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Abstract

We propose, analyze and test herein two simple Dirichlet-Neumann preconditioners to solve

a non-conforming mortar formulation of elasticity problems presenting small disjoint geometric

refinements on the boundary. In particular, we show a two-scale property, that is the independence

of the condition number of the preconditioned system in the number and the size of the small

details on the boundary. On the other hand, we introduce for one of the preconditioners, a coarse

space counterbalancing the effect of essential boundary conditions on the small details. Finally, a

quasi-Newton method inspired by these preconditioners is proposed when dealing with nonlinear

elasticity.

1 Introduction

The present paper is devoted to the construction of efficient numerical procedures to solve
vector elliptic problems with small geometric details on the boundary of the domain, that is
where a localized fine scale behavior of the solution is expected. In particular, the solution
in displacements u ∈ Rd of the linearized elastostatics problem will be considered, that is
for d = 2, 3 the solution of:











− div(E : ε(u)) = f, Ω ⊂ Rd,

u = 0, ΓD,

(E : ε(u)) · n = g, ΓN ,

(1)

where the linearized strain tensor is denoted by:

ε(u) =
1

2

(

∇u + ∇tu
)

,
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and the fourth order tensor E is assumed to be elliptic over the set of symmetric matrices:

∃α > 0,∀ξ ∈ Rd×d, ξt = ξ, (E : ξ) : ξ ≥ α ξ : ξ.

In our framework, we consider that inside the disjoint subsets (Ωk)1≤k≤K of Ω, the so-
lution rapidly varies. In applications like tires development, one could think of geomet-
ric refinements or sculptures on the boundary ∂Ω. At the opposite, u slowly varies in
Ω0 = Ω \ (∪1≤k≤KΩk).

The strategy proposed in this paper consists in using a non-conforming mortar for-
mulation for (1) in order to decompose the physical domain into coarse and fine zones.
Then, simple Dirichlet-Neumann preconditioners are proposed in order to solve the ob-
tained linear system for the approximate cost of inversion of the coarse system, that is
the problem set over Ω0. To do so, we assume that the computational cost of the solution
over each (Ωk)1≤k≤K knowing the solution over Ω0 is reasonably low when compared to
the resolution over Ω0. For the proposed strategies, we then show a two-scale property in
the sense that the condition number of the preconditioned system remains independent of
the number and the size of the small subdomains.

Mortar methods have been introduced for the first time in [BMP93, BMP94] as a
weak coupling between subdomains with non-conforming meshes, or between subproblems
solved with different approximation methods. The main purpose was to overcome the very
sub-optimal “

√
h” error estimate obtained with pointwise matching. The analysis of this

method as a mixed formulation can be found in [Bel99]. For the present purpose, various
Lagrange multipliers spaces can be indifferently adopted. For example, one can use the
original formulation from [BMP93]. It is worth noticing that because of the disjoint
character of the small subdomains, no modification of Lagrange multipliers is necessary
on the boundary of the interfaces. Indeed, interfaces are only shared by two subdomains:
the coarse one, and a fine one. The dual variant from [Woh00] can present the advantage
of making the weak continuity constraint diagonal, at least in the case of plane interfaces.
It is always nearly diagonal when using discontinuous stabilized Lagrange multipliers as
described in [Hau04]. In the case of a second order approximation in displacements, one
can also adopt the proposal from [Ses98], opting for affine Lagrange multipliers.
Moreover, the independence of the coercivity constant of the broken elastostatics bilinear
form with respect to the number and the size of the subdomains has been proved in
[Bre04, Hau04]. There is then no limitation in considering here a high number of small
subdomains. Indeed, the error estimates remain optimal. A brief review on the non-
conforming formulation adopted to discretize (1) is done in section 2.

The challenge is then to develop a solver which efficiently handles such situations. In
the present framework, the disymmetric roles played by the coarse subdomain and fine
ones give greater importance to Dirichlet-Neumann preconditioners (see [QV99, Woh01]),
rather than symmetric strategies such as Neumann-Neumann [TRV91] or FETI [FR91],

2



studied in the mortar framework in the references [Tal93, AKP95, AMW99, AAKP99,
Ste99]. In section 4, we begin by proposing a basic Dirichlet-Neumann preconditioner and
prove that its quality is independent of the number and of the size of the refinements of
the boundary. In this sense, we can talk of two-scale preconditioning. Nevertheless, the
quality of this first preconditioner deteriorates when an essential boundary condition is
imposed on such a boundary refinement. This inconvenient is overcome by considering a
special coarse space taking interface rigid motions into account. An enhanced Dirichlet-
Neumann preconditioner insensitive to essential boundary conditions is then obtained and
analyzed. These preconditioners are tested in section 4 to confirm the previous analysis.

When considering nonlinear problems with soft geometric refinements on the boundary,
it is illustrated in section 6 that such preconditioners can be used to build efficient quasi-
Newton methods.

2 A mortar formulation

2.1 Continuous problem

Let Ω ⊂ Rd, be an open set partitioned into K + 1 subsets (Ωk)0≤k≤K satisfying Ω =
∪K

i=0Ωk and Ωk ∩Ωl = ∅ if k, l ≥ 1. We denote by Γ0k = Ω0 ∩Ωk the interface between Ω0

and Ωk, and the skeleton of the internal interfaces is denoted by S = ∪K
k=1Γ0k. For the

understanding of the situation, let us say that Ω0 has slowly varying physical properties
whereas the disjoint subsets (Ωk)1≤k≤K have rapidly varying ones or complex geome-
tries. Moreover, the subdomain Ω0 has a non-empty intersection with all the subdomains
(Ωk)1≤k≤K . We will also assume as a simplification that the intersection between two local
subdomains Ωk, k ≥ 1 is empty. In other words, for the time being, the inclusions are
disconnected. On the part ΓD of the boundary ∂Ω, an homogeneous Dirichlet boundary
condition is imposed. Concerning the coefficients of the fourth order elasticity tensor E,
we assume that the stress tensor is symmetric whatever the deformation in the material,
namely for almost all x ∈ Ω:

∀ξ ∈ Rd×d, ξt = ξ, E(x) : ξ is a symmetric matrix.

Moreover, the different materials are spectrally isotropic, namely for all k ≥ 1, there exists
two constants ck and Ck, such that for almost all x ∈ Ωk:

∀ξ ∈ Rd×d, ξt = ξ, ck ξ : ξ ≤ (E(x) : ξ) : ξ ≤ Ck ξ : ξ. (2)

For homogeneous isotropic materials, if Ek stands for the Young modulus of the material
used in Ωk, both ck and Ck are proportional to Ek within a shape dependent constant.
We introduce the following spaces:

H1
∗ (Ω) = {v ∈ H1(Ω)d, v|ΓD

= 0},
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Figure 1: Example of a structure presenting small geometric refinements on its boundary.

H1
∗ (Ωk) = {v ∈ H1(Ωk)

d, v|ΓD∩∂Ωk
= 0},

X =
{

v ∈ L2(Ω)d, vk = v|Ωk
∈ H1

∗ (Ωk),∀k
}

=
K
∏

k=0

H1
∗ (Ωk),

X being endowed with the H1 broken norm:

‖v‖X =

(

K
∑

k=0

‖v‖2
H1(Ωk)d

)

1
2

,

and:

M =

K
∏

k=1

L2(Γ0k)
d.

In the whole paper, for homogeneity reason, the H 1 norm is rescaled, that is:

‖v‖2
H1(Ωk)d =

1

(Lk)2
‖v‖2

L2(Ωk)d + ‖∇v‖2
L2(Ωk)d ,

where Lk denotes the diameter of Ωk.
We are interested in finding u ∈ H1

∗ (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
∗ (Ω), (3)

where the continuous coercive bilinear form a is defined as:

a(u, v) =

∫

Ω
(E : ε(u)) : ε(v), ∀u, v ∈ H1

∗ (Ω),
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and the continuous linear form l as:

l(v) =

∫

Ω
f · v +

∫

ΓN

g · v, ∀v ∈ H1
∗ (Ω),

with f ∈ L2(Ω)d and g ∈ L2(ΓN )d. This problem is well-posed from Lax-Milgram lemma,
by using the Korn’s inequality (see [DL72]) to prove the coercivity of the bilinear form a.

2.2 Discretization

We introduce here a domain based non-conforming discretization of the problem using
mortar elements. Under standard assumptions, well-posedness results and error estimates
are reviewed below.

2.2.1 The mesh

For each 0 ≤ k ≤ K, let us consider a family of shape regular meshes (Tk;hk
)hk>0 defined

over each domain Ωk, and denote:

hk = sup
T∈Tk;hk

diam(T ).

The mesh T0;h0
defined on Ω0 is the coarsest, i.e h0 > hk, for all 1 ≤ k ≤ K, and a

non-conforming family of meshes (Th)h>0 over Ω is obtained by:

Th = ∪K
k=0Tk,hk

, h = max
0≤k≤K

hk.

For each 1 ≤ k ≤ K, Γ0k inherits from the family of meshes (Fk;δk
)δk>0, obtained as the

trace of the fine mesh (Tk;hk
)hk>0 over Γ0k. We have adopted the notation:

δk = sup
F∈Fk;δk

h(F ).

Then, the family of meshes (Fδ)δ>0 can be defined over the skeleton S by:

Fδ = ∪K
k=1Fk;δk

, δ = max
1≤k≤K

δk.

Moreover, the following assumption is made (Figure 2).

Assumption 1. F ∈ Fδ is always an entire face of an element T ∈ Th.
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Ω

Ω1

0

Γ01

Figure 2: A situation where the mesh F1;δ1 of the interface Γ01 is inherited from the mesh
T1;h1

of Ω1, and where assumption 1 is violated.

2.2.2 Mesh-dependent spaces

We define here some mesh-dependent spaces, endowed with useful mesh-dependent norms
already proposed and used in [AT95, Woh99]. For each 1 ≤ k ≤ K, they are defined by:

H
1/2
δ (Γ0k) = {φ ∈ L2(Γ0k)

d, ‖φ‖2
δ, 1

2
,k

=
∑

F∈Fk;δk

1

h(F )
‖φ‖2

L2(F )d < +∞},

H
−1/2
δ (Γ0k) = {λ ∈ L2(Γ0k)

d, ‖λ‖2
δ,− 1

2
,k

=
∑

F∈Fk;δk

h(F )‖λ‖2
L2(F )d < +∞},

endowed respectively with the norms ‖ · ‖δ, 1
2
,k and ‖ · ‖δ,− 1

2
,k. The product spaces Wδ =

∏K
k=1 H

1/2
δ (Γ0k) and Mδ =

∏K
k=1 H

−1/2
δ (Γ0k), are then respectively endowed with the

norms:

‖φ‖δ, 1
2

=

(

K
∑

k=1

‖φ‖2
δ, 1

2
,k

)1/2

,

‖λ‖δ,− 1
2

=

(

K
∑

k=1

‖λ‖2
δ,− 1

2
,k

)1/2

.

They can be viewed as dual spaces by means of the the L2 inner product:
∫

S

φ · λ ≤ ‖λ‖δ,− 1
2
‖φ‖δ, 1

2
, ∀(φ, λ) ∈ Wδ × Mδ.

Remark 1. The use of such mesh-dependent spaces instead of H
1/2
00 (Γ0k)

d and its dual

H−1/2(Γ0k)d =
(

H
1/2
00 (Γ0k)d

)′

for example, has several advantages. First, these mesh-

dependent norms are computable, which make easier a posteriori estimations (see [Woh99])
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and penalized formulations (see [Hau04]). Moreover, their use enables to avoid some
technical difficulties for 3D problems.

2.2.3 Non-conforming approximation

Let us introduce the discrete subspaces of degree q inside each subdomain:

Xk;hk
= {p ∈ H1

∗ (Ωk) ∩ C0(Ωk)
d, p|T ∈ Pq(T ),∀T ∈ Tk;hk

} ⊕ Bk;hk
,

with Pq = [Pq]
d or [Qq]

d, where Pq (resp. Qq) is the space of polynomials of total (resp.
partial) degree q, and where we have introduced a possible stabilization space Bk;hk

built
with bubbles on the interface as in [BM00, Hau04]. The corresponding product space is
denoted by:

Xh =
K
∏

k=0

Xk;hk
⊂ X.

Let us define the following trace spaces on the non-mortar side (small subdomain side
herein):

Wk;δk
= {p|Γ0k

, p ∈ Xk;hk
}, W 0

k;δk
= Wk;δk

∩ H1
0 (Γ0k)

d,

endowed with the mesh-dependent norm ‖ · ‖δ, 1
2
,k.

In order to formulate the weak continuity constraint, we introduce the spaces Mk;δk

of (possibly discontinuous) Lagrange multipliers defined on the meshes Fk;δk
. In order to

achieve optimal approximation, they must contain all polynomials [Pq−1]
d of degree q− 1.

The product space Mδ =
∏K

k=1 Mk;δk
is endowed with the mesh-dependent norm ‖ · ‖δ,− 1

2
.

The following bilinear form is then introduced to express the constraint on the jump of
the displacements on the non-conforming interfaces:

b : X × M → R

(v, λ) 7→ b(v, λ) =

K
∑

k=1

∫

Γ0k

[vk] · λk,

with [vk] = v0 − vk, on Γ0k. We denote:

b(v, λ) =
K
∑

k=1

∫

Γ0k

v0 · λk −
K
∑

k=1

∫

Γ0k

vk · λk

:=

K
∑

k=1

b0k(v0, λk) −
K
∑

k=1

bk(vk, λk).

Then, the constrained space of admissible displacements can be defined as:

Vh = {uh ∈ Xh, b(uh, λh) = 0, ∀λh ∈ Mδ}.
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They are continuous “in average” across the interfaces (Γ0k)1≤k≤K . In order to formulate
the approximate problem, the broken elliptic form ã is defined as:

ã : X × X → R

(u, v) 7→ ã(u, v) =

K
∑

k=0

ak(uk, vk),

with:

ak(uk, vk) =

∫

Ωk

(E : ε(uk)) : ε(vk).

We are then interested in finding (uh, λh) ∈ Xh × Mδ, such that:
{

ã(uh, vh) + b(vh, λh) = l(vh), ∀vh ∈ Xh,

b(uh, µh) = 0, ∀µh ∈ Mδ.
(4)

In other words, we solve our variational problem on the product space Xh under the
kinematic continuity constraint b(·, ·) = 0.

2.2.4 Fundamental assumptions and error estimates

In order to ensure the well-posedness of the problem (4), some fundamental assumptions
have to be made. Concerning the compatibility of Xh and Mδ, we assume (cf. [Woh01,
Hau04]):

Assumption 2. For each 1 ≤ k ≤ K, there exists an operator:

πk : H
1/2
δ (Γ0k) → Wk;δk

,

such that for all v ∈ H
1/2
δ (Γ0k):
∫

Γ0k

(πkv) · µ =

∫

Γ0k

v · µ, ∀µ ∈ Mk;δk
,

with:
‖πkv‖δ, 1

2
,k ≤ C‖v‖δ, 1

2
,k.

This assumption means that the projection perpendicular to the multiplier space onto the
trace space Wk;δk

is continuous. This implies a limitation on the size of Mδ with respect
to Xh. If more than two subdomains had a common intersection, the range Wk;δk

of πk in
assumption 2 would be replaced by W 0

k;δk
, in order to enable independent projections on

each interface.

The coercivity of ã over Vh×Vh is obtained under the following assumption (cf. [Woh01,
Hau04]):
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Assumption 3. For all 1 ≤ k ≤ K, we assume that there exists a subspace M̃k of the
Lagrange multipliers space Mk;δk

such that M̃k ⊂ Mk;δk
independently of δk. Moreover,

we assume that for all v ∈ X which is locally a rigid motion over all the (Ωk)k≥1 in the
sense that:

ã(v, w) = 0, ∀w ∈ X,

and satisfying:
∫

Γ0k

[v] · µ = 0, ∀µ ∈ M̃k, k = 1, ..,K,

then v = 0.

Various pairs of spaces Xh × Mδ can be chosen to satisfy the assumptions 2 and 3:

• The initial formulation from [BMP93, BMP94] proposes discrete displacements of
degree q without stabilization, i.e. Bk;hk

= ∅, and continuous Lagrange multipliers of
degree q. In our framework, no modification of the Lagrange multipliers is necessary
on the boundaries of the interfaces (∂Γ0k)1≤k≤K because they are disjoint. Therefore,
with this choice, the displacements trace spaces over the fine subdomains interfaces
coincides with Lagrange multipliers spaces, that is Mk;δk

= Wk;δk
for all 1 ≤ k ≤ K.

• In order to make the mortar weak continuity constraint diagonal, one can adopt the
dual Lagrange multipliers from Wohlmuth [Woh00], again without special treatment
on the boundaries of the interfaces.

• As shown in [Ses98] for second order approximations of the displacements (q ≥ 2),
the formulation from [BMP93, BMP94] can be modified by using only continuous
Lagrange multipliers of degree q − 1.

• Discrete displacements of degree q with a proper stabilization are compatible with
discontinuous Lagrange multipliers of degree q − 1, as proved in [Hau04]. Such a
formulation has been first developed for three-field matching formulations in [BM00].

In this framework, we recall the following optimal approximation result (cf. [Woh01,
Hau04]):

Proposition 1. Under assumptions 2 and 3, the problem (4) is well-posed. Moreover, if
u ∈∏K

k=0 Hq+1(Ωk)
d is solution of (3) with (E : ε(u)) ∈ ∏K

k=0 Hq(Ωk)
d×d in which q ≥ 1,

and (uh, λh) ∈ Xh × Mδ is solution of (4), the following error estimates hold:

‖u − uh‖X ≤ C

(

K
∑

k=1

h2q
k |u|2q+1,E,Ωk

)1/2

,

‖λ − λh‖δ,− 1
2
≤ C

(

K
∑

k=0

h2q
k |u|2q+1,E,Ωk

)1/2

,

9



with:

|u|2q+1,E,Ωk
= |u|2Hq+1(Ωk)d +

1

C2
k

‖E : ε(u)‖2
Hq(Ωk)d×d .

We have denoted the flux over the artificial interfaces by λ = (E : ε(u)) ·n, where the nor-
mal outward unit vector on ∂Ω0 is denoted by n. C denotes various constant independent
of the decomposition into subdomains, and of the discretization.

Remark 2 (Choice of the non-mortar side). In this discretization, as confirmed by
assumption 2, we have chosen the non-mortar side defining the multipliers as the fine scale
side of the interface S. The main motivation is that in the preconditioners to be defined
later, it is crucial to get a stable extension operator over the small scale subdomains, which
is the case with the present choice while compatible with the standard assumption 1.

3 Two-scale preconditioners.

The previous discretization leads to a well-posed linear discrete problem with optimal
error estimates. In this section, we propose and analyze preconditioners to solve this
linear system for the approximate computational cost of the coarse scale problem on Ω0,
provided the solution of the problem over each (Ωk)1≤k≤K be at a reasonnably low-cost.
That is why we have assumed that the (Ωk)1≤k≤K were small and disjoint. Then, the
inversions of the fine scale problems on the boundary can be parallelized and are relatively
cheap in terms of computation.
Some notation and remarks must first be introduced:

• In this section, all quantities live in finite dimensional spaces. If a is a bilinear form,
then A represents the matrix of a in the discrete space. If u is a function, then U is
the vector of its nodal degrees of freedom in the chosen discrete space.

• For all 0 ≤ k ≤ K, the bilinear form ak(·, ·) is continuous in H1(Ωk)
d ×H1(Ωk)

d and
its continuity constant is Ck, already defined in (2).

• When ΓD ∩ ∂Ω0 has a positive measure, a0(·, ·) is coercive in H1
∗ (Ω0) × H1

∗ (Ω0). We
denote by α0 its constant of coercivity, which is proportional to c0 defined in (2),
within a shape dependent constant.

• For all 1 ≤ k ≤ K such that Ωk is fixed on a part of its boundary, the bilinear form
ak(·, ·) is coercive over H1

∗ (Ωk)×H1
∗ (Ωk) and its coercivity constant is denoted by αk.

It is proportional to ck defined in (2), within a constant which depends continuously
on the shape of Ωk but not of its size because ak and the scaled norm of H1 have the
same dependence with respect to a change of scale.
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3.1 Introduction

With obvious notation, the discrete problem (4) leads to the following linear system to
solve:























A0U0 +

K
∑

k=1

Bt
0kΛk = F0,

AkUk −Bt
kΛk = Fk, 1 ≤ k ≤ K,

B0kU0 −BkUk = 0, 1 ≤ k ≤ K.

(5)

Defining the local extended stiffness matrix of the k-th (k ≥ 1) subproblem by:

Kk =

(

Ak −Bt
k

−Bk 0

)

,

the problem (5) can be rewritten as:























A0U0 +

K
∑

k=1

Bt
0kΛk = F0,

Kk

(

Uk

Λk

)

=

(

Fk

−B0kU0

)

, 1 ≤ k ≤ K.

(6)

The operator Rk of matrix
(

0, IMk;δk

)

is defined as the canonical restriction from Xk;hk
×

Mk;δk
to Mk;δk

, and therefore, from (6), we can obtain Λk as a function of U0 as:

Λk = RkK
−1
k

(

Fk

−B0kU0

)

= RkK
−1
k

(

Fk

0

)

− RkK
−1
k Rt

kB0kU0.

Then, by elimination of Λk in the coarse scale problem, (6) becomes:























(

A0 −
K
∑

k=1

Bt
0kRkK

−1
k Rt

kB0k

)

U0 = F0 −
K
∑

k=1

Bt
0kRkK

−1
k

(

Fk

0

)

,

Kk

(

Uk

Λk

)

=

(

Fk

−B0kU0

)

, 1 ≤ k ≤ K,

(7)

which can be re-written as:










D0U0 = F0,

Kk

(

Uk

Λk

)

=

(

Fk

−B0kU0

)

, 1 ≤ k ≤ K.
(8)

Here, D0 = A0−
∑K

k=1 Bt
0kRkK

−1
k Rt

kB0k is the Schur complement matrix. The problem is
now split into a coarse problem defined on Ω0, and into fine problems defined on (Ωk)1≤k≤K

11



using the coarse solution U0. It seems that the calculus on the subdomains are now
separated, but the price to pay is in the building of the coarse Schur complement D0.
Our aim is to obtain a good preconditioner for this problem, using an approximate coarse
operator D̂0. In other terms, we need to construct an approximate solution (ũ, λ̃) ∈
Xh × Mδ of (8) by:











Ũ0 = D̂−1
0 F0,

Kk

(

Ũk

Λ̃k

)

=

(

Fk

−B0kŨ0

)

, 1 ≤ k ≤ K,
(9)

and the main issue is to build an appropriate definition of the Schur inverse D̂−1
0 .

3.2 Two possible definitions for D̂0

3.2.1 A symmetrized Dirichlet-Neumann preconditioner

The simplest idea consists in replacing the Schur complement D0 by the stiffness of the
coarse problem:

D̂0 = A0, (10)

which reduces the proposed preconditioning to a symmetrized Dirichlet-Neumann itera-
tion. Indeed, solving (9) with D̂0 = A0 then amounts to solving:

1. Dirichlet problems on the (Ωk)1≤k≤K with zero weak trace on the interface to obtain

F0 = F0 −
K
∑

k=1

Bt
0kRkK

−1
k

(

Fk

0

)

,

2. a Neumann problem on Ω0 with the sollicitation F0 to compute U0,

3. Dirichlet problems on the (Ωk)1≤k≤K to compute the (Uk)1≤k≤K with right-hand
sides

(

Fk

−B0kU0

)

.

In section 3.3, we prove that the condition number of the associated preconditioned system
is independent of the number and of the size of the fine scale subdomains (Ωk)k≥1. We also
prove that the method is efficient when Ω0 has not a small stiffness in comparison with
the (Ωk)k≥1, and when the small subdomains are not fixed on a part of their boundary.

3.2.2 An enhanced symmetrized Dirichlet-Neumannn preconditioner

The previous simplest choice of preconditioner may lack of efficiency in two simple situa-
tions:

12



• the substructure Ωk is of small size and is fixed on a part of its boundary. In this
situation, because of its size, the substructure will have a rather large stiffness to
interface rigid body displacements.

• the substructure Ωk may have other privileged directions of large stiffness to interface
motions (rigid links, incompressibility).

Assuming that these directions of interface localized stiffness be in very small number Nk

(this is indeed the case for interface rigid body motions), we propose a modification of the
previous preconditioner enabling to correct such a lack of efficiency.
For all k ≥ 1 such that Ωk is fixed on a part of its boundary, we denote by (ei

k)1≤i≤Nk

(with Nk = 6 in general) the interface rigid motions of Γ0k or rigid links and introduce:

W̊k = span{ei
k, i = 1, .., Nk}.

To each interface rigid body motion ei
k, we introduce its local ak-harmonic extension

(ui
k, λ

i
k) ∈ Xk;hk

× Mk;δk
solution of:















ak(v, ui
k) −

∫

Γ0k

v · λi
k = 0, ∀v ∈ Xk;hk

,

−
∫

Γ0k

ui
k · µ = −

∫

Γ0k

ei
k · µ, ∀µ ∈ Mk;δk

.
(11)

These solutions span two small local spaces:

X̊k = span{ui
k, i = 1, .., Nk} ⊂ Xk;hk

,

M̊k = span{λi
k, i = 1, .., Nk} ⊂ Mk;δk

.

If k ≥ 1 is such that Ωk is not fixed on its boundary, we adopt:

W̊k = M̊k = {0}.

Then, instead of finding U0 such that D0U0 = F0, we propose to compute u0 ∈ X0;h0
,

(uk) ∈ (X̊k)1≤k≤K , (λk) ∈ (M̊k)1≤k≤K solution of the coupled problem:



































a0(u0, v0) +

K
∑

k=1

∫

Γ0k

v0 · λk = l0(v0), ∀v0 ∈ X0;h0
,

ak(uk, vk) −
∫

Γ0k

vk · λk = 0, ∀vk ∈ X̊k, 1 ≤ k ≤ K,

−
∫

Γ0k

uk · µk = −
∫

Γ0k

u0 · µk, ∀µk ∈ M̊k, 1 ≤ k ≤ K,

(12)

where l0 is the linear form associated to the coarse sollicitation F0.
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We introduce the matrix I0k ∈ RNk×dimX0;h0 defined for all v0 ∈ X0;h0
by:

(I0kV0)i =

∫

Γ0k

v0 · λi
k =

〈

B0kV0,Λ
i
k

〉

, ∀i = 1, .., Nk,

that is I0k =
[

Λ1
k, ..,Λ

Nk
k

]t
B0k = Λt

kB0k, and the restriction Åk of the displacement

stiffness matrix Ak on the local space X̊k. Thus:

(

Åk

)

ij
= (U i

k)
tAkU

j
k = ak(u

j
k, u

i
k) =

∫

Γ0k

uj
k · λi

k.

From (11)-1, the system (12) can be rewritten as:











A0U0 +
∑K

k=1 It
0kΘk = F0,

ÅkZk − Åt
kΘk = 0,

−ÅkZk = −I0kU0, 1 ≤ k ≤ K.

(13)

The new vector Θk (resp. Zk) denotes the component of λk (resp. uk) in M̊k (resp. W̊k)
appearing in (12). From the elimination of Θk and Zk in (13), it follows that:

D̂0U0 = F0, (14)

with a new approximate Schur complement given by:

D̂0 = A0 +

K
∑

k=1

It
0kÅ

−t
k I0k (15)

= A0 +

K
∑

k=1

Bt
0kΛkÅ

−t
k Λt

kB0k.

Its complexity is much smaller than (7) because the local problem (13)-2,(13)-3 for the
subproblem k ≥ 1 used in the construction of D̂0, is of dimension Nk.

For analysis purpose, this enhanced Dirichlet-Neumann preconditioner corresponds to
a Dirichlet-Neumann decomposition where the Dirichlet substructures are defined by:

X̊⊥
k;hk

= {uk ∈ Xk;hk
,

∫

Γ0k

uk · µ = 0, ∀µ ∈ M̊k}, 1 ≤ k ≤ K,

and where the Neumann substructure is defined by:

X̊h = {u ∈ Xh, b(u, µ) = 0, ∀µ ∈ M̊k}.

The analysis of this preconditioner is done in section 4.3, proving now an independence
with respect to essential boundary conditions imposed over the small subdomains (Ωk)k≥1.
For further analysis, we introduce:
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Definition 1. For any v0 ∈ X0;h0
, its “rigid body projection” over Ωk denoted by π̊kv0 ∈

X̊k is defined as the solution of (13)-2,(13)-3 for the subproblem k. More precisely (̊πkv0, λ̊k) ∈
X̊k × M̊k is such that:















ak (̊πkv0, vk) −
∫

Γ0k

λ̊k · vk = 0, ∀vk ∈ X̊k,

−
∫

Γ0k

π̊kv0 · µk = −
∫

Γ0k

v0 · µk, ∀µk ∈ M̊k.
(16)

In matricial form, we have π̊kvk =
∑Nk

j=1 zju
j
k with:

−ÅkZ = −I0kV0,

yielding:

Π̊kV0 =
[

U1
k , .., UNk

k

]

Å−1
k I0kV0 = ŮkÅ

−1
k I0kV0,

that is:
Π̊k = ŮkÅ

−1
k I0k.

We then have by construction of Åk:

Π̊t
kAkΠ̊k = It

0kÅ
−t
k Ůt

kAkŮkÅ
−1
k I0k

= It
0kÅ

−t
k ÅkÅ

−1
k I0k

= It
0kÅ

−t
k I0k,

and therefore the new preconditioner (15) takes the form:

D̂0 = A0 +

K
∑

k=1

Π̊t
kAkΠ̊k. (17)

Also observe from (11) that when ak is symmetric, we have:

π̊ke
i
k = ui

k, 1 ≤ i ≤ Nk. (18)

4 Condition number analysis

In this section, we establish upper bounds on the condition number of the preconditioned
systems based on the two symmetrized Dirichlet-Neumann preconditioners respectively
defined in the subsections 3.2.1 and 3.2.2. First, the same factorized form for the original
linear system and the preconditioner is introduced. Then, we show the spectral equivalence
between D̂0 and D0, detailing the dependence of the constants on the size of the domains,
the stiffness of the materials, and on the mesh sizes, and deduce estimates on the condition
number of the preconditioned system.
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4.1 Factorization

The original system to solve is:

A



















U0

U1

Λ1
...

UK

ΛK



















=



















F0

F1

0
...

FK

0



















,

with:

A =



















A0 0 Bt
01 . . . 0 Bt

0K

0 A1 −Bt
1

B01 −B1 0
...

. . .

0 AK −Bt
K

B0K −BK 0



















.

Now, let us factorize the expression of A. Introducing the triangular matrix:

T =











I 0 . . . 0

K−1
1 Rt

1B01 I
...

. . .

K−1
K Rt

KB0K 0 . . . I











,

and the block diagonal matrix:

H =











D0 0 . . . 0
0 K1
...

. . .

0 KK











,

it is straightforward to check that A = T tHT .
The matrix of our preconditioner can be written under the similar form C = T tĤT ,

with the block diagonal matrix:

Ĥ =











D̂0 0 . . . 0
0 K1
...

. . .

0 KK











.
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We have then:

C



















Ũ0

Ũ1

Λ̃1
...

ŨK

Λ̃K



















=



















F0

F1

0
...

FK

0



















.

The matrices A and C are not positive, and we introduce the kernel on which the following
results hold, and in which A and C are definite positive:

E = {U = (U0, U1,Λ1, .., UK ,ΛK)t;B0kU0 = BkUk, 1 ≤ k ≤ K}.

Our aim is to bound the condition number κA,E(C−1A) in A-norm on E.

4.2 Spectral equivalence for the simple Dirichlet-Neumann

We show herein the spectral equivalence between the Schur complement D0 and its ap-
proximation D̂0 for the symmetrized Dirichlet-Neumann preconditioner presented in sub-
section 3.2.1. For the choice D̂0 = A0 made in section 3.2.1 and corresponding to the
simple symmetrized Dirichlet-Neumann preconditioner, we obtain:

Proposition 2. Assuming that A0 is invertible that is ΓD ∩ ∂Ω0 has a positive measure,
the following spectral equivalence holds for all U0:

W1,h 〈D0U0, U0〉 ≤ 〈A0U0, U0〉 ≤ 〈D0U0, U0〉 ,

with:
1

W1,h
= 1 + C

(

max
k∈I1

Ck

c0
+ max

k∈I2

CkL0

α0Lk

)

,

where I1 (resp. I2) is the set of indices k ≥ 1 such that Ωk is not fixed on its boundary
(resp. is fixed on a part of its boundary). The constant C is independent of the number
K and the size of the subdomains.

Observe that the condition number deteriorates for a small fixed subdomain Lk << L0,
k ∈ I2, and for very stiff subdomains Ck >> α0.
The following lemma is needed in the proof:

Lemma 1. Let us assume that Γ0k is of class C1. Then, there exists an open set Ω′
k ⊂ Ω0

which is the restriction of a neighborhood of Γ0k to Ω0, and a linear extension operator:

Dk : H1(Ω′
k)

d → H1(Ωk)
d,
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such that for all u ∈ H1(Ω0)
d, Dku = u on Γ0k, and:

∫

Ωk

(Dku)2 ≤ C

∫

Ω′
k

u2,

∫

Ωk

(∇Dku)2 ≤ C

∫

Ω′
k

(∇u)2 ,

where the constant C does not depend on Ωk.

The proof of this lemma is rather standard in functional analysis, and the existence of
such an extension operator can be found in ([Bré99], page 158) for example. Now, we can
prove the proposition.

Proof : [of the proposition] Let U0 be given. For all k ≥ 1, let us define (Uk,Λk) such
that:

(

Ak −Bt
k

−Bk 0

)(

Uk

Λk

)

=

(

0
−B0kU0

)

.

In other words, we have:
Λk = −RkK

−1
k Rt

kB0kU0,

and then by construction of Uk and Λk:

−
〈

Bt
0kRkK

−1
k Rt

kB0kU0, U0

〉

=
〈

Bt
0kΛk, U0

〉

= 〈Λk,BkUk〉
= 〈AkUk, Uk〉
≥ 0.

We deduce by addition that:

〈D0U0, U0〉 = 〈A0U0, U0〉 −
K
∑

k=1

〈

Bt
0kRkK

−1
k Rt

kB0kU0, U0

〉

≥ 〈A0U0, U0〉 .

Hence the inequality:
〈A0U0, U0〉 ≤ 〈D0U0, U0〉 , ∀U0.

Let us now bound A0 from below. Let u0 ∈ H1
∗ (Ω) be given. For all k ≥ 1, such that

Ωk has an empty intersection with ΓD (we denote k ∈ I1), we decompose u0 on Ω′
k (as

defined in lemma 1) into:
u0 = rk + wk, on Ω′

k,
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where rk belongs to the space R(Ω′
k) of rigid motions over Ω′

k, and:

∫

Ω′
k

wk · r = 0, ∀r ∈ R(Ω′
k). (19)

We define the function:
uk = rk + u′

k, on Ωk,

where rk ∈ R(Ωk) is the natural extension to Ωk of rk ∈ R(Ω′
k) (thus rk ∈ R(Ωk ∪ Ω′

k)),
and:

u′
k = Ik;hk

Dkwk + Rk;δk
πk(wk − Ik;hk

Dkwk),

where Ik;hk
denotes the Scott-Zhang [SZ90] interpolation over Xk;hk

, and Rk;δk
is the ex-

tension by zero operator over the grid points of Ωk. By construction, the mortar condition
is satisfied:

∫

Γ0k

uk · µ =

∫

Γ0k

u0 · µ, ∀µ ∈ Mk;δk
.

Moreover, by using the stability of the extension operator Rk;δk
from Wk;δk

to H1(Ωk)
d,

the assumption 2, the stability of Ik;hk
from H1(Ωk)

d to H1(Ωk)
d, the classical estimation

(see [SZ90]):
‖u − Ik;hk

u‖δ, 1
2
,k ≤ C|u|H1(Ωk)d ,

and the stability property of Dk in lemma 1, we obtain:

ak(uk, uk) ≤ Ck

∫

Ωk

|∇u′
k|2 = Ck

∣

∣u′
k

∣

∣

2

H1(Ωk)d

≤ 2Ck |Ik;hk
Dkwk|2H1(Ωk)d + 2Ck |Rk;δk

πk(Dkwk − Ik;hk
Dkwk)|2H1(Ωk)d

≤ 2Ck |Ik;hk
Dkwk|2H1(Ωk)d + 2CCk‖πk(Dkwk − Ik;hk

Dkwk)‖2
δ, 1

2
,k

≤ 2Ck |Ik;hk
Dkwk|2H1(Ωk)d + 2CCk‖Dkwk − Ik;hk

Dkwk‖2
δ, 1

2
,k

≤ CCk |Dkwk|2H1(Ωk)d ≤ CCk |wk|2H1(Ω′
k)d . (20)

Moreover, the following inequality holds for all v ∈ H 1(Ω′
k)

d:

|v|2H1(Ω′
k)d ≤ CΩ′

k













∫

Ω′
k

ε(v) : ε(v) +
1

diam(Ω′
k)

2













sup
r ∈ R(Ω′

k),�
Ω′

k

r = 0

∫

Ω′
k

v · r

‖r‖L2(Ω′
k)d













2











, (21)

with a constant CΩ′
k

independent of the size of Ω′
k from the adopted scaling of the norms,

but possibly depending on its shape. The shape independence of this constant is insured
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for polyhedral shape regular domains in [Bre04], or in [Hau04] for slightly less restrictive
assumptions. Therefore, we have from (19) by definition of wk:

|wk|2H1(Ω′
k)d ≤ CΩ′

k

∫

Ω′
k

ε(wk) : ε(wk).

By summing over k ∈ I1, we get from (20) that:

∑

k∈I1

ak(uk, uk) ≤ C
∑

k∈I1

Ck

∫

Ω′
k

ε(u0) : ε(u0), (22)

with a constant C independent of the size of the subdomains. Since by construction
∪k∈I1Ω

′
k ⊂ Ω0, and since there is a bounded number of domains Ω′

k overlapping at a given
point, we deduce:

∑

k∈I1

ak(uk, uk) ≤ C max
k∈I1

(Ck)

∫

Ω0

ε(u0) : ε(u0) ≤
C

c0
max
k∈I1

(Ck)a0(u0, u0).

For all k ≥ 1 such that ΓD is fixed on a part of its boundary (that is k ∈ I2), we cannot
use the extension operator Dk because it will not satisfy the Dirichlet boundary condition
on ΓD. But, the Sobolev lifting theorem proves the existence of a function ũk whose trace
is u0 on Γ0k and such that:

1

(Lk)2

∫

Ωk

|ũk|2 +

∫

Ωk

|∇ũk|2 ≤ C

(

1

Lk

∫

Γ0k

〈u0〉2k + |u0|2H1/2(Γ0k)d

)

.

Here, 〈u0〉k denotes the average

〈u0〉k =
1

meas(Γ0k)

∫

Γ0k

u0

of u0 on Γ0k and C is a constant which is independent of the size of Ωk but which depends
on the ratio between Lk and the distance from Γ0k to ΓD. We then modify ũk to obtain
a discrete function satisfying the weak-continuity constraint on Γ0k, and define using our
previous notation:

uk = Ik;hk
ũk + Rk;δk

πk(ũk − Ik;hk
ũk).

By construction, the mortar condition is satisfied:

∫

Γ0k

uk · µ =

∫

Γ0k

(Ik;hk
ũk + ũk − Ik;hk

ũk) · µ

=

∫

Γ0k

u0 · µ, ∀µ ∈ Mk;δk
.
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From the same argument as in the case k ∈ I1, we get:

ak(uk, uk) ≤ CCk

∫

Ωk

|∇ũk|2

≤ CCk

(

1

Lk

∫

Γ0k

〈u0〉2k + |u0|2H1/2(Γ0k)d

)

≤ CCk
L0

Lk

(

1

L0

∫

Γ0k

〈u0〉2k + |u0|2H1(Ω′
k)d

)

.

By summation, we have:

∑

k

∫

Γ0k

〈u0〉2k =
∑

k

meas(Γ0k) 〈u0〉2k

=
∑

k

meas(Γ0k)
−1

(
∫

Γ0k

1u0

)2

≤
∑

k

meas(Γ0k)
−1

∫

Γ0k

u2
0

∫

Γ0k

1

≤
∑

k

∫

Γ0k

u2
0 =

∫

Γ0

u2
0. (23)

By summing over k ∈ I2, we get as before:

∑

k∈I2

ak(uk, uk) ≤ C max
k∈I2

(

Ck
L0

Lk

)(

1

L0

∫

Γ0

u2
0 + |u0|2H1(∂Ω0)d

)

≤ C max
k∈I2

(

Ck
L0

Lk

)

‖u0‖2
H1(Ω0)d

≤ C max
k∈I2

CkL0

α0Lk
a0(u0, u0).

As a consequence, with this choice of uk:

〈A0U0, U0〉 +

K
∑

k=1

〈AkUk, Uk〉 ≤
(

1 + C max
k∈I1

Ck

c0
+ C max

k∈I2

CkL0

α0Lk

)

〈A0U0, U0〉 .

Now, let us show that for all (Vk)k≥1 such that BkVk = B0kU0, we have:

〈D0U0, U0〉 ≤ 〈A0U0, U0〉 +

K
∑

k=1

〈AkVk, Vk〉 . (24)

For all k ≥ 1, we decompose Vk into Vk = U∗
k + δUk, where:

(

Ak −Bt
k

−Bk 0

)(

U∗
k

Λ∗
k

)

=

(

0
−B0kU0

)

,
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and BkδUk = 0. Then, since by construction:

〈A0U0, U0〉 +
K
∑

k=1

〈AkU
∗
k , U∗

k 〉 = 〈D0U0, U0〉 ,

we obtain by symmetry of Ak:

〈A0U0, U0〉 +

K
∑

k=1

〈AkVk, Vk〉 = 〈D0U0, U0〉 +

K
∑

k=1

2 〈AkU
∗
k , δUk〉 + 〈AkδUk, δUk〉 .

Moreover:
〈AkU

∗
k , δUk〉 =

〈

Bt
kΛ

∗
k, δUk

〉

= 〈Λ∗
k,BkδUk〉 = 0,

resulting in:

〈A0U0, U0〉 +

K
∑

k=1

〈AkVk, Vk〉 = 〈D0U0, U0〉 +

K
∑

k=1

〈AkδUk, δUk〉

≥ 〈D0U0, U0〉 .

In particular, we can take for all k ≥ 1, Vk = Uk where Uk has been built above. We
conclude that:

〈D0U0, U0〉 ≤
(

1 + C max
k∈I1

Ck

c0
+ C max

k∈I2

CkL0

α0Lk

)

〈A0U0, U0〉 ,

which ends the proof. �

4.3 Spectral equivalence for the enhanced Dirichlet Neumann

For the enhanced Dirichlet-Neumann preconditioner presented in section 3.2.2, we prove
that:

Proposition 3. For all U0, the following spectral equivalence holds:

W1,h 〈D0U0, U0〉 ≤
〈

D̂0U0, U0

〉

≤ 〈D0U0, U0〉 ,

with:
1

W1,h
= C

(

1 + max
k∈I1∪I2

Ck

c0

)

,

where I1 (resp. I2) is the set of indices k ≥ 1 such that Ωk is not fixed on its boundary
(resp. is fixed on a part of its boundary). The constant C is independent of the number
K and the size of the subdomains.
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Proof : Let U0 be given. We proceed as in the last part of the previous proof, and
introduce (U ∗

k ,Λ∗
k) satisfying:

(

Ak −Bt
k

−Bk 0

)(

U∗
k

Λ∗
k

)

=

(

0
−B0kU0

)

. (25)

We introduce the decomposition U ∗
k = Ů∗

k + W ∗
k with Ů∗

k = Π̊kU0, and by construction of
U∗

k , we get:

〈D0U0, U0〉 =

〈(

A0 −
K
∑

k=1

Bt
0kRkK

−1
k Rt

kB0k

)

U0, U0

〉

= 〈A0U0, U0〉 +

K
∑

k=1

〈AkU
∗
k , U∗

k 〉

≥ 〈A0U0, U0〉 +
K
∑

k=1

〈

AkŮ
∗
k , Ů∗

k

〉

+ 2
〈

AkŮ
∗
k ,W ∗

k

〉

.

But decomposing Ů∗
k = Π̊kU0 =

∑Nk
j=1 zjU

j
k we have:

〈

AkW
∗
k , Ů∗

k

〉

=

Nk
∑

j=1

zjak(w
∗
k, u

j
k)

=

Nk
∑

j=1

zj

∫

Γ0k

λj
k · w∗

k, from (11).1,

=

Nk
∑

j=1

zj

∫

Γ0k

(u∗
k − ů∗

k) · λj
k, by construction of w∗

k,

=

Nk
∑

j=1

zj

[
∫

Γ0k

u∗
k · λj

k −
∫

Γ0k

ů∗
k · λj

k

]

, from (25) and (16).2,

= 0.
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This gives:

〈D0U0, U0〉 ≥ 〈A0U0, U0〉 +

K
∑

k=1

〈

AkŮ
∗
k , Ů∗

k

〉

= 〈A0U0, U0〉 +

K
∑

k=1

〈

AkΠ̊kU0, Π̊kU0

〉

=

〈(

A0 +
K
∑

k=1

Π̊t
kAkΠ̊k

)

U0, U0

〉

= 〈A0U0, U0〉 +
K
∑

k=1

〈

AkŮ
∗
k , Ů∗

k

〉

, from (17).

Let us prove now a lower bound for D̂0. For all 1 ≤ k ≤ K, as in the proof of the pre-
vious proposition, we build a particular function uk ∈ Wk;δk

satisfying the weak continuity
constraint on the interface Γ0k. When Ωk is not fixed on a part of its boundary, which we
have denoted by k ∈ I1, we take the uk defined in the previous proof by “reflexion” with
respect to Γ0k. When Ωk is fixed on a part of its boundary, namely k ∈ I2, we proceed
differently, and define here 〈u0〉k ∈ R(Γ0k) (the trace over Γ0k of a rigid motion) such
that:

∫

Γ0k

〈u0〉k · r =

∫

Γ0k

u0 · r, ∀r ∈ R(Γ0k).

Then, we introduce:

uk = Ik;hk
ũk + Rk;δk

πk [ũk − Ik;hk
ũk] + π̊k 〈u0〉k ,

where ũk is a function whose trace is zero on ΓD and is u0 − 〈u0〉k on Γ0k satisfying from
the Sobolev lifting theorem:

∫

Ωk

|∇ũk|2 ≤ C

[

1

Lk
〈u0 − 〈u0〉k〉k + |u0 − 〈u0〉k|2H1/2(Γ0k)d

]

= C|u0 − 〈u0〉k |2H1/2(Γ0k)d , by construction of 〈u0〉k. (26)

The mortar condition is indeed satisfied because:
∫

Γ0k

uk · µ =

∫

Γ0k

(Ik;hk
ũk + ũk − Ik;hk

ũk) · µ +

∫

Γ0k

π̊k 〈u0〉k · µ

=

∫

Γ0k

ũk · µ +

∫

Γ0k

π̊k 〈u0〉k · µ

=

∫

Γ0k

(u0 − 〈u0〉k + π̊k 〈u0〉k) · µ, ∀µ ∈ Mk;δk
,
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and because, since 〈u0〉k is a linear combination of rigid body motions ei
k, we have from

(18):
∫

Γ0k

(〈u0〉k − π̊k 〈u0〉k) · µ = 0, ∀µ ∈ Mk;δk
.

On the other hand, we have for k ∈ I2:

ak(uk, uk) ≤ 2ak (uk − π̊k 〈u0〉k , uk − π̊k 〈u0〉k)
+2ak (̊πk 〈u0〉k , π̊k 〈u0〉k) . (27)

Using the same argument as in (20), we get by construction of uk:

ak (uk − π̊k 〈u0〉k , uk − π̊k 〈u0〉k) ≤ CCk

∫

Ωk

|∇ũk|2

≤ CCk |u0 − 〈u0〉k|2H1/2(Γ0k)d , from (26),

≤ CCk

∫

Ω′
k

ε(u0) : ε(u0), (28)

from the Sobolev trace theorem and the inequality (21). On the other hand, we have from
lemma 2:

ak (̊πk 〈u0〉k , π̊k 〈u0〉k) ≤ 2ak (̊πk (u0 − 〈u0〉k) , π̊k (u0 − 〈u0〉k))
+2ak (̊πku0, π̊ku0)

≤ CCk |u0 − 〈u0〉k|2H1/2(Γ0k)d + 2ak (̊πku0, π̊ku0)

≤ CCk

∫

Ω′
k

ε(u0) : ε(u0) + 2ak (̊πku0, π̊ku0) .

We then deduce from (22),(27) and (28):

a0(u0, u0) +

K
∑

k=1

ak(uk, uk) ≤ a0(u0, u0) + C

K
∑

k=1

Ck

∫

Ω′
k

ε(u0) : ε(u0)

+4ak (̊πku0, π̊ku0)

≤
(

4 +
C

c0
max
k≥1

(Ck)

)



a0(u0, u0) +
∑

k∈I2

ak (̊πku0, π̊ku0)





=

(

4 +
C

c0
max
k≥1

(Ck)

)

〈

D̂0U0, U0

〉

.

We deduce from (24) and from the mortar conditions satisfied by the (uk)k≥1, that:

〈D0U0, U0〉 ≤
(

4 +
C

c0
max
k≥1

(Ck)

)

〈

D̂0U0, U0

〉

.
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In the above proof, we have used the following lemma:

Lemma 2. If ak is symmetric, the projection operator π̊k satisfies:

ak (̊πkw, π̊kw) ≤ CCk

[

1

Lk

∫

Γ0k

〈w〉2k + |w|2H1/2(Γ0k)d

]

Proof : Let w̃ be a lifting function of w with zero trace on ΓD, with w̃ = w on Γ0k and
satisfying the Sobolev lifting theorem:

∫

Ωk

|∇w̃|2 ≤ C

[

1

Lk

∫

Γ0k

〈w〉2k + |w|2H1/2(Γ0k)d

]

.

Let us define as before w̃k = Ik;hk
w̃ + Rk;δk

πk(w̃ − Ik;hk
w̃) which belongs to Xk;hk

and
which satisfies by construction:

∫

Γ0k

w̃k · µ =

∫

Γ0k

w̃ · µ, ∀µ ∈ Mk;δk
. (29)

We then have on one hand:

ak(w̃k, w̃k) = ak (̊πkw, π̊kw) + ak (̊πkw − w̃k, π̊kw − w̃k)

+2ak (̊πkw, π̊kw − w̃k). (30)

Developing π̊kwk into π̊kwk =
∑Nk

j=1 zju
j
k, we have from (11).1

ak (̊πkwk − w̃k, π̊kwk) =

Nk
∑

j=1

zjak (̊πkw − w̃k, u
j
k)

=

Nk
∑

j=1

zj

∫

Γ0k

(̊πkw − w̃k) · λj
k

=

Nk
∑

j=1

zj

[∫

Γ0k

w · λj
k −

∫

Γ0k

w · λj
k

]

, from (16).2 and (29)

= 0.

Plugged back in (30), this implies:

ak (̊πkw, π̊kw) ≤ ak(w̃k, w̃k).

But on the other hand, proceeding as in (20), we have:

ak(w̃k, w̃k) ≤ CCk

∫

Ωk

|∇w̃|2 ≤ CCk

[

1

Lk

∫

Γ0k

〈w〉2k + |w|2
H1/2(Γ0k)d

]

the last inequality coming from the Sobolev lifting theorem. This concludes the proof. �
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4.3.1 Bound on condition number

We prove now a classical result, using for example the technique from the Matsokin-
Nepomniaschik [MN85] framework :

Proposition 4. Let us assume that there exist two positive quantities W1,h,W2,h such
that for all U0 :

W1,h 〈D0U0, U0〉 ≤
〈

D̂0U0, U0

〉

≤ W2,h 〈D0U0, U0〉 . (31)

Then, the condition number of C−1A in A-norm on E admits the following upper bound:

κA,E(C−1A) ≤ max(1,W2,h)

min(1,W1,h)
.

We conclude by the main result of that section, which gives an upper bound on the
condition number of the preconditioned systems:

Proposition 5. For the symmetrized Dirichlet-Neumann preconditioner given in section
3.2.1, we have:

κA,E(C−1A) ≤ 1 + C

(

max
k∈I1

Ck

c0
+ max

k∈I2

CkL0

α0Lk

)

,

and for the enhanced Dirichlet-Neumann preconditioner given in section 3.2.2:

κA,E(C−1A) ≤ C

(

1 + max
k∈I1∪I2

Ck

c0

)

.

Both condition numbers are independent of the number K of fine scale subdomains and
of their sizes. In that sense, we can reasonnably talk of two-scale preconditioners. The
simplest symmetrized Dirichlet-Neumann preconditioner, which imposes the invertibility
of A0 (i.e. a Dirichlet boundary condition on Ω0 for example), is strongly affected by
the presence of small subdomains that are fixed on a part of their boundary, through
the ratio L0/Lk. The enhanced symmetrized Dirichlet-Neumann preconditioner avoids
efficiently this dependence, and its use is not limited to the case where ΓD ∩ ∂Ω0 has a
positive measure. Nevertheless, both condition numbers are affected by the presence of
stiff fine subdomains in comparison with the coarse domain, through the presence of the
ratio Ck/α0 because Ck (resp. α0) is proportional to the Young modulus Ek (resp E0) of
the material in Ωk (resp. Ω0).
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5 Algorithm

Before testing these two preconditioners, we summarize herein the algorithm coming from
their application. The action of a preconditioner on a right hand side



















F0

F1

0
...

FK

0



















in the dual of E leads to the following sequence of operations:

1. Compute the equivalent coarse scale sollicitation on Ω0:

F0 = F0 −
K
∑

k=1

Bt
0kRkK

−1
k

(

Fk

0

)

,

by solving in parallel one Dirichlet problem by small subdomain.

2. Use the equivalent coarse scale operator D̂0 to determine:

Ũ0 = D̂−1
0 F0.

3. Solve the local problems for 1 ≤ k ≤ K:

Kk

(

Ũk

Λ̃k

)

=

(

Fk

−B0Ũ0

)

.

If the computational cost of A−1
k for k ≥ 1 is low with respect to the one of A−1

0 , the
calculation cost is concentrated in the step 2.

Remark 3. This preconditioner is multiplicative, in the sense that the two scales cannot be
solved simultaneously. Nevertheless, the solutions over the small details can be performed
simultaneously in parallel.

6 Numerical tests

6.1 A basic two-scale model

Let us consider a two-scale linear model beam whose tips are clamped. We impose a
negative constant pressure on the lower face of the small details. A Q1 approximation is
adopted for displacements, and an example of the resulting deformed configuration of our
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model is represented on figure 3. The Young modulus and the Poisson coefficient are taken
constant over the coarse (E0, ν0) and the fine (E ′, ν ′) subdomains. As assumed above, the
non-mortar side is taken as the fine side of the interface and Lagrange multipliers are taken
piecewise constant, together with an interface bubble stabilization for the displacements
(see [Hau04]). Moreover, the weak-continuity constraint is ensured by a penalization
strategy and the associated penalization coefficient is taken as:

1

η
= 106E′.

Xd3d 8.0.3b (25/09/2003)

4.110831

135.6227

267.1345

398.6463

530.1581

661.67

793.1818

924.6937

1056.205

1187.717

1319.229

Figure 3: Maximal stress distribution on a deformed configuration of our two-scale model
problem (E0 = E′, ν0 = ν ′, 497 elements mesh).

On this model, we use the first symmetrized Dirichlet-Neumann preconditioner in a
standard Conjugate Gradient algorithm, and the L2 norm of the successive increments
on Lagrange multipliers along the iterations is illustrated on figure 4 for different values
of the ratio r = E ′/E0 . Conversely the number of iterations necessary to obtain a 10−9

convergence, estimated in terms of the L2 norm of the current increment on the Lagrange
multiplier, is represented on figure 5. The degradation of the performance as r grows is in
conformity with our predictions.
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Figure 4: L2 norm of the successive increments on Lagrange multipliers along the itera-
tions.
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Figure 5: Number of iterations necessary to obtain a 10−9 convergence of the simple
Dirichlet-Neumann preconditioned Conjugate Gradient, estimated in terms of the L2 norm
of the current increment on the Lagrange multiplier, as a function of the ratio r = E ′/E0.

Let us assume now, that two of the details are clamped on their lower face, leading under
the same load to the new deformed configuration illustrated on figure 6. The convergence
of simple and enhanced Dirichlet-Neumann algorithms are then compared on figure 7 for
the ratios r = 10, 100, 1000, 106. Conversely, the number of iterations necessary to reach a
10−9 convergence as a function of r is represented on figure 8 both for simple and enhanced
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Xd3d 8.0.3b (25/09/2003)

2.929397

75.441

147.9526

220.4642

292.9758

365.4874

437.9991

510.5107

583.0223

655.5339

728.0455

Figure 6: Maximal stress distribution on a deformed configuration of our two-scale model
problem where two of the details are clamped on their lower face (E0 = E′, ν0 = ν ′, 497
elements mesh).

Dirichlet-Neumann algorithms. We observe a much better performance of the enhanced
preconditioner, the number of iterations being typically divided by 3 for an additional
computational cost of 6 additional degrees of freedom on the coarse part of the model.
Indeed, 3 rigid motions per clamped small structure have been added to the coarse model.
The resulting overcost per iteration in terms of computation is negligible.
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Figure 7: Convergence of the simple and enhanced Dirichlet-Neumann algorithms for
different values of the ratio r of Young moduli.
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Figure 8: Number of iterations necessary to obtain a 10−9 convergence of the simple and
the enhanced Dirichlet-Neumann preconditioned Conjugate Gradient, estimated in terms
of the L2 norm of the current increment on the Lagrange multiplier, as a function of the
ratio r = E ′/E0.
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6.2 Extension to a quasi-Newton method

When considering nonlinear problems with soft fine geometrical details on the boundary,
the previous preconditioners can be successfully applied to quasi-Newton methods. In-
stead of solving each tangent problem by a preconditioned Conjugate Gradient method,
the idea is to replace the tangent problems by the preconditioning problems. From the
implementation point of view, it is no more necessary to keep in memory the non-inverted
matrix of the tangent problem. Moreover, the numerical tests show that this strategy
entails almost no overcost in terms of iterations of the Newton method.

For example, let us consider the following elastostatics problem:























− div
∂Ŵ
∂F

(id + ∇u) = f, Ω,

u = 0, ΓD,

∂Ŵ
∂F

(id + ∇u) · n = g, ΓN .

Let us assume that the potential Ŵ is given by the Saint-Venant-Kirchhoff constitutive
law defined by:

Ŵ(F ) =
λ

4

[

tr(F t · F − id)
]2

+
µ

8
tr
[

(F t · F − id)2
]

.

After a non-conforming finite element discretization, we have then to solve a nonlinear
discrete problem of the form:











F0(U0) +
∑K

k=1 B0kΛk = F0,

Fk(Uk) −Bt
kΛk = Fk, 1 ≤ k ≤ K,

B0kU0 −BkUk = 0, 1 ≤ k ≤ K.

A standard Newton algorithm would build two sequences (U n)n and (Λn)n such that:

{

Un+1 = Un + δUn,

Λn+1 = Λn + δΛn,

with:


























∂U0
F0(U

n
0 ) · δUn

0 +

K
∑

k=1

B0kδΛ
n
k = F0 −F0(U

n
0 ) −

K
∑

k=1

B0kΛn
k ,

∂Uk
Fk(U

n
k ) · δUn

k −Bt
kΛ

n
k = Fk −Fk(U

n
k ) + Bt

kΛ
n
k , 1 ≤ k ≤ K,

B0kδU
n
0 −BkδU

n
k = 0, 1 ≤ k ≤ K.
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At iteration n, this linear system can then be written as follows:

A



















δUn
0

δUn
1

δΛn
1

...
δUn

K

δΛn
K



















=



















F n
0

F n
1

0
...

F n
K

0



















.

We propose to define the new increments δŨn and δΛ̃n as the solutions of:

C



















δŨn
0

δŨn
1

δΛ̃n
1

...

δŨn
K

δΛ̃n
K



















=



















F n
0

F n
1

0
...

F n
K

0



















,

with the same notations used in section 2. Our two-scale quasi-Newton method is then
defined by:

{

Un+1 = Un + δŨn,

Λn+1 = Λn + δΛ̃n.

Let us consider the same model problem as in the previous section, under a dead
pressure of p = 100Pa. We have adopted the following Lamé coefficients:

λ0 = E0
ν0

(1 + ν0)(1 − 2ν0)
= 1389Pa, µ0 =

E0

2(1 + ν0)
= 2083Pa,

λ′ = rλ0, µ′ = rµ0Pa,

respectively for the coarse and the fine subdomains, characterized by the stiffness ratio:

r =
E0

E′
=

λ0

λ′
=

µ0

µ′
.

The solution remains unchanged when p, λ0, E0, λ′ and µ′ are multiplied by the same
coefficient. We have observed numerically that for r ≥ 10, the quasi-Newton method does
not converge well, as shown on the table on figure 9. Whereas, the convergence becomes
extremely slow with r = 1, the method does not converge any more with r = 100. The
convergence of the Newton-Raphson method is represented as a comparison. Nevertheless,
when the ratio r remains sufficiently small, the proposed quasi-Newton method appears to
be interesting, enven though the convergence is no more quadratic. The overcost in terms
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r = 1 r = 100

it. quasi-Newton Newton quasi-Newton Newton

1 0.6193E+01 0.5839E+01 0.6187E+01 0.5224E+01
2 0.1904E+01 0.1649E+01 0.1380E+02 0.1401E+01
3 0.1013E+01 0.9821E+00 0.6958E+03 0.7683E+00
4 0.6684E+00 0.6221E+00 0.1283E+04 0.4046E+00
5 0.3309E+00 0.3032E+00 0.3672E+04 0.2419E+00
6 0.8885E-01 0.8811E-01 0.1847E+04 0.1454E+00
7 0.4654E-02 0.8719E-02 0.9162E+03 0.1096E+00
8 0.5162E-02 0.1591E-03 0.6159E+03 0.5302E-01
9 0.4352E-02 0.8287E-07 0.1027E+04 0.5350E-01
10 0.3714E-02 0.6719E+03 0.7019E-02
11 0.3155E-02 0.8720E+03 0.3277E-02
12 0.2716E-02 0.5561E+03 0.3023E-04
13 0.2334E-02 0.6285E+03 0.3357E-07
14 0.2023E-02 0.8873E+03
15 0.1753E-02 0.5120E+03
16 0.1528E-02 0.5499E+03
17 0.1333E-02 0.6496E+03
18 0.1167E-02 0.9376E+03
19 0.1023E-02 0.3581E+03
20 0.8981E-03 0.3805E+03
21 0.7895E-03 0.5372E+03
22 0.6950E-03 0.8865E+03
23 0.6123E-03 0.7312E+03
24 0.5399E-03 0.7739E+03
25 0.4764E-03 0.7279E+03

Figure 9: Slow convergence of the method for r = 1, and lack of convergence for r = 100.

of iterations compared with a Newton-Raphson method is low, as shown in the table, on
figure 10. Finally, we represent on figure 11 the different evolutions of the L2 norm of
the residual for the proposed quasi-Newton method along the iterations, depending on the
value of the ratio r.
This kind of quasi-Newton Dirichlet-Neumann strategy has been recently used with success
in fluid-structure interactions problems and specially hemodynamics, as developped in
[GV03] where a simplified model for the fluid is adopted in the preconditioner.
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L2 norm of the residual with
it. Newton algorithm two-scale quasi-Newton

1 0.6192E+01 0.6249E+01
2 0.1775E+01 0.1811E+01
3 0.1061E+01 0.1075E+01
4 0.6671E+00 0.6747E+00
5 0.3254E+00 0.3292E+00
6 0.8096E-01 0.7836E-01
7 0.5036E-02 0.3414E-02
8 0.2010E-04 0.8871E-05
9 0.3750E-09 0.5000E-06
10 converged 0.1387E-07
11 converged 0.3629E-08

Figure 10: Convergence of the exact Newton and two-scale quasi-Newton algorithm using
the preconditioner (10). We have chosen E0/E

′ = 10 and the convergence criterion is that
the L2 norm of the residual become ≤ 10−9.

7 Conclusion

In this paper, we have introduced, analyzed and tested two symmetrized Dirichlet-Neumann
preconditioners that can be used efficiently together with a non-conforming mortar for-
mulation to solve elliptic problems with small geometrical details on the boundary. This
method is well-adapted to the case where the details are localized enough to make their
resolution relatively cheap. In the case where the small structures would not be so localized
to satisfy this assumption, one can imagine a Neumann-Neumann domain decomposition
approach [TRV91] to solve the Dirichlet part of the present Dirichlet-Neumann method.
Finally, we have deduced a quasi-Newton method which is well-adapted for soft details in
the framework of nonlinear problems.
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