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Abstract

In this paper, we first recall the general assumptions and results arising in mortar
methods applied to elastostatics [Woh01]. By extension to the curved interfaces case
of the ideas from Gopalakrishnan and Brenner [Gop99, Bre03, Bre04], and from the in-
troduction a generalized Scott and Zhang interpolation operator [SZ90], we prove the
independence of the coercivity constant of the broken elasticity bilinear form with re-
spect to the number and the size of the subdomains. Moreover, we extend the proof of
optimal convergence to the elastodynamic framework. The present results are applied
in Part II (discontinuous Lagrange multipliers), in which a stabilized discontinuous
formulation is proposed, analyzed and tested.

1 Introduction

In this paper (Part I: abstract framework) and the following (Part II: discontinuous
Lagrange multipliers), we introduce, analyze and test a non-conforming formulation
using stabilized discontinuous mortar elements to find the vector solution u of lin-
earized elasticity problems such as:











− div (E : ε(u)) = f, Ω ⊂ Rd, (d = 2, 3)

u = 0, ΓD,

(E : ε(u)) · n = g, ΓN ,

(1)

where the linearized strain tensor is classically given by:

ε(u) =
1

2

(

∇u + ∇tu
)

,
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and the fourth order elasticity tensor E is assumed to be elliptic over the set of
symmetric matrices:

∃α > 0, ∀ξ ∈ Rd×d, ξt = ξ, (E : ξ) : ξ ≥ α ξ : ξ.

The analysis is also extended to the elastodynamics problem:







































ρ
∂2u

∂t2
− div (E : ε(u)) = f, [0, T ]× Ω,

u = 0, [0, T ]× ΓD,

(E : ε(u)) · n = g, [0, T ]× ΓN ,

u = u0, {0} × Ω,
∂u

∂t
= u̇0, {0} × Ω,

(2)

and we consider this analysis as a theoretical background for using discontinuous
mortar elements in nonlinear elastodynamics.

Mortar methods have been introduced for the first time in [BMP93, BMP94] as
a weak coupling between subdomains with nonconforming meshes, or between sub-
problems solved with different approximation methods. The main purpose was to
overcome the very sub-optimal “

√
h” error estimate obtained with pointwise match-

ing. The analysis of this method as a mixed formulation was first made in [Bel99].
Nevertheless, in spite of the optimal error convergence obtained with the original

mortar elements, some numerical difficulties appear. First, the original space of La-
grange multipliers ensuring the weak coupling is rather difficult to build in 3D on the
boundary of the interfaces when more than two subdomains have a common intersec-
tion (see [BM97, BD98]). Moreover, the original constrained space has a non-local
basis on the non-conforming artificial interfaces, which may lead to small spurious
oscillations of the approximate solution.

To overcome the first difficulty, one idea is given in [Ses98] when displacements
are at least approximated by second order polynomials. The introduced Lagrange
multipliers have a lower order, still enabling optimal error estimates, and no special
treatment is needed on the boundary of the interfaces. To overcome the second diffi-
culty, dual mortar spaces are proposed in [Woh00, Woh01], enabling the localization
of the mortar kinematical constraint. In order to benefit from the advantages of these
two approaches, we propose to introduce stabilized low order discontinuous mortar
elements. This idea has already been introduced for a first order three-field mortar
formulation in [BM00], and we exploit it herein in the two-field framework for first and
second order elements when dealing with elastostatics and elastodynamics problems.

Mortar formulations also provide a natural framework for domain decomposition,
as observed by [Tal93, AKP95, AMW99, AAKP99, Ste99] and the references therein.
A large number of subdomains and their small size is therefore a basic difficulty to
overcome. To get an optimal use of such domain decomposition methods, it is then
crucial that the constants arising in the analysis of the mortar formulation remain
independent (or at least weakly dependent) on the number and the size of the subdo-
mains. One can readily check that the only potential dependence on such parameters
is hidden in the coercivity constant of the broken bilinear form associated to the
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linearized elastostatics problem. In the framework of elliptic scalar problems, both
[Gop99, Bre03] and [BM00] have shown the independence of the coercivity constant
with respect to the number and the size of the subdomains, respectively when con-
sidering two and three-field mortar formulations with plane interfaces. An extension
to the vector elasticity case has been proposed by [Bre04]. By definition of a gener-
alized Scott and Zhang [SZ90] interpolation operator, we simplify and extend herein
the result to potentially curved interfaces.

In section 2, the fundamental assumptions and results arising in mortar element
methods to approximate the solution of the elastostatics problem (1) are recalled.
Well-posedness results are recalled in section 3, and we prove the independence of
the coercivity constant with respect to the number and the size of the subdomains
in section 4. In section 5, we recall the optimal convergence of the method by mesh
refinement, and generalize the analysis to the elastodynamics problem (2) in section
6.
The second paper (Part II: discontinuous Lagrange multipliers) proposes the analysis
of stabilized discontinuous mortar elements, proving the satisfaction of the fundamen-
tal assumptions. Some practical issues are pointed out: the choice of an appropriate
penalization term, and the exact integration of the constraint. Numerical tests are
also presented to confirm the analysis.

2 Nonconforming setting

2.1 Position of the problem

Let Ω ⊂ Rd (d = 2, 3), be an open set partitioned into K subsets (Ωk)1≤k≤K . We
denote by γkl = Ωk ∩ Ωl the interface between Ωk and Ωl, and the skeleton of the
internal interfaces is denoted by S =

⋃

k,l≥1 γkl. On the part ΓD of the boundary ∂Ω,
an homogeneous Dirichlet boundary condition is imposed. Concerning the coefficients
of the fourth order elasticity tensor E, we assume that the stress tensor is symmetric
whatever the deformation is in the material, namely for almost all x ∈ Ω:

∀ξ ∈ Rd×d, ξt = ξ, E(x) : ξ is a symmetric matrix.

Moreover, in the theoretical analysis, we will suppose that for all k ≥ 1, there exists
two constants ck and Ck, such that for almost all x ∈ Ωk:

∀ξ ∈ Rd×d, ξt = ξ, ck ξ : ξ ≤ (E(x) : ξ) : ξ ≤ Ck ξ : ξ. (3)

If the material of the subdomain Ωk has a Young modulus Ek , both ck and Ck are
proportional to Ek.
We introduce the following spaces:

H1
∗ (Ω) = {v ∈ H1(Ω)d, v|ΓD = 0},

H1
∗ (Ωk) = {v ∈ H1(Ωk)d, v|ΓD∩∂Ωk

= 0},

X =
{

v ∈ L2(Ω)d, vk = v|Ωk
∈ H1

∗ (Ωk), ∀k
}

=

K
∏

k=0

H1
∗ (Ωk),
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Figure 1: A decomposition of Ω into subdomains.

X being endowed with the H1 broken norm:

‖v‖X =

(

K
∑

k=0

‖v‖2
H1(Ωk)d

)

1
2

.

Here, in order to be scale independent when dealing with a large number of subdo-
mains, we use a scale invariant definition of the H1 norm:

‖v‖2
H1(Ωk)d =

1

(Lk)2
‖v‖2

L2(Ωk)d + ‖∇v‖2
L2(Ωk)d×d ,

Lk being a characteristic length of Ωk, for instance its diameter.
We are interested in finding u ∈ H1

∗ (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
∗ (Ω), (4)

where the continuous coercive bilinear form a is defined by:

a(u, v) =

∫

Ω

(E : ε(u)) : ε(v), ∀u, v ∈ H1
∗ (Ω),

and the continuous linear form l by:

l(v) =

∫

Ω

f · v +

∫

ΓN

g · v, ∀v ∈ H1
∗ (Ω).

This problem is classically well-posed by Lax-Milgram lemma, the Korn’s inequality
(see [DL72]) ensuring the coercivity of the bilinear form a over H1

∗ (Ω) × H1
∗ (Ω).
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2.2 Discretization

We introduce here a non-conforming discretization of the problem (4) using mortar
elements to be further defined later on. The discrete problem is proved to be well-posed
and error estimates are derived in the mesh-dependent norms already introduced and
used in [AT95, Woh99].

2.2.1 The mesh

For each 1 ≤ k ≤ K, we consider a family of shape regular affine meshes (Tk;hk
)hk>0

on the subdomain Ωk. This means that each element T is the image of a reference
element T̂ by an affine mapping JT . For each T ∈ Tk;hk

, we will denote its diameter:

h(T ) = diam(T ),

and the local mesh size by:
hk = sup

T∈Tk;hk

h(T ).

Then, a nonconforming family of domain based meshes (Th)h>0 over Ω is obtained by:

Th =

K
⋃

k=1

Tk,hk
, h = max

1≤k≤K
hk.

The skeleton S =
⋃

k,l≥1 γkl is partitioned into M interfaces (Γm)1≤m≤M , and can then
be decomposed as S =

⋃

1≤m≤M Γm. Moreover, we assume that for each 1 ≤ m ≤ M ,
there exists at least one domain Ωk with k ≥ 1 such that Γm ⊂ ∂Ωk, and denote
k(m) := k the name of one of these subdomains, taken once for all for each interface.
This side will said to be the non-mortar (or slave) side.

For each 1 ≤ m ≤ M , Γm inherits a family of meshes (Fm;δm)δm>0, obtained as
the trace of the volumic mesh (Tk(m);hk(m)

)hk(m)>0 of the slave subdomain over Γm.
We have denoted by:

δm = sup
F∈Fm;δm

h(F ).

We also denote by δm the size of the mesh on the mortar side:

δm = sup
T∈Tl;hl

,l6=k(m)

diam(T ∩ Γm).

Then, a family of interface meshes (Fδ)δ>0 can be defined over S by:

Fδ =

M
⋃

m=1

Fm;δm , δ = max
1≤m≤M

δm.

For each F ∈ Fm;δm , we denote by T (F ) ∈ Tk(m);hk(m)
the unique element T ∈

Tk(m);hk(m)
such that T ∩ S = F .

Moreover, the following assumption is made:
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Figure 2: A situation where the mesh F1;δ1 of the interface γ01 is inherited from the mesh
T0;h0

of Ω0. The assumption 1 would be violated if at the opposite, Ω1 were the slave side.

Assumption 1. F ∈ Fδ is always an entire face of T (F ) ∈ Th.

In other words, the construction of the interfaces (Γm)1≤m≤M respects the mesh of
the slave sides. An example of situation obeying to assumption 1 is given on figure 2.

Remark 1. For simplicity, the mesh is assumed to be affine but the following re-
sults are still valid for regular quasi-uniform quadrangular meshes, at least in 2D (see
[GR86]). In fact, the only assumptions to satisfy are the following standard inequali-
ties:

{

|ŵ|Hm(K̂) ≤ C diam(K)mmeas(K)−
1
2 |w|Hm(K),

|w|Hm(K) ≤ C diam(K)−mmeas(K)
1
2 |ŵ|Hm(K̂),

between the semi-norms of the function w defined on a mesh-element K and its trans-
formation ŵ defined on the corresponding reference element K̂.

Remark 2. In the following sections, C will stand for various constants independent
of the discretization.

2.2.2 Interface mesh-dependent spaces

We define here some mesh-dependent trace spaces, endowed with useful mesh-dependent
norms already introduced and used in [AT95, Woh99]. For each 1 ≤ m ≤ M , they are
defined by:

H
1/2
δ (Γm) = {φ ∈ L2(Γm)d, ‖φ‖2

δ, 12 ,m =
∑

F∈Fm;δm

1

h(F )
‖φ‖2

L2(F )d < +∞},

H
−1/2
δ (Γm) = {λ ∈ L2(Γm)d, ‖λ‖2

δ,− 1
2 ,m =

∑

F∈Fm;δm

h(F )‖λ‖2
L2(F )d < +∞},

endowed respectively with the norms ‖ · ‖δ, 12 ,m and ‖ · ‖δ,− 1
2 ,m. The product spaces

Wδ =
∏K

k=1 H
1/2
δ (Γm) and Mδ =

∏K
k=1 H

−1/2
δ (Γm), are then respectively endowed
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with the norms:

‖φ‖δ, 12
=

(

M
∑

m=1

‖φ‖2
δ, 12 ,m

)1/2

,

‖λ‖δ,− 1
2

=

(

M
∑

m=1

‖λ‖2
δ,− 1

2 ,m

)1/2

.

They can be viewed as dual spaces by means of the the L2 inner product:
∫

S

φ · λ ≤ ‖λ‖δ,−1
2
‖φ‖δ, 12

, ∀(φ, λ) ∈ Wδ × Mδ . (5)

The advantage of such spaces is that the corresponding norms are easily computable,
enabling a posteriori estimates [Woh99] and efficient penalization strategies as shown
in the second part of this paper.

2.3 Approximate problem

2.3.1 Nonconforming formulation

Let us define the discrete subspaces of degree q inside each subdomain :

Xk;hk
= {p ∈ H1

∗ (Ωk) ∩ C0(Ωk)d, p|T ∈ Pq(T ), ∀T ∈ Tk;hk
} ⊕ Bk;hk

,

with Pq = [Pq ]
d or [Qq ]

d. We have denoted by Pq (resp. Qq) the space of polynomials
of total (resp. partial) degree q, and have introduced the possibility of adding a space
Bk;hk

of interface bubble stabilization. Examples of such spaces will be introduced in
Part II. The corresponding product space is denoted by:

Xh =

K
∏

k=0

Xk;hk
⊂ X.

We introduce the following trace spaces on the non-mortar side:

Wm;δm = {p|Γm , p ∈ Xk(m);hk(m)
}, W 0

m;δm
= Wm;δm ∩ H1

0 (Γm)d,

and the corresponding product space W 0
δ =

∏M
m=1 W 0

m;δm
endowed with the mesh-

dependent norm ‖ · ‖δ, 12
.

In order to formulate the weak continuity constraint, the following spaces of dis-
continuous Lagrange multipliers are defined:

Mm;δm = {p ∈ L2(Γm)d, p|F ∈ Pq−1(F ), ∀F ∈ Fm,δm}, (6)

as well as the product space Mδ =
∏M

m=1 Mm;δm , endowed with the mesh-dependent

norm ‖ · ‖δ,− 1
2

and M =
∏M

m=1 L2(Γm)d. The following continuous bilinear form is
then introduced to impose interface weak continuity:

b : X × M → R

(v, λ) 7→ b(v, λ) =

M
∑

m=1

∫

Γm

[v]m · λm,

7



with [v]m = vk(m) − vl denoting the jump on γk(m)l ⊂ Γm. Then, the constrained
space of discrete unknowns can be defined as:

Vh = {uh ∈ Xh, b(uh, λh) = 0, ∀λh ∈ Mδ}.

In order to formulate the non-conforming approximate problem, it is standard to
consider the broken elliptic form:

ã : X × X → R

(u, v) 7→ ã(u, v) =
K
∑

k=1

ak(uk, vk),

with:

ak(uk, vk) =

∫

Ωk

(E : ε(uk)) : ε(vk).

We are then interested in finding (uh, λh) ∈ Xh × Mδ, such that:

{

ã(uh, vh) + b(vh, λh) = l(vh), ∀vh ∈ Xh,

b(uh, µh) = 0, ∀µh ∈ Mδ.
(7)

In other words, we solve our variational problem on the product space Xh under the
weak kinematic continuity constraint b(·, ·) = 0.

Remark 3. The theory proposed in Part I also applies to situations involving contin-
uous Lagrange multipliers defined on spaces like:

Mm;δm = {p ∈ C0(Γm), p|F ∈ Pq(F ), ∀F ∈ Fm;δm}.

2.3.2 Fundamental assumptions

In order to ensure the well-posedness of the problem (7), some fundamental assump-
tions have to be made. Concerning the compatibility of Xh and Mδ, we assume:

Assumption 2. For each interface 1 ≤ m ≤ M , there exists an operator:

πm : H
1/2
δ (Γm) → W 0

m;δm
,

such that for all v ∈ H
1/2
δ (Γm):

∫

Γm

(πmv) · µ =

∫

Γm

v · µ, ∀µ ∈ Mm;δm ,

with:
‖πmvm‖δ,12 ,m ≤ Cm‖v‖δ,12 ,m.

This assumption means that the projection perpendicular to the multiplier space onto
the trace space W 0

m;δm
with zero extension is continuous. This assumption will have
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to be checked for each choice of discretization. Its major consequence lies in the fact
that the weak-continuity constraint is onto, as shown in the next section.

Concerning the coercivity of ã over V ×V , where V is a constrained subspace of X
to be defined in that section, we have to consider Lagrange multipliers spaces which
are sufficiently rich on the interfaces to kill local rigid motions, defined on ω ⊂ Ω as
the elements of:

R(ω) = {x ∈ Rd 7→ t + a × x; t, a ∈ Rd}.
For that purpose, we introduce the following assumption over the Lagrange multipliers
spaces:

Assumption 3. For all 1 ≤ m ≤ M , we assume that there exists two integers 1 ≤
k, l ≤ K such that Γm = γkl and a minimal Lagrange multiplier space Mkl such that
Mkl ⊂ Mm;δm independently of the discretization. Moreover, we assume that for all
v ∈ X which is locally a rigid motion both over the subdomains Ωk and Ωl, that is
v|Ωk

∈ R(Ωk) and v|Ωl
∈ R(Ωl), we have:

∫

γkl

[v] · µ = 0 ∀µ ∈ Mkl =⇒ [v]kl = 0, (8)

where the jump of v over γkl is denoted by [v]kl.

Under assumption 3, the constrained subspace V of X on which the coercivity of the
broken bilinear form ã holds, is defined as:

V = {v ∈ X,

∫

γkl

[v] · µ = 0, ∀µ ∈ Mkl, 1 ≤ k, l ≤ K}.

3 Well-posedness

3.1 Inf-sup condition

The main consequence of assumption 2 is the inf-sup condition satisfied by the bilinear
form b expressing the mortar condition, as proved in [Woh01]:

Proposition 1. Under assumption 2, there exists a constant β > 0 such that:

inf
λh∈Mδ\{0}

sup
uh∈Xh\{0}

b(uh, λh)

‖λh‖δ,− 1
2
‖uh‖X

≥ β, (9)

where β is of the form:

β = C min
1≤m≤M

1

(Cm)2
,

where the constant Cm is the stability constant of πm defined in assumption 2, for
all 1 ≤ m ≤ M , and C is independent of the discretization and of the number of
subdomains.

Remark 4. In the absence of any triple point on the interface, that is if any function
defined on Γm has zero trace on all other interfaces Γl, l 6= m, the previous proposition
remains true even if one replaces W 0

m;δm
by Wm;δm in assumption 2.
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3.2 Minimal Lagrange multipliers spaces

For instance, the implication (8) of assumption 3 is true when the traces of first
order polynomial displacements over the interfaces belong to the Lagrange multipliers
spaces. This result made precise in the following lemma, is detailed in [Hau04]:

Lemma 1. By chosing Mkl as the restriction to γkl of first order polynomial displace-
ments, i.e:

Mkl = M1(γkl) = P1(Ω)d
∣

∣

γkl
:= {v|γkl

, v ∈ P1(Ω)d}, 1 ≤ k, l ≤ K,

where P1(Ω) is the space of first order polynomials over Ω, the implication (8) of
assumption 3 holds.

Remark 5. When considering second order approximations for the displacements,
first order polynomials must belong to the space of Lagrange multipliers in order to
achieve an optimal rate of convergence, as shown in the proof of proposition 5, page 27.
The choice of Mkl given by lemma 1 is then natural. Nevertheless, when considering
first order approximations of the displacements, and when more than two subdomains
share a common edge, it is impossible for stability reason to conserve all the affine
functions in the spaces of Lagrange multipliers. In particular, the order of Lagrange
multipliers should be reduced on the interface elements having a non-empty intersec-
tion with the boundary of the interface, as pointed out in [BMP93, BMP94] for the
scalar case.

It is possible to weaken the assumption of lemma 1, for instance by using piece-
wise constant Lagrange multipliers, at least over interfaces having a tensor product
structure, as detailed in [Hau04]:

Lemma 2. We assume that for all 1 ≤ k, l ≤ K such that Ωk and Ωl have a non-
empty intersection, the interface γkl = ∂Ωk ∩ ∂Ωl between the subdomains is planar.
Denoting by Gkl its center of gravity defined by:

Gkl =
1

meas(Γkl)

∫

Γkl

x dx,

we can characterize γkl by:

γkl = {x ∈ R3, x − Gkl = ξ1f1 + ξ2f2, (ξ1, ξ2) ∈ [−1, 1]2},

where f1, f2 ∈ R3 are linearly independent. We introduce the following partition over
γkl:



















γ++
kl = {ξ1f1 + ξ2f2; ξ1 ∈ [0; 1] and ξ2 ∈ [0; 1]},

γ+−
kl = {ξ1f1 + ξ2f2; ξ1 ∈ [0; 1] and ξ2 ∈ [−1; 0]},

γ−−
kl = {ξ1f1 + ξ2f2; ξ1 ∈ [−1; 0] and ξ2 ∈ [−1; 0]},

γ−+
kl = {ξ1f1 + ξ2f2; ξ1 ∈ [−1; 0] and ξ2 ∈ [0; 1]},

and assume that Mkl is made of piecewise constant functions over the sets γ++
kl , γ+−

kl ,
γ−−

kl and γ−+
kl . Then, the assertion (8) of assumption 3 holds.
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γ kl

γ kl

γ kl
+ −

− −

γ kl
+ +

− +

Remark 6. In the proof of lemma 2, the space of Lagrange multipliers we have used
to check the implication (8) of assumption 3, is in fact a subspace of dimension 3 of
the proposed space Mkl.

3.3 Standard result of coercivity

We are now ready to recall the standard coercivity result for the bilinear form:

d̃(u, v) :=

K
∑

k=1

dk(u, v), ∀u, v ∈ V

with:

dk(u, v) :=

∫

Ωk

ε(u) : ε(v), ∀u, v ∈ V.

The now standard proof, done by contradiction as in [BMP93] for example in the
scalar case, does not guarantee the independence on the number and the size of the
subdomains. We recall it nevertheless for completeness.

Proposition 2. Let Ω be a bounded C1connected open set. The assumption 3 is
supposed to be satisfied. Then, there exists a constant C > 0 possibly depending on
the number and sizes of subdomains such that for all v ∈ V , the following inequality
holds:

K
∑

k=1

∫

Ωk

ε(v) : ε(v) ≥ C

(

K
∑

k=1

1

diam(Ωk)2

∫

Ωk

v2 +

∫

Ωk

∇v : ∇v

)

.

4 Uniform coercivity

We improve herein the previous coercivity result by showing the independence of
the coercivity constant with respect to the number, the size and the shape of the
subdomains. Such a result is known for scalar elliptic problems, when interfaces are
plane, as proved in [Gop99, Bre03]. A proof for the vector case is also proposed
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in a recent publication [Bre04]. The originality of our approach is that it uses a
generalization of the Scott and Zhang interpolation [SZ90], and is valid for curved
interfaces.

4.1 Fundamental assumptions

Let us introduce the assumptions used in the present section. First, we assume that
each subdomain is a “compact deformation” of a reference domain, the reference
domains being in finite number. More precisely:

Assumption 4. It is assumed that:

1. there exists a finite collection of reference domains (Ω̂j)1≤j≤J of unit diameter,

of compact sets (Kj)1≤j≤J and of maps ϕj : Ω̂j ×Kj → Rd ,1 ≤ j ≤ J such that
for all 1 ≤ j ≤ J :

diam
(

ϕj(Ω̂j , p)
)

= 1, ∀p ∈ Kj ,

and the following application:

Kj → W 1,∞(Ω̂j)
d,

p 7→ ϕj(·, p),

is continuous;

2. for all 1 ≤ j ≤ J , there exists a constant Cj > 0 such that:

det
∂ϕj

∂x̂
(x̂, p) ≥ Cj , ∀p ∈ Kj , for almost all x̂ ∈ Ω̂j ;

in other words, for all p ∈ Kj , ϕj(·, p) is a uniform homeomorphism;

3. for all (Ωk)1≤k≤K there exists a j with 1 ≤ j ≤ J and an element p ∈ Kj such
that within a scaling factor:

1

diam(Ωk)
Ωk = ϕj(Ω̂j , p).

Moreover, we consider that:

4. there exists a finite collection of reference interfaces (γ̂j)1≤j≤J , with γ̂j ⊂ ∂Ω̂j,
1 ≤ j ≤ J , and that the application:

Kj → W 1,∞(γ̂j)
d,

p 7→ ϕj(·, p),

is continuous,

5. for all 1 ≤ j ≤ J , there exists a constant Cj > 0 such that:

det
∂ϕj

∂x̂
(x̂, p) ≥ Cj , ∀p ∈ Kj , for almost all x̂ ∈ γ̂j ,

and when γ is a part of the boundary of Ωk = ϕj(Ω̂j , p), we assume that:
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6.
1

diam(γ)
γ = ϕj(γ̂j , p).

7. there exists three constants κ, κ′, κ′′ > 0 such that for all 1 ≤ k ≤ K:










ρ(Ωk) ≥ κ diam(Ωk),

diam(γkl) ≥ κ′ diam(Ωk), 1 ≤ l ≤ K,

|γkl| ≥ κ′′ diam(Ωk)d−1,

(10)

where ρ(Ωk) denotes the diameter of the largest ball contained in Ωk . The
constants κ,κ′ and κ′′ must remain independent of the number and the size of
the subdomains. As a consequence of (10), the number of subdomains sharing a
common intersection remains bounded by a fixed integer P , independently of the
chosen regular decomposition.

The assumptions 1 to 6 are used to show a technical result of shape-independence of
the constant in Korn-like inequalities within a proper scaling, as detailed in [Hau04],
page 205. Assumption 7 will be used to show our interpolation estimates.

To deal with curved interfaces in the framework of Scott-Zhang like interpolation,
we will need the technical assumption 5, page 15, detailed hereafter in the definition
of the interpolation operator. The present coercivity result will be shown on the
constrained space:

V = {v ∈ X,

∫

γkl

[v] · µ = 0, ∀µ ∈ P1(γkl)
d}

In this section, we assume that all these assumptions are satisfied.

4.2 Generalized Korn’s inequality

We will use hereafter the two following generalized Korn’s inequalities reviewed and
detailed in [Hau04], page 205, for domains satisfying the assumptions of section 4.1.

Lemma 3. There exists a constant CP such that for all Ωk and γkl satisfying the
conditions defined in section 4.1, the following inequality holds for all v ∈ H 1(Ωk)d:

‖v‖2
H1(Ωk)d ≤ CP





1

diam(Ωk)

(

sup
µ∈Mkl

∫

γkl
v · µ

‖µ‖L2(γkl)d

)2

+ dk(v, v)



 ,

where CP does not depend on Ωk and γkl.

Lemma 4. There exists a constant CN such that for all Ωk and γkl satisfying the
conditions defined in section 4.1, the following inequality holds for all v ∈ H 1(Ωk)d:

‖v‖2
H1(Ωk)d ≤ CN





1

diam(Ωk)2

(

sup
r∈R(Ωk)

∫

Ωk
v · r

‖r‖L2(Ωk)d

)2

+ dk(v, v)



 ,

where CN does not depend on Ωk and γkl.

Then, we deduce the following trace lemma:
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Lemma 5. There exists a constant CT such that for all Ωk and γkl satisfying the
conditions defined in section 4.1, the following inequality holds for all v ∈ H 1(Ωk)d:

1

diam(Ωk)

(

sup
µ∈Mkl

∫

γkl
v · µ

‖µ‖L2(γkl)d

)2

≤ CT





1

diam(Ωk)2

(

sup
r∈R(Ωk)

∫

Ωk
v · r

‖r‖L2(Ωk)d

)2

+ dk(v, v)



 ,

where CT does not depend on Ωk and γkl.
Proof : By using the Cauchy-Schwarz inequality, the Sobolev trace theorem (with
proper scaling) and the lemma 4, we get:

1

diam(Ωk)

(

sup
µ∈Mkl

∫

γkl
v · µ

‖µ‖L2(γkl)d

)2

≤ 1

diam(Ωk)

∫

γkl

v2

≤ C

(

1

diam(Ωk)2

∫

Ωk

v2 +

∫

Ωk

|∇v|2
)

≤ CCN





1

diam(Ωk)2

(

sup
r∈R(Ωk)

∫

Ωk
v · r

‖r‖L2(Ωk)d

)2

+ dk(v, v)



 ,

hence the proof. �

4.3 A Scott & Zhang like interpolation operator for mortar
methods

The proposed interpolation operator builds a conforming approximation of a non-
conforming function defined in the constrained space V of functions whose jump is
orthogonal to interface Lagrange multipliers, with the usual stability properties shown
in [SZ90], even when considering curved interfaces between the subdomains.

Construction of a coarse conforming basis - Let us introduce a coarse
conforming triangulation TH of Ω, as shown on figure 3, which satisfies the following
conditions:

1. Each T ∈ TH is totally included in a subdomain Ωk.

2. The tetrahedra in TH possibly have curved faces along the skeleton interface S.

3. The tetrahedra T ∈ TH in Ωk are such that ρ(T ) ≥ Cdiam(Ωk), with ρ(T ) the
diameter of the largest ball included in T .

We define on TH the following conforming approximation space:

XH = {v ∈ H1(Ω), v|T ∈ P1(T ), T ∈ TH},

where P1(T ) denotes the space of affine applications over T . The vertices of the coarse
conforming triangulation TH are denoted by (Mi)1≤i≤I , and the associated nodal basis
of XH by (φi)1≤i≤I such that:

φi(Mj) = δij ,

using the Kronecker symbol δij = 1 for i = j and 0 otherwise.

14



Ω Ω 1

Ω

2

3

Figure 3: A coarse conforming triangulation TH of Ω = Ω1 ∪Ω2 ∪Ω3 satisfying conditions
1 and 2.

Set of interfaces - Let us denote by ZS the set of interfaces γkl between two
adjacent subdomains, and by Z̊ the set of internal faces of the triangulation TH , that
is the faces of the triangles T ∈ TH , which are not included in the skeleton interface
S. The total set of interfaces is then defined by:

Z = ZS ∪ Z̊.

To deal with curved interfaces in the framework of Scott-Zhang like interpolation, we
need the following assumption:

Assumption 5. There exists a constant C > 0 such that for each node Mi of the
coarse triangulation TH , there exists an interface γi ∈ Z with Mi ∈ γi such that for
all matrix B ∈ Rd×d, we have:

1

|γi|

∫

γi

|B · (x − Gγi)|2 dx ≥ C λ(B, γi)
2 diam(γi)

2, (11)

where Gγ is the center of gravity of γ, i.e:

Gγ =
1

|γ|

∫

γ

x dx,

and λ(B, γ) the maximal singular value of B on γ:

λ(B, γ)2 = sup
x∈γ

|B · (x − Gγ)|2

|x − Gγ |2
.

Remark 7. The assumption 5 means that for all node Mi of the coarse triangula-
tion TH , there exists an interface sharing Mi and having a finite “length” along the
principal direction of displacement for all affine fields of displacements. As a counter-
example, let us consider the curved interface depicted in the following picture:
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x
γ

ε

y

L

G

and the linear function v(x, y) = ε−1y = B · x. It follows that λ(B, γ)2 ' 1

L2
and

1

|γi|

∫

γi

|B · (x − Gγi)|2 dx ' 1

L

∫ ε

0

(

ε−1y
)2

dy ' ε

L
.

As a consequence, the assertion (11) is not satisfied on γ uniformly in ε. The reason
is that in this case, γ is nearly orthogonal to the principal direction of displacement.

Nevertheless, the assertion (11) is satisfied for any plane interface γ whatever the
matrix B ∈ Rd×d, as shown in the following lemma:

Lemma 6. The assumption 5 is satisfied when choosing as γi any plane interface
sharing the node Mi, provided γi is shape regular that is:

ρ(γi) ≥ Cdiam(γi).

Proof : The present proof is done in three dimensions. Let γ be a plane interface, and
Q a square of maximal edge length (= ρ(γ)/

√
2) included in the largest ball contained

in γ (as shown in the following picture).

 (   )ρ γ

Q

γ

We write x−Gγ = x1e1+x2e2 = J ·x, where e1 and e2 are two orthogonal vectors such
that Gγ + span{e1, e2} = γ. As the matrix J t · Bt · B · J is symmetric semi-definite
positive, it can be diagonalized and we still denote by e1 and e2 its eigenvectors,
associated to the eigenvalues µ2

1 and µ2
2 with µ2

2 ≥ µ2
1. Finally, we choose among all

the possible squares Q, the one whose edges are parallel to the eigenvectors:

Q = {x1e1 + x2e2; x1 ∈ [X1 − a, X1 + a], x2 ∈ [X2 − a, X2 + a]},

where the center of the largest ball in γ is Gγ + X1e1 + X2e2, and 2a = ρ(γ)/
√

2.
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Then, we get:

1

|γ|

∫

γ

|B · (x − Gγ)|2 ≥ 1

|γ|

∫

Q

|B · (x − Gγ)|2

≥ 1

|γ|

∫ X1+a

X1−a

∫ X2+a

X2−a

(

µ2
1(x1)

2 + µ2
2(x2)

2
)

dx1dx2

≥ 2a

3|γ|
(

µ2
1

(

(X1 + a)3 − (X1 − a)3
)

+ µ2
2

(

(X2 + a)3 − (X2 − a)3
))

.

Moreover, we have:

(X1 + a)3 − (X1 − a)3 = 2a
(

(X1 + a)2 + (X1 + a)(X1 − a) + (X1 − a)2
)

= 2a
(

3X2
1 + a2

)

≥ 2a3,

leading to:

1

|γ|

∫

γ

|B · (x − Gγ)|2 ≥ 2a

3|γ|2a3(µ2
1 + µ2

2)

≥ 2a

3|γ|2a3µ2
2.

From shape regularity, we have |γ| ≤ Cdiam(γ)2 ≤ Cρ(γ)2 = 2Ca2, and therefore:

1

|γ|

∫

γ

|B · (x − Gγ)|2 ≥ Ca2µ2
2

≥ Cdiam(γ)2µ2
2,

but by definition:
µ2

2 = λ(B, γ)2,

which ends the proof. �

The main consequence from assumption 5 is the simple:

Lemma 7. Under assumption 5, there exists a constant C > 0 such that for all locally
affine functions v ∈ P1(Ω)d, we can find at each node M of the coarse mesh TH , an
interface γ 3 M for which:

‖v‖2
L∞(γ)d ≤ C

1

|γ| ‖v‖
2
L2(γ)d .

Proof : Let v be locally in P1(Ω)d. For all γ ∈ Z, there exists a vector v(Gγ) ∈ Rd

and a matrix B ∈ Rd×d such that:

v(x) = v(Gγ) + B · (x − Gγ), ∀x ∈ γ,

17



the matrix B being independent of the choice of γ ∈ Z. From assumption 5, we can
always find at each node Mi of the coarse mesh TH , an interface γ = γi such that (11)
is satisfied. Then:

‖v‖2
L∞(γ) ≤ 2|v(Gγ)|2 + 2λ(B, γ)2diam(γ)2,

and from assumption 5, we deduce:

1

|γ| ‖v‖
2
L2(γ) = v(Gγ)2 +

1

|γ|

∫

γ

|B · (x − Gγ)|2

≥ C
(

v(Gγ)2 + λ(B, γ)2diam(γ)2
)

≥ C‖v‖2
L∞(γ).

�

Conforming approximation - For all functions v ∈ X , we are now ready to
define the conforming approximation Pv ∈ H1

∗ (Ω) by:

Pv =
∑

i≥1

piv(Mi) φi, (12)

where:
piv = πγiv,

in which πγ is the L2(γ)d projection over P1(γ)d (the restrictions to γ of functions in
P1(Ω)d), and γi ∈ Z is among the interfaces sharing Mi, the one which maximizes:

A(γ) = inf
B∈Rd×d

1

λ(B, γ)2diam(γ)2
1

|γ|

∫

γ

|B · (x − Gγ)|2 dx.

Let us notice that in the expression πγiv, we choose arbitrarily the side of γi on which
the trace of v is taken. When considering v ∈ V with the constrained space:

V = {v ∈ X,

∫

γkl

[v] · µ = 0, ∀µ ∈ P1(γkl)
d, 1 ≤ k, l ≤ K},

this choice has no influence because:
∫

γi

v+ · µ =

∫

γi

v− · µ, ∀µ ∈ P1(γi)
d,

entailing that πγiv
+ = πγiv

−.

Remark 8. In this section, we use the Lagrange multipliers spaces Mkl = P1(γkl)
d.

Nevertheless, one can adopt any Mkl such that for all v ∈ L2(γkl)
d, there exists a

solution πγkl
v ∈ P1(γkl)

d of:

∫

γkl

πγkl
v · µ =

∫

γkl

v · µ, ∀µ ∈ Mkl,
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satisfying:

‖πγkl
v‖L2(γkl)d ≤ C sup

µ∈Mkl

∫

γkl

v · µ

‖µ‖L2(γkl)d

. (13)

Such a statement is true when adopting Lagrange multipliers satisfying the assumption
3, but the constant a priori depends on the shape of the interface γkl.

Proposition 3. The interpolation operator P :

K
∏

k=1

H1(Ωk)d → (XH)d defined by (12)

satisfies the following local inequality for all 1 ≤ k ≤ K:

‖v −Pv‖2
H1(Ωk)d ≤ C





∑

l∈N (Ωk)

dl(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



 , (14)

where N (Ωk) denotes the set of indices of the subdomains sharing a vertex with Ωk,
and dk is the bilinear form over H1(Ωk)d × H1(Ωk)d defined as:

dk(u, v) =

∫

Ωk

ε(u) : ε(v), ∀u, v ∈ H1(Ωk)d.

Moreover, we have denoted by Sk the union of the neighboring interfaces of Ωk:

Sk =
⋃

l,m∈N (Ωk)

γlm,

and:
π[v](x) = πγ [v](x), for all x ∈ γ, with γ ∈ ZS .

Moreover, when the decomposition into subdomains satisfies the conditions defined in
section 4.1, the constant C is independent of the diameter and the shape of the sub-
domains. The definitions of N (Ωk) and Sk are illustrated on figure 4.

Proof : The proof is decomposed into 4 parts. For convenience, we will denote by
Ok the neighborhood of Ωk defined as:

Ok =
⋃

l∈N (Ωk)

Ωl.

1. Range of P1(Ok)d.
Let us consider the affine displacement v ∈ P1(Ok)d. For all γ ∈ Z ∩ Ok, the
trace of v over γ belongs to P1(γ)d by definition, and therefore:

πγv = v, on γ.

As a consequence, we obtain for all i ≥ 1 satisfying Mi ∈ Ωk, that piv = v,
hence:

(Pv)|Ωk
=

∑

i≥1,Mi∈Ωk

v(Mi)φi = v|Ωk
,

because v|Ωk
∈ (XH)d.
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Ωk

Ω

Figure 4: A triangular domain decomposition of Ω ⊂ R2, with illustration of the subdo-
mains (Ωl)l∈N (Ωk) sharing a vertex with Ωk (inside the dark thick line), and of the reunion
Sk of the neighboring interfaces of Ωk (in dotted lines).

2. Stability of P in L2(Ωk)d.
Let v ∈ X . It is readily obtained from definition (12), that:

‖Pv‖2
L2(Ωk)d ≤ max

i,Mi∈Ωk

|piv(Mi)|2
∫

Ωk





∑

1≤i≤I

|φi|





2

≤ max
i,Mi∈Ωk

‖πγiv‖2
L∞(γi)d

∫

Ωk





∑

1≤i≤I

|φi|





2

.

Under assumption 5, we obtain from lemma 7 that:

‖πγiv‖2
L∞(γi)d ≤ C

1

|γi|
‖πγiv‖2

L2(γi)d ,

and because πγi is the L2(γi)
d projection over P1(γi)

d, we get:

‖πγiv‖2
L2(γi)d ≤ ‖v‖2

L2(γi)d ,

resulting in:

‖Pv‖2
L2(Ωk)d ≤ max

i,Mi∈Ωk

1

|γi|
‖v‖2

L2(γi)d

∫

Ωk





∑

1≤i≤I

|φi|





2

. (15)

As γi is a part of the boundary of a domain Ωl(i) corresponding to the side of γi

on which the trace of v is taken, we get from the Sobolev trace theorem that:

1

diam(Ωl(i))
‖v‖2

L2(γi)d ≤ C

(

1

diam(Ωl(i))2

∫

Ωl(i)

v2 +

∫

Ωl(i)

|∇v|2
)

, (16)
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with C uniformly bounded due to the shape regularity of Ωl(i). Moreover, we
have:

∫

Ωk





∑

1≤i≤I

|φi|





2

=

∫

Ωk

dx = |Ωk|, (17)

because by construction
∑

1≤i≤I |φi| = 1. We deduce by exploiting the expres-
sions (16) and (17) in (15) that:

‖Pv‖2
L2(Ωk)d ≤ C max

i,Mi∈Ωk

|Ωk|
|γi|

diam(Ωl(i))

(

1

diam(Ωl(i))2

∫

Ωl(i)

v2 +

∫

Ωl(i)

|∇v|2
)

≤ C max
i,Mi∈Ωk

|Ωk|
|Ωl(i)|

diam(Ωl(i))
2

(

1

diam(Ωl(i))2

∫

Ωl(i)

v2 +

∫

Ωl(i)

|∇v|2
)

because from the shape regularity conditions (10), we get:

|γi| diam(Ωl(i)) ≥ κ′′diam(Ωl(i))
d−1 diam(Ωl(i))

= κ′′ diam(Ωl(i))
d

≥ C κ′′ |Ωl(i)|.

Therefore, there exists a subdomain Ωl sharing a node with Ωk such that:

1

diam(Ωl)2
‖Pv‖2

L2(Ωk)d ≤ C
|Ωk|
|Ωl|

(

1

diam(Ωl)2

∫

Ωl

v2 +

∫

Ωl

|∇v|2
)

,

after a division of the two sides of the inequality by diam(Ωl)
2.

Let us show now that diam(Ωl) ≤ Cdiam(Ωk). From the shape regularity (10)
of the decomposition, we can build a sequence of (less than) P adjacent subdo-
mains (Ωlm)1≤m≤P such that Ωlm and Ωlm+1 share the interface γlmlm+1 with
Ωl1 = Ωk and ΩlP = Ωl, as illustrated on the following figure (for triangular
subdomains):

Ω l 1
=Ω k

γ i

Ω l

Ω l

2

3

M i

=Ω Ω ll 4
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From the shape regularity (10) of the decomposition into subdomains, we then
have:

diam(Ωlm+1) ≤ 1

κ′
diam(γlmlm+1)

≤ 1

κ′
diam(Ωlm), (18)

and by iteration of (18), we get:

diam(Ωl) ≤ 1

(κ′)P
diam(Ωk). (19)

Considering that the roles of Ωk and Ωl can be swapped in the previous in-
equality (19), we deduce that |Ωk| ≤ C|Ωl| from the shape regularity (10) of the
decomposition because:

|Ωk| ≤ C diam(Ωk)d

≤ C
1

(κ′)dP
diam(Ωl)

d

≤ C
1

(κ′)dP

1

κd
ρ(Ωl)

d

≤ C
1

(κ′)dP

1

κd
|Ωl|.

As a consequence, we obtain from (18) with a still generic use of the constant
C, that there exists a subdomain Ωl sharing a node with Ωk such that:

1

diam(Ωk)2
‖Pv‖2

L2(Ωk) ≤ C

(

1

diam(Ωl)2

∫

Ωl

v2 +

∫

Ωl

|∇v|2
)

. (20)

3. Stability of P in H1(Ωk)d.
Proceeding as previously, we get for all v ∈ X the following bound on the
H1(Ωk)d semi-norm of the interpolate function Pv:

|Pv|2H1(Ωk)d ≤ max
1≤i≤I

|piv(Mi)|2
∫

Ωk





∑

1≤i≤I

|∇φi|





2

≤ C max
i,Mi∈Ωk

diam(Ωl(i))
2

|Ωl(i)|

(

1

diam(Ωl(i))2

∫

Ωl(i)

v2 +

∫

Ωl(i)

|∇v|2
)

∫

Ωk





∑

1≤i≤I

|∇φi|





2

.

(21)
Moreover, by decomposing the last integral over Ωk into a sum of integrals over
the triangles of the coarse triangulation TH belonging to Ωk:

∫

Ωk





∑

1≤i≤I

|∇φi|





2

=
∑

T∈TH ,T⊂Ωk

∫

T





∑

1≤i≤I

|∇φi|





2

,
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and using the fact that for all tetrahedra T ∈ TH belonging to Ωk, we have the
standard result:

|∇φi| ≤ C
1

ρ(T )
≤ C

1

diam(Ωk)
,

using the assumption 3- made for the coarse triangulation TH , we conclude that:

∫

Ωk





∑

1≤i≤I

|∇φi|





2

≤ C

diam(Ωk)2
|Ωk|. (22)

Hence from (21) and (22), we get by using the same arguments of shape regularity
of the decomposition as in the previous part of the proof that there exists a
subdomain Ωl sharing a node with Ωk (the same as in (20)) such that:

|Pv|2H1(Ωk) ≤ C

(

1

diam(Ωl)2

∫

Ωl

v2 +

∫

Ωl

|∇v|2
)

.

4. Approximation property
For all v ∈ X the interpolation Pv ∈ (XH)d satisfies from the two previous
points of the proof, the following stability property:

‖Pv‖2
H1(Ωk)d ≤ C‖v‖2

H1(Ωl)d . (23)

For all rigid motion p ∈ R(Ok), which is a fortiori a linear function of P1(Ok)d,
we have from point 1 that Pp = p on Ωk, resulting in the following bounds by
using the triangular inequality and the stability estimate (23):

‖v −Pv‖2
H1(Ωk)d = ‖v − p + P(p − v)‖2

H1(Ωk)d

≤ 2‖v − p‖2
H1(Ωk)d + 2‖P(p − v)‖2

H1(Ωk)d

≤ C
(

‖v − p‖2
H1(Ωk)d + ‖v − p‖2

H1(Ωl)d

)

≤ C
∑

l∈N (Ωk)

‖v − p‖2
H1(Ωl)d .

By taking p as the extension over Ω of the rigid motion projection of v over Ωk,
we get from lemma 8, page 24 that:

‖v −Pv‖2
H1(Ωk)d ≤ C





∑

l∈N (Ωk)

dl(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



 ,

which is exactly (14).

�

In the previous proof, we have used the following lemma which is a generalization to
non-conforming vector functions of the Deny-Lions [DL55] or Bramble-Hilbert [BH70]
lemma involving the broken elasticity semi-norm.
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Lemma 8. There exists a constant C > 0 such that for all v ∈ X:

∑

l∈N (Ωk)

‖v − p‖2
H1(Ωl)d ≤ C





∑

l∈N (Ωk)

dl(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



 , (24)

where p ∈ R(Ω) is the rigid motion satisfying:
∫

Ωk

p · w =

∫

Ωk

v · w, ∀w ∈ R(Ω).

Moreover, provided the decomposition into subdomains satisfy the shape regularity con-
dition defined in section 4.1, the constant C is independent of the size and the shape
of the neighbor subdomains.

Proof : We prove herein the announced upper bound for the quantity
∑

l∈N (Ωk)

‖v − p‖2
H1(Ωl)d ,

in which the rigid motion p ∈ R(Ω) is defined by:
∫

Ωk

p · r =

∫

Ωk

v · r, ∀r ∈ R(Ωk).

• First, it follows from lemma 4 that:

‖v−p‖2
H1(Ωk)d ≤ CN





1

diam(Ωk)2

(

sup
r∈R(Ωk)

∫

Ωk
(v − p) · r

‖r‖L2(Ωk)d

)2

+ dk(v − p, v − p)



 = CN dk(v, v),

by definition of the local rigid motion projection p.
• If Ωl shares an interface with Ωk, we obtain from lemmas 3 and 5 that:

‖v − p‖2
H1(Ωl)d

≤ CP





1

diam(Ωl)

(

sup
µ∈Mkl

∫

γkl
(v − p)|Ωl

· µ
‖µ‖L2(γkl)d

)2

+ dl(v, v)





≤ 2 CP





1

diam(Ωl)

(

sup
µ∈Mkl

∫

γkl
(v − p)|Ωk

· µ
‖µ‖L2(γkl)d

)2

+ dl(v, v) +
1

diam(Ωl)

∫

γkl

(πγkl
[v])2





≤ 2 CP





diam(Ωk)

diam(Ωl)
CT





1

diam(Ωk)2

(

sup
r∈R(Ωk)

∫

Ωk
(v − p) · r

‖r‖L2(Ωk)d

)2

+ dk(v, v)



+ dl(v, v)





+2 CP
1

diam(Ωl)

∫

γkl

(πγkl
[v])2

= 2 CP

(

diam(Ωk)

diam(Ωl)
CT dk(v, v) + dl(v, v)

)

+ 2 CP
1

diam(Ωl)

∫

γkl

(πγkl
[v])2

≤ C

(

dk(v, v) + dl(v, v) +
1

diam(Ωl)

∫

γkl

(πγkl
[v])2

)

, (25)
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because we have diam(Ωk) ≤ Cdiam(Ωl) as in the step 2 of the proof of proposition
3.
• For other l ∈ N (Ωk), we proceed by the same technique used in the step 2 of
the proof of proposition 3, by reasonning on a sequence of adjacent subdomains, and
obtain as above:

‖v − p‖2
H1(Ωlm+1

)d

≤ CP





1

diam(Ωlm+1)

(

sup
µ∈Mlmlm+1

∫

γlmlm+1

(v − p)|Ωlm+1
· µ

‖µ‖L2(γlmlm+1
)d

)2

+ dlm+1(v, v)





≤ 2 CP





1

diam(Ωlm+1)

(

sup
µ∈Mlmlm+1

∫

γlmlm+1
(v − p)|Ωlm

· µ
‖µ‖L2(γlmlm+1

)d

)2

+ dlm+1(v, v)





+2 CP
1

diam(Ωlm+1)

∫

γlmlm+1

(πγlmlm+1
[v])2

≤ 2 CP
diam(Ωlm)

diam(Ωlm+1)
CT





1

diam(Ωlm)2

(

sup
r∈R(Ωlm )

∫

Ωlm
(v − p) · r

‖r‖L2(Ωlm )d

)2

+ dlm(v − p, v − p)





+2 CP

(

dlm+1(v, v) +
1

diam(Ωlm+1)

∫

γlmlm+1

(πγlmlm+1
[v])2

)

≤ 2 CP

(

diam(Ωlm)

diam(Ωlm+1)
CT ‖v − p‖2

H1(Ωlm )d + dlm+1(v, v) +
1

diam(Ωlm+1)

∫

γlmlm+1

(πγlmlm+1
[v])2

)

,

from Cauchy-Schwarz inequality. From the shape regularity (10), it follows that
diam(Ωk) ≤ Cdiam(Ωlm+1) and diam(Ωlm) ≤ Cdiam(Ωlm+1) as in the step 2 of
the proof of proposition 3, and we get:

‖v − p‖2
H1(Ωlm+1

)d

≤ CCP

(

CT ‖v − p‖2
H1(Ωlm )d + dlm+1(v, v) +

1

diam(Ωk)

∫

γlmlm+1

(πγlmlm+1
[v])2

)

.

By induction on m and from (25), it is then obtained from #N (Ωk) ≤ P that:

‖v − p‖2
H1(Ωl)d ≤ C(CP CT )P CN





∑

j∈N (Ωk)

dj(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



 ,

and therefore:

∑

l∈N (Ωk)

‖v − p‖2
H1(Ωl)d ≤ C(CP CT )P CN

∑

l∈N (Ωk)





∑

j∈N (Ωk)

dj(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2





≤ CP (CP CT )P CN





∑

j∈N (Ωk)

dj(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



 ,
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hence the proof. �

Remark 9 (Satisfaction of a Dirichlet homogeneous boundary condition).
If v ∈ X satisfies a Dirichlet homogeneous boundary condition on the part ΓD of the
boundary of the domain Ω, its interpolation Pv has the same boundary value on ΓD

provided:

• TH ∩ ΓD is a (possibly curved) triangulation of ΓD,

• the nodes Mi ∈ ΓD are associated to faces γi ∈ Z contained in ΓD.

4.4 Uniform coercivity result

We improve herein the coercivity result from proposition 2 by showing that the coer-
civity constant is independent of the number and the size of the subdomains:

Proposition 4. There exists a constant C > 0 independent of any decomposition of
Ω into subdomains satisfying the assumptions of section 4.1, such that for all displace-
ments fields v ∈ X:

‖v‖2
X ≤ C





K
∑

k=1

dk(v, v) +
∑

1≤k<l≤K

1

diam(γkl)

∫

γkl

(πγkl
[v])

2



 . (26)

Proof : For all v ∈ V , the conforming interpolate function Pv ∈ (XH)d ⊂ H1(Ω)d

satisfies the same Dirichlet boundary condition as v (see remark 9) resulting in the
usual coercivity result, only depending on the shape of Ω:

d̃(Pv,Pv) = d(Pv,Pv) ≥ C‖Pv‖2
H1(Ω)d = C‖Pv‖2

X . (27)

Consequently, we get from (27) and proposition 3 that:

‖v‖2
X = ‖v −Pv + Pv‖2

X ,

≤ 2
K
∑

k=1

‖v −Pv‖2
H1(Ωk)d + 2

K
∑

k=1

‖Pv‖2
H1(Ωk)d ,

≤ C

K
∑

k=1





∑

l∈N (Ωk)

dl(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



+ Cd̃(Pv,Pv).

Moreover, we obtain by the triangular inequality and the use of proposition 3 that:

d̃(Pv,Pv) = d̃(Pv − v + v,Pv − v + v)

≤ 2d̃(Pv − v,Pv − v) + 2d̃(v, v)

≤ 2

K
∑

k=1

|Pv − v|2H1(Ωk)d + 2d̃(v, v)

≤ C

K
∑

k=1





∑

l∈N (Ωk)

dl(v, v) +
1

diam(Ωk)

∫

Sk

(π[v])2



+ 2d̃(v, v),
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which leads to the final estimate:

‖v‖2
X ≤ C





K
∑

k=1

dk(v, v) +
∑

1≤k<l≤K

1

diam(γkl)

∫

γkl

(πγkl
[v])2



 , ∀v ∈ X, (28)

by exploiting the fact that #N (Ωk) ≤ P , and diam(Ωk) ≥ diam(γkl). �

4.5 Existence result for problem (7)

From assumption 3, we have Vh ⊂ V independently of the discretization, and get the
uniform coercivity of the bilinear form ã over Vh × Vh. Indeed, for all vh ∈ Vh, we get
from (26) that:

ã(vh, vh) =

K
∑

k=1

∫

Ωk

(E : ε(vh)) : ε(vh)

≥ min
k≥1

(ck)

K
∑

k=1

∫

Ωk

ε(vh) : ε(vh)

≥ C min
k≥1

(ck)

(

K
∑

k=1

1

diam(Ωk)2

∫

Ωk

(vh)2 +

∫

Ωk

|∇vh|2
)

,

because π[vh] = 0 due to the fact that vh ∈ V . The coercivity of the bilinear form
ã over Vh × Vh is then proved, with independence of the coercivity constant α̃ =
C mink≥1(ck) with respect to the number and the size of the subdomains. Let us
remark that when the Young moduli of the subdomains are multiplied by a constant,
α̃ is multiplicated as well.
Since ã is uniformly coercive over Vh×Vh and since (9) ensures that the weak-continuity
constraint b over the interfaces is onto, the discrete problem (7) is well posed by using
Babuska and Brezzi’s theory of mixed problems [Bre74, Bab73].

5 Error estimates in elastostatics

5.1 Approximation of displacements

We recall now the standard error estimates in elastostatics under the following as-
sumption:

Assumption 6. For all 1 ≤ m ≤ M , the family of interface meshes (Fm;δm)δm>0

over the non-mortar side is quasi-uniform, and δm/δm remains bounded independently
of the chosen discretization.

Error estimates can then be established under assumptions 1 to 6 (proceeding as in
[Woh01] for example):
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Proposition 5. If u ∈ ∏K
k=1 Hq+1(Ωk)d is solution of (4) with (E : ε(u)) ∈ ∏K

k=1 Hq(Ωk)d×d

and q ≥ 1, and (uh, λh) ∈ Xh × Mδ is solution of (7), the following error estimate
holds:

‖u− uh‖X ≤ C

(

1 + max
1≤k≤K

Ck

α̃

)

(

K
∑

k=1

h2q
k |u|2q+1,E,Ωk

)1/2

,

with:

|u|2q+1,E,Ωk
= |u|2Hq+1(Ωk)d +

1

C2
k

‖E : ε(u)‖2
Hq(Ωk)d×d . (29)

The constant C is independent of the number, the diameter, the Young moduli and the
discretization of the subdomains. The coercivity constant of ã over Vh ×Vh is denoted
by α̃ and the coefficients (Ck)1≤k≤K characterizing the elasticity tensor E are defined
by (3).

Remark 10. The difference with the original result of Wohlmuth lies in the fact that
the constants appearing in the proof do not depend any more on the number of subdo-
mains.
The result remains true if we replace in (29) q by any integer 1 ≤ r ≤ q because it relies
on interpolation results which hold for any 1 ≤ r ≤ q given our choice of finite element.

Remark 11. It can be noticed by reading precisely this proof, that a better a priori
estimate is obtained when the non-mortar side is taken as the coarsest side (to improve
the approximation error) and/or the softer one (to improve the consistency error).

5.2 Approximation of fluxes

The convergence of Lagrange multipliers uses the inf-sup condition (9) and is estab-
lished (see [Woh01] for example) by the:

Proposition 6. If u ∈ ∏K
k=1 Hq+1(Ωk)d is solution of (4) with (E : ε(u)) ∈ ∏K

k=1 Hq(Ωk)d×d

and q ≥ 1, and (uh, λh) ∈ Xh ×Mδ is solution of (7), the following error estimate on
Lagrange multipliers holds:

‖λ − λh‖δ,− 1
2
≤ C

(

K
∑

k=1

h2q
k |u|2q+1,E,Ωk

)1/2

,

with λ = (E : ε(u)) · n, where n is the normal unit vector on S which is outward
to Ωk(m) for all 1 ≤ m ≤ M . In more details, the constant C has the following
dependence:

C = C ′ max
1≤k≤K

Ck

(

1 +
1

β

)

+ C ′
max

1≤k≤K
Ck

β

(

1 + max
1≤k≤K

Ck

α̃

)

,

where the various constants denoted by C ′ do not depend on the number, the diameter,
the Young moduli and the discretization of the subdomains.
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6 Generalization to elastodynamics.

In this section, we analyze the use of mortar elements to solve the linear elastodynamics
problem:







































∂2u

∂t2
− div (E : ε(u)) = f, [0, T ]× Ω,

(E : ε(u)) · ν = g, [0, T ]× ΓN ,

u = 0, [0, T ]× ΓD,

u = u0, {0} × Ω,
∂u

∂t
= u̇0, {0} × Ω,

(30)

with obvious notation. Let us only notice that the normal outward unit vector over
a surface is now denoted by ν instead of n to avoid any possible confusion with the
forthcoming numbering of the time steps.

First, the notation of the static case is adapted and a standard result of existence
recalled in the elastodynamics framework. In the second subsection, a total approxi-
mation in space and time is introduced for the dynamical solution. It uses a mid-point
finite difference time integration scheme which is interesting for energy conservation
purpose, and a non-conforming finite element space approximation using a mortar
weak-continuity constraint over the interfaces. We finally establish the convergence
of the approximate solution to the continuous one, which is the main contribution of
this section.

Moreover, an important remark has to be done with respect to this analysis. For
first order problems in time, Lagrange multipliers are involved in the convergence
analysis through the estimation of:

inf
µh∈Mδ

‖ (E : ε(u(t))) · ν − µh‖δ,− 1
2
,

as shown for example in [BMR01] for an eddy currents model. In the framework of
second order problems in time, we underline the idea that the Lagrange multipliers
are also involved through the estimation of:

inf
µh∈Mδ

∥

∥

∥

∥

(

E : ε

(

∂u

∂t
(t)

))

· ν − µh

∥

∥

∥

∥

δ,− 1
2

,

entailing a higher sensitivity with respect to the choice of Lagrange multipliers. A time
discontinuity in interface constraints would lead to a deterioration of convergence.

6.1 Position of the problem.

We formulate here the linear elastodynamics problem, using mainly the same notation
as in the static case. The body forces are denoted by f ∈ L2(0, T ; L2(Ω)d), the
density of the material by ρ ∈ L∞(Ω), which is assumed to be greater than a positive
constant, and the initial conditions in displacement by u0 ∈ H1(Ω)d and in velocity by
u̇0 ∈ L2(Ω)d. A surfacic force g ∈ C1(0, T ; L2(ΓN )d) which is regular in time is applied
over the part ΓN of the boundary ∂Ω and a Dirichlet boundary condition u = 0 is
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imposed on the complementary part ΓD = ∂Ω\ΓN which can be of zero measure. The
elastic properties of the material are the same as in the static case described above.

To give a precise meaning to the system (30), we define a solution as a displacement
function:

u ∈ C0(0, T ; H1
∗(Ω)) ∩ C1(0, T ; L2(Ω)d),

such that in the sense of distributions on ]0, T [:

∂2

∂t2

∫

Ω

ρu(t) · v + a(u(t), v) =

∫

Ω

f(t) · v +

∫

ΓN

g(t) · v, ∀v ∈ H1
∗ (Ω). (31)

It is now standard that:

Proposition 7. Under the previous assumptions, there exists a unique displacement
field u ∈ C0(0, T ; H1

∗(Ω)) ∩ C1(0, T ; L2(Ω)d), such that the equation (31) is satisfied in
the sense of distributions on ]0, T [. Moreover, the energy:

E(t) =
1

2

∫

Ω

ρ

(

∂u

∂t
(t)

)2

+
1

2
a(u(t), u(t)),

is conserved, that is for all t ∈ [0, T ]:

E(t) = E(0) +

∫ t

0

∫

Ω

f(s) · ∂u

∂t
(s) ds +

∫ t

0

∫

ΓN

g(s) · ∂u

∂t
(s) ds.

We refer to [LM72, RT98] for a proof of the proposition.

6.2 A midpoint nonconforming fully discrete approximation.

We introduce here a space non-conforming fully discrete approximation of the solution
of (30). First, at each time t ∈ [0, T ] the spaces H1

∗ (Ω) and L2(Ω)d for the displace-
ments and the velocities are replaced by the non-conforming finite element space Vh

introduced in section 2.3.1 for the elastostatics problem. We then look for the dis-
placements uh ∈ C0(0, T ; Vh) ∩ C1(0, T ; Vh) such that in the sense of distributions on
]0, T [:

∂2

∂t2

∫

Ω

ρuh(t) · vh + ã(uh(t), vh) =

∫

Ω

f(t) · vh +

∫

ΓN

g(t) · vh, ∀vh ∈ Vh. (32)

The initial conditions in displacement and velocity take the form:







uh(0) = P1
hu0 ∈ Vh,

∂uh

∂t
(0) = P0

hu̇0 ∈ Vh,
(33)

where P1
h (resp. P0

h) denotes a projection from H1
∗ (Ω) (resp. L2(Ω)d) to Vh. Now,

let (tn)n∈N a sequence of discrete times such that tn = n∆t for n ∈ N. The use of
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a constant time step ∆t enables the optimal time accuracy order established below.
The formal integration of (32) and of the additional relation:

∂

∂t

∫

Ω

uh(t) · vh =

∫

Ω

∂uh

∂t
(t) · vh, ∀vh ∈ Vh,

over t ∈ [tn, tn+1] by the trapezoidal rule gives the following fully discrete system:















∫

Ω

ρ
u̇h

n+1 − u̇h
n

∆t
· vh + ã

(

uh
n + uh

n+1

2
, vh

)

=
Ln(vh) + Ln+1(vh)

2
, ∀vh ∈ Vh,

uh
n+1 − uh

n

∆t
=

u̇h
n + u̇h

n+1

2
.

(34)
We have introduced the virtual work of the applied forces at the discrete time tn:

Ln(vh) =

∫

Ω

f(tn) · vh +

∫

ΓN

g(tn) · vh, ∀vh ∈ Vh,

and have denoted by uh
n ∈ Vh (resp. u̇h

n ∈ Vh) the approximation in time of the space

approximation uh(tn) ∈ Vh of the displacement (resp.
∂uh

∂t
(tn) ∈ Vh of the velocity),

that is the fully discrete approximation of the displacement u(tn) ∈ H1
∗ (Ω) (resp. the

velocity
∂u

∂t
(tn) ∈ L2(Ω)3). This trapezoidal finite difference scheme in time has been

selected for its exact conservation properties with respect to the energy and to the
linear momentum (see [ST92]).

The convergence analysis to come could be extended to other time integrators.
The system has to be completed with the initial conditions:

{

uh
0 = P1

hu0 ∈ Vh,

u̇h
0 = P0

hu̇0 ∈ Vh.
(35)

Knowing uh
n, u̇h

n ∈ Vh and after elimination of u̇h
n+1 by (34)-2, we can then determine

the fully discrete displacement uh
n+1 ∈ Vh at the discrete time tn+1 ∈ [0, T ] by solving:

∫

Ω

2

∆t2
ρ uh

n+1 · vh +
1

2
ã
(

uh
n+1, vh

)

=

∫

Ω

ρ

(

2

∆t2
uh

n +
2

∆t
u̇h

n

)

· vh

−1

2
ã
(

uh
n, vh

)

+
Ln(vh) + Ln+1(vh)

2
, ∀vh ∈ Vh,

and the velocity u̇h
n+1 ∈ Vh is obtained by the simple computation:

u̇h
n+1 =

2

∆t
(uh

n+1 − uh
n) − u̇h

n.

The existence of a projection Ph from H1
∗ (Ω) to Vh is detailed in the following

lemma:
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Lemma 9. If ΓD has a positive measure, there exists a projection operator:

Ph : H1
∗ (Ω) → Vh

u 7→ Phu,

such that Phu is the unique solution uh ∈ Vh of:

ã(uh, vh) = ã(u, vh), ∀vh ∈ Vh.

Moreover, for all u ∈ Hr+1
E

(Ω) with r ≥ 1, we have the following estimates:

‖u− Phu‖2
X ≤ C

K
∑

k=1

h2r
k |u|2r+1,E,Ωk

,

‖u− Phu‖2
L2(Ω) ≤ C

(

sup
1≤k≤K

h2
k

) K
∑

k=1

h2r
k |u|2r+1,E,Ωk

.

Observation: the last inequality holds within a regularity condition, namely that the
solution of all elasticity problems over Ω be in H2

E
(Ω).

Remark 12. The constant C in the estimates of proposition 9 is in fact of the form:

C = C ′

(

1 + max
k≥1

Ck

α̃

)

max
k≥1

Ck

α̃
,

where C ′ is independent of the discretization in space and time, of the number of
subdomains, and of the coercivity and continuity constants of the broken bilinear form
ã. Nevertheless, to simplify the present exposition, we will keep the generic notation C.

Proof : The existence of the projection Ph is a straightforward consequence of the
Lax-Milgram lemma. More precisely, for a given function u ∈ H1

∗ (Ω), let us define the
continuous linear form l ∈ X ′ by:

l(v) = ã(u, v), ∀v ∈ X.

The function u ∈ H1
∗ (Ω) is the unique solution of:

a(u, v) = l(v), ∀v ∈ H1
∗ (Ω),

and Phu is the unique solution uh of:

ã(uh, vh) = l(vh), ∀vh ∈ Vh.

The error between uh and u in the broken norm ‖ · ‖X is given in the proposition
5, resulting in the announced estimate. The estimation in the L2(Ω)d norm can be
obtained by a Aubin-Nitsche argument (cf. [Aub87] for example) that we detail here.
Let us assume that for all φ ∈ L2(Ω)d, there exist a solution ζφ ∈ H2

E
(Ω) of:

ã(v, ζφ) =

∫

Ω

φ · v, ∀v ∈ H1
∗ (Ω). (36)
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Indeed, we have assumed that the solution of all elasticity problems over Ω be in
H2

E
(Ω). First, because the application:

T : H2
E
(Ω) ∩ H1

∗ (Ω) → H1
∗ (Ω)′

ζ 7→ Tζ; 〈Tζ, v〉H1
∗
(Ω)′,H1(Ω) = ã(v, ζ),

is linear, continuous and bijective, the inverse T−1 is continuous by the open appli-
cation theorem [Bré99, Yos65]. As a consequence, the solution ζφ ∈ H2

E
(Ω) of (36)

satisfies:
(

K
∑

k=1

C2
k |ζφ|22,E,Ωk

)1/2

≤ C ‖φ‖H1
∗
(Ω)′ ≤ C ‖φ‖L2(Ω)d . (37)

Now, let us prove the announced upper bound on ‖u − Phu‖L2(Ω)d , by the Aubin-
Nitsche technique. Namely:

‖u − Phu‖L2(Ω)d = sup
φ∈L2(Ω)d\{0}

∫

Ω

(u − Phu) · φ

‖φ‖L2(Ω)d

= sup
φ∈L2(Ω)d\{0}

ã(u − Phu, ζφ)

‖φ‖L2(Ω)d

,

and by definition of Ph, ã(u − Phu, vh) = 0 for all vh ∈ Vh, resulting in the following
expression for all vh ∈ Vh, and φ realizing the supremum in the above inequality:

‖u − Phu‖L2(Ω)d ≤ ã(u − Phu, ζφ − vh)

‖φ‖L2(Ω)d

,

≤ ã(u − Phu, u − Phu)1/2 ã(ζφ − vh, ζφ − vh)1/2

‖φ‖L2(Ω)d

.

By taking the infimum of the right hand side over vh ∈ Vh, and by using the approxi-
mation property of Ph in X (proposition 5), and the relation (37), we get:

‖u− Phu‖L2(Ω)d ≤ C

(

∑K
k=1 h2r

k |u|2r+1,E,Ωk

)1/2 (
∑K

k=1 h2
kC2

k |ζφ|22,E,Ωk

)1/2

‖φ‖L2(Ω)d

≤ C

(

K
∑

k=1

h2r
k |u|2r+1,E,Ωk

)1/2
(

sup
1≤k≤K

hk

)

.

�

6.3 Convergence analysis

Now, we prove the convergence of the fully discrete approximation given by (34) to
the continuous solution of (31). For that purpose, we introduce the following space:

Hq+1
E

(Ω) = {v ∈ H1
∗ (Ω); ‖v‖q+1,E,Ω < +∞},
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which is endowed with the following norm:

‖v‖2
q+1,E,Ω = ‖v‖2

H1(Ω)d +

K
∑

k=1

(

‖v‖2
Hq+1(Ωk)d +

1

C2
k

‖E : ε(v)‖2
Hq(Ωk)d×d

)

.

We also denote as in proposition 5:

|v|2q+1,E,Ωk
= |v|2Hq+1(Ωk)d +

1

C2
k

‖E : ε(v)‖2
Hq(Ωk)d×d ,

and state the main result of that section:

Proposition 8 (Error estimate). If

u ∈ C1(0, T ; Hq+1
E

(Ω)) ∩ C2(0, T ;

K
∏

k=1

Hr+1(Ωk)d) ∩ C4(0, T ; L2(Ω)d)

is solution of (31) and (uh
n; u̇h

n)n∈N is the fully discrete solution of (34), then the
following error estimate holds:

∥

∥

∥

∥

√
ρ

(

u̇(tn+1/2) −
u̇h

n + u̇h
n+1

2

)∥

∥

∥

∥

2

L2(Ω)d

+ α̃

∥

∥

∥

∥

u(tn+1/2) −
uh

n + uh
n+1

2

∥

∥

∥

∥

2

X

≤ C
(

‖Phu̇0 − u̇h
0‖2

L2(Ω)d + ‖Phu0 − uh
0‖2

X

)

+C

[(

∆t

t0

)4
{

α̃ sup
t∈[0,T ]

‖t20ü(t)‖2
X + sup

t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d +
T

t0
sup

t∈[0,T ]

‖√ρ t30
....
u (t)‖2

L2(Ω)d

}

+h2 T

t0

K
∑

k=1

h2r
k

(

sup
t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk
+ sup

t∈[0,T ]

|√ρ u̇(t)|2r+1,E,Ωk

)

+ α̃

K
∑

k=1

h2q
k sup

t∈[0,T ]

|u(t)|2q+1,E,Ωk

+

K
∑

k=1

h2q
k

C2
k

α̃

{

sup
t∈[0,T ]

|u(t)|2q+1,E,Ω +
T

t0
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ω

}

](

1 +
∆t

t0

)n

,

where C denotes various constants independent of the discretization in space and time,

and tn+1/2 =
1

2
(tn + tn+1). Moreover, Ph is the projection Ph from H1

∗ (Ω) to Vh given

in lemma 9 if ΓD has a positive measure, and is defined by (49) if ΓD has a null
measure, and r is any integer with 1 ≤ r ≤ q. Finally, t0 is a reference length of time.

In order to simplify the exposition of the proof, we assume that ΓD has a positive
measure so that the bilinear form a is coercive over H1

∗ (Ω) × H1
∗ (Ω). We will enu-

merate in the remark following the proof the necessary modifications when ΓD has a
null measure. The proof is inspired by the convergence proof introduced in [TM00]
for fluid-structure analysis.

Proof : For clarity, the proof is decomposed into six parts. The time derivative of u
will be sometimes denoted by u̇ to simplify notation.
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1. The discrete evolution of error.
Let us define the projection on Vh of the error in displacements at time tn by:

euh
n = Phu(tn) − uh

n,

and a new approximation (V h
n )n≥0 of velocities by:

1

2

(

V h
n + V h

n+1

)

=
1

∆t
(Phu(tn+1) − Phu(tn)) ,

with the initial condition V h
0 = Phu̇0. The gap between the fully discrete velocity u̇h

n

and V h
n is then defined by:

eV h
n = V h

n − u̇h
n.

We now establish the equation satisfied by these errors.
To do so, we first show that for all t ∈ [0, T ]:

∫

Ω

ρ
∂2u

∂t2
(t) · vh + ã(u(t), vh) =

∫

Ω

f(t) · vh +

∫

ΓN

g(t) · vh +

∫

S

λ(t) · [vh], ∀vh ∈ Vh,

(38)
with λ(t) = (E : ε(u(t))) · ν, where ν is the normal unit vector on S which is outward
to the non-mortar subdomain.
Due to the assumptions that for all t ∈ [0, T ], (E : ε(u(t))) ∈ ∏K

k=1 H1(Ωk)d×d and
that the time derivatives of u have a classical sense, we obtain from (31) that for all
t ∈ [0, T ] and all v ∈ C∞

c (Ω)d:

∫

Ω

(

ρ
∂2u

∂t2
(t) − div (E : ε(u(t))) − f(t)

)

· v = 0.

By density of C∞
c (Ω)d in L2(Ω)d we have then that for all t ∈ [0, T ]:

ρ
∂2u

∂t2
(t) − div (E : ε(u(t))) − f(t) = 0, in L2(Ω)d. (39)

Then, we can obtain some information about the natural boundary conditions. Indeed,
we get a fortiori from (39) that:

∫

Ω

(

ρ
∂2u

∂t2
(t) − div (E : ε(u(t))) − f(t)

)

· v = 0, ∀v ∈ H1
∗ (Ω), (40)

and by substracting the original problem (31) to (40), we obtain for all v ∈ H1
∗ (Ω):

∫

ΓN

g(t) · v =

∫

Ω

(E : ε(u(t))) : ∇v +

∫

Ω

div (E : ε(u(t))) · v

:=

∫

ΓN

((E : ε(u(t))) · ν) · v.

Obviously, this relation does not depend on v ∈ H1
∗ (Ω) but only on its trace v|ΓN ∈

H
1/2
00 (ΓN )d, resulting in:

∫

ΓN

g(t) · φ =

∫

ΓN

((E : ε(u(t))) · ν) · φ, ∀φ ∈ H
1/2
00 (ΓN )d. (41)
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Now, we can show the relation (38). By exploiting the divergence formula, and the
results (39) and (41), we get for all t ∈ [0, T ], and all vh ∈ Vh :

ã(u, vh) =

K
∑

k=1

∫

Ωk

(E : ε(u(t))) : ε(vh)

= −
K
∑

k=1

∫

Ωk

div (E : ε(u(t))) · vh +

K
∑

k=1

∫

∂Ωk

((E : ε(u(t))) · ν) · vh

=

∫

Ω

(

f(t) − ρ
∂2u

∂t2
(t)

)

· vh +

∫

ΓN

g(t) · vh +

∫

S

λ(t) · [vh],

resulting in the announced expression (38).
By computing the half sum of the expressions (38) for t = tn and t = tn+1 and
substracting the first line of the system (34), it comes that for all vh ∈ Vh:

∫

Ω

ρ
V h

n+1 − V h
n

∆t
· vh −

∫

Ω

ρ
u̇h

n+1 − u̇h
n

∆t
· vh + ã

(

u(tn) − uh
n

2
+

u(tn+1) − uh
n+1

2
, vh

)

=

∫

Ω

ρ
V h

n+1 − V h
n

∆t
·vh−

1

2

∫

Ω

ρ

(

∂2u

∂t2
(tn) +

∂2u

∂t2
(tn+1)

)

·vh +

∫

S

λ(tn) + λ(tn+1)

2
· [vh],

where we have added the term

∫

Ω

ρ
V h

n+1 − V h
n

∆t
· vh on the both sides of the equality.

From the lemma 9 and the definitions of euh
n and eV h

n , we deduce that for all vh ∈ Vh:

∫

Ω

ρ
eV h

n+1 − eV h
n

∆t
· vh + ã

(

euh
n + euh

n+1

2
, vh

)

=

∫

Ω

ρ
V h

n+1 − V h
n

∆t
·vh−

1

2

∫

Ω

ρ

(

∂2u

∂t2
(tn) +

∂2u

∂t2
(tn+1)

)

·vh +

∫

S

λ(tn) + λ(tn+1)

2
· [vh],

that we sum up in the following expression:

∫

Ω

ρ
eV h

n+1 − eV h
n

∆t
· vh + ã

(

euh
n + euh

n+1

2
, vh

)

= Ea
n+1/2(vh) + Ec

n+1/2(vh). (42)

We have denoted the approximation error in time and space by:

Ea
n+1/2(vh) =

∫

Ω

√
ρ Tn+1/2 · vh, ∀vh ∈ Vh,

with:

Tn+1/2 =
√

ρ
V h

n+1 − V h
n

∆t
− 1

2

√
ρ

(

∂2u

∂t2
(tn) +

∂2u

∂t2
(tn+1)

)

,

and the consistency error by:

Ec
n+1/2(vh) =

1

2

∫

S

(λ(tn) + λ(tn+1)) · [vh], ∀vh ∈ Vh.
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It will be convenient to have estimations at midtime steps, and this is why we introduce
the midtime quantities:

eV h
n+1/2 =

eV h
n + eV h

n+1

2
, euh

n+1/2 =
euh

n + euh
n+1

2
,

whose evolution is given by averaging (42) between two consecutive time steps. We
get for all vh ∈ Vh:

∫

Ω

ρ
eV h

n+1/2 − eV h
n−1/2

∆t
· vh + ã

(

euh
n−1/2 + euh

n+1/2

2
, vh

)

= Ea
n(vh) + Ec

n(vh), (43)

where:

E�

n (vh) =
1

2

(

E�

n−1/2(vh) + E�

n+1/2(vh)
)

, ∀vh ∈ Vh,

in which � stands for “a” or “c”. In (43), we choose:

vh =
euh

n+1/2 − euh
n−1/2

∆t
=

eV h
n−1/2 + eV h

n+1/2

2
,

by construction of (V h
n )n≥0, which gives by summation on all time steps between 1

and n the main estimation of this first step of the proof:

ηh
n+1/2 − ηh

1/2 = ∆t

n
∑

i=1

Ea
i

(

eV h
i−1/2 + eV h

i+1/2

2

)

+ Ec
i

(

euh
i+1/2 − euh

i−1/2

∆t

)

, (44)

with:

ηh
n+1/2 =

1

2

∫

Ω

ρeV h
n+1/2 · eV h

n+1/2 +
1

2
ã(euh

n+1/2, eu
h
n+1/2).

2. An upper bound for ηh
1/2.

We establish here an upper bound for ηh
1/2. By definition of ηh

1/2, we get by using the
symmetry of ã:

ηh
1/2 =

1

2

∫

Ω

ρ

(

eV h
0 + eV h

1

2

)2

+
1

2
ã

(

euh
0 + euh

1

2
,
euh

0 + euh
1

2

)

≤ 1

4

∫

Ω

ρ (eV h
0 )2 +

1

4

∫

Ω

ρ (eV h
1 )2 +

1

4
ã(euh

0 , euh
0 ) +

1

4
ã(euh

1 , euh
1).

Using (42) with n = 0 and:

vh =
euh

1 − euh
0

∆t
=

eV h
0 + eV h

1

2

by construction, we obtain:

1

2

∫

Ω

ρ(eV h
1 )2 +

1

2
ã(euh

1 , euh
1) =

1

2

∫

Ω

ρ (eV h
0 )2 +

1

2
ã(euh

0 , euh
0)

+
∆t

2
Ea

1/2(eV
h
1 ) + Ec

1/2

(

euh
1 − euh

0

)

.
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The approximation term in the right hand side can be bounded by using the Cauchy-
Schwarz inequality:

∆t

2
Ea

1/2(eV
h
1 ) ≤

∥

∥∆t T1/2

∥

∥

L2(Ω)d

∥

∥

∥

∥

1

2

√
ρeV h

1

∥

∥

∥

∥

L2(Ω)d

≤ 1

2

∥

∥∆t T1/2

∥

∥

2

L2(Ω)d +
1

8

∫

Ω

ρ(eV h
1 )2.

Moreover:

∆tT1/2 =
√

ρ

(

V h
1 − V h

0 − ∆t

2
(ü(t0) + ü(t1))

)

=
√

ρ

(

2

∆t
(Phu(t1) − Phu(t0)) − 2Phu̇(t0) −

∆t

2
(ü(t0) + ü(t1))

)

=
√

ρ

(

2

∆t
(u(t1) − u(t0)) − 2u̇(t0) −

∆t

2
(ü(t0) + ü(t1))

)

+
√

ρ(Ph − id)

(

2

∆t
(u(t1) − u(t0)) − 2u̇(t0)

)

. (45)

We then use the lemma 9 and a Taylor’s expansion with integral remainder to bound
the second term in (45) as follows:

∥

∥

∥

∥

√
ρ(Ph − id)

(

2

∆t
(u(t1) − u(t0)) − 2u̇(t0)

)∥

∥

∥

∥

2

L2(Ω)d

≤ C h2
K
∑

k=1

h2r
k

∣

∣

∣

∣

2
√

ρ

∆t
(u(t1) − u(t0)) − 2u̇(t0)

∣

∣

∣

∣

2

r+1,E,Ωk

≤ C

(

∆t

t0

)2

h2
K
∑

k=1

h2r
k sup

t∈[0,∆t]

|√ρ t0 ü(t)|2r+1,E,Ωk
.

The first term in (45) is also bounded by the use of a Taylor’s expansion with integral
remainder, resulting in:

∆t2‖T1/2‖2
L2(Ω)d ≤ C

((

∆t

t0

)4

sup
t∈[0,∆t]

‖√ρ t20
...
u (t)‖2

L2(Ω)d

+

(

∆t

t0

)2

h2
K
∑

k=1

h2r
k sup

t∈[0,∆t]

|√ρ t0 ü(t)|2r+1,E,Ωk

)

.

For the consistency term, we use that euh
1 − euh

0 ∈ Vh, the Cauchy-Schwarz inequality,
and the two following inequalities (classically obtained when analysing the a priori
error in the elastostatics framework -see [Woh01] or [Hau04] page 144):

‖[vh]‖δ, 12 ,m ≤ C‖[vh]‖H1/2(Γm)d , ∀vh ∈ Vh, (46)

inf
µh∈Mδ

‖λ − µh‖2
δ,−1

2
≤ C

K
∑

k=1

h2q
k ‖E : ε(u)‖2

Hq(Ωk)d×d , (47)
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to obtain that:

Ec
1/2

(

euh
1 − euh

0

)

≤ max
i=0,1

∫

S

λ(ti) · [euh
1 − euh

0 ]

≤ max
i=0,1

∫

S

(λ(ti) − µh) · [euh
1 − euh

0 ], ∀µh ∈ Mδ

≤ θ max
i=0,1

inf
µh∈Mδ

‖λ(ti) − µh‖δ,− 1
2

1

θ
‖euh

1 − euh
0‖X , ∀θ ∈]0, +∞[,

≤ Cθ2 max
i=0,1

inf
µh∈Mδ

‖λ(ti) − µh‖2
δ,− 1

2
+

1

2θ2
‖euh

1 − euh
0‖2

X

≤ Cθ2
K
∑

k=1

h2q
k C2

k sup
t∈[0,∆t]

|u(t)|2q+1,E,Ωk
+

1

θ2
‖euh

1‖2
X +

1

θ2
‖euh

0‖2
X .

As ΓD has not a null measure, the bilinear form ã is coercive over Vh × Vh. Then, we
choose θ2 = 8/α̃ where α̃ is the coercivity constant of ã over Vh × Vh, and obtain the
final estimation:

3

8

∫

Ω

ρ(eV h
1 )2 +

3

8
ã(euh

1 , euh
1) ≤ 1

2

∫

Ω

ρ(eV h
0 )2 +

5

8
ã(euh

0 , euh
0)

+C

(

∆t

t0

)4

sup
t∈[0,∆t]

‖√ρ t20
...
u (t)‖2

L2(Ω)d

+C

(

∆t

t0

)2

h2
K
∑

k=1

h2r
k sup

t∈[0,∆t]

|√ρ t0 ü(t)|2r+1,E,Ωk

+C

K
∑

k=1

h2q
k

C2
k

α̃
sup

t∈[0,∆t]

|u(t)|2q+1,E,Ωk
,

hence:

ηh
1/2 ≤ C

(

‖√ρeV h
0 ‖2

L2(Ω)d + ã(euh
0 , euh

0) +

(

∆t

t0

)4

sup
t∈[0,∆t]

‖√ρ t20
...
u (t)‖2

L2(Ω)d

)

+ C

(

∆t

t0

)2

h2
K
∑

k=1

h2r
k sup

t∈[0,∆t]

|√ρ t0 ü(t)|2r+1,E,Ωk

+ C

K
∑

k=1

h2q
k

C2
k

α̃
sup

t∈[0,∆t]

|u(t)|2q+1,E,Ωk
.

3. Time and space approximation error estimate.
We estimate here the space and time approximation error given by:

A = ∆t
n
∑

i=1

Ea
i

(

eV h
i−1/2 + eV h

i+1/2

2

)

.
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By applying the Cauchy-Schwarz inequality, we obtain:

A ≤ ∆t

t0

n
∑

i=1

∥

∥

∥

∥

t0
Ti−1/2 + Ti+1/2

2

∥

∥

∥

∥

L2(Ω)d

∥

∥

∥

∥

∥

√
ρ

eV h
i−1/2 + eV h

i+1/2

2

∥

∥

∥

∥

∥

L2(Ω)d

≤ ∆t

2t0

n
∑

i=1

∥

∥

∥

∥

t0
Ti−1/2 + Ti+1/2

2

∥

∥

∥

∥

2

L2(Ω)d

+
∆t

2t0

n
∑

i=1

∥

∥

∥

∥

∥

√
ρ

eV h
i−1/2 + eV h

i+1/2

2

∥

∥

∥

∥

∥

2

L2(Ω)d

≤ ∆t

2t0

n
∑

i=1

∥

∥

∥

∥

t0
Ti−1/2 + Ti+1/2

2

∥

∥

∥

∥

2

L2(Ω)d

+
∆t

2t0

n
∑

i=0

∥

∥

∥

√
ρ eV h

i+1/2

∥

∥

∥

2

L2(Ω)d
.

Let us remark that:

Ti+1/2 + Ti−1/2 =
√

ρ
V h

i+1 − V h
i−1

∆t
−√

ρ
ü(ti−1) + 2ü(ti) + ü(ti+1)

2

=
√

ρ
V h

i+1 + V h
i − V h

i − V h
i−1

∆t
−√

ρ
ü(ti−1) + 2ü(ti) + ü(ti+1)

2

= 2
√

ρ
Phu(ti+1) − 2Phu(ti) + Phu(ti−1)

∆t2
−√

ρ
ü(ti−1) + 2ü(ti) + ü(ti+1)

2

= 2
√

ρ
u(ti+1) − 2u(ti) + u(ti−1)

∆t2
−√

ρ
ü(ti−1) + 2ü(ti) + ü(ti+1)

2

+2
√

ρ(Ph − id)

(

u(ti+1) − 2u(ti) + u(ti−1)

∆t2

)

.

Proceeding, as in the estimation of the approximation error of the second step of the
proof, we use the lemma 9 and Taylor’s expansions with integral remainder to obtain:

‖Ti+1/2 + Ti−1/2‖2
L2(Ω)d

≤ C

(

∆t4 sup
t∈[0,T ]

‖√ρ
....
u (t)‖2

L2(Ω)d

+h2
K
∑

k=1

h2r
k

∣

∣

∣

∣

√
ρ

u(ti+1) − 2u(ti) + u(ti−1)

∆t2

∣

∣

∣

∣

2

r+1,E,Ωk

)

≤ C

t20

(

(

∆t

t0

)4

sup
t∈[0,T ]

∥

∥

√
ρ t30

....
u (t)

∥

∥

2

L2(Ω)d + h2
K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk

)

Then:

∆t

2t0

n−1
∑

i=1

∥

∥

∥

∥

t0
Ti−1/2 + Ti+1/2

2

∥

∥

∥

∥

2

L2(Ω)d

≤ T

8t0
t20 sup

i<n
‖Ti+1/2 + Ti−1/2‖2

L2(Ω)d

≤ C
T

8t0

(

(

∆t

t0

)4

sup
t∈[0,T ]

∥

∥

√
ρ t30

....
u (t)

∥

∥

2

L2(Ω)d + h2
K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk

)

.

4. Consistency error
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We estimate here the consistency error given by:

B = ∆t

n
∑

i=1

Ec
i

(

euh
i+1/2 − euh

i−1/2

∆t

)

.

Using a reorganization of the terms (equivalent to a discrete integration by parts in
time), we obtain:

B = ∆t

n
∑

i=1

∫

S

(

λ(ti−1) + 2λ(ti) + λ(ti+1)

4

)

·
[

euh
i+1/2 − euh

i−1/2

∆t

]

= ∆t

n−1
∑

i=1

∫

S

(

λ(ti−1) + λ(ti) − λ(ti+1) − λ(ti+2)

4∆t

)

·
[

euh
i+1/2

]

+

∫

S

(

λ(tn−1) + 2λ(tn) + λ(tn+1)

4

)

·
[

euh
n+1/2

]

−
∫

S

(

λ(t0) + 2λ(t1) + λ(t2)

4

)

·
[

euh
1/2

]

= ∆t D + E − F.

Concerning the ∆tD term, we proceed exactly as in the estimation of the consistency

error of the second step of the proof. More precisely, we use that
[

euh
i+1/2

]

∈ Vh,

the Cauchy-Schwarz inequality and the inequality (46), the estimation (classically
obtained when analysing the a priori error in the elastostatics framework -see [Woh01]
or [Hau04] page 143):

inf
µh∈Mδ

‖λ − µh‖2
δ,− 1

2 ,m ≤ Cδ2q
m ‖λ‖2

Hq− 1
2 (Γm)d

, (48)
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and a Taylor’s expansion to get:

∆t D =
∆t

t0

n−1
∑

i=1

∫

S

(

t0
λ(ti−1) + λ(ti) − λ(ti+1) − λ(ti+2)

4∆t
− µh

)

·
[

euh
i+1/2

]

, ∀µh ∈ Mδ,

≤ ∆t

2t0
θ2

n−1
∑

i=1

∥

∥

∥

∥

t0
λ(ti−1) + λ(ti) − λ(ti+1) − λ(ti+2)

4∆t
− µh

∥

∥

∥

∥

2

δ,− 1
2

+
∆t

2θ2t0

n−1
∑

i=1

‖eui+1/2‖2
X , ∀θ ∈]0, +∞[, ∀µh ∈ Mδ,

≤ ∆t

2t0
θ2

n−1
∑

i=1

K
∑

k=1

h2q
k

∥

∥

∥

∥

t0
λ(ti−1) + λ(ti) − λ(ti+1) − λ(ti+2)

4∆t

∥

∥

∥

∥

2

Hq− 1
2 (∂Ωk)d

+
∆t

2θ2t0

n−1
∑

i=1

‖eui+1/2‖2
X , ∀θ ∈]0, +∞[

≤ C
∆t

t0
θ2

n−1
∑

i=1

K
∑

k=1

h2q
k sup

t∈[0,T ]

∥

∥

∥
t0 λ̇(t)

∥

∥

∥

2

Hq− 1
2 (∂Ωk)d

+
∆t

2θ2t0

n−1
∑

i=1

‖eui+1/2‖2
X , ∀θ ∈]0, +∞[

≤ C
T

t0
θ2

K
∑

k=1

h2q
k C2

k sup
t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ωk
+

∆t

2θ2t0

n−1
∑

i=1

‖eui+1/2‖2
X , ∀θ ∈]0, +∞[,

and by choosing θ2 = 1/α̃, we obtain:

∆t D ≤ C
T

t0

K
∑

k=1

h2q
k

C2
k

α̃
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ωk
+

∆t

2t0

n−1
∑

i=1

ã(eui+1/2, eui+1/2).

The terms E and F are easily bounded by using the same technique:

E ≤ C

K
∑

k=1

h2q
k

C2
k

α̃
sup

t∈[0,T ]

|u(t)|2q+1,E,Ω +
1

4
ã(euh

n+1/2, eu
h
n+1/2),

F ≤ C

(

K
∑

k=1

h2q
k

C2
k

α̃
sup

t∈[0,T ]

|u(t)|2q+1,E,Ω + ã(euh
1/2, eu

h
1/2)

)

.

Moreover, the second term ã(euh
1/2, eu

h
1/2) in the upper bound of F can be bounded

optimally by the second point of the present proof.
5. Estimate on ηh

n+1/2.
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Putting together the estimations from the previous points, we obtain that:

1

2

(

1 − ∆t

t0

)∫

Ω

ρ(eV h
n+1/2)

2 +
1

4
ã(euh

n+1/2, eu
h
n+1/2)

≤ C

(∫

Ω

ρ(eV h
0 )2 + ã(euh

0 , euh
0)

)

+C

(

∆t

t0

)4
{

sup
t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d +
T

t0
sup

t∈[0,T ]

‖√ρ t30
....
u (t)‖2

L2(Ω)d

}

+C

(

max
1≤k≤K

Ck

)

h2

(

T

t0
+

(

∆t

t0

)2
)

K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk

+C

K
∑

k=1

h2q
k

C2
k

α̃

{

sup
t∈[0,T ]

|u(t)|2q+1,E,Ω +
T

t0
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ω

}

+
∆t

2t0

n−1
∑

i=0

‖√ρ eV h
i+1/2‖2

L2(Ω)d +
∆t

2t0

n−1
∑

i=1

ã(euh
i+1/2, eu

h
i+1/2).

We deduce by applying the discrete Gronwall’s lemma, and for sufficiently small time
steps (∆t ≤ t0/2) that:

∫

Ω

ρ(eV h
n+1/2)

2 + ã(euh
n+1/2, eu

h
n+1/2) ≤ C

(

‖eV h
0 ‖2

L2(Ω)d + ã(euh
0 , euh

0)
)

+

[

C

(

∆t

t0

)4
{

sup
t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d +
T

t0
sup

t∈[0,T ]

‖√ρ t30
....
u (t)‖2

L2(Ω)d

}

+C h2 T

t0

K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk

+C

K
∑

k=1

h2q
k

C2
k

α̃

{

sup
t∈[0,T ]

|u(t)|2q+1,E,Ω +
T

t0
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ω

}

](

1 +
∆t

t0

)n

.

6. Conclusion.
We end this proof by establishing the announced error estimates on velocities and
displacements. Concerning the estimate on velocities, let us remark that:

u̇(tn+1/2) −
u̇h

n + u̇h
n+1

2
= u̇(tn+1/2) −

V h
n + V h

n+1

2
+ eV h

n+1/2.

We have by definition:

u̇(tn+1/2) −
V h

n + V h
n+1

2
= u̇(tn+1/2) −

Phu(tn+1) − Phu(tn)

∆t
,

= u̇(tn+1/2) −
u(tn+1) − u(tn)

∆t
+ (id − Ph)

(

u(tn+1) − u(tn)

∆t

)

,
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which entails that:

∥

∥

∥

∥

√
ρ

(

u̇(tn+1/2) −
V h

n + V h
n+1

2

)∥

∥

∥

∥

2

L2(Ω)d

≤ C

(

(

∆t

t0

)4

sup
t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d + h2
K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ u̇(t)|2r+1,E,Ωk

)

.

Therefore, we deduce the final estimate on velocities by the triangular inequality:

∥

∥

∥

∥

√
ρ

(

u̇(tn+1/2) −
u̇h

n + u̇h
n+1

2

)∥

∥

∥

∥

2

L2(Ω)d

≤ C
(

‖√ρ eV h
0 ‖2

L2(Ω)d + ã(euh
0 , euh

0)
)

+

[

C

(

∆t

t0

)4
{

sup
t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d +
T

t0
sup

t∈[0,T ]

‖√ρ t30
....
u (t)‖2

L2(Ω)d

}

+C h2 T

t0

K
∑

k=1

h2r
k

(

sup
t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk
+ sup

t∈[0,T ]

|√ρ u̇(t)|2r+1,E,Ωk

)

+C

K
∑

k=1

h2q
k

C2
k

α̃

{

sup
t∈[0,T ]

|u(t)|2q+1,E,Ω +
T

t0
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ω

}

](

1 +
∆t

t0

)n

.

We end by the estimate on displacements. We remark that:

u(tn+1/2) −
uh

n + uh
n+1

2
= u(tn+1/2) −

Phu(tn) + Phu(tn+1)

2
+ euh

n+1/2.

Moreover, we notice that:

u(tn+1/2) −
Phu(tn) + Phu(tn+1)

2
= u(tn+1/2) −

u(tn) + u(tn+1)

2

+(id − Ph)

(

u(tn) + u(tn+1)

2

)

,

resulting in:
∥

∥

∥

∥

u(tn+1/2) −
Phu(tn) + Phu(tn+1)

2

∥

∥

∥

∥

2

X

≤ C

(

(

∆t

t0

)4

sup
t∈[0,T ]

‖t20 ü(t)‖2
X +

K
∑

k=1

h2q
k sup

t∈[0,T ]

|u(t)|2q+1,E,Ωk

)

,
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and we conclude by the triangular inequality that:

α̃

∥

∥

∥

∥

u(tn+1/2) −
uh

n + uh
n+1

2

∥

∥

∥

∥

2

X

≤ C
(

‖√ρ eV h
0 ‖2

L2(Ω)d + ã(euh
0 , euh

0)
)

+C

[(

∆t

t0

)4
{

α̃ sup
t∈[0,T ]

‖t20ü(t)‖2
X + sup

t∈[0,T ]

‖√ρ t20
...
u (t)‖2

L2(Ω)d +
T

t0
sup

t∈[0,T ]

‖√ρ t30
....
u (t)‖2

L2(Ω)d

}

+

(

max
1≤k≤K

Ck

)

h2 T

t0

K
∑

k=1

h2r
k sup

t∈[0,T ]

|√ρ t0 ü(t)|2r+1,E,Ωk
+ α̃

K
∑

k=1

h2q
k sup

t∈[0,T ]

|u(t)|2q+1,E,Ωk

+

K
∑

k=1

h2q
k

C2
k

α̃

{

sup
t∈[0,T ]

|u(t)|2q+1,E,Ω +
T

t0
sup

t∈[0,T ]

|t0 u̇(t)|2q+1,E,Ω

}

](

1 +
∆t

t0

)n

.

The proof is complete. �

Remark 13. The proof of the convergence has been done in the case where the measure
of ΓD was positive. Let us mention the necessary modifications of the proof when it is
not the case. The displacements have to be decomposed in the space of rigid motions:

R = {v ∈ H1(Ω)d, a(v, w) = 0, ∀w ∈ H1(Ω)},

and in the complementary:

V = {v ∈ H1(Ω)d,

∫

Ω

v · r = 0, ∀r ∈ R},

such that H1(Ω)d = R ⊕ V. The solution u of (31) can then be decomposed into
u = u + u′, with u ∈ C0(0, T ;R) ∩ C1(0, T ;R) such that in the sense of distributions
over ]0, T [:

∂2

∂t2

∫

Ω

ρu(t) · v =

∫

Ω

f(t) · v +

∫

ΓN

g(t) · v, ∀v ∈ R,

and u′ ∈ C0(0, T ;V) ∩ C1(0, T ;W) such that in the sense of distributions over ]0, T [:

∂2

∂t2

∫

Ω

ρu′(t) · v′ + a(u′, v′) =

∫

Ω

f(t) · v′ +

∫

ΓN

g(t) · v′, ∀v′ ∈ V ,

with W = {v ∈ L2(Ω)d,

∫

Ω

v · r = 0, ∀r ∈ R}. The fully discrete approximation of u

at time tn is uh
n = uh

n + u′h
n in displacements and u̇h

n = u̇
h
n + u̇′h

n in velocities. To find
(u′h

n ; u̇′h
n )n≥1, one has to replace Vh by:

V ′
h = {vh ∈ Vh;

∫

Ω

vh · r = 0, ∀r ∈ R}
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in (34). The previous proof gives an upper bound for:

∥

∥

∥

∥

∂u′

∂t
(tn+1/2) −

u̇′h
n + u̇′h

n+1

2

∥

∥

∥

∥

2

L2(Ω)d

+

∥

∥

∥

∥

u′(tn+1/2) −
u′h

n + u′h
n+1

2

∥

∥

∥

∥

2

H1(Ω)d

,

because ã is coercive over V ′
h × V ′

h. To find (uh
n; u̇

h
n)n≥1, one has to replace Vh by R

in (34). An upper bound on:

∥

∥

∥

∥

∥

∂u

∂t
(tn+1/2) −

u̇
h
n + u̇

h
n+1

2

∥

∥

∥

∥

∥

2

L2(Ω)d

,

is then obtained by the previous proof, which still applies. Indeed, it is noticeable
that there is no consistency error because R ⊂ Vh, and then, no need of coercivity.
Putting together the estimates concerning the rigid motion part of the solution and the
complementary part, the announced estimate then remains the same when ΓD has a
null measure.
In this case, the projection Ph of the proposition 8 can be constructed as follows. For
all u ∈ H1(Ω)d, we can build the decomposition u = u + u′, with u ∈ R and u′ ∈ V.
The projection Phu of u ∈ H1(Ω)d is then defined by:

Phu = u + u′
h, (49)

where u′
h ∈ V ′

h is such that:

ã(u′
h, v′h) = ã(u′, v′h), ∀v′ ∈ V ′

h.

7 Conclusion

This abstract framework has now to be completed with concrete choices of Lagrange
multipliers spaces. In the second part of this paper, we introduce a stabilized discon-
tinuous formulation, more local than usual formulations, which will be analyzed and
tested.
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