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Abstract

We explain in this note how to adapt the proofs in our previous work [5] �An

approximation result for special functions with bounded deformation� (to appear in

J. Math. Pures Appl., 2004), to dimension higher than two.
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1 Introduction

In a previous work, we have shown the following theorem, only in dimension N = 2

(cf [5],Theorem 3 and Remark 5.3):

Theorem 1 Let Ω ⊂ RN a bounded open subset, and assume it satis�es the regularity

assumption (H) below. Let u ∈ SBD(Ω) ∩ L2(Ω; RN ), such that∫
Ω

|e(u)|2 dx + HN−1(Ju) < +∞ .

Then, there exists a sequence (un)n≥1 of displacements in SBD(Ω) ∩ L2(Ω; RN ), with

‖un−u‖L2(Ω;RN )
n→∞−→ 0, such that each Jun

is closed in Ω, contained in a �nite union Jn

of closed connected pieces of C1 hypersurfaces, un ∈ H1(Ω \ Jn; R2), and

(i) e(un) → e(u) strongly in L2(Ω;SN×N ),

(ii) lim
n→∞

HN−1(Jun
) = lim

n→∞
HN−1(Jun

) = lim
n→∞

HN−1(Jn) = HN−1(Ju).

Moreover, if ‖u‖L∞ < +∞, one can ensure that ‖un‖L∞ ≤ ‖u‖L∞ for all n.

Here, SN×N is the (N(N + 1)/2)�dimensional space of symmetric N × N matrices, and
assumption (H) states that Ω has a boundary which is locally a subgraph:

(H)


At every boundary point x ∈ ∂Ω, there exist coordinates
(ξ1, . . . , ξN ) and a continuous function f : RN−1 → R such that
near x, Ω coincides with the subgraph {ξN < f(ξ1, . . . , ξN−1)}.
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The scope of this note is to show how the proofs in [5] can be adapted to the N�
dimensional case, with N ≥ 3. We refer to the original paper for more details on the space
SBD (introduced in [2, 3]), and the main motivations for Theorem 1. In particular, the
consequence of Theorem 1 pointed out in [5, Sec. 6], that is, Theorem 4 of Γ�convergence,
is valid in any dimension.

The proof of this result is based on a discretization argument which is adapted from [6],
and has been used in a similar setting in [4] (in the scalar case) and [1] (in the vectorial
case). Then, a re-interpolation technique allows to rebuild an approximating function with
almost the desired property. Due to the anisotropy inherent to the discretization step, it
is impossible with this technique to approximate correctly the surface of the jump set of
the displacement. A further localization method based on the recti�ability of this jump
set (that is, the fact that up to a small set, it is almost a �nite union of C1 hypersurfaces)
can handle this problem.

The fact that the original paper [5] is written only in dimension 2 is due to the mis-
leading belief that the discretization�interpolation trick on which the result is based (Sec-
tion 4), and the subsequent localization step (Section 5) would work only with totally
isotropic bulk energies. However, if the same orthonormal basis (e1, . . . , eN ) of RN is used
during the whole process (and in all subdomains where the operation is performed) one
realizes that it is not true. If one drops this requirement, one realizes that it is not too
di�cult to �nd an anisotropic positive-de�nite quadratic form on the space of N×N sym-
metric matrices WN : SN×N → R, for which the constructions in Sections 4 and 5 of [5]
can be performed, and an equivalent of Lemma A.1 [5, Appendix A] can be shown. In
what follow, we will merely stress on the adaptions that have to be done to the statements
and proofs in [5] to deduce Theorem 1. Let us observe that Section 3 in [5] is valid in
arbitrary dimension, and consider the adaption of Section 4.

2 The N�dimensional construction

In dimension 2, the following bulk energy is introduced in [5, Eq. (3)]:

W2(A) = Tr (AAT ) +
1
2
(Tr (A))2 , (1)

A ∈ S2×2. For A = (ai,j)1≤i,j≤N ∈ SN×N and 1 ≤ i < j ≤ N , we will denote by Ai,j the
2× 2 symmetric matrix

Ai,j =

(
ai,i ai,j

ai,j aj,j

)
. (2)

We then introduce the following quadratic form

WN (A) =
∑

1≤i<j≤N

W2(Ai,j) , (3)

A ∈ SN×N . One has

WN (A) =
∑

1≤i<j≤N

a2
i,i + a2

j,j + 2a2
i,j +

1
2
(a2

i,i + a2
j,j) + ai,iaj,j ,
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and since for any (x1, . . . , xN ),

∑
1≤i<j≤N

xi + xj = (N − 1)
N∑

i=1

xi , (4)

we �nd that

WN (A) =
3(N − 2)

2

N∑
i=1

a2
i,i + Tr (AAT ) +

1
2
(Tr (A))2 .

In particular, we see that it is a positive de�nite quadratic form on SN×N , which is
anisotropic, in the sense that it is not invariant with respect to an orthonormal change of
coordinates.

As in [5], we �x u ∈ SBD(Ω)∩L2(Ω; RN ), and given ε > 0, we �nd by [5, Lemma 3.2]
a set Ω′ ⊃⊃ Ω and u′ ∈ SBD(Ω′) ∩ L2(Ω′; RN ) with ‖u− u′‖L2(Ω) ≤ ε and∫

Ω′
|e(u′)|2 dx ≤

∫
Ω

|e(u)|2 dx + ε and HN−1(Ju′) ≤ HN−1(Ju) + ε. (5)

We then choose a system of coordinates (e1, . . . , eN ) such that for all e ∈ {ei, i =

1, . . . , N , ei + ej , ei − ej , 1 ≤ i < j ≤ N}, one has HN−1({x ∈ Ju′ : [u′(x)] · e = 0}) = 0

(almost any orthonormal basis of RN will do, cf [2, Eq. (4.5)]). We �x a small discretiza-
tion step h > 0. Given y ∈ [0, 1)N we denote by uy

h(ξ) the discretization of u′ given by
uy

h(ξ) = u′(hy + ξ), ξ ∈ hZN ∩ (Ω′−hy). We still denote by Jτ the set ⋃x∈Ju′
[x, x− τ ] for

any τ ∈ RN . Let us observe that a similar construction is found in [1]. The set of direc-
tions of interactions is now D = {ei : i = 1, . . . , N} ∪ {ei + ej , ei − ej : 1 ≤ i < j ≤ N}.
For e ∈ D we denote, again, lye,h = χJhe(hy + ξ) ∈ {0, 1} for any ξ ∈ hZN ∩ (Ω′ − hy).
For a �xed y, the discrete energy Ey

h(uy
h, lyh), with lyh = (lye,h)e∈D has a de�nition slightly

di�erent from [5, Eq. (5)]: we introduce a parameter α(e) which is (N − 1) whenever
e = ei, i = 1, . . . , N , and 1/4 for e = ei ± ej , 1 ≤ i < j ≤ N , and let

Ey
h(uy

h, lyh) = hN
∑
e∈D

∑
ξ

α(e)
((uy

h(ξ + he)− uy
h(ξ)) · e)

h2

2

(1− lye,h(ξ)) + β
lye,h(ξ)
|e|h

(6)

where the sum on the ξ runs on all the points ξ ∈ hZN such that both hy+ξ and hy+ξ+he

are in Ω′, and the parameter β > 0 is �xed later on. For N = 2, one has α(e) = 1/|e|4

and the energy is the same as [5, Eq. (5)]. On the other hand, for N ≥ 3, one checks that
the discrete bulk part of energy (6) is a sum on all pairs (i, j), i < j, of the 2�dimensional
discrete bulk part of [5, Eq. (5)] with directions e ∈ {ei, ej , ei + ej , ei − ej}, which makes
it coherent with de�nition (3) of WN . Proceeding as in [5], we �nd (following the slicing
technique of Gobbino [6] also used, in a discrete setting, in [4, 1]) that∫

[0,1)N

Ey
h(uy

h, lyh) dy

≤
∫

Ω′

(∑
e∈D

α(e)[(e(u)(x)e) · e]2
)

dx + β

∫
Ju′

(∑
e∈D

∣∣∣∣νu′(x) · e

|e|

∣∣∣∣
)

dHN−1(x) . (7)
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Then, we check that given any matrix A = (ai,j)N
i,j=1 ∈ SN×N , we have (using (4))

∑
e∈D

α(e)[(Ae) · e]2

= (N − 1)
N∑

i=1

a2
i,i +

1
4

∑
1≤i<j≤N

[(A(ei + ej)) · (ei + ej)]2 + [(A(ei − ej)) · (ei − ej)]2

=
∑

1≤i<j≤N

a2
i,i + a2

j,j +
1
4
(
(ai,i + aj,j + 2ai,j)2 + (ai,i + aj,j − 2ai,j)2

)
=

∑
1≤i<j≤N

W2(Ai,j) = WN (A) .

If we let, for any ν ∈ SN−1, h(ν) =
∑

e∈D |ν · e|/|e|, and β′ = (max|ν|=1 h(ν))β, we
deduce from (7) that∫

[0,1)N

Ey
h(uy

h, lyh) dy ≤
∫

Ω′
WN (e(u′)) dx + β

∫
Ju′

h(νu′(x)) dHN−1(x)

≤
∫

Ω′
WN (e(u′)) dx + β′HN−1(Ju′) . (8)

We now introduce the function, for x = (x1, . . . , xN ) ∈ RN ,

∆(x) =
N∏

i=1

(1− |xi|)+

(where t+ = max(t, 0) is the positive part), and let, for y ∈ [0, 1)N and any x ∈ Ω,

wy
h(x) =

∑
ξ∈hZN∩Ω′

uy
h(ξ)∆

(
x− ξ

h
− y

)
.

The function wy
h is a continuous interpolation of uy

h in Ω, and, the same argument as in [5]
shows that there exists a subsequence (hk)k≥1, hk ↓ 0 as k →∞, and y ∈ A, such that

lim
k→∞

‖u′ − wy
hk
‖L2(Ω;RN ) = 0 and

lim
k→∞

Ey
hk

(uy
hk

, lyhk
) ≤

∫
Ω′

WN (e(u′)) dx + β′HN−1(Ju′) .
(9)

We now �x y to this value and drop the corresponding superscript, a well, we denote
simply by (h)h>0 (h → 0) the subsequence (hk)k≥1. As in [5], we de�ne a new function
vh as follows: we let vh = 0 in the hypercube C = hy + ξ + [0, h)N whenever Ju′ crosses
either one edge [hy + ξ + hη, hy + ξ + hη + hei], i = 1, . . . , N , η ∈ {0, 1}N , ηi = 0,
that is, when the corresponding lei,h(ξ + hη) = 1, or a diagonal of a 2�dimensional facet:
[hy+ξ+hη, hy+ξ+hη+h(ei+ej)], i < j, η ∈ {0, 1}N , ηi = ηj = 0 (lei+ej ,h(ξ+hη) = 1) or
[hy+ξ+hη+hej , hy+ξ+hη+hei)], i < j, η ∈ {0, 1}N , ηi = ηj = 0 (lei−ej ,h(ξ+hη+hej) =

1). In the other case, we let vh = wh in C.
The function vh is in SBD(Ω), and Jvh

is contained in a union of ((N−1)�dimensional)
facets of hypercubes. We claim that the total surface of these facets can be bounded
by c × hN

∑
e∈D

∑
ξ

le,h(ξ)
|e|h , for some constant c, indeed, if v has been set to 0 in C =
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hy + ξ + [0, h)N , the measure HN−1(∂C) is 2NhN−1, on the other hand, the contribution
of C to the term hN

∑
e∈D

∑
ξ′

le,h(ξ′)
|e|h in the discrete energy, which is

hN−1

 1
2N−1

N∑
i=1

∑
η∈{0,1}N

ηi=0

lei,h(ξ + hη)

+
1

2N−2

∑
1≤i<j≤N

∑
η∈{0,1}N

ηi=ηj=0

lei+ej ,h(ξ + hη) + lei−ej ,h(ξ + hη + hej)√
2


(since each edge is common to 2N−1 hypercubes, while a diagonal of a 2�dimensional facet
is common to 2N−2 hypercubes), is at least hN−1/2N−1 (since at least one of the above
le,h's is equal to 1). Hence, taking c = 2N−2/N proves the claim.

On the other hand, if vh = wh in the hypercube C, it means all the corresponding
le,h's are 0, and the contribution of C to the energy (6) is

I =
(N − 1)hN

2N−1

N∑
i=1

∑
η∈{0,1}N

ηi=0

((uh(ξ + hη + hei)− uh(ξ + hη)) · ei)2

h2

+
hN

2N−2

∑
1≤i<j≤N

∑
η∈{0,1}N

ηi=ηj=0

(
((uh(ξ + hη + h(ei + ej))− uh(ξ + hη)) · (ei + ej))2

4h2

+
((uh(ξ + hη + hej)− uh(ξ + hη + hei)) · (ei − ej))2

4h2

)
Let us show that this is larger than

∫
C

WN (e(vh)(x)) dx. First of all, using again (4),
we see that I can be written as a sum on all pairs (i, j) i < j,1 of

Ii,j =
hN

2N−2

∑
η∈{0,1}N

ηi=ηj=0

(
((uh(ξ + hη + hei)− uh(ξ + hη)) · ei)2

2h2

+
((uh(ξ + hη + h(ei + ej))− uh(ξ + hη + hej)) · ei)2

2h2

+
((uh(ξ + hη + hej)− uh(ξ + hη)) · ej)2

2h2

+
((uh(ξ + hη + h(ej + ei))− uh(ξ + hη + hei)) · ej)2

2h2

+
((uh(ξ + hη + h(ei + ej))− uh(ξ + hη)) · (ei + ej))2

4h2

+
((uh(ξ + hη + hej))− uh(ξ + hη + hei)) · (ei − ej))2

4h2

)
.

By [5, Lemma A.1], it turns out that the term in the sum bounds the integral

h−2

∫
(xi,xj)∈(0,h)2

W2

(
[e(vh)]i,j(hy + ξ + hη + (xi, xj))

)
dxidxj

1Notice that the pairs (i, j), 1 ≤ i < j ≤ N and the points η ∈ {0, 1}N , ηi = ηj = 0, label all the

2N−2N(N − 1)/2 2�dimensional facets of a hypercube.
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(with the notation introduced in (2)), so that

Ii,j ≥
(

h

2

)N−2 ∑
η∈{0,1}N

ηi=ηj=0

∫
(xi,xj)∈(0,h)2

W2

(
[e(vh)]i,j(hy + ξ + hη + (xi, xj))

)
dxidxj . (10)

Now, we check that if x ∈ (0, h)N , for any i < j,

[e(vh)]i,j(hy + ξ + x)) =
∑

η∈{0,1}N

ηi=ηj=0

[e(vh)]i,j(hy + ξ + hη + (xi, xj))
N∏

k=1
k 6=i,j

∣∣∣xk

h
− (1− ηk)

∣∣∣


(11)
To check that, it is enough to observe that if hy + ξ +x ∈ C (that is, x ∈ (0, h)N ), one has

vh(hy + ξ + x) =
∑

η∈(0,1)N

uh(ξ + hη)∆
(x

h
− η
)

=
∑

η∈{0,1}N

ηi=ηj=0

N∏
k=1

k 6=i,j

∣∣∣xk

h
− (1− ηk)

∣∣∣ (uh(ξ + hη)
(
1− xi

h

)(
1− xj

h

)

+ uh(ξ + hη + hei)
(xi

h

)(
1− xj

h

)
+ uh(ξ + hη + hej)

(
1− xi

h

)(xj

h

)
+ uh(ξ + hη + h(ei + ej))

(xi

h

)(xj

h

))
from which it is clear that taking derivatives with respect only to xi and xj yields the
expression (11). By convexity of W2, we deduce from (11) and (10) that∫

C

W2

(
[e(vh)]i,j(x)

)
dx =

∫
(0,h)N

W2

(
[e(vh)]i,j(hy + ξ + x)

)
dx

≤
∑

η∈{0,1}N

ηi=ηj=0

∫
(0,h)N

W2

(
[e(vh)]i,j(hy + ξ + hη + (xi, xj))

) N∏
k=1

k 6=i,j

∣∣∣xk

h
− (1− ηk)

∣∣∣ dx

=
(

h

2

)N−2 ∑
η∈{0,1}N

ηi=ηj=0

∫
(0,h)2

W2

(
[e(vh)]i,j(hy + ξ + hη + (xi, xj))

)
dxidxj ≤ Ii,j ,

from which we deduce
I ≥

∫
C

WN (e(vh)(x)) dx .

If h is small enough, we see that we get the existence of a function v and a closed set J

made of a �nite union of facets of hypercubes such that v ∈ H1(Ω\J ; RN ), ‖v−u‖L2(Ω) ≤
2ε, ∫

Ω

WN (e(v)(x)) dx + HN−1(J) ≤
∫

Ω

WN (e(u)(x)) dx + c0HN−1(Ju) + cε

for some constant c0 depending only on N (and c a constant). This yields in particular
the N�dimensional version of Theorem 1 in [5]. In particular, we have v ∈ SBD(Ω)

and Jv ⊂ J (and an in�nitesimal perturbation of v will ensure that Jv = J ∩ Ω up to a
HN−1�negligible set).
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3 Conclusion

Theorem 1 is now easily deduced from the construction in the previous section and [5,
Section 5]. Indeed, the construction in the proof of [5, Thm. 2], based on the recti�ability
of the set Ju for u ∈ SBD(Ω), although written only in 2D, is valid in any dimension (the
Γi are now (N − 1)�dimensional C1 hypersurface, and ρ has to be replaced with ρN−1

in the density ratios). An important detail is that when the construction of Section 2 is
invoked in the sets Bj \ Γi and At, then the same orthonormal basis (e1, . . . , eN ) of RN

must be used in each of these sets, on order to �nd an energy estimate involving the same
bulk energy WN (e(u)) everywhere (this bulk energy is indeed not invariant with respect
to a change of basis).

Using then, as previously, [3, Thm. 1.1] (Lemma 5.1 in [5]) we can deduce Theorem 1.
Notice also that nothing in the proof of Theorem 4 of [5] is strictly bidimensional.
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