a polynomial func-
tion of x, uniformly in t ∈ [0, T ], then f has the probabilistic representation
(2.2).

The case σ > 0 is shown in [6, Chap. 4]; the pure jump case is treated
in [23]. This type of result is sometimes called a verification theorem: f is
assumed to be smooth and its derivatives assumed to verify some integrability
conditions. The conditions on f and ν ensure that f(t,Xt) can be represented
as a martingale plus a finite variation process. However, it is readily seen that
such conditions are never verified in option pricing applications.1 For instance,
even for a European put option, the second derivative (Gamma of the option)
is certainly not uniformly bounded in t!

These assumptions can be weakened in various ways, see [6, 26]. In the
next section we will give some sufficient conditions for this smoothness to be
verified. Under these conditions the value of European options f(τ, x), C(t, S)
defined above are classical solutions of the partial integro-differential equations
(2.3), (2.4). However, as we will see in section 3, these conditions are not always
verified, especially in pure jump models. This will lead us to consider the notion
of viscosity solution; we show in section 4 that under more general conditions,
values of European or barrier options can be expressed as viscosity solutions of
appropriate PIDEs.

2.1 Classical solutions

Consider a European option with maturity T and payoff H(ST ). Assume that
the payoff function H is Lipschitz:

|H(x)−H(y)| ≤ c|x− y| (2.5)

for some c > 0. This condition is of course verified by call and put options with
c = 1. The value Ct of such an option is given by Ct = C(t, St) where

C(t, S) = e−r(T−t)E[H(ST )|St = S] = e−r(T−t)E[H(Ser(T−t)+XT−t)].

We will furthermore assume, throughout this section, that
∫

|y|>1

e2yν(dy) < ∞. (2.6)

This condition is equivalent to the existence of a second moment for the price
process St. Then Ŝt = exp Xt is a square integrable martingale:

dŜt

Ŝt−
= σdWt +

∫ ∞

−∞
(ex − 1)J̃X(dt dx), sup

t∈[0,T ]

E[Ŝ2
t ] < ∞.

1In particular, the hypotheses given in [23] do not apply to the example of a call or put
option.
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Proposition 2 (Backward PIDE for European options). Consider the
exponential Lévy model St = S0 exp(rt+Xt) where X is a Lévy process verifying
(2.6). If

σ > 0 or ∃β ∈ (0, 2), lim inf
ε↓0

ε−β

∫ ε

−ε

|x|2ν(dx) > 0 (2.7)

then the value of a European option with terminal payoff H(ST ) is given by
C(t, S) where:

C : [0, T ]× [0,∞) → R
(t, S) 7→ C(t, S) = e−r(T−t)E[H(ST )|St = S]

is continuous on [0, T ]× [0,∞), C1,2 on (0, T )× (0,∞), and verifies the partial
integro-differential equation:

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2
∂2C

∂S2
(t, S)− rC(t, S)+

+
∫

ν(dx)[C(t, Sex)− C(t, S)− S(ex − 1)
∂C

∂S
(t, S)] = 0 (2.8)

on [0, T )× (0,∞) with the terminal condition:

∀S > 0, C(T, S) = H(S). (2.9)

Proof. The proof involves, as in the Black-Scholes case, applying the Itô formula
to the martingale Ĉ(t, St) = er(T−t)C(t, St), identifying the drift component and
setting it to zero.

Condition (2.7) implies that Xt has a smooth C2 density with derivatives
vanishing at infinity (see [27, proposition 28.3]); C(t, S) is then a smooth func-
tion of S. Smoothness in time can be shown by Fourier methods, see [9, Propo-
sition 12.2].

By construction, Ĉt = E[H|Ft] is a martingale. Applying the Itô formula to
Ĉt = er(T−t)C(t, St) and using equation (1.5) we obtain:

dĈt = er(T−t)[−rCt+
∂C

∂t
(t, St−)+

σ2S2
t

2
∂2C

∂S2
(t, St−)]dt+er(T−t) ∂C

∂S
(t, St−)dSt+

+ er(T−t)[C(t, St−e∆Xt)− C(t, St−)− St−(e∆Xt − 1)
∂C

∂S
(t, St−)] =

= a(t)dt + dMt (2.10)

where

a(t) = er(T−t)[−rC(t, St−)+
∂C

∂t
(t, St−)+

σ2S2
t−

2
∂2C

∂S2
(t, St−)+rSt−

∂C

∂S
(t, St−)]

+
∫ ∞

−∞
ν(dx)er(T−t)[C(t, St−ex)− C(t, St−)− St−(ex − 1)

∂C

∂S
(t, St−)],
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and

dMt = er(T−t) ∂C

∂S
(t, St−)σSt−dWt+

∫

R
er(T−t)[C(t, St−ex)−C(t, St−)]J̃X(dt dx).

Let us now show that Mt is a martingale. Since the payoff function H is Lips-
chitz, C is also Lipschitz with respect to the second variable:

|C(t, S1)− C(t, S2)| = e−r(T−t)|E[H(S1e
r(T−t)+XT−t)]− E[H(S2e

r(T−t)+XT−t)]|
≤ c|S1 − S2|E[eXT−t ] = c|S1 − S2| (2.11)

since eXt is a martingale. Therefore the predictable random function ψ(t, x) =
C(t, St−ex)− C(t, St−) verifies

E[
∫ T

0

dt

∫

R
ν(dx)|ψ(t, x)|2] = E[

∫ T

0

dt

∫

R
ν(dx)|C(t, St−ex)− C(t, St−)|2 ]

≤ E[
∫ T

0

dt

∫

R
c2(e2x + 1)S2

t−ν(dx)]

using (2.6) ≤ c2

∫

R
(e2x + 1)ν(dx) E[

∫ T

0

S2
t−dt] < ∞,

so the compensated Poisson integral
∫ t

0

∫ ∞

−∞
er(T−t)[C(t, St−ex)− C(t, St−)] J̃X(dt dx)

is a square integrable martingale. Also, since C is Lipschitz, ∂C/∂S ∈ L∞ and

||∂C

∂S
(t, .)||L∞ ≤ c, so E[

∫ T

0

S2
t−|

∂C

∂S
(t, St−)|2dt] ≤ c2E[

∫ T

0

S2
t−dt] < ∞.

Using the isometry relation for Wiener integrals, we obtain that∫ t

0
σSt

∂C
∂S (t, St−)dWt is also a square integrable martingale. Therefore Mt is

a square integrable martingale. Ĉt −Mt is thus a (square integrable) martin-
gale; but Ĉt −Mt =

∫ t

0
a(s)ds is also a continuous process with finite variation

so, by [17, Theorem 4.13-4.50], we must have a(t) = 0 Q-almost surely which
yields the PIDE (2.8).

The condition (2.7) holds for all jump diffusion models with non-zero diffu-
sion component as well as for Lévy densities behaving near zero as ν(x) ∼ c/x1+β

with β > 0 such as the tempered stable model, but not for the Variance Gamma
model [21]. In the case of the Variance Gamma model, the PIDE reduces to a
first order equation for which only C1 smoothness is required but, as we shall
observed in Section 3, even this condition may fail.

9



2.2 Barrier options

Barrier options can be similarly represented in terms of solutions to PIDEs.
Consider for instance an up-and-out call option with maturity T , strike K, and
(upper) barrier U > S0. The terminal payoff is given by

HT = (ST −K)+1T<θ,

where θ = inf{t ≥ 0 | St ≥ U}, the first moment when the barrier is crossed.
The value of the barrier option at time t is defined as the discounted expecta-

tion of it’s terminal payoff: Ct = e−r(T−t)E[HT |Ft]. By construction, er(T−t)Ct

is a martingale.
Due to the Markov property of Lévy processes, it is possible to express the

price Ct as a deterministic function of time t and current stock value St before
the barrier is crossed. Namely, for any (t, S) ∈ [0, T ]× (0,∞) we can define

Cb(t, S) = e−r(T−t) E[H(SeYT−t)1T<θt ], (2.12)

where H(S) = (S − K)+, {Ys−t, s ≥ t} is a Lévy process, and θt = inf{s ≥
t | SeYs−t ≥ U}, the first exit time after t. Then,

Ct = Cb(t, St)1t≤θ (2.13)

for all t ≤ T . Note that outside of the set {t ≤ θ} the objects Ct and Cb(t, St)
are different: if the barrier has already been crossed, Ct will always be zero,
but Cb(t, St) may become positive if the stock returns to the region below the
barrier.

As in the European case, by going to the log variables we define

fb(τ, x) = erτCb(T − τ, S0e
x). (2.14)

Again, if fb is smooth the Itô formula can be used to show that fb is a solution
of the following initial-boundary-value problem:

∂f

∂τ
= Lf + r

∂f

∂x
, on (0, T ]× (−∞, log(U/S0)), (2.15)

f(0, x) = h(x), x < log(U/S0),
f(τ, x) = 0, x ≥ log(U/S0). (2.16)

The main difference between this equation and the analogous PDEs for dif-
fusion models is in the ”boundary condition”: (2.16) not only specifies the be-
havior of the solution at the barrier S = U but also beyond the barrier (S > U).
This is necessary because of the non-local nature of the operator L: to compute
the integral term we need the function f(τ, .) on (−∞,∞) and (2.16) extends
the function beyond the barrier by zero. In the case of a rebate, the function
would be replaced by the value of the rebate in the knock-out region S ≥ U .
Similar results and corresponding Feynman-Kac formulae hold — in the case
σ > 0 — when the boundary condition is not zero but given by a function
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g(τ, x) where g ∈ W 1,2
p ([0, T ]×R) with p > 3, see [26]. More generally, if fb(., .)

defined by (2.14) can be shown to be C1,2 (or simply C1,1 in the case of finite
variation models) then following the proof of Proposition 2, one can show that
fb is a solution of the PIDE (2.15). However, as we shall see below (Example
2) in the case of pure jump models where σ = 0 such smoothness with respect
to the underlying does not hold in general.

3 Smoothness with respect to the underlying

In the case where the log-price Xt has a non-degenerate diffusion component, it
is known [6, 15] that the fundamental solution of the pricing PIDE, which corre-
sponds to the density of Xt, is in fact a smooth C∞ function. As a consequence,
the option price u(t, x) depends smoothly on the underlying and results such
as Proposition 1 allow to use the solution of the PIDE to compute the option
price. In pure jump models, this property may fail. In this section we present
examples where smoothness fails; we then give sufficient conditions under which
the option prices is continuous as a function of the underlying. This minimal
regularity will be required later to show that the option price is a generalized
(viscosity) solution of the PIDE.

3.1 Lack of smoothness in pure jump models

In the case of processes with a degenerate diffusion component, such as pure
jump models, the smoothness of the conditional expectation as a function of the
initial (spot) value of the underlying S does not always hold, as the following
example shows.

Example 1 (Variance Gamma process). The Variance Gamma process,
introduced by Madan & Milne [20], is a pure jump finite variation process with
infinite activity, popular in financial modelling. Its Lévy measure has a density
given by:

ν(x) =
1

κ|x|e
Ax−B|x| with A =

θ

σ2
and B =

√
θ2 + 2σ2/κ

σ2
. (3.1)

The characteristic function of Xt, the Fourier transform of its distribution, is
given by:

Φt(u) = (1 +
u2σ2κ

2
− iθκu)−

t
κ (3.2)

Φt(.) decays as |u|−2t/κ when |u| → ∞: the decay exponent increases with t.
The fundamental solution ρ(t, x) of the PIDE therefore has a degree of regularity
which increases gradually with t: for t ∈ (pκ/2, (p + 1)κ/2), the fundamental
solution ρ(t, .) is in Cp−1(R) but not Cp(R). For t < κ/2, ρ(t, .) is not even
locally bounded. Consider now the value of a European binary option defined
by the payoff h(x) = 1x≥x0 : its value is shown in figure 1. Being the primitive
of ρ(t, .), its value is continuous but not differentiable in x for t < κ/2.
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Figure 1: Value of a binary option in the Variance Gamma model, as a function
of the underlying.
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The case of barrier options is even less regular. As the following example
illustrates, if no restriction is imposed on the Lévy process, the value of a barrier
option — which is formally the solution of the Dirichlet problem with zero
boundary conditions — can even turn out to be discontinuous at all times:

Example 2. Consider Xt = N1
t −N2

t where N i
t are independent Poisson pro-

cesses with jump intensities λ1 and λ2. Let, for simplicity, r = 0. If λ2 = λ1e
then the corresponding price process St = S0e

Xt is a martingale.
Consider now a knock-out option which pays 1 at time T if St has not crossed

the barrier U > S0 before T , and 0 otherwise:

HT = 1T<θ(S0),

where θ(S) = inf {t ≥ 0 | SeXt ≥ U} is the first exit time if the process starts
from S. Let us show that the initial option value

C(0, S) = E[HT |S0 = S] = E[1T<θ(S)]

is not continuous at S∗ = U/e.
Let 0 < ε < U − S∗. By definition, θ(S∗ + ε) ≤ θ(S∗ − ε). Therefore,

C(0, S∗ − ε)− C(0, S∗ + ε) = E[1{θ(S∗+ε)≤T<θ(S∗−ε)}]
= Q (θ(S∗ + ε) ≤ T < θ(S∗ − ε)) .

Consider the following possibility: N1
T = 1 et N2

T = 0, that is, there was one
positive and no negative jumps. In this case, if St starts from S∗ − ε it stays
below U , while starting from S∗ + ε it crosses the barrier. This means that
θ(S∗ + ε) ≤ T < θ(S∗ − ε). So,

C(0, S∗ − ε)− C(0, S∗ + ε) ≥ Q(N1
T = 1 & N2

T = 0) = e−λ1T (e+1)λ1T > 0.

Thus S 7→ C(0, S) is discontinuous at S = S∗.

This example is a finite activity process without diffusion component. As
noted above, this case is not the interesting one in financial modelling. In the
next section, we show that in fact, in most cases of interest, the option price is
a continuous function of the underlying.

3.2 Continuity with respect to the underlying

We start with showing that the value of a European option is a continuous func-
tion of its arguments, under the Lipschitz condition on the payoff and without
any additional restriction on the Lévy density. Next, we give sufficient condi-
tions on the Lévy triplet of X which guarantee the continuity of the barrier
options.

Proposition 3. (Continuity of European options)
If H satisfies the Lipschitz condition (2.5) then the forward value of a European
option defined by (2.2): f(τ, x) = E[H(S0e

x+rτ+Xτ )] is continuous on [0, T ]×R.
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Proof. The continuity in x is straigthforward:

|f(τ, x + ∆x)− f(τ, x)| = |E[H(S0e
x+∆x+rτ+Xτ )]− E[H(S0e

x+rτ+Xτ )]|
≤ cS0e

x+rτ |e∆x − 1|E[eXτ ] → 0 as |∆x| → 0,

since EeXτ = 1 by the martingale condition.
Let us show the continuity in time. Let t ≥ s ≥ 0 (the case s ≥ t is

symmetrical). Then, Xt
d= Xs + Xt−s, Xt−s ⊥⊥ Xs, and we obtain

|f(t, x)− f(s, x)| ≤ E[|H(S0e
x+rt+Xt)−H(S0e

x+rs+Xs)|]
≤ cS0e

x+rsE|er(t−s)+Xt−s − 1|.

So, we need to show that E|erτ+Xτ − 1| → 0 as τ → 0. First, we remark that
the martingale condition implies:

E|erτ+Xτ − 1| = erτ − 1 + 2E[(1− erτ+Xτ )+]. (3.3)

Let C0(R) be the set of continuous functions vanishing at infinity. By the
Feller property (see, for example, [9], Section 3.8), for any g ∈ C0(R), we have

Pτg(0) ≡ Eg(rτ + Xτ )
τ↓0−→ g(0), (3.4)

where Pτ is the semigroup of the process {rτ + Xτ}.
Since g(x) = (1 − ex)+ is not in C0(R), we approximate it with a function

g̃(x), such that

g̃(x) = g(x), if x ≥ −1,

g̃(x) = 0, if x ≤ −2,

0 ≤ g̃(x) ≤ g(x),

and g̃(x) is continuously interpolated between −2 and −1. By construction,
g̃ ∈ C0(R). We obtain

E[(1− erτ+Xτ )+] = |Pτg(0)| ≤ |Pτg(0)− Pτ g̃(0)|+ |Pτ g̃(0)|
= E[g(rτ + Xτ )− g̃(rτ + Xτ )] + |Pτ g̃(0)|
= E[(g(rτ + Xτ )− g̃(rτ + Xτ ))1{rτ+Xτ <−1}] + |Pτ g̃(0)|
≤ Q[rτ + Xτ < −1] + |Pτ g̃(0)| ≤ Q[Xτ ≤ −1] + |Pτ g̃(0)|,

since g(x) ≤ 1. By (3.4), we have |Pτ g̃(0)| → 0 as τ → 0. So, the last point to
show is that Q[Xτ ≤ −1] → 0 as τ → 0.

Defining M−
τ = sup0≤s≤τ (−Xs), we have Q[Xτ ≤ −1] ≤ Q[M−

τ ≥ 1]. Let
us take a sequence τn ↓ 0 and define Ωn = {ω ∈ Ω | M−

τn
(ω) ≥ 1}. The sequence

{Ωn} is decreasing, and
⋂
n>0

Ωn = {ω ∈ Ω | ∀n,M−
τn

(ω) ≥ 1} ⊆ {ω ∈ Ω | M−
0 (ω) ≥ 1},
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by the right-continuity of Xτ . Since M−
0 = X0 = 0, we obtain

Q[M−
τn
≥ 1] = Q(Ωn)

τn↓0−→ Q(
⋂

Ωn) = 0,

which implies Q[M−
τ ≥ 1] → 0, since {τn} is arbitrary. Therefore, Q[Xτ ≤

−1] → 0, and the proof is completed.

Consider the Lévy process Yt. To study the continuity of barrier options we
extensively use the properties of the first passage time process. Following the
notation of [27], we define

Rx = inf{s ≥ 0 | Ys > x},
R′′x = inf{s ≥ 0 | Ys ∨ Ys− ≥ x}.

Note that {Rx, x ≥ 0} is a process with non-decreasing paths, so we can define
Rx−(ω) = limε↓0 Rx−ε(ω). Since Yt is right-continuous, the process Rx is also
right-continuous in x.

To classify Lévy processes we use the following terminology.

Definition 1. Let {Yt} be a Lévy process on R with generating triplet (σ, γ, ν).
It is said to be of

type A, if σ = 0 and ν(R) < ∞
type B, if σ = 0, ν(R) = ∞ and

∫
|x|≤1

|x|ν(dx) < ∞

type C, if σ > 0 or
∫
|x|≤1

|x|ν(dx) = ∞.

Type A corresponds to compound Poisson processes; type B corresponds
to finite variation processes with infinite intensity and type C corresponds to
infinite variation Lévy processes.

Now we give some properties of the process {Rx} which are essential to prove
the continuity of option values.

Lemma 1. If {Yt} is of type B or C then:

∀x > 0, Q[Rx− = Rx] = 1. (3.5)

Proof. For a fixed x > 0, we introduce two subsets of Ω:

Ω1 = {ω | Rx−(ω) < Rx(ω)}, Ω2 = {ω | Rx(ω) = R′′x(ω)}.

By the Lemma 49.6 of [27], Q(Ω2) = 1. So, it suffices to show that Ω1 ∩Ω2 = ∅,
since, by definition, Rx− ≤ Rx.

If there exists ω ∈ Ω1 ∩ Ω2 then for the sample path Rx = Rx(ω) we have
Rx− < R′′x. Therefore,

∃u ≥ 0, Rx− = u, (3.6)
∃t > u, R′′x = t. (3.7)
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The definition of Rx− together with (3.6) implies that

∀ε > 0, ∀δ > 0, ∃s < u + δ : Ys > x− ε.

Take εn = δn = 1/n. Then, there exists a sequence {sn}, such that ∀n,

sn < u + 1/n, Ysn > x− 1/n.

Since {sn} is bounded, one can extract a convergent subsequence sn ↑ s0 or
sn ↓ s0, with s0 ≤ u < t. In the first case we obtain Ys0− ≥ x, and in the
second, Ys0 ≥ x. So, in all cases, Ys0− ∨ Ys0 ≥ x. But (3.7) implies

∀s < t, Ys− ∨ Ys < x.

This contradiction proves that Ω1 ∩ Ω2 = ∅, hence Q(Ω1) = 0, and the proof is
completed.

An important property of {Rx} is whether R0 = 0 a.s.. Table 1, which is a
consequence of Theorem 47.5 of [27], relates this property to properties of the
Lévy triplet for different types of Lévy processes.

Define now the supremum process of Y :

Mt = sup
0≤s≤t

Ys.

Mt is non-decreasing and càdlàg, since Yt is càdlàg. We use it to prove the next
lemma.

Lemma 2. If {Yt} is of type B with R0 = 0 a.s., or of type C, then:

∀x > 0, ∀t ≥ 0, Q[Rx = t] = 0.

Proof. By the definition of Rx,

Q[Rx = t] = Q[∀s < t, Ys ≤ x; ∃sn ↓ t, Ysn > x]
≤ Q[Mt− ≤ x; Mt ≥ x].

Lemma 49.3 of [27] states that, in our hypotheses, ∀t > 0, ∀x ≥ 0,

Q[Mt = x] = 0.

Therefore: ∀x ≥ 0, ∀t > 0,

Q[Rx = t] ≤ Q[Mt− ≤ x < Mt] ≤ Q[Mt− 6= Mt] ≤ Q[Yt− 6= Yt] = 0,

since a Lévy process has, almost surely, no fixed times of discontinuity. For the
same reason, ∀x > 0, Q[Rx = 0] = 0, which completes the proof.
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Lemma 3. If {Yt} is of type B or C, then ∀t ≥ 0, ∀x > 0,

Q[Rx ≤ t < Rx+ε] → 0, (3.8)
Q[Rx−ε ≤ t < Rx] → 0, (3.9)

as ε ↓ 0. If, in addition, R0 = 0 almost surely, then (3.8) is also satisfied for
x = 0, t > 0.

Proof. For all fixed t ≥ 0, x ≥ 0, the sequence Ωε = {ω ∈ Ω | Rx(ω) ≤
t < Rx+ε(ω)} is decreasing, and

⋂
Ωε = {ω ∈ Ω | Rx(ω) = t}, by the right-

continuity of Rx. Therefore,

Q[Rx ≤ t < Rx+ε] → Q[Rx = t].

If x > 0, this probability is zero by the Lemma 2. If R0 = 0 a.s. then, ∀t > 0,
Q[R0 = t] = 0.

Similarly, for all t ≥ 0, x > 0,

Q[Rx−ε ≤ t < Rx] → Q[Rx− ≤ t < Rx] ≤ Q[Rx− 6= Rx] = 0,

by the Lemma 1.

Define Yt = rt + Xt. The Lévy triplet of {Yt} is (σ, r + γ, ν), where γ is
determined by the martingale condition (1.3). So, {Yt} is of the same type as
{Xt}, in the sense of the Definition 1. But the property of R0, which in the
finite-variation case depends on the drift, is not necessary the same for the two
processes. Therefore, it is worth noting that {Rx} will be always defined with
respect to {Yt}.

Now we are in a position to consider the continuity of value functions for
barrier options. We start with the case of a single upper barrier U > S0.

Proposition 4. (Continuity of up-and-out options)
Let Yt be of type B or C, and R0 = 0 a.s. Assume that H : (0, U) → [0,∞) is

Lipschitz:
∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ c|S1 − S2|,

with c > 0, and denote u = log(U/S0). Then, the function

fu(τ, x) =
{
E[H(S0e

x+Yτ )1{τ<Ru−x}], x < u,
0, x ≥ u,

(3.10)

is continuous on (0, T ]× R.

Remark 1. One can verify directly that C(t, S) = e−r(T−t)fu(T − t, log(S/S0))
is just a different representation of the function defined by (2.12). Recall that it
gives the value of an up-and-out option with the payoff H(ST )1T< inf{t≥0, St≥U}
at time t when the stock price is S, if St has not yet crossed the barrier (see
(2.13)).
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Proof. Since H is Lipschitz, it is bounded on (0, U). Let M = sup(0,U) H(S).
We first show the continuity in x, for all τ > 0. If x < u and ε ∈ (0, u− x),

we have

|fu(τ, x+ε)−fu(τ, x)| = |E[H(S0e
x+ε+Yτ )1{τ<Ru−x−ε}]−E[H(S0e

x+Yτ )1{τ<Ru−x}]|
≤ |E[(H(S0e

x+ε+Yτ )−H(S0e
x+Yτ ))1{τ<Ru−x−ε}]|+

+ |E[H(S0e
x+Yτ )1{Ru−x−ε≤τ<Ru−x}]|

≤ cS0e
x+rτ (eε − 1) + MQ[Ru−x−ε ≤ τ < Ru−x]

ε↓0−→ 0,

by (3.9). We have used the martingale condition EeYτ = erτ and the fact that
τ < Ru−x implies Yτ ≤ u− x, which is equivalent to S0e

x+Yτ ≤ U .
Similarly, for all x < u,

|fu(τ, x−ε)−fu(τ, x)| = |E[H(S0e
x−ε+Yτ )1{τ<Ru−x+ε}]−E[H(S0e

x+Yτ )1{τ<Ru−x}]|
≤ |E[(H(S0e

x−ε+Yτ )−H(S0e
x+Yτ ))1{τ<Ru−x}]|+

+ E[H(S0e
x−ε+Yτ )1{Ru−x≤τ<Ru−x+ε}]

≤ cS0e
x+rτ (1− e−ε) + MQ[Ru−x ≤ τ < Ru−x+ε]

ε↓0−→ 0,

by (3.8). This proves the continuity of fu(τ, ·) for all x 6= u.
The right continuity at x = u is straightforward, since f = 0 if x ≥ u. It

remains to verify the left continuity. For all τ > 0,

|fu(τ, u− ε)− fu(τ, u)| = |E[H(S0e
u−ε+Yτ )1{τ<Rε}]| ≤ MQ[Rε > τ ]

ε↓0−→ 0,

since R0 = 0 almost surely. In consequence, ∀τ > 0, fu(τ, ·) is continuous on R.
Let us now show the continuity in time. For a fixed x < u, and t ≥ s ≥ 0,

we obtain:

|fu(t, x)− fu(s, x)| = |E[H(S0e
x+Yt)1{t<Ru−x}]− E[H(S0e

x+Ys)1{s<Ru−x}]|
= |E[(H(S0e

x+Yt)−H(S0e
x+Ys))1{t<Ru−x}]− E[H(S0e

x+Ys)1{s<Ru−x≤t}]|
≤ cE[S0e

x+Ys |eYt−s − 1| 1{t<Ru−x}] + MQ[s < Ru−x ≤ t]

≤ cS0e
x+rs E|eYt−s − 1|+ MQ[s < Ru−x ≤ t].

The convergence of the first term to zero as t → s was already proven in the
Proposition 3. Let tn ↓ s be an arbitrary sequence, and denote Ωn = {ω ∈
Ω | s < Ru−x(ω) ≤ tn}. Then, {Ωn} is decreasing as n →∞, and
⋂
n>0

Ωn = {ω ∈ Ω | ∀n, s < Ru−x(ω) ≤ tn} ⊆ {ω ∈ Ω | s < Ru−x(ω) ≤ s} = ∅.

So, Q[s < Ru−x ≤ t] → 0 as t → s, and the proof is completed.

Remark 2. As the proof shows, if {Yt} is of type B or C, fu(τ, x) is continuous
on (0, T ] × R \ {u}. If the condition R0 = 0 a.s. is not satisfied, fu may be
discontinuous at the barrier.
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In order to study down-and-out options, let us define the process {R−x , x ≥
0} of the fist passage below a negative level:

R−x = inf{s ≥ 0|Ys < −x} = inf{s ≥ 0 | − Ys > x}.
It is clear that Lemmas 1–3 apply to R−x provided {−Yt} (the dual process of
{Yt}) satisfies the corresponding conditions. The generating triplet of {−Yt}
being (σ,−(r + γ), ν(−dx)), the dual process has the same type as Yt (in the
sense of the Definition 1). However, note that R0 = 0 a.s. does not imply
R−0 = 0 a.s., as shows Table 1.

Proposition 5. (Continuity of down-and-out options) Let {Yt} be of type
B or C, and R−0 = 0 a.s. Assume that H : (L,∞) → [0,∞) is Lipschitz:

∀S1, S2 ∈ (L,∞), |H(S1)−H(S2)| ≤ c|S1 − S2|,
with L < S0, c > 0, and denote l = log(L/S0). Then, the function

fl(τ, x) =

{
E[H(S0e

x+Yτ )1{τ<R−x−l}], x > l,

0, x ≤ l,
(3.11)

is continuous on (0, T ]× R (fl represents the forward value of a down-and-out
option with the payoff H(ST )1T< inf{t≥0, St≤L}).

Proof. The proof is similar to the one of the Proposition 4. The main difference
is that H may be unbounded, so we need to refine certain estimates.

To show the continuity of f(τ, ·) at x > l (for a fixed τ > 0), we write:

|fl(τ, x+ε)−fl(τ, x)| = |E[H(S0e
x+ε+Yτ )1{τ<R−x+ε−l}]−E[H(S0e

x+Yτ )1{τ<R−x−l}]|
≤ |E[(H(S0e

x+ε+Yτ )−H(S0e
x+Yτ ))1{τ<R−x−l}]|+

+ E[H(S0e
x+ε+Yτ )1{R−x−l≤τ<R−x+ε−l}].

The first term may be estimated as previously, and goes to zero as ε ↓ 0. For
the second term we obtain:

E[H(S0e
x+ε+Yτ )1{R−x−l≤τ<R−x+ε−l}] ≤ E[C(1 + S0e

x+ε+Yτ )1{R−x−l≤τ<R−x+ε−l}]

= CQ[R−x−l ≤ τ < R−x+ε−l] + CS0e
x+ε+rτE[eYτ 1{R−x−l≤τ<R−x+ε−l}]. (3.12)

The quantity eYτ 1{R−x−l≤τ<R−x+ε−l} is bounded by an integrable variable eYτ and
converges to 0 in probability, since

∀σ > 0, Q[eYτ 1{R−x−l≤τ<R−x+ε−l} > σ] ≤ Q[R−x−l ≤ τ < R−x+ε−l]
ε↓0−→,

by (3.8). Therefore, the dominated convergence theorem implies

E[eYτ 1{R−x−l≤τ<R−x+ε−l}]
ε↓0−→, (3.13)
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and the whole expression in (3.12) tends to zero as ε ↓ 0.
Using the same technique, one can show that |fl(τ, x − ε) − fl(τ, x)| → 0,

∀x > l, and |fl(τ, l − ε)| → 0, as ε ↓ 0, which proves the continuity of fl in x.
Similarly, to show the continuity in time, we write for a fixed x > l and

t ≥ s ≥ 0:

|fl(t, x)− fl(s, x)| = |E[H(S0e
x+Yt)1{t<R−x−l}]− E[H(S0e

x+Ys)1{s<R−x−l}]|
= |E[(H(S0e

x+Yt)−H(S0e
x+Ys))1{t<R−x−l}]− E[H(S0e

x+Ys)1{s<R−x−l≤t}]|
≤ cS0e

x+rsE|eYt−s − 1|+ CQ[s < R−x−l ≤ t] + CS0e
xE[eYs1{s<R−x−l≤t}].

The convergence of the first two terms to zero, as t → s, has already been
proved, and the last term can be treated in the same way as (3.13).

Finally, we present a continuity result for double-barrier options. For L <
S0 < U , denote, as previously, l = log(L/S0) and u = log(U/S0).

Proposition 6. (Continuity of double-barrier options) Let {Yt} be of
type B or C, with R0 = 0 and R−0 = 0 a.s. Assume that H : (L,U) → [0,∞) is
Lipschitz:

∀S1, S2 ∈ (L,U), |H(S1)−H(S2)| ≤ c|S1 − S2|.
Then, the forward value of a double-barrier option with the payoff
H(ST )1T< inf{t≥0, St /∈(L,U)}, defined by

fd(τ, x) =

{
E[H(S0e

x+Yτ )1{τ<Ru−x∧R−x−l}], x ∈ (l, u),
0, x /∈ (l, u),

(3.14)

is continuous on (0, T ]× R.

Proof. Let M = sup(L,U) H(S). As in the two preceding propositions, we show
the right and left continuity of fd at every point x ∈ [l, u] using the Lemma 3.
For example, ∀τ > 0, ∀x ∈ (l, u),

|fd(τ, x + ε)− fd(τ, x)| =
= |E[H(S0e

x+ε+Yτ )1{τ<Ru−x−ε∧R−x+ε−l}]− E[H(S0e
x+Yτ )1{τ<Ru−x∧R−x−l}]|

≤ |E[(H(S0e
x+ε+Yτ )−H(S0e

x+Yτ ))1{τ<Ru−x−ε∧R−x−l}]|+
+ E[H(S0e

x+ε+Yτ )1{τ<Ru−x−ε}1{R−x−l≤τ<R−x+ε−l}]+

+ E[H(S0e
x+Yτ )1{τ<R−x−l}1{Ru−x−ε≤τ<Ru−x}]

≤ cS0e
x+rτ (eε−1)+MQ[R−x−l ≤ τ < R−x+ε−l]+MQ[Ru−x−ε ≤ τ < Ru−x]

ε↓0−→ 0.

We do not give in detail the whole proof because it repeates almost literally the
proofs of the Propositions 4 and 5.
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Type of Yt = rt + Xt R0 = 0 R−0 = 0 Continuity
a.s. a.s. fh fl fd

γ0 > 0 yes no
A γ0 < 0 no yes

γ0 = 0 no no
γ0 > 0 yes no yes
γ0 < 0 no yes yes

B ν(−∞, 0) < ∞ yes no yes
γ0 = 0 ν(0,∞) < ∞ no yes yes

ν(−∞, 0) = ∞, Depends on the further properties of {Yt}
ν(0,∞) = ∞,

C yes yes yes yes yes

Table 1: This table shows the properties of R0 and R−0 for different types of Lévy
processes and summarizes our results on the continuity of the barrier options. (An
empty box does not mean the function is necessary discontinuous but there is no
continuity result for this case). In the finite-variation case, γ0 = r− ∫

(ey − 1)ν(dy) is
the drift.

Table 1 summarizes the results of this section. Interestingly, while investi-
gating a different issue — the validity of smooth pasting conditions for American
options in exp-Lévy models — Alili & Kyprianou [1] arrive at conditions similar
to the ones given in Propositions 4-5.

As shown by the examples above, in general one cannot hope for more
than Lipschitz continuity with respect to the underlying. In particular, uni-
form bounds on derivatives, such as the ones required in [23], do not hold in
cases of interest in finance — such as call or put options — where the payoff
function H is not smooth. In these cases, verification theorems such as the
Proposition 1 do not apply and the option pricing function should be seen as a
viscosity solution of the PIDE (2.3).

4 Option prices as viscosity solutions of PIDEs

Existence and uniqueness of (classical) solutions for the PIDEs considered above
in Sobolev / Hölder spaces have been studied in [6, 15] in the case where the
diffusion component is non-degenerate: for a Lévy process this simply means
σ > 0 but more generally these results apply to jump diffusion where the diffu-
sion coefficient is bounded away from zero. However many of the models in the
financial modelling literature are pure jump models with σ = 0, for which such
results are not available. A notion of solution which yields both existence and
uniqueness in this case is the notion of viscosity solution, introduced by Crandall
& Lions for PDEs (see e.g. [12] for a review) and extended to integro-differential
equations of the type considered here in [2, 5, 24, 28, 29].2

2Definitions of viscosity solutions in these papers vary in the choice of test functions; we
present here a version which is suitable for option pricing applications.
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4.1 Viscosity solutions for PIDEs

Denote by USC (respectively LSC) the class of upper semicontinuous (respec-
tively lower semicontinuous) functions v : [0, T )×R→ R and by C+

p ([0, T ]×R)
the set of measurable functions on [0, T ]×R with polynomial growth of degree
p at plus infinity and bounded on [0, T ]× R−:

ϕ ∈ C+
p ([0, T ]× R) ⇐⇒ ∃C > 0, |ϕ(t, x)| ≤ C(1 + |x|p 1x>0). (4.1)

Under a polynomial decay condition on the right tail of the Lévy density, Lϕ
can be defined for ϕ ∈ C2([0, T ]× R) ∩ C+

p ([0, T ]× R):

Lϕ(x) = Aϕ(x) +
∫

|y|≤1

ν(dy)[ϕ(x + y)− ϕ(x)− y
∂ϕ

∂x
(x)] (4.2)

+
∫

|y|>1

ν(dy)[ϕ(x + y)− ϕ(x)], (4.3)

where A is a differential operator. The terms in (4.2) are well defined for ϕ ∈
C2([0, T ]× R) since

|ϕ(τ, x + y)− ϕ(τ, x)− y
∂ϕ

∂x
(τ, x)| ≤ y2 sup

B(x,1)

|ϕ′′(τ, ·)| for |y| ≤ 1,

while the term in (4.3) is well defined for ϕ ∈ C+
p ([0, T ]× R) if

∫

y>1

ypν(dy) < +∞,

which is satisfied due to the martingale condition (1.3).
Let O = (l, u) ⊆ R be an open interval, ∂O = {l, u} its boundary, and

g ∈ C+
p ([0, T ] × R \ O) a continuous function. Consider the following initial-

boundary value problem on [0, T ]× R:

∂f

∂τ
= Lf + r

∂f

∂x
, on (0, T ]×O, (4.4)

f(0, x) = h(x), x ∈ O; f(τ, x) = g(τ, x), x /∈ O. (4.5)

Definition 2 (Viscosity solution). A function v ∈ USC is a viscosity subso-
lution of (4.4)–(4.5) if for any test function ϕ ∈ C2([0, T ]×R)∩C+

p ([0, T ]×R) and
any global maximum point (τ, x) ∈ [0, T ]×R of v − ϕ, the following properties
are verified:

if (τ, x) ∈ (0, T ]×O,

(
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x) ≤ 0, (4.6)

if τ = 0, x ∈ O, min{
(

∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x), v(τ, x)− h(x)} ≤ 0,

if τ ∈ (0, T ], x ∈ ∂O, min{
(

∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x), v(τ, x)− g(τ, x)} ≤ 0,

if x /∈ O, v(τ, x) ≤ g(τ, x). (4.7)
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A function v ∈ LSC is a viscosity supersolution of (4.4)–(4.5) if for any test
function ϕ ∈ C2([0, T ] × R) ∩ C+

p ([0, T ] × R) and any global minimum point
(τ, x) ∈ [0, T ]× R of v − ϕ, we have:

if (τ, x) ∈ (0, T ]×O,

(
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x) ≥ 0,

if τ = 0, x ∈ O, max{
(

∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x), v(τ, x)− h(x)} ≥ 0,

if τ ∈ (0, T ], x ∈ ∂O, max{
(

∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(τ, x), v(τ, x)− g(τ, x)} ≥ 0,

if x /∈ O, v(τ, x) ≥ g(τ, x).

A function v ∈ C+
p ([0, T ] × R) is called a viscosity solution of (4.4)–(4.5) if

it is both a subsolution and a supersolution. This function is then continuous
on (0, T ]× R.

Note that a subsolution/supersolution need not be continuous and the initial
and boundary conditions are verified in a viscosity sense. The definition also
includes the case of initial value problems: O = R.

Several variations on this definition can be found in the articles cited above.
First, one can restrict the maximum/mimimum of v − ϕ to be equal to zero:

Lemma 4. Function v ∈ USC is a viscosity subsolution of (4.4)–(4.5) if and
only if for any (τ, x) ∈ [0, T ] × R and any ϕ ∈ C2([0, T ] × R) ∩ C+

p [0, T ] ×
R([0, T ]× R), properties

v(τ, x) = ϕ(τ, x), and ∀(t, y) ∈ [0, T ]× R, v(t, y) ≤ ϕ(t, y) (4.8)

imply (4.6)–(4.7).

Proof. Clearly, (4.8) means in particular that (τ, x) is a global maximum point
of v − ϕ. Therefore, if v is a subsolution then, by definition, (4.8) implies
(4.6)–(4.7).

Conversely, if v satisfies the condition of the lemma, we take a test function
ϕ and a global maximum point (τ, x) of v − ϕ, i.e.

∀(t, y) ∈ [0, T ]× R, v(t, y)− ϕ(t, y) ≤ v(τ, x)− ϕ(τ, x),

and need to show that ϕ verifies (4.6)–(4.7). Let us define a new function ψ by
adding a constant to ϕ:

ψ(t, y) = ϕ(t, y) + [v(τ, x)− ϕ(τ, x)].

This function satisfies (4.8), so, by the condition, (4.6)–(4.7) are verified for ψ.
But, ∀(t, y) ∈ [0, T ]× R,

(
∂ψ

∂τ
− Lψ − r

∂ψ

∂x

)
(t, y) =

(
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x

)
(t, y) (4.9)

which implies that the same properties are verified by ϕ, hence v is a viscosity
subsolution.
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A similar result holds for supersolutions. Also, as shown in [5], one can
replace “maximum” by “strict maximum”. Finally, one can require the test
functions to be C1,2 or C∞ with bounded derivatives instead of C2. The growth
condition at infinity ϕ ∈ C+

p on test functions is essential for Lϕ to make sense.
It may be replaced by other growth conditions under stronger hypotheses on
the decay of the Lévy density.

Since L verifies a maximum principle [7], one can show that a classical solu-
tion u ∈ C1,2([0, T ]× R) ∩ C+

p ([0, T ]× R) is also a viscosity solution. However,
since the definition above only involves applying derivatives to the test func-
tions ϕ, a viscosity solution need not to be smooth: it is simply required to be
continuous on (0, T ]× R.

Remark 3 (Boundary conditions). We noted above that, for classical solu-
tions, “boundary” conditions have to be imposed on R \O and not only on the
boundary ∂O = {l, u}. This seems not to be the case here since the non-local
integral term only involves the test function and not the solution itself, so one
can be led to think that conditions on the boundary are enough (see remark
in [24, Sec. 5.1.]). However note that the test functions have to verify ϕ ≥ v
(resp. ϕ ≤ v) on [0, T ]×R and not only on [0, T ]×O, which requires specifying
v outside O.

4.2 Option prices as viscosity solutions of PIDE

Existence and uniqueness of viscosity solutions for such parabolic integro-
differential equations are discussed in [2] in the case where ν is a finite mea-
sure and in [5] and [24] for general Lévy measures. Growth conditions other
than u ∈ C+

p can be considered (see e.g. [2, 5]) with additional conditions
on the Lévy measure ν. The main tool for showing uniqueness is the com-
parison principle: if u, v are viscosity solutions and u(0, x) ≥ v(0, x) then
∀τ ∈ [0, T ], u(τ, x) ≥ v(τ, x). This property has been extended to subsolu-
tions and supersolutions in [2] for the case where ν is a bounded measure; the
case of a general Lévy measure has been recently treated in [18].

The uniqueness result is available in the literature for viscosity solutions with
the polynomial growth at infinity. In the context of option prices, this restricts
the choice of the payoff functions. We will give a sufficient condition on the
payoff for the price to be in C+

p (see (4.1) for the definition).

Lemma 5. For every p ≥ 0 and n ≥ 1, there exists c > 0, such that

∀x1 . . . xn ≥ 0, (
n∑

i=1

xi)p ≤ c

n∑

i=1

xp
i . (4.10)

Proof. If p ≥ 1, it is Jensen’s inequality with g(x) = xp, and c = np−1. If
0 ≤ p < 1, it is easily verified by induction with c = 1.

Proposition 7. (Polynomial growth)
If H : (0,∞) → [0,∞) is Lipschitz: |H(S1) −H(S2)| ≤ C|S1 − S2|, and there
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exists p > 0, such that:

H(S0e
x) ≤ C1(1 + |x|p), (4.11)

then f(τ, x) = E[H(S0e
x+rτ+Xτ )] belongs to C+

p ([0, T ]× R).

Proof. We first show that

E[(Xτ )p 1Xτ >0] < ∞. (4.12)

Theorem 25.3 of [27] states that if g : R → R is a submultiplicative, lo-
cally bounded function, then Eg(Xτ ) < ∞ for all τ > 0 if and only if∫
|x|>1

g(x)ν(dx) < ∞.
A function g(x) ≥ 0 is called submultiplicative if there exists a > 0, such

that

∀x, y ∈ R, g(x + y) ≤ ag(x)g(y).

A function is locally bounded if it is bounded on each compact.
For all p > 0, the function xp ∨ 1 is submultiplicative (see Proposition 25.4,

[27]), and

xp ∨ 1 ≤ xp1x>0 + 1 ≤ 2(xp ∨ 1).

In consequence, for all x, y ∈ R, we have

(x + y)p 1x+y>0 + 1 ≤ 2((x + y)p ∨ 1) ≤
≤ 2a(xp ∨ 1)(yp ∨ 1) ≤ 2a(xp 1x>0 + 1)(yp 1y>0 + 1),

so, g(x) = xp 1x>0 +1 is submultiplicative and locally bounded. By the theorem
cited above, we obtain

E[(Xτ )p 1Xτ >0 + 1] < ∞ ⇐⇒
∫

|x|>1

(xp 1x>0 + 1)ν(dx) < ∞.

Since ν is integrable on |x| > 1, this clearly implies

E[(Xτ )p 1Xτ >0] < ∞ ⇐⇒
∫

x>1

xpν(dx) < ∞. (4.13)

Thanks to the martingale condition, we have
∫

x>1
exν(dx) < ∞, and the

condition on ν in (4.13) is satisfied all the more. So, (4.12) is also satisfied.
Since H is Lipschitz, there exists c̃ > 0, such that H(S) ≤ c̃(1 + S). Thus,

for all x ∈ R, we have

f(τ, x) ≤ c̃E[1 + S0e
x+rτ+Xτ ] = c̃(1 + S0e

x+rτ ). (4.14)

For the negative values of x, f is bounded by the constant c̃(1 + S0e
rT ). Let us

study the growth of f as x → +∞.
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Let x > 0. We can estimate f(τ, x) in the following way:

f(τ, x) = E[H(S0e
x+rτ+Xτ )1Xτ <−x] + E[H(S0e

x+rτ+Xτ )1Xτ≥−x]

≤ c̃E[(1 + S0e
x+rτ+Xτ )1Xτ <−x] + C1E[(1 + (x + rτ + Xτ )p)1Xτ≥−x]. (4.15)

The first term is bounded by c̃(1 + S0e
rT ), as previously. For the second, we

obtain, using the Lemma 5:

E[(x + rτ + Xτ )p 1Xτ≥−x] =
= E[(x + rτ + Xτ )p 1|Xτ |≤x] + E[(x + rτ + Xτ )p 1Xτ >x]
≤ c(2xp + (rT )p) + c(xp + (rT )p + E[(Xτ )p 1Xτ≥0]) ≤ C2(1 + xp).

Putting this estimate into (4.15) gives

f(τ, x) ≤ c̃(1 + S0e
rT ) + C1(1 + C2(1 + xp)) ≤ C3(1 + xp),

and the proof is completed.

Corollary 1. If H : (L,∞) → [0,∞) is Lipschitz and satisfies the polynomial
growth condition (4.11), then fl(τ, x) defined by (3.11) is C+

p ([0, T ]× R).

Proof. Let us extend H continuously on (0,∞) by a suitable constant:

H̃(S) =
{

H(S), S > L
limS→L H(S), S ≤ L.

Then, H̃ satisfies the conditions of the Proposition 7, hence

fl(τ, x) ≤ E[H̃(S0e
x+rτ+Xτ )] ≤ C(1 + xp1x≥0).

The following result shows that values of European and barrier options can
be expressed as viscosity solutions of (4.4)–(4.5):

Proposition 8 (Option prices as viscosity solutions). Let the payoff func-
tion H verify the Lipschitz condition (2.5) and let h(x) = H(S0e

x) have poly-
nomial growth at infinity. Then:

• The forward value of a European option fe(τ, x) defined by (2.2) is the
unique viscosity solution of the Cauchy problem (2.3) (that is (4.4)–(4.5)
with O = R).

• Let fb(τ, x) be the forward value of a knockout (single or double) barrier
option defined by (3.10), (3.11) or (3.14). If fb(τ, x) is continuous then
it is the unique viscosity solution of (4.4)–(4.5) (with g ≡ 0).
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Proof. fe(τ, x) is continuous by the Proposition 3 and is C+
p ([0, T ]× R) by the

Proposition 7. The functions fu and fd are bounded on [0, T ] × R, and fl is
C+

p ([0, T ]× R) by the Corollary 1.
We will denote fe, fu, fl, and fd by a generic name f , and O will stand

respectively for R, (−∞, u), (l,∞) or (l, u). So, f is continuous and C+
p ([0, T ]×

R), which is required in the definition of a viscosity solution.
Let us now show that f is a subsolution of (4.4)–(4.5). From the definition

of f it is easily seen that f(0, x) = h(x) and f(τ, x) = 0 if x /∈ O. Consider
(τ0, x0) ∈ (0, T ]×O and a test function ϕ ∈ C2([0, T ]×R)∩C+

p ([0, T ]×R) such
that ϕ(τ0, x0) = f(τ0, x0), and

ϕ(τ, x) ≥ f(τ, x) on [0, T ]× R. (4.16)

As noticed in Section 4, we can suppose that |∂ϕ
∂τ |, |∂ϕ

∂x |, and |∂2ϕ
∂x2 | are bounded

by a constant C. Our goal is to show that ϕ satisfies (4.6) at (τ0, x0).
For t ∈ [0, τ0], let θt = inf{s ≥ t | x0 + Ys /∈ O} where Ys = rs + Xs. Define

Mt = E[H(S0e
x0+Yτ0 )1τ0≤θ0 | Ft].

Note that 1τ0≤θ0 = 1τ0≤θt1t≤θ0 , and 1t≤θ0 ∈ Ft. Since Ys
d= Yt + Zs−t, ∀s ≥ t,

where Z is a Lévy process independent of Y and identically distributed, we can
rewrite Mt in the following way:

Mt = 1t≤θ0E[H(S0e
(x0+Yt)+Zτ0−t)1τ0−t≤ inf{s≥0, (x0+Yt)+Zs /∈O} | Ft]

= 1t≤θ0f(τ0 − t, x0 + Yt) a.s.

By construction, Mt is a martingale. So, by the sampling theorem,

f(τ0, x0) = M0 = E[Mt∧θ0 ] = E[f(τ0 − t ∧ θ0, x0 + Yt∧θ0)],

since 0 ≤ θ0 and t ∧ θ0 ≤ θ0. Then (4.16) implies, for all t ∈ [0, τ0],

f(τ0, x0) ≤ E[ϕ(τ0 − t ∧ θ0, x0 + Yt∧θ0)]. (4.17)

Applying the Itô formula to the smooth function ϕ(τ0 − t, x0 + Yt) between
0 and t ∧ θ0 gives:

f(τ0, x0) ≤ ϕ(τ0, x0) + E[
∫ t∧θ0

0

(−∂ϕ

∂τ
+ Lϕ + r

∂ϕ

∂x
)(τ0 − u, x0 + Yu−)du]

+ E[
∫ t∧θ0

0

∂ϕ

∂x
(τ0 − u, x0 + Yu−)σdWu+

+
∫ t∧θ0

0

∫ ∞

−∞
(ϕ(τ0 − u, x0 + Yu− + y)− ϕ(τ0 − u, x0 + Yu−) ) J̃X(du dy)],

(4.18)

where J̃X is the compensated jump measure of X.
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The stochastic integral in (4.18) is a martingale (with zero expectation) if
E[At∧θ0 ] < ∞, where

At =
∫ t

0

|∂ϕ

∂x
(τ0 − u, x0 + Yu−)|2du

+
∫ t

0

du

∫ ∞

−∞
ν(dy)|ϕ(τ0 − u, x0 + Yu− + y)− ϕ(τ0 − u, x0 + Yu−) |2.

Since ϕ has bounded derivatives, E[At∧θ0 ] is bounded:

E[At∧θ0 ] ≤ E[
∫ t

0

|∂ϕ

∂x
(τ0 − u, x0 + Yu−)|2du+

+
∫ t

0

du

∫ ∞

−∞
ν(dy)y2|∂ϕ

∂x
(τ0−u, x0 +Yu−+ξ(y))|2] ≤ C2t(1+

∫ ∞

−∞
y2ν(dy)).

Therefore, taking into account that f(τ0, x0) = ϕ(τ0, x0), we derive from (4.18):

E[
∫ t

0

1u≤θ0 (
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x
)(τ0 − u, x0 + Yu−)du] ≤ 0. (4.19)

It is easily seen that the integrand is bounded, again by the boundedness of the
derivatives of ϕ. Dividing (4.19) by t, taking the limit t → 0, and applying the
dominated convergence theorem, we finally obtain

(
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x
)(τ0, x0) ≤ 0.

Hence, f is a subsolution.
Similarly, if ϕ ∈ C2([0, T ]×R)∩C+

p ([0, T ]×R) and (τ0, x0) ∈ (0, T ]×O are
such that ϕ(τ0, x0) = f(τ0, x0) and ϕ ≤ f on [0, T ]× R, one can show that

(
∂ϕ

∂τ
− Lϕ− r

∂ϕ

∂x
)(τ0, x0) ≥ 0

which implies that f is a supersolution. Uniqueness of the solution follows from
the comparison principle.

The hypotheses above on the payoff function apply to put options, single-
barrier knockout puts, double barrier knockout options and also to the log-
contract. One can then retrieve call options by put-call parity. For barrier
options with rebate, the zero boundary condition has to be replaced by the
value of the rebate, as in the case of diffusion models.

5 Conclusion

The characterization of option prices in terms of solutions of partial integro-
differential equations allows to use efficient numerical methods for pricing op-
tions on a single asset in presence of jumps. This relation has already been
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used by several authors to develop numerical methods for pricing options in
models with jumps. In this paper we have shown that this characterization is
less obvious in exponential Lévy model than in diffusion models, because of the
possible lack of smoothness of option values with respect to the underlying in
pure jump models. This lack of smoothness prevents the value function from
being a classical solution of the pricing PIDE: we are led to use a notion of gen-
eralized solution. Using the notion of viscosity solution we have characterized
in Proposition 8 the precise relation between PIDEs and prices of European or
barrier options in exponential Lévy models. Such results are straightforward to
extend to the case of time-dependent characteristics (additive processes) (see
[9, Chapter 14]). From the mathematical point of view one could also consider
the case of state-dependent coefficients i.e. a general Markov process (“local
volatility models with jumps”) such as in [3] . However, as shown in [10], the
addition of a local volatility component generates features which are redundant
with the small jumps of the Lévy process and leads to an identification prob-
lem when calibrating the model to option prices. The gain from generality is
therefore not clear and we have refrained from venturing in this direction.

The notion of viscosity solution discussed in this work turns out to be con-
venient for analyzing the convergence of finite difference schemes, without re-
quiring smoothness with respect to the underlying. Such numerical methods
are discussed in a companion paper [11] and make a key use of the comparison
principle for semicontinuous solutions [2]. The use of viscosity solutions allows
to obtain pointwise convergence of option prices [11], which is more relevant
for approximating option prices than L2-type convergence obtained using the
notion of weak solution in Sobolev spaces [22].

Let us note that, in principle, one can also define the notion of discontinuous
viscosity solution (see e.g. [4]) for PIDEs . However, the comparison principle
fails to hold in this case and thus one is not able to exhibit convergent numerical
schemes for computing such solutions (at least, using finite difference methods).
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