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Abstract

In this paper we introduce a new notion, that of ”conditional risk
measure”, which has properties reminiscent of the conditional expecta-
tion, in order to deal with situations of partial information, or asym-
metric information. We do so in a general context of uncertainty,
where there is not necessarily an a priori given probability.

Important results of this paper are theorems of representation. We
study in detail a particular example important in finance, that of a
conditional risk measure associated to a loss function.

Introduction

In recent years there has been an increasing interest in methods defin-
ing the risk of a financial position. Artzner, Delbaen, Eber and Heath
[1] have introduced the concept of coherent risk measures on a proba-
bility space. More recently Föllmer and Schied [10] [11] and [12] have
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addressed a more general issue, defining the notion of monetary mea-
sure of risk, not necessarily coherent and in a more general context,
where no probability measure is given a priori.

In this paper we introduce a new notion, that of ”conditional risk
measure”,which has properties reminiscent of the conditional expecta-
tion, in order to deal with situations of partial information, or asym-
metric information. We do so in a general context of uncertainty,
where there is not necessarily an a priori given probability.

Partial information means here that the set of financial positions is
a linear space X of bounded maps on a space Ω, and that the investor
has not access to all the maps defined on Ω, but only to the measurable
maps relative to a σ-algebra F .

In the first section we assume that (Ω,F , P ) is a probability space
and we introduce the notion of risk measure conditional to a prob-
ability space as follows: a risk measure conditional to a probability
space (Ω,F ,P), ρF , associates to each financial position in X a (Ω,F)
bounded measurable map defined P a.s. and, satisfies axioms of mono-
tonicity, translation invariance by (Ω,F) bounded measurable maps,
and multiplicative invariance by 1A where A is ∈ F . This risk mea-
sure of a position X conditional to a σ-algebra F can be viewed as
the “minimal” F-measurable map which added to the initial position
X makes this position acceptable.

We also consider this notion of conditional risk measure in a case
of complete uncertainty, that is in the case where one does not know
which probability is “the good one” even on the σ-algebra F (recall
that F represents all the accessible information). This can be the
point of view of a supervising agency.

This new notion of conditional risk measure generalizes the notion
of monetary risk measure introduced by H. Föllmer and A. Schied [10]
and [11]. It generalizes as well the notion of conditional g-expectation
defined by S. Peng [14] and [15] or dynamic risk measure given by E.
Rosazza Gianin [16]. Indeed, ρFt(X) = Eg(−X|Ft) is a risk measure
conditional to the Brownian σ-algebra Ft, when Yt = Eg(−X|Ft) is
the solution of the backward stochastic differential equation −dYt =
g(t, Zt)dt − Z∗

t dBt ; YT = −X (see also El Karoui [8], El Karoui,
Peng and Quenez [9], and Pardoux and Peng [13] for the backward
stochastic differential equations).

An important other example in finance is the conditional risk mea-
sure associated to a loss function (which generalizes the monetary risk
measure associated lo a loss function introduced by H. Föllmer and A.
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Schied [10] and [11]). We assume that an investor has only access to
partial information represented by a σ-algebra F . This investor has
chosen a convex increasing loss function l (l(x) = −u(−x) where u
is his utility function). In that case it is natural to define the condi-
tional risk measure of a position X as the minimal F-measurable map
ρ(X) such that Y = X + ρ(X) is acceptable in the following sense:
E(l(−Y )|F) ≤ g P a.s. where g is a bounded F-measurable map.
When the loss function is exponential we obtain the conditional en-
tropic risk measure. The conditional entropic risk measure generalizes
the entropic risk measure studied by H. Föllmer and A. Schied ([10]
and [11]), Delbaen et al [6], P. Barrieu and N. El Karoui [3]. We study
in section 5 the conditional risk measure associated to a loss function
and completely describe it.

K. Detlefsen [7] has independently defined and studied a notion
of conditional risk measure but only in the particular case where the
space of financial positions is a probability space. He assumes that an
a priori probability measure is given on the whole space and not only
on the space representing the accessible information.

Important results of this paper are the theorems of representation, in
the same vein as in Föllmer and Schied [10] and [11], that we obtain in
a more technical way, using tools of measure theory and also of convex
analysis (section 4).

These main results are as follows. Assume that X is the set of
all bounded measurable functions on a measurable space (Ω,G). Let
F be a sub-σ-algebra of G. Then each convex risk measure contin-
uous from below defined on X conditional to the σ algebra F can
be represented in terms of conditional expectations for a class M1 of
probability measures on (Ω, G): For all Q ∈ M1 and X ∈ X ,

ρF (X) ≥ EQ(−X|F)− α(Q) Q a.s.

α(Q) = ess sup{Y ∈AρF }(EQ(−Y |F)) is called the penality function of
Q (AρF is the set of acceptable positions).

In addition for all X ∈ X for every probability measure P on F
there is a probability measure QX ∈ M1 whose restriction to F is
equal to P such that

ρF (X) = EQX
(−X|F)− α(QX) P a.s.
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In the case of a risk measure conditional to a probability space
(Ω,F .P ), the preceding representation can be expressed in terms of
conditional expectations for a class M1(P ) of probability measures Q
on (Ω,G) such that the restriction of Q to F is equal to P :

ρF (X) = ess maxQ∈M1(P )((EQ(−X|F)− α(Q))

Remark: if we don’t assume continuity from above, we still get a
representation theorem. However it is expressed, as for monetary risk
measures, in terms of finitely additive set functions on G instead of
probability measures.

Acknowledgments: I would like to thank Nicole El Karoui and Hans
Föllmer for stimulating discussions.

1 Risk measure conditional to a prob-

ability space

1.1 Definition of conditional risk measures

Let Ω be a set. A financial position is described by a bounded map
defined on the set Ω of scenarios. We consider a linear space X of
financial positions.

We consider also a σ-algebra F on the space Ω. Then (Ω,F) is a
measurable space. We denote EF the set of all bounded real valued
(Ω,F) measurable maps.

We assume in this first section, in order to be in a well known
context, that a probability measure P is given on the σ-algebra F . It
is a case of partial uncertainty. It is very relevant in finance. Indeed
we assume that the investor has access to partial information repre-
sented by the σ-algebra F and it is natural to study the case where a
probability measure is given on this σ-algebra F . We want to define
a notion of risk measure conditional to (Ω,F ,P) which generalizes
the notion of monetary risk measure and which has several properties
similar to those of the conditional expextation (but not the linearity).

Hence we give the following definition:

Definition 1:
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A mapping
ρF : X → L∞(Ω,F ,P)

is called a risk measure conditional to the probability space (Ω,F ,P)
if it satisfies the following conditions:

- Conditions similar to the properties satisfied by monetary risk
measures.

i) monotonicity: for all X,Y ∈ X if X ≤ Y then ρF (Y ) ≤ ρF (X) P a.s.
ii) translation invariance: for all Y ∈ EF , for all X ∈ X ,

ρF (X + Y ) = ρF (X)− Y P a.s.

- A new property reminiscent of conditional expectations.
iii) multiplicative invariance: for all X ∈ X , for all A ∈ F ,

ρF (X1A) = 1AρF (X) P a.s.

In some cases we will require that the conditional risk measure satisfies
additional properties.

Definition 2:
i) A risk measure defined on X conditional to the probability space

(Ω,F ,P) is called convex if for all X,Y ∈ X , for all 0 ≤ λ ≤ 1,

ρF (λX + (1− λ)Y ) ≤ λρF (X) + (1− λ)ρF (Y ) P a.s.

ii) A convex conditional risk measure is called coherent if it satisfies
the positive homogeneity: for all X ∈ X , for all λ ≥ 0,

ρF (λX) = λρF (X) P a.s.

iii) A convex conditional risk measure is continuous from below if:
For all increasing sequence Xn of elements of X converging to X,

the decreasing sequence ρF (Xn) converges to ρF (X) P a.s..

We now give some immediate but usefull properties of conditional
risk measures.
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We consider the supremum norm || || on X and the usual norm on
L∞(Ω,F ,P).

Lemma 1:
1) Any conditional risk measure is Lipschitz continuous with Lip-

schitz constant equal 1 from(X , || ||) to L∞(Ω,F ,P).
2) The restriction to EF of any risk measure conditional to (Ω,F ,P)

is equal to −id P a.s.

Proof:
1) Let X,Y ∈ X , X and Y are bounded. Then X ≤ Y + ||X−Y ||.

From properties of monotonicity and translation invariance, it follows
that ρF (Y )− ρF (X) ≤ ||X − Y ||. Exchanging the roles of X and Y ,
we obtain 1).

2) is an easy consequence of the properties of translation invariance
and multiplicative invariance.

Q.E.D.

1.2 Conditional risk measures and their ac-
ceptance sets

Definition 3:
The F-acceptance set of the risk measure ρF conditional to the

probability space (Ω,F) is

AρF = {X ∈ X / ρF (X) ≤ 0 P a.s.}

We list now the characteristic properties of an acceptance set.

Proposition 1: Let ρF a risk measure conditional to the probability
space (Ω,F ,P) with acceptance set A = AρF . Then

- As in the monetary case A satisfies properties independent of the
σ-algebra F

6



1) A is non empty, closed with respect to the supremum norm and
has

hederitary property: for all X ∈ A, for all Y ∈ X , if Y ≥ X, then
Y is in A.

- A satisfies two new properties dependent on F :
2) Bifurcation property: for all X1,X2 ∈ A, for all B1,B2 disjoint

sets ∈ F , X = X11|B1
+ X21|B2

is in A.
3) Positivity: Every element F-measurable of A is positive P a.s.
4) Furthermore ρF can be recovered from A

ρF (X) = ess inf{Y ∈ EF / X + Y ∈ A}

Proof:
1) A is non empty because 0 ∈ A.
Let X ∈ X − A. Let ε > 0 such that P ({ω ∈ Ω / ρF (X)(ω) >

ε}) > 0. Let O = {Y ∈ X / ||ρF (Y ) − ρF (X)|| < ε}. O is an open
subset of (X , || ||) from lemma 1 and it is clear that it is contained in
X −A. So X −A is open and A is closed in X with respect to || ||.

The other property is an easy consequence of monotonicity.

2) From multiplicative invariance,

ρF (Xi1|Bi
) = ρF (X)1|Bi

and ρF (0) = 0.
This proves the bifurcation property.

3) For all X F-measurable, from lemma 1, ρF (X) = −X P a.s. so
the result follows from the definition of A.

4) Let X ∈ X . Denote BX = {f ∈ EF | X + f ∈ A}.
From translation invariance, it follows that ρF (X) ∈ BX .
On the other hand, for every f in BX ,

ρF (X + f) = ρF (X)− f ≤ 0 P a.s.
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So
ρF (X) = ess inf{f ∈ EF / f + X ∈ A}

Q.E.D.

The properties of the conditional risk measure can be viewed on its
acceptance set:

Proposition 2:
i) ρF is convex if and only if )AρF is convex.
ii) ρF is coherent if and only if )AρF is a convex cone.

Proof:
i) The convexity of ρF trivially implies the convexity of AρF .
Conversely assume the convexity of AρF .
Let X,Y ∈ X . Then X + ρF (X) ∈ AρF and Y + ρF (Y ) ∈ AρF .

From the convexity of AρF , it follows that

∀λ ∈ [0, 1], λ(X + ρF (X)) + (1− λ)(Y + ρF (Y )) ∈ AρF .

Applying 4) of proposition 1, this gives the convexity of ρF .
ii) If ρF is coherent, AρF is clearly a convex cone.
Conversely if AρF is a convex cone, we know from i) that ρF is

convex.
Also from 4) of Proposition 1, let λ > 0,
ρF (λX) = inf{f ∈ EF ; f + λX ∈ AρF}.
As AρF is a cone, this is equal to λ inf{g ∈ EF ; g + X ∈ AρF} =

λρF (X). Q.E.D.
We can now give the definition of a F-acceptance set.

Definition 4:
A subset A of positions is a F-acceptance set if it satisfies the

properties 1) 2) and 3) of proposition 1.

We prove now that conversely, given a F-acceptance set, we can con-
struct a risk measure conditional to the probability space (Ω,F ,P).
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Proposition 3:
Let A a F-acceptance set. For all X ∈ X consider the set

BX = {Y ∈ EF , X + Y ∈ A}

Define now
ρF (X) = ess infBX

(ess inf relative to P ). Then ρF is a risk measure conditional to the
probability space (Ω,F ,P).

Hence a risk measure conditional to a probability space (Ω,F ,P) can
be defined either directly or from a F-acceptance set.

Proof:
BX is non empty
Indeed, A is non empty. Let f ∈ A. Let X ∈ X . There is a real

number m such that X + m ≥ f so m ∈ BX

ρF (X) = ess infBX is then a F-measurable map. The property
of monotonicity of ρF follows from the property 1) of A. Property of
translation invariance follows from the definition of ρF .

Let X ∈ X and B ∈ F . If Y ∈ EF , and Y + X ∈ A then
(Y + X)1B ∈ A from property 2) so ρF (X1B) ≤ ρF (X)1B.

On the other end, if Z ∈ EF ,and Z + X1B ∈ A, then Z1Ω−B ∈
EF ∩A. It follows from property 3) that Z1Ω−B is positive P almost
surely. So we get the multiplicative invariance.

Q.E.D.

1.3 Risk measure defined on a probability space

In this subsection we assume that the set of financial positions is
L∞(Ω,G, P ). We are in a situation where we assume that we have
only access to partial information represented by a sub-σ-algebra F
but however we assume that a probability measure is given on the
whole set of financial positions.

Definition 5: A conditional risk measure on L∞(Ω,G, P ) is a risk
measure ρF defined on the set of all bounded G-measurable functions
conditional to the probability space (Ω,F , P ) such

ρF (X) = ρF (Y ) P a.s. if X = Y P a.s.
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1.4 Dynamic risk measures

Assume that the set of financial positions is X = L∞(Ω,G, P )
Assume that a filtration (Ft)0≤t≤∞ is given ; i.e. a family of in-

creasing sub-σ-algebras of G
Definition 6:
A family (ρs,t)s≤t is a dynamic risk measure if:

ρs,t : L∞(Ω,Ft, P ) → L∞(Ω,Fs, P )

is for all (s, t) a conditional risk measure and if

∀(r, s, t) ρr,t = ρr,s(−ρs,t) if r ≤ s ≤ t

2 Examples of conditional risk mea-

sures

2.1 Monetary risk measures

The general notion of monetary risk measures was introduced by
Föllmer and Schied( [10] and [11]). Consider the trivial σ-algebra
F0 = {Ω, ∅}

Then the risk measures conditional to F0 are exactly the normal-
ized monetary risk measures i.e. the monetary risk measures ρ such
that ρ(0) = 0

A particular example of monetary risk measure is the entropic
risk measure defined on a probability space. (for this we refer to
Föllmer and Schied [11] and also to Barrieu and El Karoui [3]). The
entropic risk measure is defined by its acceptance set. Here we assume
that X is a probability space.(X = L∞(Ω,G, P )). We assume that
the investor has an exponential utility function and that the set of
acceptable positions is defined by

A = {Y ∈ X /EP (e(−αY )) ≤ 1}

Then for all X ∈ X , ρA(X) = 1
αLn[EP (e−αX)]

2.2 Conditional risk measure associated to a
loss function

The preceding example can be generalized. Assume that the set of fi-
nancial positions is the set of all bounded G-measurable maps. Assume
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that the investor has only access to partial information represented by
the events F measurable.And assume that the investor has choosen a
convex loss function (i.e. an increasing convex non constant function)
1) Assume first that the investor has an a priori probability measure
on the whole σ-algebra G.

AP = {Y ∈ X /EP (l(−Y )|F) ≤ l(0) P a.s.}

A is a F-acceptance set. We will study the corresponding conditional
risk measure ρP in section 5 and completely describe it in terms of
conditional expectations. When l(x) = eαx we get the conditional
entropic risk measure.

2)Consider now a more uncertain case. Assume now that there is
no a priori probability measure given on (Ω,G). But we assume that
the investor knows a probability measure on (Ω,F) (or at least he
knows which events of the σ-algebra F are of null probability).

Consider now a set Q of probability measures on (Ω,G) such that
for all Q ∈ Q, the restriction of Q to F is equivalent to P

∩
Q∈Q

AQ is a F-acceptance set

and the corresponding risk measure ρ is a risk measure conditional
to the probability space (Ω,F , P )

ρ(X) = ess supQ∈Q ρQ(X) P a.s.

2.3 Dynamic risk measures,conditional g-expectations
anf backward stochastic differential equations

F. Coquet, Y. Hu, J. Memin and S. Peng [5] introduced the notion
of filtration-consistent non linear expectations and of conditional g-
expectations; see also [14]. In these cases a probability space (Ω,G,P)
is given and also the augmented filtration associated to an Xt d-
dimensional process. In the case of the conditional g-expectation, Ft is
the filtration associated to a Brownian motion Bt and the conditional
g-expectation with respect to Ft is defined for all X ∈ L2(Ω,FT , P )
by Eg(X|Ft) = yt where yt is the unique solution of the following
backward stochastic differential equation:

−dyt = g(t, yt, zt)dt− z∗t dBt

yT = X
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If g is independent of y and if g(s, 0) = 0 then the map ρt : X →
Eg(−X|Ft) satisfies the properties of monotonicity,translation invari-
ance and multiplicative invariance( [14], [15] and [9]) so it is a risk
measure conditional to Ft. Furthermore if for all t g(t, .) is convex the
conditional risk measure is convex.

E.Rosazza Gianin [12] has given a notion of dynamic risk mea-
sure [16] (ρt)0≤t≤T . In her definition the filtration considered is also
the augmented filtration of a Brownian motion and X = L2(Ω,FT , P ).

If the dynamic risk measure has the properties of monotonicity,
translation invariance and multiplicative invariance, then the restric-
tion of ρt to L∞(Ω,FT , P ) is for each t a risk measure conditional to
the probability space (Ω,Ft, P ).

2.4 Conditional maximum

Barron, Cardaliaguet and Jensen have introduced in [4] the notion of
conditional maximum relative to a sub-σ-algebra F . Let (Ω,G,P) a
probability space. Let X ∈ L∞(Ω,G,P). Let F a sub-σ-algebra of G.

M(X|F) = ess inf {Y ∈ EF | Y ≥ X P a.s.}

Denote
ρM
F (X) = M(−X|F)

and
ρm
F (X) = −M(X|F)

It is very easy to verify that ρM
F and ρm

F are risk measures conditional
to the probability space (Ω,F , P ) Furthermore from the property of
monotonicity and the fact that the restriction to EF of every risk
measure conditional to F is equal to −Id (lemma 1) it follows easily
that ρM

F is maximal in the set of risk measure conditional to F and
that ρm

F is minimal.

∀X ∀ρF ρm
F (X) ≤ ρF (X) ≤ ρM

F (X)

3 Conditional risk measure in a con-

text of uncertainty

In this section we want to extend the notion of conditional risk measure
to the case of uncertainty; i.e.to the case where no probability is given.
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As in the first section, a financial position is described by a bounded
map defined on the set Ω of scenarios. We consider a linear space X
of financial positions. We consider also a σ-algebra F on the space
Ω. Then (Ω,F) is a measurable space. We denote EF the set of all
bounded real valued (Ω,F) measurable maps.

But now we don’t assume that a probability measure is given nor
that there is any consensus on which F-measurable sets should be null
sets.

We will refer to that case as to the case of complete uncertainty.
A risk measure conditional to the σ-algebra F is a mapping defined

on X with values in EF which satisfies the conditions of monotonicity,
translation invariance and multiplicative invariance in each point. The
precise definition is:

Definition 7:
A mapping

ρF : X → EF
is called a risk measure conditional to the σ-algebra F if it satisfies
the following conditions:

i) monotonicity: for all X,Y ∈ X if X ≤ Y then ρF (Y ) ≤ ρF (X)
ii) translation invariance: for all Y ∈ EF , for all X ∈ X ,

ρF (X + Y ) = ρF (X)− Y

iii) multiplicative invariance: for all X ∈ X ,for all A ∈ F ,

ρF (X1A) = 1AρF (X)

The acceptance set of the conditional risk measure ρF is

AρF = {X ∈ X / ρF (X) ≤ 0}.

The characteristic properties of an acceptance set are summerized
in the following proposition:

Proposition 4: The acceptance set A = AρF of a conditional risk
measure ρF satisfies the properties 1) and 2) of Proposition 1 without
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any change (A is closed non empty and satisfies the hereditary and
the bifurcation properties).

3) Every F-measurable element of A is positive.
4) ρF can be recovered from A

ρF (X) = inf{Y ∈ EF / X + Y ∈ A}.

Proof:
The proof of properties 1) 2) and 3) of proposition 4 is similar to

that of proposition 1.
We prove now 4). For all X ∈ X denote BX = {Y ∈ EF / X +Y ∈

A}

ρF (X + ρF (X)) = 0

. So X + ρF (X) ∈ A and ρF (X) ∈ BX .
Furthermore for every Y in BX , ρF (X + Y ) ≤ 0 i.e. ρF (X) ≤ Y .
This proves that BX has a minimal element which is equal to

ρF (X).
Q.E.D.

4 Representation of convex conditional

risk measures

In all this section we assume that there is a σ-algebra G such that X is
the set of all bounded measurable functions on the measurable space
(Ω,G). Then (X , || ||) is a Banach space.

Let F be a sub-σ-algebra of G. Denote M1,f the set of all finitely
additive set functions Q : G → [0, 1] such that Q(Ω) = 1.

We study first the case of complete uncertainty and then the case
where a probability measure is given on the sub-σ-algebra F .

4.1 Case of complete uncertainty

We prove the following result:

Theorem 1:
Let ρF a convex risk measure conditional to F .
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For all X ∈ X there is QX in M1,f such that for all B ∈ F

EQX
(ρF (X)1B) = EQX

(−X1B)− sup
Y ∈AρF

EQX
(−Y 1B) (I)

For all X ∈ X for all Q in M1,f for all B ∈ F

EQ(ρF (X)1B) ≥ EQ(−X1B)− sup
Y ∈AρF

EQ(−Y 1B) (II)

Proof:
For all X ∈ X , (ρF (ρF (X) + X)) = ρF (X)− ρF (X) = 0.
So ρF (X) + X ∈ AρF .
So for all Q ∈ M1,f , for all B ∈ F , we get:

supY ∈AρF
EQ(−Y 1B) ≥ EQ(−X1B)− EQ(ρF (X)1B)

This proves the inequality (II).
In order to prove the equality (I), it is enough to prove it in the

case where ρF (X) = 0.
Indeed when ρF (X) 6= 0,we get the result, replacing X by X +

ρF (X).
Consider now the convex hull C of {(Y−X)1B; ρF (Y ) < 0 and B ∈

F}.
1) Step 1:
Prove that C ∩{0} = ∅.
Indeed assume that there are λi ≥ 0;

∑n
i=1 λi = 1 and

∑n
i=1 λi(Yi−

X)1Bi = 0.
Choose J ⊂ {1, 2, ...n} such that B̃ = ∩

i∈J
Bi 6= ∅ and such that

∀j ∈ {1, 2, ...n} − J , B̃ ∩Bj = ∅∑
i∈J

λi(Yi −X)1B̃ = 0.

Let Ỹ =
∑

i∈J
λi(Yi)∑

i∈J
λi

.

From the convexity of ρF , it follows that ρF (Ỹ ) < 0.
But Ỹ 1B̃ = X1B̃ So ρF (Ỹ 1B̃) = ρF (X1B̃) = 0.
And this equality applied to elements of B̃ gives a contradiction.
This ends the first step of the proof.
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2) Step 2
C contains the open ball

B1(1−X) = {Y ∈ X ; ||Y − (1−X)|| < 1}.

Indeed if Y is in B1(1−X), Y = Z −X with Z ∈ B1(1)
so from lemma 1, ρF (Z) < 0.
This ends step 2.

3) Step 3
We prove the existence of QX ∈ M1,f such that
∀B ∈ F ,EQX

(−X1B) = supY ∈AρF
EQX

(−Y 1B).
From the first step, 0 doesn’t belong to the convex set C, and from

step 2 the interior of C is non empty so there is a non-zero continuous
linear form L on X such that

0 = L(0) ≤ L(Z) for all Z ∈ C
0 ≤ L((Y −X)1B) for all Y such that ρF (Y ) < 0 and for all B ∈ F .
Now ∀Y ∈ AρF , ∀ε > 0, ρF (Y + ε) < 0.
Hence by continuity of L,

0 ≤ L((Y −X)1B) ∀Y ∈ AρF . (III)

Now ∀Y ≥ 0,∀λ > 0,ρF (1 + λY ) < 0), so (1 + λY −X) ∈ C and
L(1) + λL(Y )− L(X) ≥ 0.

This implies that ∀Y ≥ 0, L(Y ) ≥ 0; i.e. L is a positive linear
form.

From this it follows that L(1) > 0.
And so there is a unique QX ∈ M1,f defined by EQX

(Y ) = L(Y )
L(1)

for all Y in X .
And ∀B ∈ F ,∀Y ∈ AρF , it follows from (III) that EQX

(−X1B) ≥
EQX

(−Y 1B).
Using the inequality (II), this ends the proof of step 3 and also the

proof of the theorem. Remark: This theorem contains as a special case
the theorem of representation of the monetary risk measures when the
σ-algebra F is the trivialσ-algebra.

In fact we can prove that for each X ∈ X , the restriction to F of
the finitely additive set function QX of theorem 1 can be choosen
arbitrarily.
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Lemma 2:
Let P a finitely additive set function on F ; P : F → [0, 1] such

that P (Ω) = 1. For each X ∈ X there is a finitely additive set function
QX on G such that the equality (I) is

satisfied and such that the restriction of QX to F is equal to P .

Proof:
Define ρ̃(X) = P (ρF (X)). ρ̃ is a convex risk measure. So for all

X ∈ X there is QX in M1,f such that
ρ̃(X) = EQX

(−X)− supY ∈Aρ̃
EQX

(−Y ) (Ĩ)
and for all Z ∈ X
ρ̃(Z) ≥ EQX

(−Y )− supY ∈Aρ̃
EQX

(−Y ) (ĨI).
From the equality (Ĩ), as X is bounded, it follows that supY ∈Aρ̃

EQX
(−Y )

is a real number. Denote it α(QX).
Apply the inequality (ĨI) to Z = β1B for all β ∈ IR and B ∈ F .

We get β(P (B) − QX(B)) ≥ α(QX) for all β in IR. So necessarily
P (B) = QX(B) for all B i.e. the restriction of QX to F is equal to
P . Ĩ can then be written

EQX
(ρF (X)) = EQX

(−X)− sup
Y ∈Aρ̃

EQX
(−Y )

As AρF is contained in Aρ̃ it follows that

EQX
(ρF (X)) ≤ EQX

(−X)− sup
Y ∈AρF

EQX
(−Y )

But the converse inequality is always true so QX satisfies the equality
EQX

(ρF (X)) = EQX
(−X)− supY ∈AρF

EQX
(−Y ) (E).

Assume now that there is one F measurable set B such that the
inequality (II) of theorem 1 for QX is strict. There is Y0 ∈ AρF such
that

EQX
(ρF (X)1B) > EQX

(−X1B)− EQX
(−Y01B).

Let Y = Y01B + (X + ρF (X))1Ω−B. From the bifurcation property of
AρF it follows that Y ∈ AρF and

EQX
(ρF (X)) > EQX

(−X1B)−EQX
(−Y 1B)+EQX

(−X1Ω−B)−EQX
(−Y 1Ω−B)

This contradicts the equality (E).
So QX satisfies the equality (I) of theorem 1 for all B ∈ Fand the

restriction of QX to F is equal to P .
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Q.E.D.

Now we can prove the theorem of representation, in terms of condi-
tional expectations, for the convex conditional risk measures continu-
ous from below.

Theorem 2:
Let ρF be a convex risk measure conditional to F . Assume that

ρF is continuous from below then:

1) For all X ∈ X for every probability measure Q on (Ω,G)

ρF (X) ≥ EQ(−X|F)− α(Q) Q a.s.

α(Q) = ess sup{Y ∈AρF }(EQ(−Y |F)) Q a.s.

2) For all X ∈ X , for every probability measure P on (Ω,F) there
is QX in M1(G,F , P ) such that

ρF (X) = EQX
(−X|F)− α(QX) P a.s.

(where M1(G,F , P ) is the set of all probability measures Q on
(Ω,G) such that the restriction of Q to F is equal to P ).

3) For all X ∈ X ,

ρF (X) = inf{g ∈ EF ;∀Q ∈ M1(Ω,G), g ≥ (EQ(−X|F)−ess sup{Y ∈AρF }(EQ(−Y |F)) Q a.s.}

Proof:
1) Let Q a probability measure on (Ω,G). The inequality (II) of

Theorem 1 applied to Q gives 1).

2) Let P a probability measure on (Ω,F). Let X ∈ X . From lemma
2, there is a finitely additive set function QX such that the equality
(I) is satisfied for all B ∈ F and such that the restriction of QX to F
is equal to P .

It remains to prove that QX is a probability measure on (Ω,G) i.e.
that QX is σ-additive.
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Consider an increasing sequence (An)n∈IN of elements of G whose
union is equal to Ω we have to prove that QX(An) converges to 1.
Apply equality (I) to B = Ω. We get

EP (ρF (X)) = EQX
(−X)− α(QX)

with α(QX) = supY ∈AρF
EQX

(−Y ); X and ρF (X) are bounded so
α(QX) is finite.

Let λ > 0. Apply now the inequality (II) to λ1An We get

EQX
(λ1An) ≥ −EP (ρF (λ1An))− α(QX)

As n tends to infinity, ρF (λ1An) tends to ρF (λ) = −λ so

lim inf
n→∞

EQX
(An) ≥ 1− α(QX)

λ

As λ tends to ∞ we get lim infn→∞ EQX
(An) ≥ 1.

This ends the proof of 2).

3) From 1) for every probability measure Q on (Ω,G),

ρF (X) ≥ (EQ(−X|F)− ess sup{Y ∈AρF }(EQ(−Y |F)) Q a.s.

And if g is-F-measurable and satisfies the relation
g ≥ EQ(−X|F)− ess supY ∈AρF

EQ(−Y |F) Q a.s.
for every probability measure P on (Ω,G),
Let B = {ω|g(ω) < ρF (X)(ω)}. If B is non empty, there is a

probability measure P on (Ω,F) such that P (B) > 0.
Now from 2) there is QX ∈ M1(G,F , P ) such that
ρF (X) = (EQX

(−X|F)−ess supY ∈AρF
EQX

(−Y |F) QX a.s. And
so we get a contradiction, and 3) is proved.

Corollary 1
Let ρF be a convex coherent risk measure conditional to F
1)There is a set Mf of finitely additive set functions such that:
For all X ∈ X , for all Q ∈Mf , for all B ∈ F ,

EQ(ρF (X)1B) ≥ EQ(−X1B)

For all X ∈ X , there is QX ∈Mf , such that for all B ∈ F ,

EQX
(ρF (X)1B) = EQX

(−X1B)
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2)If ρF is furthermore continuous from below, it can be expressed
in terms of conditional expextations for a family Q of probability
measures such that the penality function of each Q α(Q)is equal to 0.

Proof: This corollary follows from the theorems 1 and 2, from the fact
that AρF is a cone and from the observation that for each QX and for
all B ∈ F , supY ∈AρF

EQX
(−Y 1B) is finite and α(QX) is bounded.

4.2 Representation of risk measures conditional
to a probability space

In the case of a risk measure conditional to a probability space (Ω,F ,P),the
restriction to F of the measures Q and QX of the representation the-
orem must be absolutely continuous with respect to P and they can
all be choosen equal to P . For example in the case of continuity from
below we get the theorem:

Theorem 3: Let ρF be a convex risk measure conditional to the
probability space (Ω,F , P ).

Assume that ρF is continuous from below then for all X ∈ X

ρF (X) = ess maxQ∈M((EQ(−X|F)− α(Q))

where α(Q) = ess sup{Y ∈AρF }(EQ(−Y |F)

Where M is a set of probability measures on (Ω,G) whose restric-
tion to F is equal to P . If in addition ρF is coherent, then ρF (X) =
ess maxQ∈M(EQ(−X|F) Remark:ρF (X) = ess maxQ∈M((EQ(−X|F)−
α(Q)) means that ρF (X) is the ess sup and that this ess sup is at-
tained for one Q ∈M

Proof:
First, as in theorem 1, it is easy to verify that for all X in X , for

all B in F and for all Q absolutely continuous with respect to P ,

EQ(ρF (X)1B) ≥ EQ(−X1B)− sup
Y ∈AρF

EQ(−Y 1B) (II ′)
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We prove then the existence of a finitely additive set function QX

satisfying the equality:

EQX
(ρF (X)1B) = EQX

(−X1B)− sup
Y ∈AρF

EQX
(−Y 1B) (I ′)

The proof is exactly the same as that of theorem 1 replacing C by the
convex hull C̃ of

{(Y −X)1B; ρF (Y ) < 0 P a.s.; B ∈ F and P (B) 6= 0}

Let A in F such that P (A) = 0. For all Z ∈ C̃,for all β ∈ IR,
Z + β1A = Z P a.s..It follows from the inequality EQX

(Z) ≥ 0
applied to Z + β1A for all β ∈ IR that QX(A) = 0

So QX must be absolutely continuous with respect to P .
The end of the proof follows easily from the proofs of lemma 2 and

theorem 2.

In the particular case of conditional risk measures defined on a prob-
ability space the representation theorem takes the following form:

Proposition 5:
Let ρF be a convex risk measure on L∞(Ω,G, P ) conditional to the

probability space (Ω,F , P ).
Assume that ρF is continuous from below then for all X ∈ X

ρF (X) = ess maxQ∈M(EQ(−X|F))− α(Q)

where α(Q) = ess sup{Y ∈AρF }(EQ(−Y |F)) Here M is a set of prob-
ability measures on G absolutely continuous with respect to P whose
restriction to F is equal to P .

Remark : K.Detlefsen [7] has also obtained independently a theorem of
representation, however expressed differently and only in this specific
case of a conditional risk measure defined on a probability space.

We now apply this representation result to the case of backward
stochastic differential equations.
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Proposition 6: Consider a probability space (Ω,G, P ) and an IRn-
valued Brownian motion. Consider the backward stochastic differen-
tial equation

−dYt = g(t, Zt)− Z∗
t dBt

YT = −X

Assume that X is in L∞(Ω,FT , P ). Assume that the driver g :
(Ω × IR × IRn) → IR) satisfies the usual assumptions and that ∀t ∈
IR g(t, 0) = 0 P a.s. then

ρFt(X) = Yt

defines a risk measure conditional to Ft (with values in L∞(Ω,Ft, P )).
Furthermore if g is convex in z, then ρFt is a convex conditional

risk measure continuous from below and so

ρFt(X) = ess maxQ∈M[(EQ(−X|Ft)− α(Q)]

with α(Q) = ess sup{Y ∈AρF }(EQ(−Y |Ft))]
Moreover if g is sub-linear in z, then ρFt is coherent and can be

written
ρFt(X) = ess maxQ∈M[(EQ(−X|Ft)]

M is a set of probability measures on (Ω,G) absolutely continuous
with respect to P whose restriction to F is equal to P .

Remark : The above representation result in the case where g
is sub-linear was already obtained in the particular case where the
process Z is one dimensional and g(z) = |z| by Chen and Peng [2].

Proof of the proposition:
The existence of a unique solution (Y, Z) in H2(IR) × H2(IRn) is

proved in Pardoux and Peng [13] and also in El Karoui, Peng, Quenez
[9]. From the comparaison theorem [9] as X is bounded it follows that
(Yt)0≤t≤T is uniformly bounded and in particular Yt ∈ L∞(Ω, Ft, P ).
The property of monotonicity follows also from the comparaison the-
orem. The properties of translation and of multiplication invariance
are proved in [5] (see also [13] and [15]). So ρFt is a risk measure
conditional to Ft. For the properties of convexity (resp coherence) of
ρFt when g is convex (resp sublinear) we refer to [5] [9] [13] and [15].

Consider now an increasing sequence Xn such that X = lim Xn P a.s..
It follows from proposition 3.2 of [9] (as −X = inf(−Xn)) that for
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each t, ρFt(X) = ess inf(ρFt(Xn)) and as the sequence (ρFt(Xn)) is
decreasing from the comparaison theorem,

ρFt(X) = lim ρFt(Xn) P a.s.

The conditional risk measure is then continuous from below, and if g
is convex (resp sublinear) we can apply the proposition 5 and it gives
the announced representation.

5 Conditional risk measures in finan-

cial markets

In this section we assume that an investor wants to choose financial
products, that this investor has his own convex loss function and that
he has only access to partial information (represented by the σ-algebra
F). We assume that a probability measure P is given on (Ω,G).

Recall that a loss function l is an increasing non constant function
l : IR → IR. We will only consider convex loss functions.

In this context it is natural to define the set of acceptable positions
by

A = {X ∈ L∞(Ω,G, P ) | E(l(−X)|F) ≤ g P a.s.}.

where g is a bounded F-measurable map.
The purpose of this section is to study the F conditional risk mea-

sure associated to A and to find an explicit formula for the penality
function. We prove that the result obtained by H. Föllmer and A.
Schied [10] and [11]. For monetary risk measures associated to a loss
function can be extended to the case of conditional risk measures in
a more technical proof using the uniform continuity of l on each com-
pact and the Lebesgue dominated convergence theorem. The penality
function can be expressed in terms of the conjugate function of the
loss function l.

Theorem 4:
Let l a convex loss function strictly increasing onIR+. Let g a

bounded F-measurable map. Assume that there is a stricly positive
constant c such that g ≥ c P a.s. Define

Ã = {X ∈ L∞(Ω,G, P ) / E(l(−X)|F) ≤ l(g) P a.s.}
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and
A = Ã+ g = {X + g;X ∈ Ã}

Then A is a F-acceptance set.
For all X ∈ X define

ρ(X) = ess inf{Y ∈ EF ; X + Y ∈ Ã}

Then ρF (X) = ρ(X) + g is the risk measure ρF conditional to F
associated to A. It is convex, continuous from below. ρ(X) admits
the following representation:

ρ(X) = ess maxQ∈M((EQ(−X|F)− α(Q))

where M is a set of probability measures Q on (Ω,G) absolutely con-
tinuous with respect to P and such that the restriction of Q to F is
equal to P .

Furthermore

α(Q) = ess inf{f ∈ EF ; f > 0 a.s.}[ 1
f

(l(g) + EP (l∗(f
dQ

dP
)|F))]

l∗ is the conjugate function of the convex function l, i.e. l∗(z) =
supx∈IR(zx− l(x)).

This theorem is a generalization to the case of conditional risk
measures of the theorem 4.61 of [12].

In order to prove this theorem, we prove the following results:

Lemma 3:
Let l and A as in theorem 4.
Then A is a F-acceptance set.

Proof:
We verify that A satisfies the properties of the definition 4.
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- 0 ∈ A. The continuity of l and the Lebesgue dominated con-
vergence theorem imply that A is norm closed. - Let X ∈ A. Let
Y ∈ L∞(Ω, G, P ) such that Y ≥ X P a.s.

As l is increasing l(−Y ) ≤ l(−X) P a.s. so EP (l(−Y )|F)) ≤
EP (l(−X)|F)) a. s. and Y ∈ A. So property 1) is true.

- Let X1, X2 ∈ A. X1 − g and X2 − g are in Ã Let B1, B2 disjoint
sets in F .

EP (l(−X11B1−X21B2+g)|F) = EP (l(−X1+g)|F)1B1+EP (l(−X2+g)|F)1B2+l(g)1(Ω−B1−B2)

as X1 − g andX2 − g are in Ã it follows that X11B1 + X21B2 is in
A and property 2) is satisfied.

- Let X ∈ A∩EF . Let B = {ω ∈ Ω|X(ω) < 0}.
As l is strictly increasing on IR+, EP (l(−X+g)|F)1|B > l(g)1|B P a.s.

so P (B) = 0. So property 3) is true.
And so A is a F-acceptance set.

Lemma 4:
Let l andA be as in theorem 4. Let ρF the risk measure conditional

to F associated to the acceptance set A.
Then ρ(X) = ρF (X) − g = ess inf{Y ∈ EF |X + Y ∈ Ã} is the

unique Y ∈ L∞(Ω,F , P ) such that E(l(−X − Y )|F)) = l(g) P a.s.

Proof
By definition of he risk measure associated toA, ρF (X) = ess inf{Y ∈

EF ;X + Y ∈ A}. Let ρ(X) = ρF (X) − g Then ρ(X) = ess infBX

where BX = {Y ∈ EF ;X + Y ∈ Ã} If Y1, Y2 ∈ BX let C = {ω ∈
Ω; Y1(ω) > Y2(ω)} then from the bifurcation property of A it follows
that inf(Y1, Y2) = Y11Ω−C + Y21C is also in BX .

So from Theorem A.18 of [12]. a decreasing family Yn of elements
of BX such that ρF (X) = limn→∞(Yn)P a.s. Notice that this family
is uniformly bounded as ρcalF (X), g and Y1 are bounded.

l is continuous and increasing. So the sequence l(−X − Yn) is
increasing uniformly bounded and tends to l(−X − ρ(X)) P a.s..

From the properties of the conditional expectation, it follows that
E(l(−X−Yn)|F) is an increasing sequence and that E(l(−X−ρ(X))|F) =
limn→∞(E(l(−X − Yn))|F) P a.s. So
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E(l(−X − ρ(X))|F) ≤ l(g) P a.s.

Denote now Bn = {ω ∈ Ω/E(l(−X − ρ(X))|F)(ω) < l(g)− 1
n}.

Then Bn ∈ F and E(l(−X − ρ(X))1Bn |F) < (l(g)− 1
n)1Bn .

X+ρ(X) is bounded and l is uniformly continuous on each compact
so there is εn > 0 such that for all ω ∈ Ω, l(−X(ω)− ρ(X)(ω) + εn) <
l(−X(ω)− ρ(X)(ω)) + 1

n .
Then E(l(−X − [ρ(X)− εn])1Bn |F) < l(g)1Bn .
ρ(X) − εn1Bn is an element of BX and this is possible only if

P (Bn) = 0.
We have then proved that

E(l(−X − ρF (X))|F) = l(g) P a.s.

Assume now that Y is another F measurable map such that
E(l(−X − Y )|F)) = l(g) P a.s.
Let C = {ω ∈ Ω/ρ(X)(ω) > Y (ω)}.
C is F-measurable, l is strictly increasing on IR+ so
l([−X − ρ(X)]1C) < max(l([−X − Y ]1C), l(g)) P a.s.
So E(l([−X − ρ(X)]1C)|F) < l(g)1C P a.s.and this is possible

only if P (C) = 0; i.e. ρ(X) ≤ Y P a.s. The other inequality is
obtained in the same way so Y = ρ(X) in L∞(Ω,F , P ).

Q.E.D.

Lemma 5:
Under the same hypothesis, ρF is convex and continuous from

below.

Proof:
-Note first that the convexity of l and the linearity of the condi-

tional expectation implies the convexity of A and so also the convexity
of ρF from proposition 2.

-We prove now that ρF is continuous from below. Let X ∈ X and
Xn ∈ X an increasing sequence such that X = lim Xn P a.s. The
sequence ρ(X) = ρF (Xn)− g is decreasing uniformly bounded (as X1

and X are bounded); it has a limit Y = lim ρ(Xn) P a.s. From the
continuity of l and the Lebesgue dominated convergence theorem, it
follows that, E(l(−X − Y )|F) = l(g) P a.s. which proves, using the
result of the preceding lemma that Y = ρ(X) = ρF (X)− g. So ρF is
continuous from below.
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Proposition 7:
Assume the same hypothesis as in theorem 4 then

ρ(X) = ess supM(EQ(−X|F)− α(Q))

where

α(Q) = ess inf{f ∈ EF ; f > 0 a.s.}[ 1
f

(l(g) + EP (l∗(f
dQ

dP
)|F))]

where l∗ is the conjugate function of the convex function l.

Proof: We already know from the preceding lemmas that ρF is a con-
ditional convex risk measure continuous from above. So from propo-
sition 5 of section 4.2. ρF has a representation:

ρF (X) = ess maxQ∈M((EQ(−X|F)− β(Q))

with β(Q) = ess sup{Y ∈A}(EQ(−Y |F))),so

ρ(X) = ρF (X)− g = ess maxQ∈M((EQ(−X|F)− α(Q))

with α(Q) = ess sup{Y ∈Ã}(EQ(−Y |F))).
It remains to express α(Q) in terms of the loss function l.
l is convex l : IR → IR.
Consider its conjugate function l∗ defined by l∗(y) = sup{x∈IR}(yx−

l(x) defined on IR with values in IR U {+∞}. We denote D the do-
main of l∗. Recall that for all x, y ∈ IR, xy ≤ l(x) + l∗(y) and that
we have equality for all x ∈ IR and y ∈ [l′−(x), l′+(x)], and also for all
x ∈ IR, l(x) = supy∈IR(xy− l∗(y). Recall also that the right derivative
of l∗ exists in every point of D and that it is right continuous. We will
denote J this right derivative. We have then the following equality:

for all z ∈ IR zJ(z) = l(J(z)) + l∗(z)
Let Q ∈ M1((P,G)a.c., (P, F )) Denote φQ = dQ

dP the Radon Nikodym
derivative of Q with respect to P . Let Y ∈ Ã. For all f ∈ EF such
that f > 0 a.s.,

−Y φQ =
1
f

(−Y )(fφQ) ≤ 1
f

[l(−Y ) + l∗(fφQ)]
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Notice that for all h G-measurable,for all B ∈ F , EQ(h1B) =
EP (h1BφQ) = EP (EP (hφQ|F)1B) = EQ(EP (hφQ|F1B).(as the re-
striction of Q to F is equal to P ). So

EQ(h|F) = EP (hφQ|calF )

It follows that for all Y ∈ Ã for all f ∈ EF such that f > 0 a.s.,

EQ(−Y |F) = EP (−Y φQ|F) ≤ 1
f

[l(g) + EP [l∗(fφQ)|F ]

(because EP (l(−Y )|calF ) ≤ l(g))
Hence

α(Q) ≤ ess inf{f∈EF ;f>0a.s.}[l(g) + EP (l∗(fφ)|F))]

It remains to prove the converse inequality.
We give a complete proof of this inequality under the following

simplified assumptions (as in theorem 4.61 of [12].
H: Assume that there is k ∈ IR such that l(x) = infl for all x ≤ k,

that l∗ is finite on IR+ and that J is continuous on IR∗+.
As for all z ∈ IR+,l∗(z) ≥ −l(0),

lim
z→0+

l(J(z)) ≤ l(0) < l(g) P a.s. (1)

For all n ∈ IN denote An = {ω ∈ Ω; φQ(ω) ≤ n} and φn = φQ1An +
n1Ω−An Denote

En = {f ∈ EF ; f > 0 and EP (l(J(fφn))|F ≤ l(g)

As φn is bounded, it follows from (1) that En always contains a strictly
positive constant; and also as limz→∞J(z) = ∞ it follows that En is
bounded. Let fn = ess supEnfn ∈ EF . fn is the increasing limit of a
sequence of elements of En so using the continuity of l and J and the
dominated convergence theorem, it follows that

EP (l(J(fnφn))|F ≤ l(g)

We want to prove that the preceding inequality is in fact an equality.
Otherwise there is ε > 0 such that P (Bε) > 0 where Bε = {ω ∈
Ω; EP (l(J(fnφn))|F(ω) < l(g)(ω) − ε}. As fn and φn are bounded
it follows from the uniform continuity of loJ on every compact that
there is η > 0 such that EP (l(J(fn + η1Bε)φn))|F ≤ l(g)1Bε And this
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contradicts the definition of fn. So for all n, there is fn > 0 in EF
such that EP (l(J(fnφn))|F = l(g)

Denote now Yn = −J(fnφn)

EP (l(−Yn)|F) = EP (l(J(fnφn))|F) = l(g)

so Yn ∈ Ã
and

EQ(−Yn|F) = EP (J(fnφn)φQ)|F)

≥ EP (J(fnφn)φn)|F) =
1
fn

[EP ((J(fnφn))φnfn|F)]

=
1
fn

[l(g) + EP (l∗(fnφn)|F)] ≥ 1
fn

(l(g)− l(0))

As φn is an increasing sequence, En is decreasing so fn is a de-
creasing sequence of strictly positive bounded F-measurable maps. It
follows that it has a limit f ∈ EF . Q is such that α(Q) is in EF For
all n, α(Q) ≥ 1

fn
(l(g)− l(0)). It follows that f > 0 and that f and 1

f
are bounded. Furthermore we have proved that for all n ∈ IN ,

α(Q) ≥ 1
fn

[l(g) + EP (l∗(fnφn)|F)]

We can apply Fatou’s lemma and we get

α(Q) ≥ lim inf
1
fn

[l(g) + EP (l∗(fnφn)|F)]

≥ 1
f

[l(g) + EP (l∗(fφ)|F)]

This ends the proof of proposition 7 and also of theorem 4 under the
hypothesis H.

In the case where we don’t assume the hypothesis H, we end the
proof as in the proof of theorem 4.61 of [12].

Corollary 2:
Let l be a convex loss function. Let g a bounded F-measurable

function such that for all ω ∈ Ω,g(ω) is in the interior of the image of
l. Let

Ã = {X ∈ L∞(Ω,G, P ) / E(l(−X)|F) ≤ g P a.s.}
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For all X ∈ L∞(Ω,G, P ) define

ρ(X) = ess inf{Y ∈ EF / X + Y ∈ Ã}

Then
ρ(X) = ess max

Q∈M
((EQ(−X|F)− α(Q))

where M is a set of probability measures Q on (Ω,G) absolutely con-
tinuous with respect to P and such that the restriction of Q to F is
equal to P .

Furthermore

α(Q) = ess inf{f ∈ EF ; f > 0 P a.s.}[ 1
f

(g + EP (l∗(f
dQ

dP
)|F))]

(l∗ is the conjugate function of the convex function l).

Proof:
For all ω, g(ω) is in the interior of the image of l and l is continuous

strictly increasing from I onto the interior of the image of l. so f =
l−1(g) is a bounded F-measurable map,there is a real number a such
that a + f > 1 and the loss function l̃ defined by (̃l)(x) = l(x − a)
satisfies the hypothesis of theorem 4

We apply the result of theorem 4 to l̃. So we get the result.

Remark Assume that there is no probability measure given a priori
on (Ω,G) and that for the investor there is a whole family Q of possible
probability measures on (Ω,G) whose restriction to F is equal to P .
We replace then the F acceptance set of the theorem 4 by

A = {X ∈ X /∀Q ∈ Q;EQ(l(−X)|F) ≤ g P a.s.}

where X is the set of all bounded G-measurable maps. This gives a risk
measure conditional to the probability space (Ω,F , P ). The penality
function is now

α(Q) = ess inf{(f,R) / ∈ EF ; f > 0 a.s.;R ∈ Q}[ 1
f

(g+EP (l∗(f
dQ

dR
)|F))]

Applications:
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1) Conditional entropic risk measure:
Consider the exponential loss function
l(x) = eαx with α > 0
Let g > 0 a bounded F-measurable map.

ρ(X) = ess inf{Y ∈ EF / E(e[−α(X+Y )]|F) ≤ g} =
1
α

[lnE(e−αX)|F)−ln(g)}

Then α(Q) = 1
α(EP (ln(dQ

dP )dQ
dP |F)− ln(g)).

2)Let p > 1 Consider the loss function
l(x) = xp

p ifx ≥ 0
l(x) = 0 else
The conjugate function is
l∗(x) = xq

q ifx ≤ 0
l∗(x) = ∞ else where q is the conjugate exponent of p.
Let g > 0.
Then

α(Q) = (pg)
1
p EP [(

dQ

dP
)q|F ]

1
q .

Indeed

α(Q) = ess inf{f ∈ EF ; f > 0 P a.s.}[ 1
f

(g + EP (
1
q
(f

dQ

dP
)q|F))].

For all ω ∈ Ω, the maximum of

1
f(ω)

(g(ω) + (
1
q
(f(ω)qEP [(

dQ

dP
)q|F)](ω)))

is obtained for −g(ω) + q−1
q (f(ω)qEP [(dQ

dP )q|F ](ω)= 0 i.e.

f = (
pg

EP [(dQ
dP )q|F ]

)
1
q P a.s.

The results obtained for a convex loss function can also be extended to
the case of a random convex loss function l(ω, x) under conditions such
as the uniform equicontinuity on each compact of the family l(ω, .).
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