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Abstract. We propose a stable nonparametric method for constructing an option pricing model
of exponential Lévy type, consistent with a given data set of option prices. After demonstrating the
ill-posedness of the usual and least squares version of this inverse problem, we suggest to regularize
the calibration problem by reformulating it as the problem of finding an exponential Lévy model that
minimizes the sum of the pricing error and the relative entropy with respect to a prior exponential
Lévy model. We prove the existence of solutions for the regularized problem and show that it yields
solutions which are continuous with respect to the data, stable with respect to the choice of prior
and converge to the minimum-entropy least square solution of the initial problem.
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1. Introduction. The specification of an arbitrage-free option pricing model on
a time horizon T∞ involves the choice of a risk-neutral measure [25]: a probability
measure Q on the set Ω of possible trajectories (St)t∈[0,T∞] of the underlying asset such
that the discounted asset price e−rtSt is a martingale (where r is the discount rate).
Such a probability measureQ then specifies a pricing rule which attributes to an option
with terminal payoff HT at T the value C(HT ) = e−rTEQ[HT ]. For example, the
value under the pricing rule Q of a call option with strikeK and maturity T is given by
e−rTEQ[(ST −K)+]. Given that data sets of option prices have become increasingly
available, a common approach for selecting the pricing model Q is to choose, given
option prices (C(Hi))i∈I with maturities Ti payoffs Hi, a risk-neutral measure Q
compatible with the observed market prices, i.e. such that C(Hi) = e−rTiEQ[Hi].
This inverse problem of determining a pricing model Q verifying these constraints is
known as the “model calibration” problem. The number of observed options can be
large (' 100− 200 for index options) and the Black-Scholes model has to be replaced
with models with richer structure such as nonlinear diffusion models [18] or models
with jumps [13]. The inverse problem is ill-posed in these settings [14, 34] and various
methods have been proposed for solving it in a stable manner, mostly in the framework
of diffusion models [1, 4, 5, 6, 8, 15, 18, 26, 33, 34].

We study in this paper the calibration problem for the class of option pricing
models with jumps –exponential Lévy models– where the risk-neutral dynamics of
the logarithm of the stock price is given by a Lévy process. The problem is then to
choose the Lévy process –described by its Lévy measure– in a way compatible with
a set of observed option prices. Option prices being evaluated as expectations, this
inverse problem can also be interpreted as a (generalized) moment problem for a Lévy
process: given a finite number of option prices, it is typically an ill-posed problem.
The relation between the option prices and the Lévy measure being nonlinear, we
face a nonlinear, infinite dimensional inverse problem. After demonstrating the ill-
posedness of the usual and least squares version of this inverse problem, we show that
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it can be regularized by using as penalization term the relative entropy of with respect
to a prior exponential Lévy model. We show that our approach yields solutions which
are continuous with respect to the data, stable with respect to the choice of prior and
converge to the minimum-entropy least square solution of the initial problem.

1.1. Relation to previous literature. Several authors [22, 19, 17, 30] have
investigated the minimal entropy martingale measure (MEMM) –the pricing measure
Q that minimizes the relative entropy with respect to a reference probability P– as
a method for pricing in incomplete markets. The specific case of exponential Lévy
models has been treated in [30] (see also [10]). However, option prices computed
using the MEMM are in general not consistent with the market-quoted prices of
traded European options and can lead to arbitrage opportunities with respect to
market-traded options.

The notion of minimal entropy measure consistent with observed market prices
was introduced in a static (one-period) framework by Avellaneda [4, 3]: given prices
of call options {CM (Ti,Ki)}i∈I and a prior model P , it is obtained by minimizing
relative entropy over all probability measures Q ∼ P such that

CM (Ti,Ki) = EQ[e−rTi(STi
−Ki)+] for i ∈ I (1.1)

This approach is based on relative entropy minimization under constraints [16] and
yields a computable result. This approach was extended to the case of stochastic
processes by the Weighted Monte Carlo method of Avellaneda et al [5], but the mar-
tingale property is lost since it would correspond to an infinite number of constraints
[31]. As a result, derivative prices computed with the weighted Monte Carlo algo-
rithm may contain arbitrage opportunities, especially when applied to forward start
contracts.

Goll and Rüschendorf [24] consider the notion of consistent (or calibrated) mini-
mal entropy martingale measure (CMEMM), defined as the solution of

I(Q∗|P ) = min
Q∈M∗

I(Q|P ),

where the minimum is taken over all martingale measures Q ∼ P verifying (1.1).
While this notion seems to conciliate the advantages of the MEMM and Avellaneda’s
entropy minimization under constraints, no algorithm is proposed in [24] to compute
the CMEMM. In fact, the notion of CMEMM does not preserve in general the struc-
ture of the prior –e.g. the Markov property–and it may be difficult to represent.1

We also note that relative entropy is not a convenient notion when dealing with one
dimensional diffusion models since as soon as the model has a diffusion coefficient
different from the prior their measures become singuar and the relative entropy is
infinite. Other methods have been used to solve the calibration problem for the class
of diffusion models: a stochastic control method under constraints [6, 34], Tikhonov
regularization [15, 26, 29], stochastic particle methods [8].

In this paper we show that the shortcomings of the above approaches can be
overcome by enlarging the class of models to include processes with jumps and using
relative entropy as a regularization criterion rather than a selection criterion. On one
hand, introducing jumps in the prior model allows to obtain a large class of equivalent
martingale measures which also have finite relative entropy with respect to the prior,

1In particular, if X is a Lévy process under the prior P , it will in general no longer be a Lévy
process under a consistent minimal entropy martingale measure.
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avoiding the singularity which arises in diffusion models. On the other hand, by
restricting the class of pricing models to exponential Lévy models (see section 2), we
are able to go beyong existence and uniqueness solutions and obtain a computable
alternative to the CMEMM. Also, unlike the Weighted Monte Carlo approach, our
approach yields as solution a continuous-time price process whose discounted value is
a martingale. Finally, the use of regularization yields a stable solution to the inverse
problem for which a computational approach is possible [14].

Unlike linear inverse problems for which general results on regularization meth-
ods and their convergence properties are available [20], nonlinear inverse problems
have been explored less systematically. Our study is an example of rigorous analysis
of entropy-based regularization for a nonlinear, infinite-dimensional inverse problem.
Previous results on regularization using entropy have been obtained in finite dimen-
sional setting [21] by mapping the problem to a Tikhonov regularization problem.
Using probabilistic methods, we are able to use a direct approach and extend these
result to the infinite dimensional setting considered here.

1.2. Outline. The paper is structured as follows. Section 2 recalls basic facts
about Lévy processes and exponential Lévy models. In Section 3 we formulate the
calibration problem as that of finding a martingale measureQ, consistent with market-
quoted prices of traded options, under which the logarithm of the stock price process
remains a Lévy process. We show that both this problem and its least squares version
are ill-posed: a solution may not exists and when it exists, may not be stable with
respect to perturbations in the data. Section 4 discusses relative entropy in the case
of Lévy processes, its use as a criterion for selecting solutions and introduces the no-
tion of minimum-entropy least squares solution. Although this notion of solution may
still lack uniqueness and stability, we show in Section 5 that it can be approximated
in a stable manner using the method of regularization. We formulate the regular-
ized version of the calibration problem and show that it always admits a solution
which is stable with respect to market data. Moreover, we formulate conditions un-
der which the solutions of the regularized problem converge to the minimum-entropy
least squares solution.

In Section 6 we show that the solutions of the regularized calibration problem
are stable with respect to small perturbations of the prior measure. This also implies
that the solutions of the regularized calibration problem with any prior measure can
be approximated (in the weak sense) by the solutions of regularized problems with
discretized priors, which has implications for the discretization and the numerical
solution of the regularized calibration problem: these issues are further discussed in
the companion paper [14].

2. Definitions and notations. Consider a time horizon T∞ <∞ and denote by
Ω the space of Rd-valued cadlag functions on [0, T∞], equipped with the Skorokhod
topology [27]. Unless otherwise mentioned, X is the coordinate process: for every
ω ∈ Ω, Xt(ω) := ω(t). F is the smallest σ-field, for which the mappings ω ∈ Ω 7→ ω(s)
are measurable for all s ∈ [0, T∞] and for any t ∈ [0, T∞], Ft is the smallest σ-field, for
which the mappings ω ∈ Ω 7→ ω(s) are measurable for all s ∈ [0, t]. Weak convergence
of measures will be denoted by ⇒.

Lévy processes. A Lévy process {Xt}t≥0 on (Ω,F , P ) is a cadlag stochastic pro-
cess with stationary independent increments, satisfying X0 = 0. The characteristic
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function of Xt has the following form, called the Lévy-Khinchin representation [35]:

E[eizXt ] = etψ(z), with

ψ(z) = −1
2
Az2 + iγz +

∫ ∞

−∞
(eizx − 1− izh(x))ν(dx) (2.1)

where A ≥ 0 is the unit variance of the Brownian motion part of the Lévy process,
γ ∈ R, ν is a positive measure on R verifying ν({0}) = 0 and∫ ∞

−∞
(x2 ∧ 1)ν(dx) <∞,

and h is the truncation function: any bounded measurable function R → R such that
h(x) ≡ x on a neighborhood of zero. The most common choice of truncation function
is h(x) = x1|x|≤1 but sometimes in this paper we will need h to be continuous. The
triplet (A, ν, γ) is called the characteristic triplet of X with respect to the truncation
function h. Sometimes in financial literature, σ :=

√
A is called the volatility of X.

Model setup. In this paper we treat exponential Lévy models, where the stock
price process St is modelled as the exponential of a Lévy process:

St = S0e
rt+Xt (2.2)

where r is the interest rate. Under a risk-neutral probability Q, eXt must be a
martingale. It follows from (2.1) that this is the case if and only if

A

2
+ γ +

∫ ∞

−∞
(ex − 1− h(x))ν(dx) = 0. (2.3)

Under Q call option prices can be evaluated as discounted expectations of terminal
payoffs:

CQ(T,K) = e−rTEQ[(ST −K)+] = e−rTEQ[(S0e
rT+XT −K)+]. (2.4)

If X is a Lévy process under P then, unless X is almost surely increasing or al-
most surely decreasing under P , the exponential Lévy model corresponding to P is
arbitrage-free: there exists a risk-neutral probability Q equivalent to P [28, 11].

Notation. In the sequel P(Ω) denotes the set of probability measures (stochastic
processes) on (Ω,F), L denotes the set of all probability measures P ∈ P(Ω) under
which the coordinate process X is a Lévy process and M stands for the set of all
probability measures P ∈ P(Ω), under which exp(Xt) is a martingale. LNA is the set
of all probability measures P ∈ L corresponding to Lévy processes describing markets
with no arbitrage opportunity, that is, to Lévy processes that are not almost surely
increasing nor almost surely decreasing. Furthermore for a constant B > 0 we define

L+
B = {P ∈ L, ∀t ∈ [0, T∞], P [∆Xt ≤ B ] = 1 },

the set of Lévy processes with jumps bounded from above by B.
The following lemma shows the usefulness of the above definitions.
Lemma 2.1. The set M∩L+

B is weakly closed for every B > 0.
Proof. Let {Qn}∞n=1 ⊂ M ∩ L+

B with characteristic triplets (An, νn, γn) with
respect to a continuous truncation function h and let Q be a Lévy process with
characteristic triplet (A, ν, γ) with respect to h, such that Qn ⇒ Q. Note that a
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sequence of Lévy processes cannot converge to anything other than a Lévy process
because due to convergence of characteristic functions, the limiting process must have
stationary and independent increments. Define a function f by

f(x) :=


0, x ≤ B,
1, x ≥ 2B,
x−B
B B < x < 2B.

By Corollary VII.3.6 in [27],
∫∞
−∞ f(x)ν(dx) = limn→∞

∫∞
−∞ f(x)νn(dx) = 0, which

implies that the jumps of Q are bounded by B.
Define a function g by

g(x) :=
{
ex − 1− h(x)− 1

2h
2(x), x ≤ B,

eB − 1− h(B)− 1
2h

2(B), x > B.

Then, by Corollary VII.3.6 in [27] and because Qn satisfies the martingale condition
(2.3) for every n,

γ +
A

2
+

∫ ∞

−∞
(ex − 1− h(x))ν(dx) = γ +

A+
∫∞
−∞ h2(x)ν(dx)

2
+

∫ ∞

−∞
g(x)ν(dx)

= lim
n→∞

{
γn +

An +
∫∞
−∞ h2(x)νn(dx)

2
+

∫ ∞

−∞
g(x)νn(dx)

}
= 0,

which shows that Q also satisfies the condition (2.3).

3. The calibration problem and its least squares formulation. Suppose
first that the market data CM are consistent with the class of exponential Lévy models.
This is for example the case when the market pricing rule is an exponential Lévy model
but can hold more generally since many models may give the same prices for a given
set of European options. For instance one can construct, using Dupire’s formula [18],
a diffusion model that gives the same prices, for a set of European options, as a
given exp-Lévy model [12]. Using the notation, defined in the preceding section, the
calibration problem assumes the following form:

Problem 1 (Calibration problem with equality constraints). Given market
prices of call options {CM (Ti,Ki)}i∈I , find Q∗ ∈M∩L, such that

∀i ∈ I, CQ
∗
(Ti,Ki) = CM (Ti,Ki). (3.1)

When the market data is not consistent with the class of exponential Lévy models,
the exact calibration problem may not have a solution. In this case one may consider
an approximate solution: instead of reproducing the market option prices exactly, one
may look for a Lévy triplet which reproduces them in the best possible way in the
least squares sense. Let w be a probability measure on [0, T∞]× [0,∞) (the weighting
measure, determining the relative importance of different data points). An option
data set is defined as a mapping C : [0, T∞]× [0,∞) → [0,∞) and the data sets that
coincide w-almost everywhere are considered identical. One can introduce a norm on
option data sets via

‖C‖2w :=
∫

[0,T∞]×[0,∞)

C(T,K)2w(dT × dK). (3.2)
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The quadratic pricing error in model Q is then given by ‖CM −CQ‖2w. If the number
of constraints is finite then w =

∑N
i=1 wiδ(Ti,Ki)(dT × dK) (with e.g. N constraints),

where {wi}1≤i≤N are positive weights that sum up to one. Therefore, in this case

‖CM − CQ‖2w =
N∑
i=1

wi(CM (Ti,Ki)− CQ(Ti,Ki))2. (3.3)

The following lemma establishes some useful properties of the pricing error func-
tional.

Lemma 3.1. The pricing error functional Q 7→ ‖CM−CQ‖2w is uniformly bounded
and weakly continuous on M∩L.

Proof. From Equation (2.4), CQ(T,K) ≤ S0. Absence of arbitrage in the mar-
ket implies that the market option prices satisfy the same condition. Therefore,
(CM (T,K)−CQ(T,K))2 ≤ S2

0 and since w is a probability measure, ‖CM −CQ‖2w ≤
S2

0 .
Let {Qn}n≥1 ⊂M∩L and Q ∈M∩L be such that Qn ⇒ Q. For all T,K,

lim
n
CQn(T,K) = e−rT lim

n
EQn [(S0e

rT+XT −K)+]

= e−rT lim
n
EQn [S0e

rT+XT −K] + e−rT lim
n
EQn [(K − S0e

rT+XT )+]

= S0 −Ke−rT + e−rTEQ[(K − S0e
rT+XT )+] = CQ(T,K).

Therefore, by the dominated convergence theorem, ‖CM − CQn‖2w → ‖CM − CQ‖2w.

The calibration problem now takes the following form:
Problem 2 (Least squares calibration problem). Given prices CM of call op-

tions, find Q∗ ∈M∩L, such that

‖CM − CQ
∗
‖2w = inf

Q∈M∩L
‖CM − CQ‖2w. (3.4)

In the sequel, any such Q∗ will be called a least squares solution and the set of all
least squares solutions will be denoted by QLS(CM ).

Several authors [2, 7] have used least squares formulations similar to (3.4) for
calibrating parametric models without taking into account that the least squares
calibration problem is ill-posed in several ways. The principal difficulties of theoretical
nature are the following:

Lack of identification. Although knowing option prices for one maturity and all
strikes allows to determine the characteristic triplet of the underlying Lévy process
completely, in real data sets, prices are only available for a finite number of strikes
(typically between 10 and 100) and knowing the prices of a finite number of options
is not sufficient to reconstruct the Lévy process. This problem is discussed in detail
in [14, 36].

Absence of solution. In some cases even the least squares problem may not admit
a solution, as shown by the following (artificial) example.

Example 3.1. Suppose that S0 = 1, there are no interest rates or dividends and
the (equally weighted) market data consist of the following two observations:

CM (T = 1,K = 1) = 1− e−λ and CM (T = 1,K = eλ) = 0, (3.5)

with some λ > 0. It is easy to see that these prices are, for example, compatible with
the (martingale) asset price process St = eλt1t≤τ1 , where τ1 is the time of the first
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jump of a Poisson process with intensity λ. We will show that if the market data are
given by (3.5), the calibration problem (3.4) does not admit a solution.

Absence of arbitrage implies that in every risk-neutral model Q, for fixed T ,
CQ(T,K) is a convex function of K and that CQ(T,K = 0) = 1. The only convex
function which satisfies this equality and passes through the market data points (3.5)
is given by C(T = 1,K) = (1 − Ke−λ)+. Therefore, in every arbitrage-free model
that is an exact solution of the calibration problem with market data (3.5), for every
K ≥ 0, P [S1 ≤ K] = e−λ1K≤eλ . Since in an exponential Lévy model P [S1 > 0] = 1,
there is no risk-neutral exponential Lévy model for which ‖CM − CQ‖w = 0.

On the other hand, infQ∈M∩L ‖CM−CQ‖2w = 0. Indeed, let {Nt}t≥0 be a Poisson
process with intensity λ. Then for every n, the process

Xn
t := −nNt + λt(1− e−n) (3.6)

belongs to M∩L and

lim
n→∞

E[(eX
n
t −K)+] = lim

n→∞

∞∑
k=0

e−λt
(λt)k

k!

(
e−nk+λt(1−e

−n) −K
)+

= (1−Ke−λt)+.

We have shown that infQ∈M∩L ‖CM − CQ‖2 = 0 and that for no Lévy process Q ∈
M ∩ L, ‖CM − CQ‖2 = 0. Together this entails that the calibration problem (3.4)
does not admit a solution.

Lack of continuity of solutions with respect to market data. Market option prices
are typically defined up to a bid-ask spread and the prices used for calibration may
therefore be subject to perturbations of this order. If the solution of the calibration
problem is not continuous with respect to market data, these small errors may dramat-
ically alter the result of calibration, rendering it completely useless. Even if we ignore
errors in market data, in absence of continuity, small daily changes in prices could
lead to large variations of calibrated parameters and of other quantities computed
using these parameters, such as prices of exotic options.

When the calibration problem has more than one solution, care should be taken
in defining what is meant by continuity. In the sequel, we will use the following
definition [20] that applies to all calibration problems discussed in this paper.

Definition 3.2 (Continuity with respect to data). The solutions of a calibration
problem are said to depend continuously on input data at the point CM if for every
sequence of data sets {CnM}n≥0 such that ‖CnM − CM‖w −−−−→

n→∞
0, if Qn is a solution

of the calibration problem with data CnM then
1. {Qn}n≥1 has a weakly convergent subsequence {Qnm}m≥1.
2. The limit Q of every weakly convergent subsequence of {Qn}n≥1 is a solution

of the calibration problem with data CM .
If the solution of the calibration problem with the limiting data CM is unique,

this definition reduces to the standard definition of continuity, because in this case
every subsequence of {Qn} has a further subsequence converging towards Q, which
implies that Qn ⇒ Q.

Remark 3.1. Note that the above definition can accommodate the presence
of random errors (“noise”) in the data. In this case the observational error can
be described by a separate probability space (Ω0, E , p0). The continuity property
must then be interpreted as almost-sure continuity with respect to the law p0 of
the observational errors: for every (random) sequence {CnM}n≥0 such that ‖CnM −
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CM‖w −−−−→
n→∞

0 almost surely, then any sequence of solution with data {CnM}n≥0

must verify the properties of Definition 3.2 p0-almost surely.
It is easy to construct an example of market data leading to a least squares

calibration problem (3.4) that does not satisfy the above definition.
Example 3.2. Assume S0 = 1, there are no interest rates or dividends and the

market data for each n are given by a single observation:

CnM (T = 1,K = 1) = E[(eX
n
1 −1)+] for n ≥ 1 and CM (T = 1,K = 1) = 1− e−λ,

where Xn
t is defined by Equation (3.6) and λ > 0. Then ‖CnM − CM‖w −−−−→

n→∞
0

and Xn
t is clearly a solution for data CnM , but the sequence {Xn

t } has no convergent
subsequence (cf. Corollary VII.3.6 in [27]).

In addition to these theoretical obstacles, even if a solution exists, it may be
difficult to compute numerically since, as shown in [14, 36], the pricing error ‖CM −
CQ‖2 is typically non-convex and can have many local minima, preventing a gradient-
based minimization algorithm from finding the solution.

4. Relative entropy as a selection criterion. When constraints given by
option prices do not determine the exponential Lévy model completely (this is for
example the case if the number of constraints is finite), additional information may
be introduced into the problem by specifying a prior model : we start from a reference
Lévy process P and look for the solution of the problem (3.4) that has the smallest
relative entropy with respect to P . For two probabilities P and Q on the same
measurable space (Ω,F), the relative entropy of Q with respect to P is defined by

I(Q|P ) =

{
EP

[
dQ
dP log dQ

dP

]
if Q� P and EP [|dQdP log dQ

dP |] <∞
∞ otherwise,

(4.1)

where by convention x log x = 0 when x = 0.
Problem 3 (Minimum entropy least squares calibration problem). Given prices

CM of call options and a prior Lévy process P , find a least squares solution Q∗ ∈
QLS(CM ), such that

I(Q∗|P ) = inf
Q∈QLS(CM )

I(Q|P ). (4.2)

In the sequel, any such Q∗ will be called a minimum entropy least squares solution
(MELSS) and the set of all such solutions will be denoted by MELSS(CM ).

The prior probability P reflects our a priori knowledge about the nature of possible
trajectories of the underlying asset and their probabilities of occurrence. A natural
choice of prior, ensuring absence of arbitrage in the calibrated model, is an exponential
Lévy model estimated from the time series of returns. Whether this choice is adopted
or not does not affect our discussion below. Other possible ways to choose the prior
model in practice are discussed in [14], which also gives an empirical analysis of the
effect of the choice of prior on the solution of the calibration problem.

The choice of relative entropy as a method for selection of solutions of the cali-
bration problem is driven by the following considerations:

• Relative entropy can be interpreted as a (pseudo-)distance to the prior P : it
is convex, nonnegative functional of Q for fixed P , equal to zero if and only
if dQ
dP = 1 P -a.s. To see this, observe that

EP
[
dQ

dP
log

dQ

dP

]
= EP

[
dQ

dP
log

dQ

dP
− dQ

dP
+ 1

]
,
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and that z log z − z + 1 is a convex nonnegative function of z, equal to zero
if and only if z = 1.

• Relative entropy for Lévy processes is easily expressed in terms of their char-
acteristic triplets (see Theorem A.1).

• Relative entropy has an information-theoretic interpretation and has been
repeatedly used for model selection in finance (see Section 1).

Using relative entropy for selection of solutions removes, to some extent, the identi-
fication problem of least-squares calibration. Whereas in the least squares case, this
was an important nuisance, now, if two measures reproduce market option prices with
the same precision and have the same entropic distance to the prior, this means that
both measures are compatible with all the available information. Knowledge of many
such probability measures instead of one may be seen as an advantage, because it
allows to estimate model risk and provide confidence intervals for the prices of ex-
otic options [12]. However, the calibration problem (4.2) remains ill-posed: since the
minimization of entropy is done over the results of least squares calibration, problem
(4.2) may only admit a solution if problem (3.4) does. Also, QLS(CM ) is not neces-
sarily a compact set, so even if it is nonempty, (4.2) may not have a solution. Other
undesirable properties such as absence of continuity and numerical instability are also
inherited from the least squares approach. In Section 5 we will propose a regularized
version of problem (4.2) that does not suffer from these difficulties.

The minimum entropy least squares solution does not always exist, but if the prior
is chosen correctly, that is, if there exists at least one solution of problem (3.4) with
finite relative entropy with respect to the prior, then minimum entropy least-squares
solutions will also exist, as shown by the following lemma.

Lemma 4.1. Let P ∈ LNA ∩ L+
B for some B > 0 and assume the problem (3.4)

admits a solution Q+ with I(Q+|P ) = C < ∞. Then the problem (4.2) admits a
solution.

Proof. Under the condition of the lemma, it is clear that the solution Q∗ of
problem (4.2), if it exists, satisfies I(Q∗|P ) ≤ C. This entails that Q∗ � P , which
means by Theorem IV.4.39 in [27] that Q∗ ∈ L+

B . Therefore, Q∗ belongs to the set

L+
B ∩ {Q ∈M∩L : ‖CQ − CM‖ = ‖CQ

+
− CM‖} ∩ {Q ∈ L : I(Q|P ) ≤ C}.(4.3)

Lemma A.2 and the Prohorov’s theorem entail that the level set {Q ∈ L : I(Q|P ) ≤
C} is relatively weakly compact. On the other hand, by Corollary A.4, I(Q|P ) is
weakly lower semicontinuous with respect to Q for fixed P . Therefore, the set {Q ∈
P(Ω) : I(Q|P ) ≤ C} is weakly closed and since by Lemma 2.1, M∩L+

B is also weakly
closed, the set M ∩ L+

B ∩ {Q ∈ L : I(Q|P ) ≤ C} is weakly compact. Lemma 3.1
then implies that the set (4.3) is also weakly compact. Since I(Q|P ) is weakly lower
semicontinuous, it reaches its minimum on this set.

Remark 4.1. Notice that it is essential for our analysis that the model has
discontinuous trajectories, i.e. the prior P corresponds to a Lévy process with jumps,
not a diffusion process (which is, in this case, the Black Scholes model). More generally
if P corresponds to the law of a diffusion model then the set of processes which have
both the martingale property and finite entropy with respect to P is reduced to a
single element and the solution to 4.2 is trivial.

5. Regularization using relative entropy. As observed in [14] and in Section
4, problem (4.2) is ill-posed and hard to solve numerically. In particular its solutions,
when they exist, may not be stable with respect to perturbations of market data. If
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we do not know the prices CM exactly but only dispose of a noisy verion CδM with
||CδM−CM ||w ≤ δ and want to construct an approximation to MELSS(CM ), it is not a
good idea to solve problem (4.2) with the noisy data CδM because MELSS(CδM ) may be
very different from MELSS(CM ). We therefore need to regularize the problem (4.2),
that is, construct a family of continuous “regularization operators” {Rα}α>0, where α
is the parameter which determines the intensity of regularization, such that Rα(CδM )
converges to a minimum entropy least-squares solution as the noise level δ tends to
zero if an appropriate parameter choice rule δ 7→ α(δ) is used. The approximation to
MELSS(CM ) using the noisy data CδM is then given by Rα(CδM ) with an appropriate
choice of α.

Following a classical approach to regularization of ill-posed problems [20], we
suggest to construct a regularized version of (4.2) by using the relative entropy for
penalization rather than for selection:

Jα(Q) = ‖CδM − CQ‖2w + αI(Q|P ), (5.1)

where α is the regularization parameter and solve the following optimization problem:
Problem 4 (Regularized calibration problem). Given prices CM of call options,

a prior Lévy process P and a regularization parameter α > 0, find Q∗ ∈M∩L, such
that

Jα(Q∗) = inf
Q∈M∩L

Jα(Q). (5.2)

Problem (5.2) can be thought of in two ways:
• If the minimum entropy least squares solution with the true data CM exists,

(5.2) allows to construct a stable approximation of this solution using the
noisy data.

• If the MELSS(CM ) = ∅, either because the set of least squares solutions is
empty or because the least squares solutions are incompatible with the prior,
the regularized problem (5.2) allows to achieve, in a stable manner, a trade-off
between matching the constraints and the prior information.

In the rest of this section we study the regularized calibration problem. Under our
standing hypothesis that the prior Lévy process has jumps bounded from above and
corresponds to an arbitrage free market (P ∈ LNA∩L+

B), we show that the regularized
calibration problem always admits a solution that depends continuously on the market
data. In addition, we give a sufficient condition on the prior P for the solution to be
an equivalent martingale measure and show how the regularization parameter α must
be chosen depending on the noise level δ if the regularized solutions are to converge
to the solutions of the minimum entropy least squares calibration problem (4.2).

5.1. Existence of solutions. The following result shows that, unlike the initial
or the least squares formulation of the inverse problem, the regularized version always
admits a solution:

Theorem 5.1. Let P ∈ LNA∩L+
B for some B > 0. Then the calibration problem

(5.2) has a solution Q∗ ∈M∩L+
B.

Proof. By Lemma A.5, there exists Q0 ∈M∩L with I(Q0|P ) <∞. The solution,
if it exists, must belong to the level set LJα(Q0) := {Q ∈ L : I(Q|P ) ≤ Jα(Q0)}.
Since Jα(Q0) = ‖CM − CQ

0‖2w + I(Q0|P ) < ∞, by Lemma A.2, LJα(Q0) is tight
and, by Prohorov’s theorem, weakly relatively compact. Corollary A.4 entails that
I(Q|P ) is weakly lower semicontinuous with respect to Q. Therefore {Q ∈ P(Ω) :
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I(Q|P ) ≤ Jα(Q0)} is weakly closed and since by Lemma 2.1, M∩L+
B is weakly closed,

M∩L+
B ∩ LJα(Q0) is weakly compact. Moreover, by Lemma 3.1, the squared pricing

error is weakly continuous, which entails that Jα(Q) is weakly lower semicontinuous.
Therefore, Jα(Q) achieves its minimum value on M∩L+

B ∩LJα(Q0), which proves the
theorem.

Since every solution Q∗ of the regularized calibration problem (5.2) has finite
relative entropy with respect to the prior P , necessarily Q∗ � P . However, Q∗

need not in general be equivalent to the prior. When the prior corresponds to the
“objective” probability measure, absence of arbitrage is guaranteed if options are
priced using an equivalent martingale measure [25]. The following theorem gives a
sufficient condition for this equivalence.

Theorem 5.2. Let P ∈ LNA ∩L+
B and assume the characteristic function ΦPT of

P satisfies ∫ ∞

−∞
|ΦPT (u)|du <∞ (5.3)

for some T < T0, where T0 is the shortest maturity, present in the market data. Then
every solution Q∗ of the calibration problem (5.2) satisfies Q∗ ∼ P .

Remark 5.1. Condition (5.3) implies that the prior Lévy process has a continu-
ous density at time T and all subsequent times. Two important examples of processes
satisfying the condition (5.3) for all T are

• Processes with non-zero Gaussian component (A > 0).
• Processes with stable-like behavior of small jumps whose Lévy measure sat-

isfies

∃β ∈ (0, 2), lim inf
ε↓0

ε−β
∫ ε

−ε
|x|2ν(dx) > 0. (5.4)

For a proof, see [35, Proposition 28.3]. This class includes tempered stable
processes [13] with α+ > 0 and/or α− > 0.

To prove Theorem 5.2 we will use the following lemma:
Lemma 5.3. Let P ∈M∩L+

B with characteristic triplet (A, ν, γ) and character-
istic exponent ψ. There exists C <∞ such that∣∣∣∣ψ(v − i)

(v − i)v

∣∣∣∣ ≤ C ∀v ∈ R.

Proof. From the Lévy-Khinchin formula and (2.3),

ψ(v − i) = −1
2
Av(v − i) +

∫ ∞

−∞
(ei(v−i)x + iv − ex − ivex)ν(dx). (5.5)

Observe first that

ei(v−i)x + iv − ex − ivex = iv(xex + 1− ex) +
θv2x2ex

2
for some θ with |θ| ≤ 1.

Therefore, for all v with |v| ≥ 2,∣∣∣∣ei(v−i)x + iv − ex − ivex

(v − i)v

∣∣∣∣ ≤ xex + 1− ex + x2ex. (5.6)
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On the other hand

ei(v−i)x + iv − ex − ivex

(v − i)v
=
iex(eivx − 1)

v
− i(ei(v−i)x − 1)

v − i

= −xex − ivx2

2
eθ1ivx + x+

i(v − i)x2

2
eθ2i(v−i)x

with some θ1, θ2 ∈ [0, 1]. Therefore, for all v with |v| ≤ 2,∣∣∣∣ei(v−i)x + iv − ex − ivex

(v − i)v

∣∣∣∣ ≤ x(1−ex)+
x2

2
(v+

√
1 + v2ex) ≤ x(1−ex)+x2(1+2ex).

(5.7)
Since the support of ν is bounded from above, the right-hand sides of (5.6) and (5.7)
are ν-integrable and the proof of the lemma is completed.

Proof. [Proof of Theorem 5.2] Let Q∗ be a solution of (5.2) with prior P . Since
P ∈ LNA, there exists Q0 ∈M∩L such that Q0 ∼ P [11]. Denote the characteristic
triplet of Q∗ by (A, ν∗, γ∗) and that of Q0 by (A, ν0, γ0).

Let Qx be a Lévy process with characteristic triplet (A, xν0 + (1 − x)ν∗, xγ0 +
(1 − x)γ∗). From the linearity of the martingale condition (2.3), it follows that for
all x ∈ [0, 1], Qx ∈ M ∩ L. Since Q∗ realizes the minimum of Jα(Q), necessarily
Jα(Qx) − Jα(Q∗) ≥ 0 for all x ∈ [0, 1]. Our strategy for proving the theorem is first

to show that ‖CM−CQx‖2−‖CM−CQ∗‖2
x is bounded as x → 0 and then to show that if

I(Qx|P )−I(Q∗|P )
x is bounded from below as x→ 0, necessarily Q∗ ∼ P .

The first step is to prove that the characteristic function Φ∗ of Q∗ satisfies the
condition (5.3) for some T < T0. If A > 0, this is trivial; suppose therefore that
A = 0. In this case, |Φ∗T (u)| = exp(T

∫∞
−∞(cos(ux) − 1)ν∗(dx)). Denote dν∗

dνP := φ∗.
Since Q∗ � P , by Theorem IV.4.39 in [27],

∫∞
−∞(

√
φ∗(x)− 1)2νP (dx) ≤ K < ∞ for

some constant K. Therefore, there exists another constant C > 0 such that∫
{φ∗(x)>C}

(1− cos(ux))|φ∗ − 1|νP (dx) < C

uniformly on u. For all r > 0,∫ ∞

−∞
(1− cos(ux))|φ∗ − 1|νP (dx) ≤ C +

∫
{φ∗(x)≤C}

(1− cos(ux))|φ∗ − 1|νP (dx)

≤ C +
r

2

∫
{φ∗(x)≤C}

(1− cos(ux))2νP (dx) +
1
2r

∫
{φ∗(x)≤C}

(φ∗ − 1)2νP (dx)

≤ C + r

∫ ∞

−∞
(1− cos(ux))νP (dx) +

K(
√
C + 1)2

2r
.

This implies that∫ ∞

−∞
(cos(ux)− 1)ν∗(dx) ≤ (1 + r)

∫ ∞

−∞
(cos(ux)− 1)νP (dx) + C +

K(
√
C + 1)2

2r

for all r > 0. Therefore, if the characteristic function of P satisfies the condition (5.3)
for some T , the characteristic function of Q∗ will satisfy it for every T ′ > T .
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Since P ∈ LNA∩L+
B , Qx ∈M∩L+

B for all x ∈ [0, 1]. Therefore, condition (11.15)
in [13] is satisfied and option prices can be computed using Equation (11.20) of the
above reference 2:

CQx(T,K) = (1−Ke−rT )++
1
2π

∫ ∞

−∞
e−iv logK+ivrT exp(T (1− x)ψ∗(v − i) + Txψ0(v − i))− 1

iv(1 + iv)
dv,

where ψ0 and ψ∗ denote the characteristic exponents of Q0 and Q∗. It follows that

CQx(T,K)− CQ
∗
(T,K)

x
=

1
2π

∫ ∞

−∞
e−iv logK+ivrT e

T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ
∗(v−i)

iv(1 + iv)x
dv

The fact that <ψ0(v − i) ≤ 0 and <ψ∗(v − i) ≤ 0 for all v ∈ R together with Lemma
5.3 implies that

∣∣∣∣∣e−iv logK+ivrT e
T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ

∗(v−i)

iv(1 + iv)x

∣∣∣∣∣
≤ T

|eT (1−x)ψ∗(v−i)||ψ0(v − i)− ψ∗(v − i)|
|v(1 + iv)|

≤ T |eT (1−x)ψ∗(v−i)|C ′

for some constant C ′. From the dominated convergence theorem and since Q∗ satisfies
(5.3), ∂C

Qx (T,K)
∂x |x=0 exists and is bounded uniformly on T and K in the market data

set. This in turn means that ‖CM−CQx‖2−‖CM−CQ∗‖2
x is bounded as x→ 0.

To complete the proof, it remains to show that if I(Qx|P )−I(Q∗|P )
x is bounded from

below as x → 0, necessarily Q∗ ∼ P . Using the convexity (with respect to νQ and

2This method for computing option prices by Fourier transform is originally due to Carr and
Madan [9].
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γQ) of the two terms in the expression (A.1) for relative entropy, we have:

I(Qx|P )− I(Q∗|P )
x

=
T∞
2Ax

{
xγ0 + (1− x)γ∗ − γP −

∫
|z|≤1

z(xν0 + (1− x)ν∗ − νP )νP (dz)

}2

1A 6=0

− T∞
2Ax

{
γ∗ − γP −

∫
|z|≤1

(ν∗ − νP )νP (dz)

}2

1A 6=0

+
T∞
x

∫ ∞

−∞
{(xφ0 + (1− x)φ∗) log(xφ0 + (1− x)φ∗)− xφ0 − (1− x)φ∗ + 1}νP (dz)

− T∞
x

∫ ∞

−∞
{φ∗ log(φ∗)− φ∗ + 1}νP (dz)

≤ T∞
2A

{
γ0 − γP −

∫
|z|≤1

(ν0 − νP )νP (dz)

}2

1A 6=0

− T∞
2A

{
γ∗ − γP −

∫
|z|≤1

(ν∗ − νP )νP (dz)

}2

1A 6=0

+ T∞

∫
{φ∗>0}

{φ0 log(φ0)− φ0 + 1}νP (dz)− T∞

∫
{φ∗>0}

{φ∗ log(φ∗)− φ∗ + 1}νP (dz)

+ T∞

∫
{φ∗=0}

{φ0 log(xφ0)− φ0}νP (dz) ≤ I(Q0|P ) + T∞

∫
{φ∗=0}

(φ0 log x− 1)νP (dx)

Since Jα(Qx)−Jα(Q∗) ≥ 0, this expression must be bounded from below. Therefore,
νP ({φ∗ = 0}) = 0 and Theorem IV.4.39 in [27] entails that P � Q∗.

5.2. Continuity of solutions with respect to data.

Theorem 5.4 (Continuity of solutions with respect to data). Let {CnM}n≥1 and
CM be data sets of option prices such that

‖CnM − CM‖w →
n→∞

0.

Let P ∈ LNA ∩ L+
B, α > 0 and for each n, let Qn be a solution of the calibration

problem (5.2) with data CnM , prior Lévy process P and regularization parameter α.
Then {Qn}n≥1 has a subsequence, converging weakly to Q∗ ∈ M∩ L+

B and the limit
of every converging subsequence of {Qn}n≥1 is a solution of calibration problem (5.2)
with data CM , prior P and regularization parameter α.

Proof. By Lemma A.5, there exists Q0 ∈ M ∩ L with I(Q0|P ) < ∞. Since,
by Lemma 3.1, ‖CQ0 − CnM‖2 ≤ S2

0 for all n, αI(Qn|P ) ≤ S2
0 + αI(Q0|P ) for all

n. Therefore, by Lemmas 2.1 and A.2 and Prohorov’s theorem, {Qn}n≥1 is weakly
relatively compact, which proves the first part of the theorem.

Choose any subsequence of {Qn}n≥1, converging weakly to Q∗ ∈M∩L+
B . To sim-

plify notation, this subsequence is denoted again by {Qn}n≥1. The triangle inequality
and Lemma 3.1 imply that

‖CQn − CnM‖2 −−−−→
n→∞

‖CQ
∗
− CM‖2 (5.8)
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Since, by Lemma A.3, the relative entropy functional is weakly lower semi-continuous
in Q, for every Q ∈M∩L+

B ,

‖CQ
∗
− CM‖+ αI(Q|P ) ≤ lim inf

n
{‖CQn − CnM‖2 + αI(Qn|P )}

≤ lim inf
n

{‖CQ − CnM‖2 + αI(Q|P )}

= lim
n
‖CQ − CnM‖2 + αI(Q|P )

= ‖CQ − CM‖2 + αI(Q|P ),

where the second inequality follows from the fact that Qm is the solution of the
calibration problem with data CmM and the last line follows from the triangle inequality.

5.3. Convergence analysis. The convergence analysis of regularization meth-
ods for inverse problems usually involves the study of the solution of the regularized
problem (5.2) as the noise level δ vanishes, the regularization parameter being chosen
as a function α(δ) of the noise level using some parameter choice rule. The following
result gives conditions on the parameter choice rule δ 7→ α(δ) under which the so-
lutions of the regularized problem (5.2) converge to minimum entropy least squares
solutions defined by (4.2):

Theorem 5.5. Let {CδM} be a family of data sets of option prices such that
‖CM − CδM‖ ≤ δ, let P ∈ LNA ∩ L+

B and suppose that there exist a solution Q of
problem (3.4) with data CM (a least squares solution) such that I(Q|P ) <∞.

In the case where the constraints are attainable i.e. ‖CQ − CM‖ = 0 let α(δ) be
such that α(δ) → 0 and δ2

α(δ) → 0 as δ → 0. Otherwise, let α(δ) be such that α(δ) → 0
and δ

α(δ) → 0 as δ → 0.
Then every sequence {Qδk}, where δk → 0 and Qδk is a solution of problem (5.2)

with data Cδk

M , prior P and regularization parameter α(δk), has a weakly convergent
subsequence. The limit of every convergent subsequence is a solution of problem (4.2)
with data CM and prior P . If the mimimum entropy least squares solution is unique
MELSS(CM ) = {Q+} then

Qδ ⇒
δ→0

Q+

Proof. By Lemma 4.1, there exists at least one MELSS with data CM and prior
P , with finite relative entropy with respect to the prior. Let Q+ ∈ MELSS(CM ).
Since Qδk is the solution of the regularized problem, for every k,

‖CQ
δk − Cδk

M ‖
2 + α(δk)I(Qδk |P ) ≤ ‖CQ

+
− Cδk

M ‖
2 + α(δk)I(Q+|P ).

Using the fact that for every r > 0 and for every x, y ∈ R,

(1− r)x2 + (1− 1/r)y2 ≤ (x+ y)2 ≤ (1 + r)x2 + (1 + 1/r)y2,

we obtain that

(1− r)‖CQ
δk − CM‖2 + α(δk)I(Qδk |P )

≤ (1 + r)‖CQ
+
− CM‖2 +

2δ2k
r

+ α(δk)I(Q+|P ), (5.9)
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and since Q+ ∈ QLS(CM ), this implies for all r ∈ (0, 1) that

α(δk)I(Qδk |P ) ≤ 2r‖CQ
+
− CM‖2 +

2δ2k
r

+ α(δk)I(Q+|P ). (5.10)

If the constraints are met exactly ‖CQ+ −CM‖ = 0 and with the choice r = 1/2,
the above expression yields:

I(Qδk |P ) ≤ 4δ2k
α(δk)

+ I(Q+|P ).

Since, by the theorem’s statement, in the case of exact constraints δ2k
α(δk) → 0, this

implies that

lim sup
k

{I(Qδk |P )} ≤ I(Q+|P ). (5.11)

If ‖CQ+ − CM‖ > 0 (misspecified model) then the right-hand side of (5.10)
achieves its maximum when r = δk‖CQ

+ − CM‖−1, in which case we obtain

I(Qδk |P ) ≤ 4δk
α(δk)

‖CQ
+
− CM‖+ I(Q+|P ).

Since in the case of approximate constraints, δk

α(δk) → 0, we obtain (5.11) once again.
Inequality (5.11) implies in particular that I(Qδk |P ) is uniformly bounded, which

proves, by Lemmas A.2 and 2.1, that {Qδk} is relatively weakly compact in M∩L+
B .

Choose a subsequence of {Qδk}, converging weakly to Q∗ ∈M∩L+
B . To simplify

notation, this subsequence is denoted again by {Qδk}k≥1. Substituting r = δ into
Equation (5.9) and making k tend to infinity shows that

lim sup
k

‖CQ
δk − CM‖2 ≤ ‖CQ

+
− CM‖2.

Together with Lemma 3.1 this implies that

‖CQ
∗
− CM‖2 ≤ ‖CQ

+
− CM‖2,

hence Q∗ is a least squares solution. By weak lower semicontinuity of I (cf. Lemma
A.3) and using (5.11),

I(Q∗|P ) ≤ lim inf
k

I(Qδk |P ) ≤ lim sup
k

I(Qδk |P ) ≤ I(Q+|P ),

which means that Q∗ ∈ MELSS(CM ). The last assertion of the theorem follows
from the fact that in this case every subsequence of {Qδk} has a further subsequence
converging toward Q+.

Remark 5.2 (Random errors). In line with Remark 3.1, it is irrelevant whether
the noise in the data is “deterministic” or “random”, as long the error level δ is
interpreted as a worst-case error level i.e. an almost sure bound on the error:

p0(||CδM − CM || ≤ δ) = 1. (5.12)

In this case, Theorem 5.5 holds for random errors, all convergences being interpreted
as almost-sure convergence with respect to the law p0 of the errors.
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6. Stability with respect to the prior. A convenient way to discretize the
calibration problem (5.2) is to take a prior Lévy process P with a finite number of
jump sizes:

νP =
M−1∑
k=0

pkδ{xk}(dx). (6.1)

In this case, since the solution Q satisfies Q � P , by Theorem IV.4.39 in [27], the
Lévy measure of the solution necessarily satisfies νQ � νP , therefore

νQ =
M−1∑
k=0

qkδ{xk}(dx), (6.2)

Thus, the calibration problem (5.2) becomes a finite-dimensional optimization prob-
lem and can be solved using a numerical optimization algorithm [14]. The advantage
of this discretization approach is that we are solving the same problem (5.2), only with
a different prior measure, so all results of Section 5 (existence of solution, continuity
etc.) hold in the finite-dimensional case.

The discretized calibration problem and the numerical methods to solve it have
been discussed in detail in our previous paper [14]. Here we will complement these
results by a theorem showing that the solution of a calibration problem with any prior
can be approximated (in the weak sense) by a sequence of solutions of calibration
problems with discretized priors. We start by showing that every Lévy process can
be approximated by Lévy processes with Lévy measures of the form (6.1):

Lemma 6.1. Let P be a Lévy process with characteristic triplet (A, ν, γ) with
respect to a continuous bounded truncation function h, satisfying h(x) = x in a neigh-
borhood of 0 and for every n, let Pn be a Lévy process with characteristic triplet
(A, νn, γ) (with respect to the same truncation function) where

νn :=
2n∑
k=1

δ{xk}(dx)
µ([xk − 1/

√
n, xk + 1/

√
n))

1 ∧ x2
k

,

xk := (2(k − n) − 1)/
√
n and µ is a finite measure on R, defined by µ(B) :=

∫
B

(1 ∧
x2)ν(dx) for all B ∈ B(R). Then Pn ⇒ P .

Proof. For a function f ∈ Cb(R), define

fn(x) :=


0, x ≥ 2

√
n,

0, x < −2
√
n,

f(xi), x ∈ [xi − 1/
√
n, xi + 1/

√
n) with 1 ≤ i ≤ 2n,

Then clearly ∫
(1 ∧ x2)f(x)νn(dx) =

∫
fn(x)µ(dx).

Since f(x) is continuous, fn(x) → f(x) for all x and since f is bounded, the dominated
convergence theorem implies that

lim
n

∫
(1 ∧ x2)f(x)νn(dx) = lim

n

∫
fn(x)µ(dx) =

∫
f(x)µ(dx) =

∫
(1 ∧ x2)f(x)ν(dx).(6.3)
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With f(x) ≡ h2(x)
1∧x2 the above yields:

lim
n

∫
h2(x)νn(dx) =

∫
h2(x)ν(dx).

On the other hand, for every g ∈ Cb(R) such that g(x) ≡ 0 on a neighborhood of 0,
f(x) := g(x)

1∧x2 belongs to Cb(R). Therefore, from Equation (6.3), lim
n

∫
g(x)νn(dx) =∫

g(x)ν(dx) and by Corollary VII.3.6 in [27], Pn ⇒ P .
Theorem 6.2. Let P, {Pn}n≥1 ⊂ LNA∩L+

B such that Pn ⇒ P , let α > 0, let CM
be a data set of option prices and for each n let Qn be a solution of the calibration
problem (5.2) with prior Pn, regularization parameter α and data CM . Then the
sequence {Qn}n≥1 has a weakly convergent subsequence and the limit of every weakly
convergent subsequence of {Qn}n≥1 is a solution of the calibration problem (5.2) with
prior P .

Remark 6.1. To approximate numerically the solution of the calibration problem
(5.2) with a given prior P , we need to construct, using Lemma 6.1, an approximating
sequence {Pn} of Lévy processes with atomic measures such that Pn ⇒ P . The
sequence {Qn} of solutions corresponding to this sequence of priors will converge (in
the sense of the above theorem) to a solution of the calibration problem with prior P .

The second implication of the above theorem is that small changes in the prior
Lévy process lead to small changes in the solution: this means that the solution is not
very sensitive to minor errors in the determination of the prior measure. This result
confirms the empirical observations made in [14].

Proof. By Lemma A.5, there exists C < ∞ such that for every n, one can find
Q̃n ∈M∩L with I(Q̃n|Pn) ≤ C. Since, by Lemma 3.1, ‖CQ̃n−CM‖2w ≤ S2

0 for every
n and Qn is the solution of the calibration problem, I(Qn|Pn) ≤ S2

0/α + C < ∞ for
every n. Therefore, by Lemma A.2, {Qn} is tight and, by Prohorov’s theorem and
Lemma 2.1, weakly relatively compact in M∩ L+

B . Choose a subsequence of {Qn},
converging weakly to Q ∈ M ∩ L+

B . To simplify notation, this subsequence is also
denoted by {Qn}n≥1. It remains to show that Q is indeed a solution of the calibration
problem with prior P . Lemma A.3 entails that

I(Q,P ) ≤ lim inf
n
I(Qn, Pn), (6.4)

and since, by Lemma 3.1, the pricing error is weakly continuous, we also have

‖CQ − CM‖2w + αI(Q,P ) ≤ lim inf
n
{‖CQn − CM‖2w + αI(Qn, Pn)}. (6.5)

Let φ ∈ Cb(Ω) with φ ≥ 0 and EP [φ] = 1. Without loss of generality we can suppose
that for every n, EPn [φ] > 0 and therefore Q′n, defined by Q′n(B) := EPn [φ1B ]

EPn [φ]
, is a

probability measure on Ω. Clearly, Q′n converges weakly to Q′ defined by Q′(B) :=
EP [φ1B ]. Therefore, by Lemma 3.1,

lim
n
‖CQ

′
n − CM‖2w = ‖CQ

′
− CM‖2w. (6.6)

Moreover,

lim
n
I(Q′n|Pn) = lim

n

∫
Ω

φ

EPn [φ]
log

φ

EPn [φ]
dPn

= lim
n

1
EPn [φ]

∫
Ω

φ log φdPn − lim
n

log
∫

Ω

φdPn =
∫

Ω

φ log φdP. (6.7)
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For the rest of this proof, for every φ ∈ L1(P ) with φ ≥ 0 and EP [φ] = 1 let Qφ
denote the probability measure on Ω, defined by Qφ(B) := EP [φ1B ] for every B ∈ F .
Using (6.5–6.7) and the optimality of Qn, we obtain that for every φ ∈ Cb(Ω) with
φ ≥ 0 and EP [φ] = 1,

‖CQ − CM‖2w + I(Q,P ) ≤ ‖CQφ − CM‖2w + I(Qφ|P ) (6.8)

To complete the proof of the theorem, we must generalize this inequality to all φ ∈
L1(P ) with φ ≥ 0 and EP [φ] = 1.

First, let φ ∈ L1(P ) ∩ L∞(P ) with φ ≥ 0 and EP [φ] = 1. Then there exists a
sequence {φn} ⊂ Cb(Ω) such that φn → φ in L1(P ), φn ≥ 0 for all n and φn are
bounded in L∞ norm uniformly on n. Moreover, φ′n := φn/E

P [φn] also belongs to

L1(P ), is positive and φ′n
L1(P )−−−−→ φ because by the triangle inequality,

‖φ′n − φ‖L1 ≤ 1
EP [φn]

(
‖φn − φ‖L1 + ‖φ− φEP [φn]‖L1

)
−−−−→
n→∞

0.

In addition, it is easy to see that Qφ′n ⇒ Qφ. Therefore,

lim
n
‖CQφ′n − CM‖2w = ‖CQφ − CM‖2w

Since φ′n are bounded in L∞ norm uniformly on n, φ′n log φ′n is also bounded and the
dominated convergence theorem implies that limn I(Qφ′n |P ) = I(Qφ|P ). Passing to
the limit in (6.8), we obtain that this inequality holds for every φ ∈ L1(P ) ∩ L∞(P )
with φ ≥ 0 and EP [φ] = 1.

Let us now choose a nonnegative φ ∈ L1(P ) with EP [φ] = 1. If I(Qφ|P ) = ∞
then surely (6.8) holds, therefore we can suppose I(Qφ|P ) < ∞. Let φn = φ ∧ n.
Then φn → φ in L1(P ) because

‖φn − φ‖L1 ≤
∫
φ≥n

φdP =
∫
φ≥n

φ log φ
log φ

dP ≤ I(Qφ|P )
log n

→ 0.

Denoting φ′n := φn/E
P [φn] as above, we obtain that

lim
n
‖CQφ′n − CM‖2w = ‖CQφ − CM‖2w

Since, for a sufficiently large n, |φn(x) log φn(x)| ≤ |φ(x) log φ(x)|, we can once again
apply the dominated convergence theorem:

lim
n

∫
φ′n log φ′ndP =

1
limnEP [φn]

lim
n

∫
φn log φndP − lim

n
logEP [φn] =

∫
φ log φdP

Therefore, by passage to the limit, (6.8) holds for all φ ∈ L1(P ) with φ ≥ 0 and
EP [φ] = 1, which completes the proof of the theorem.

7. Conclusion. We have proposed here a stable method for constructing an op-
tion pricing model of exponential Lévy type, consistent with a given data set of option
prices. Our approach is based on the regularization of the calibration problem using
the relative entropy with respect to a prior exp-Lévy model as penalization term. The
regularization restores existence and stability of solutions; the use of relative entropy
links our approach to previous work using relative entropy as a criterion for selection
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of pricing rules. This technique is readily amenable to numerical implementation, as
shown in [14], where empirical applications to financial data are also discussed.

The problem studied here is an example of regularization of a nonlinear, infinite-
dimensional inverse problem with noisy data. above may also be useful for other
nonlinear inverse problems where positivity constraints on the unknown parameter
make regularization by relative entropy suitable.

Finally, although we have considered the setting of Lévy processes, this approach
can also be adapted to other models with jumps –such as stochastic volatility models
with jumps (see [13, Chapter 15] for a review)– where the jump structure is described
by a Lévy measure, to be retrieved from observations.

Appendix A. Relative entropy for Lévy processes. In this appendix we
explicitly compute the relative entropy of two Lévy processes in terms of their char-
acteristic triplets and establish some properties of the relative entropy viewed as a
functional on Lévy processes. Under additional assumptions the relative entropy of
two Lévy processes was computed in [10] (where it is supposed that Q is equivalent to
P and the Lévy process has finite exponential moments under P ) and in [31] (where
log dνQ

dνP is supposed bounded from above and below). We give here an elementary
proof valid for all Lévy processes.

Theorem A.1 (Relative entropy of Lévy processes). Let {Xt}t≥0 be a real-valued
Lévy process on (Ω,F , Q) and on (Ω,F , P ) with respective characteristic triplets
(AQ, νQ, γQ) and (AP , νP , γP ). Suppose that Q � P (by Theorem IV.4.39 in [27],
this implies that AQ = AP and νQ � νP ) and denote A := AQ = AP . Then for
every time horizon T ≤ T∞ the relative entropy of Q|FT

with respect to P |FT
can be

computed as follows:

IT (Q|P ) = I(Q|FT
|P |FT

) =
T

2A

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2

1A 6=0+

T

∫ ∞

−∞

(
dνQ

dνP
log

dνQ

dνP
+ 1− dνQ

dνP

)
νP (dx). (A.1)

Proof. Let {Xc
t }t≥0 be the continuous martingale part of X under P (a Brownian

motion), µ be the jump measure of X and φ := dνQ

dνP . From [27, Theorem III.5.19],
the density process Zt := dQ|Ft

dP |Ft
is the Doléans-Dade exponential of the Lévy process

{Nt}t≥0 defined by

Nt := βXc
t +

∫
[0,t]×R

(φ(x)− 1){µ(ds× dx)− ds νP (dx)},

where β is given by

β =
{ 1

A{γ
Q − γP −

∫
|x|≤1

x(φ(x)− 1)νP (dx)} if A > 0,
0 otherwise.

Choose 0 < ε < 1 and let I := {x : ε ≤ φ(x) ≤ ε−1}. We split Nt into two independent
martingales:

N ′
t := βXc

t +
∫

[0,t]×I
(φ(x)− 1){µ(ds× dx)− ds νP (dx)} and

N ′′
t :=

∫
[0,t]×(R\I)

(φ(x)− 1){µ(ds× dx)− ds νP (dx)}.
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SinceN ′ andN ′′ never jump together, [N ′, N ′′]t = 0 and E(N ′+N ′′)t = E(N1)tE(N2)t
(cf. Equation II.8.19 in [27]). Moreover, since N ′ and N ′′ are Lévy processes and mar-
tingales, their stochastic exponentials are also martingales (Proposition 8.23 in [13]).
Therefore,

IT (Q|P ) = EP [ZT logZT ]
= EP [E(N ′)TE(N ′′)T log E(N ′)T ] + EP [E(N ′)TE(N ′′)T log E(N ′′)T ]
= EP [E(N ′)T log E(N ′)T ] + EP [E(N ′′)T log E(N ′′)T ] (A.2)

if these expectations exist.
Since ∆N ′

t > −1 a.s., E(N ′)t is almost surely positive. Therefore, from Lemma
5.8 in [23], Ut := log E(N ′)t is a Lévy process with characteristic triplet:

AU = β2A,

νU (B) = νP (I ∩ {x : log φ(x) ∈ B}) ∀B ∈ B(R),

γU = −β
2A

2
−

∫ ∞

−∞
(ex − 1− x1|x|≤1)νU (dx).

This implies that eUt is a martingale and that Ut has bounded jumps and all expo-
nential moments. Therefore, E[UT eUT ] <∞ and can be computed as follows:

EP [UT eUT ] = −i d
dz
EP [eizUT ]|z=−i = −iTψ′(−i)EP [eUT ] = −iTψ′(−i)

= T (AU + γU +
∫ ∞

−∞
(xex − x1|x|≤1)νU (dx))

=
β2AT

2
+ T

∫
I

(φ(x) log φ(x) + 1− φ(x))νP (dx) (A.3)

It remains to compute EP [E(N ′′)T log E(N ′′)T ]. Since N ′′ is a compound Poisson
process, E(N ′′)t = ebt

∏
s≤t(1 + ∆N ′′

s ), where b =
∫

R\I(1 − φ(x))νP (dx). Let ν′′ be
the Lévy measure of N ′′ and λ its jump intensity. Then

E(N ′′)T log E(N ′′)T = bTE(N ′′)T + ebT
∏
s≤T

(1 + ∆N ′′
s )

∑
s≤T

log(1 + ∆N ′′
s )

and

EP [E(N ′′)T log E(N ′′)T ] = bT+ebT
∞∑
k=0

e−λT
(λT )k

k!
E[

∏
s≤T

(1+∆N ′′
s )

∑
s≤T

log(1+∆N ′′
s )|k jumps]

Since, under the condition that N ′′ jumps exactly k times in the interval [0, T ], the
jump sizes are independent and identically distributed, we find, denoting the generic
jump size by ∆N ′′:

EP [E(N ′′)T log E(N ′′)T ]

= bT + ebT
∞∑
k=0

e−λT
(λT )k

k!
kE[1 + ∆N ′′]k−1E[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + λTE[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + T

∫ ∞

−∞
(1 + x) log(1 + x)ν′′(dx)

= T

∫
R\I

(φ(x) log φ(x) + 1− φ(x))νP (dx).
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In particular, EP [E(N ′′)T log E(N ′′)T ] is finite if and only if the integral in the last
line is finite. Combining the above expression with (A.3) and (A.2) finishes the proof.

Lemma A.2. Let P, {Pn}n≥1 ⊂ L+
B for some B > 0, such that Pn ⇒ P . Then

for every r > 0, the level set Lr := {Q ∈ L : I(Q|Pn) ≤ r for some n} is tight.
Proof. For any Q ∈ Lr, PQ denotes any element of {Pn}n≥1, for which I(Q|PQ) ≤

r. The characteristic triplet of Q is denoted by (AQ, νQ, γQ) and that of PQ by
(APQ , νPQ , γPQ). In addition, we define φQ := dνQ

dνPQ
. From Theorem A.1,∫ ∞

−∞
(φQ(x) log φQ(x) + 1− φQ(x))νPQ(dx) ≤ r/T∞.

Therefore, for u sufficiently large,∫
{φQ>u}

φQνPQ(dx) ≤
∫
{φQ>u}

2φQ[φQ log φQ + 1− φQ]νPQ(dx)
φQ log φQ

≤ 2r
T∞ log u

,

which entails that for u sufficiently large,∫
{φQ>u}

νQ(dx) ≤ 2r
T∞ log u

uniformly with respect toQ ∈ Lr. Let ε > 0 and choose u such that
∫
{φQ>u} ν

Q(dx) ≤ ε/2
for every Q ∈ Lr. By Corollary VII.3.6 in [27],∫ ∞

−∞
f(x)νPn(dx) →

∫ ∞

−∞
f(x)νP (dx)

for every continuous bounded function f that is identically zero on a neighborhood of
zero. Since the measures νP and νPn for all n ≥ 1 are finite outside a neighborhood
of zero, we can choose a compact K such that νPn(R \K) ≤ ε/2u for every n. Then

νQ(R \K) =
∫

(R\K)∩{φQ≤u}
φQνPQ(dx) +

∫
(R\K)∩{φQ>u}

νQ(dx) ≤ ε (A.4)

It is easy to check by computing derivatives that for every u > 0, on the set
{x : φQ(x) ≤ u},

(φQ − 1)2 ≤ 2u(φQ log φQ + 1− φQ).

Therefore, for u sufficiently large and for all Q ∈ Lr,∣∣∣∫
|x|≤1

x(φQ − 1)νPQ(dx)
∣∣∣

≤

∣∣∣∣∣
∫
|x|≤1, φQ≤u

x(φQ − 1)νPQ(dx)

∣∣∣∣∣ +

∣∣∣∣∣
∫
|x|≤1, φQ>u

x(φQ − 1)νPQ(dx)

∣∣∣∣∣
≤

∫
|x|≤1

x2νPQ(dx) +
∫
|x|≤1, φQ≤u

(φQ − 1)2νPQ(dx) + 2
∫
φQ>u

φQνPQ(dx)

≤
∫
|x|≤1

x2νPQ(dx) + 2u
∫ ∞

−∞
(φQ log φQ + 1− φQ)νPQ(dx) +

4r
T∞ log u

≤
∫
|x|≤1

x2νPQ(dx) +
3ru
T∞

. (A.5)
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By Proposition VI.4.18 in [27], the tightness of {Pn}n≥1 implies that

APn +
∫
|x|≤1

x2νPn(dx) (A.6)

is bounded uniformly on n, which means that the right hand side of (A.5) is bounded
uniformly with respect to Q ∈ Lr. From Theorem IV.4.39 in [27], AQ = APQ for all
Q ∈ Lr because for the relative entropy to be finite, necessarily Q � PQ. Theorem
A.1 then implies that{

γQ − γP −
∫ 1

−1

x(νQ − νP )(dx)
}2

≤ 2APQr

T∞
.

From (A.6), APn is bounded uniformly on n. Therefore, inequality (A.5) shows that
|γQ| is bounded uniformly with respect to Q.

Once again, for u sufficiently large,

AQ +
∫ ∞

−∞
(x2 ∧ 1)φQνPQ(dx) ≤ AQ + u

∫
φQ≤u

(x2 ∧ 1)νPQ(dx)

+
∫
φQ>u

φQνPQ(dx) ≤ APQ + u

∫ ∞

−∞
(x2 ∧ 1)νPQ(dx) +

2r
T∞ log u

(A.7)

and (A.6) implies that the right hand side is bounded uniformly with respect to
Q ∈ Lr. By Proposition VI.4.18 in [27], (A.4), (A.7) and the fact that |γQ| is bounded
uniformly with respect to Q entail that the set Lr is tight.

Lemma A.3. Let Q and P be two probability measures on (Ω,F). Then

I(Q|P ) = sup
f∈Cb(Ω)

{∫
Ω

fdQ−
∫

Ω

(ef − 1)dP
}
, (A.8)

where Cb(Ω) is space of bounded continuous functions on Ω.
Proof. Observe that

φ(x) =
{
x log x+ 1− x, x > 0,
∞, x ≤ 0

and φ∗(y) = ey − 1 are proper convex functions on R, conjugate to each other and
apply Corollary 2 to [32, Theorem 4].

Corollary A.4. The relative entropy functional I(Q|P ) is weakly lower semi-
continuous with respect to Q for fixed P .

Lemma A.5. Let P, {Pn}n≥1 ⊂ LNA ∩ L+
B for some B > 0 such that Pn ⇒

P . There exists a sequence {Qn}n≥1 ⊂ M ∩ L+
B and a constant C < ∞ such that

I(Qn|Pn) ≤ C for every n.
Proof. Let h : R → R be a bounded continuous function such that h(x) ≡ x on

a neighborhood of 0. For every n, let (An, νn, γn) be the characteristic triplet of Pn
with respect to truncation function h and let

f(β, Pn) := γn +
(

1
2

+ β

)
An +

∫ ∞

−∞

{
(ex − 1)eβ(ex−1) − h(x)

}
νn(dx).

The first step is to show that for every n, there exists a unique βn such that f(βn, Pn) =
0 and that the sequence {βn}n≥1 is bounded.
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Since for every n, Pn ∈ L+
B , the dominated convergence theorem yields:

f ′β(β, Pn) = An +
∫ ∞

−∞
(ex − 1)2eβ(ex−1)νn(dx) > 0,

and since Pn ∈ LNA, the Lévy process (X,Pn) is not a.s. increasing nor a.s. decreas-
ing, which means that at least one of the following conditions holds:

1. An > 0,
2. νn((−∞, 0)) > 0 and νn(0,∞) > 0,
3. An = 0, νn((−∞, 0)) = 0 and γn −

∫∞
−∞ h(x)νn(dx) < 0,

4. An = 0, νn((0,∞)) = 0 and γn −
∫∞
−∞ h(x)νn(dx) > 0.

Since clearly f ′β(β, Pn) ≥ An+min
(∫ 0

−∞(ex − 1)2νn(dx),
∫∞
0

(ex − 1)2νn(dx)
)
, if con-

ditions 1 or 2 above hold, f ′β(β, Pn) is bounded from below by a positive constant
therefore

∃!βn : f(βn, Pn) = 0. (A.9)

If condition 3 above holds, limβ→−∞ f(β, Pn) = γn −
∫∞
−∞ h(x)νn(dx) < 0 and

limβ→∞ f(β, Pn) = ∞, which means that (A.9) also holds. The case when condi-
tion 4 above is satisfied may be treated similarly.

Let us now show that the sequence {βn}n≥1 is bounded. For every n, f(β, Pn)
may be rewritten as follows:

f(β, Pn) := γn +
(

1
2

+ β

) (
An +

∫ ∞

−∞
h2(x)νn(dx)

)
+

∫ ∞

−∞

{
(ex − 1)eβ(ex−1) − h(x)−

(
1
2

+ β

)
h2(x)

}
νn(dx). (A.10)

Since (ex − 1)eβ(ex−1) − x −
(

1
2 + β

)
x2 = o(|x|2) and the integrand in the last

term of (A.10) is bounded on (−∞, B], by Corollary VII.3.6 in [27], for every β,
limn f(β, Pn) = f(β, P ).

Since P also belongs to L+
B ∩ LNB , by the same argument as above, there exists

a unique β∗ such that f(β, P ) = 0 and f ′β(β
∗, P ) > 0. This means that there exist

ε > 0 and finite constants β− < β∗ and β+ > β∗ such that f(β−, P ) < −ε and
f(β+, P ) > ε. One can then find N such that for all n ≥ N , f(β−, Pn) < −ε/2 and
f(β+, Pn) > ε/2, which means that βn ∈ [β−, β+] and the sequence {βn} is bounded.

For every n, let (X,Qn) be the Lévy process with characteristic triplet (with
respect to h)

AQn = An,

νQn = eβn(ex−1)νn,

γQn = γn +Anβn +
∫ ∞

−∞
h(x)(eβ(ex−1) − 1)νn(dx).

The measure Qn is in fact the minimal entropy martingale measure for Pn, computed
in [30]. From Theorem A.1,

I(Qn|Pn) = −T
{
βn
2

(1 + βn)An + βnγn +
∫ ∞

−∞
{eβn(ex−1) − 1− βnh(x)}νn(dx)

}
.
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To show that the sequence {I(Qn|Pn)}n≥1 is bounded, observe that for |x| ≤ 1,∣∣∣eβ(ex−1) − 1− βx
∣∣∣ ≤ βeβ(e−1)+1(1 + βe)|x|2

and that for x ≤ B,∣∣∣eβ(ex−1) − 1− βx1|x|≤1

∣∣∣ ≤ βeβ(eB+1) + 1 + βB.

The uniform boundedness of the sequence of relative entropies now follows from The-
orem VI.4.18 in [27].
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[35] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press,

Cambridge, UK, 1999.
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