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Abstract

In this paper we consider unsymmetric elliptic problems of advection-diffusion-reaction type, with strongly
heterogeneous and anisotropic diffusion coefficients. We use non-overlapping Optimized Schwarz Methods
(OSM) and we study new interface conditions where only one or two real parameters have to be chosen
along the entire interface. Using one real parameter it is possible to design interface conditions of Robin
type, whereas the use of two real parameters and of more general interface conditions allows to better take
into account the heterogeneities of the medium. The analysis is made at the semi-discrete level, where the
equation is discretized in the direction parallel to the interface, and kept continuous in the normal direction.
Numerical results are given to validate the proposed interface conditions.

1 Introduction

High fluid pressures within the rock layers of the subsurface are among the biggest problems an oil company
has to deal with when drilling. A mathematical model for the prediction of fluid pressures on a geological
time scale is based on conservation of mass and Darcy’s law (see for instance [5]). This can be generalized to
a time-dependent advection-diffusion equation, where the region also changes in time as rocks are deposited
or eroded. An Euler backward method is used for the time integration, and a numerical method such as finite
volumes or finite differences is applied at any time step in order to solve the advection-diffusion equation,
yielding a linear system of equations.

A further complication of the physical problem is given by the heterogeneities of the underground: the pres-
ence of layers with very large differences in permeability yields contrasts up to seven orders of magnitude in
the different regions of the computational domain. The widespread availability of parallel computers makes
domain decomposition methods a natural candidate to take into account such problems. Such methods
are based on the subdivision of the computational domain into several subdomains (which may or may not
overlap) and the parallel solution of the local problems. This procedure leads to an iterative method that
converges to the solution of the original problem if the solutions in the subdomains are related by means
of suitable boundary conditions at the interface. The performance of the method depends drastically on
the design of interface conditions, which has been the subject of several works (see e.g. [30, 32, 39] and
references therein).

We consider here unsymmetric elliptic problems of advection-diffusion-reaction type, with strongly heteroge-
neous and anisotropic viscosity coefficients. Such problems arise naturally in several applications of practical
interest, when dealing with the modeling of transport and diffusion of a species through porous media, but
also in other engineering applications as electrical power networks, groundwater flows, semiconductors, and
electromagnetics modeling. The generalized Robin/Robin preconditioner introduced in [19] is especially
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suited to treat strong discontinuities in the viscosity coefficients when the surfaces of discontinuity coin-
cide with the subdomain interfaces, but its efficiency decays when the subdomains are not homogeneous.
To override this drawback, we propose a different approach based on a semi-continuous factorization of
the advection-diffusion operator. The original Schwarz Algorithm uses Dirichlet interface conditions, and
overlapping is necessary to ensure convergence. In [29] Robin interface conditions are introduced, ensuring
convergence without resorting to overlap.

Usually, general domain decomposition procedures are analyzed at continuous level (see for instance [1, 3,
6, 18, 19, 13], and references therein) and the resulting optimized interface conditions are then discretized
(see [16, 26, 34, 10]). Recently, the problem of optimization has been analyzed also at the discrete level
(see [38, 15, 30]). We choose herein an halfway between the two approaches, where the model problem is
discretized in the direction parallel to the interface, and kept continuous in the normal direction.

The paper is organized as follows. In Section 2 the setting of the semi-discrete problem is given. In Section
3 an Optimized Schwarz Method is defined at the semi-discrete level. In Section 4 we outline the substruc-
turing procedure to reduce the global problem and we study the spectrum of the resulting interface problem.
In Section 5 are designed Robin interface conditions depending on a real parameter which is optimized. In
Section 6 we design more general interface conditions based on two real parameters: the choice of these
parameters is also addressed. Finally, in Section 7 we validate the proposed interface conditions by means
of several numerical tests.

2 Statement of the problem

Let Q = R x @ be an infinite tube, where ) is a bounded domain of RP, for some p > 1. A point in  is
denoted with (x,y). We consider the problem

Lu=f inQ

2.1
Bu=g onR x0Q, 21)
with u bounded at infinity, where f € L%(Q) and g € L%(0Q) are given functions, B is a suitable boundary
operator, and where L is an elliptic partial differential operator of advection-diffusion-reaction type, with
coefficients independent of z, namely

1o} 0o 1o}
Li=—grca(¥) g +0a(¥) 5 + AW):

As an example, for p = 1, y = y and a possible form of the operator A(y) is
0 9] 0 0

_ _ 9 2.2

Aly) = n(y) aycy(y) ay " ayby(y) + by () o’ (22)

with boundary conditions depending on B, with n > 0, ¢z, ¢y > 0, b = (b, b,) € [W"*®(Q)]? given, which
corresponds to the advection-diffusion-reaction problem

—div (¢Vu) +div(bu) +npu=f in Q
Bu=g onR x0Q,

with coefficients depending only on y.

We solve problem (2.1) by a non overlapping domain decomposition method. We decompose € into the half
tubes Q1 = (—00,0) x @ and Q = (0, +00) x Q. We denote in the sequel with w; and g; (1 = 1,2) the
restrictions of the solution u and the boundary term g to Q; and 99Q; N 0L, respectively.

Following what is done in [15] for symmetric problems, we consider a semi-continuous version of problem
(2.1) where only the directions tangential to the interface I' = {0} x @Q are discretized, whereas the normal
direction z is kept continuous. We denote with £ the semi-discrete version of L, where the original operator
is discretized in the y direction, namely

d ,d d
L=—g-Co+ B+ A, (2.3)



where A, B, and C are Ny x N, matrices, where IV, is the number of discretization points of the open set
Q@ C R, and can be obtained via a finite volume or finite difference discretization of (2.2) on a given mesh or
triangulation of @ C R. In such framework, we may assume

Assumption 2.1 Matrices B and C are diagonal and matrices A and C are positive definite .

3 An Optimized Schwarz Method without overlap

We consider an Optimized Schwarz Method (OSM) based on arbitrary interface conditions Q1 and Q2, which
reads as follows.
Given arbitrary initial guesses 4 and w9, solve for n > 1 until convergence

Luft! = f in O Luitt = f in Q,
Bul™) =g on 09; N (R x 0Q) Buy™) =g on 09> N (R x 0Q) (3.1)
Qi(ui*!) = Qi(u}) onT, Q>(uz*') = Qo(uf) onT,

where, with a little abuse of notation, B denotes the semi-discrete version of the boundary condition in (2.1).
Such methods, relying on the solution of a fixed point iteration, are intrinsically slow; however, it is possible
to both increase the robustness of the method and speed up the algorithm convergence by replacing the fixed
point iterative solver by a Krylov type method. This can be accomplished by substructuring the algorithm
in terms of the interface unknowns

Hy = Q1(u2)(0,.)  Hz= Qa(u1)(0,.),
and introducing the operator

T: (Hi, Hs, f, 9) — (Q2(v1), Q1(v2))”,
where, for ¢ = 1, 2, v; is the solution of

L(v)=f in Q;
B(vi) =g on 092 N (R x 0Q) (3.2)
Ql(vl) =H; onT.

So far, the substructured problem is then obtained by matching the auxiliary variables on the interface and
reads
H,
_HT(HlaH250a0) = HT(OaO;fag) (33)
H,

where IT is the swap operator on the interface, II((Hi, H2)T) = (H», H1)”, having the block form

0 Id
II =
Id 0

As it is well known in domain decomposition literature, the OSM can be interpreted as a fixed point iterative
procedure to solve (3.3).

The convergence rate of the OSM depends clearly on the choice of the interface conditions Q; (i = 1,2).
An essential role is played by the Steklov-Poincaré operator for each subdomain, which is also known in
literature as Dirichlet to Neumann (DtN). Such operator is defined in the following way. Let ur : I' = R;
the Dirichlet to Neumann operator for Q; (i = 1,2) is defined as

P; : ur — Caui,
on;
where u; is the solution of
Lu; =0 in Q;
Bu; =0 on 99 N (R x 0Q) (3.4)

U; ur on I'



namely, it associates to ur the normal derivative on the interface of its £-harmonic extension in ;.
Let us consider the Hilbert spaces V' and V'~ defined as

vE = (H'®Y)™.

An element u € V¥ is defined as u = (u1,... ,uNy)T, the spaces V* are endowed with the norms
N, 1/2
2
lullvs = { D Nl ) ;
j=1

and it is easy to see, by a standard Lax-Milgram argument and using Assumption 2.1, that problem (3.4)
admits a unique solution in V¥ for any uo given.
The use of the interface conditions

0
i =C— 4+ ; 1<1#35<L2
Ql anl + J = # .7 = 4
would entail an optimal convergence rate, ensuring convergence in a number of iteration equal to the number
of subdomains (see [35]). In general, such operators are unfortunately nonlocal and cannot be used in
practical computations. An approximation is thus mandatory and is usually based in literature on the
symbol of the Seklov-Poincaré operator which is obtained via a Fourier transform of the operator in the
direction parallel to the interface and on a factorization of the transformed operator £ (see for instance
[4, 8, 17, 33] for various problems).
In order to design suitable approximations of the Steklov-Poincaré operators, we introduce
B B

A =& — — A= — .
1 1 2 2 2+2, (3.5)

which are square matrices of order N,. We can prove the following
Lemma 3.1 The operators A1 and Aa defined in (8.5) are positive definite.

Proof. We prove the result for Aj, the result for A» being analogous. Multiplying equation (3.4) in Q1 by
w1 and integrating by parts, we get

OJu 2 Ou B
= —_— — = >0.
/Ql c ( 2, ) + (Aug,u1) /F (C % + 5 ur> ur /F(Aluo,uo) >0

Moreover, it is easy to see that if fr (A1uo, uo) = 0, we have w1 = 0 in Q1, and this concludes the proof. O
From the definition of the Steklov-Poincaré operator, we have, for z = 0,

_ Ou2 _ _Ou B _
0= —C% — ®yuy = —-C O + (2 A2> us. (36)

The z-invariance of the problem entails this equality for all > 0, thus u2 in (3.4) is given by

071 (E —A2> T
uz(z) =e 2 ur.

The fact that u, must satisfy equation (3.4) yields a compatibility condition for A,. Applying the operator
L to uz we get

L(uz) = O (F712)= (— (g —Az) c! (g —A2) +BC™! (? —A2> +A) ur =0,

and a simple algebra provides

0207 + 2 (BCT'As — As07'B) - <A+ EBC_IB> =0, (3.7)
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In a similar way, we can easily see that the matrix A; must satisfy the compatibility condition
- 1 - - 1 -
MCT A+ 5 (MCTIB - BCTA) — <A+ 1BC 1B> =0. (3.8)

Multiplying equation (3.8) by C~'/? (which is always defined as C is a diagonal positive definite matrix) on
the left and on the right, we have

R4 % (A, B] = (A+ 352) (3.9)

where we have set, for any square matrix M of order Ny, M = C~Y2MC~/?, and where [.,.] is the Lie
bracket, defined, for any pair of square matrices of the same order (P, Q), as [P, Q] := PQ — QP.
In a similar way we easily see that, with the same notations as in equation (3.9), equation (3.7) reduces to

A2 4 % (B,As] = <Z+ i1§2> , (3.10)

Equations (3.9) and (3.10) are a special case of the well-known Algebraic Riccati Equation (ARE), which is
widely studied in Optimal Control Theory (see for instance [7, 24, 31] and references therein), and whose
most general shape is

XPX+QX+XR-5=0,
where P, @, R, S are real matrices of order m x n, m x m, n x n, and n x m, respectively (m,n € N). It is
immediate to see that equations (3.12) and (3.13) belong to such a framework by taking m = n = N, and
P=1Id,Q=—-R=B/2 and S = A+ B*/4.
The bracket products in (3.9) and (3.10) do not vanish in general, unless the matrices B and A; commute
(this, for instance, the case of constant coefficients, where B= v Id for some constant ). Thus, an explicit
formula for the solutions A; and Ka, and, consequently, for A; and A, is not available, differently from the
purely elliptic case (see [15]). However, under some mild assumptions, we can prove the following proposition,
which will be useful in the sequel.

Proposition 3.1 Let p = 1. Assume that the matriz A+ igz is symmetrizable, and let A1 be a positive
solution of equation (3.8). Then there ezxists a diagonal matriz V' such that

A= (V) AT (v’ (3.11)
is a positive solution of equation (3.7).
The result is based on the following proposition (a standard result in linear algebra).

Proposition 3.2 Let D € R**™ be a tridiagonal matriz such that

d1 —plal,z 0 . 0
a2,1
_T d2
D= 0 0
. . dn—1 —Pn—1Qn—-1,n
An,n—1

where a; ;-1 = a;—1,; and p; 0, Vi. The transformation

VDV = D

V = diag (1,p17p1p21"'71_.[?:_11pi)



yields a symmetric matriz D:

d1 —a12 0 0
—az1  d2
D= 0 0
: . dn-1 —an-1,n
0 e 0 —ann-1 dn

Remark 3.1 The matriz A in (3.7) and (3.8) comes from the discretization of an elliptic differential operator
of advection-diffusion-reaction type: either in a finite volume or a finite difference setting, with an upwind
scheme for the wvelocity field, the resulting matriz is tridiagonal and it can be easily seen to satisfy the
hypoteses of Proposition 8.2. The same can be easily seen to hold true also for A, as C is diagonal positive
definite.

Proof (of Proposition 3.1). We apply Proposition 3.2 to matrix Z, and let V be the symmetrizing matrix:
we multiply equations (3.9) and (3.10) on the left by V and on the right by V' ~!. Since the matrix B comes
from the discretization of the transport coefficients in the x direction, it is diagonal, and the same holds true
also for B: thus, the multiplication by V and V! does not affect the matrix B, and we obtain

A2+ %[B’, A=A+ %Ez, (3.12)
where we have set A; = VA; V! and A = AT = VAV !, Similarly, equation (3.10) for Ay becomes
A§+%[7\2,§]:A+i§2, (3.13)

where Ay = VA2V 1. It is now easy to see that if A1 is a solution of equation (3.12), then A» = AT is a
solution of (3.13). In fact, taking the transpose of equation (3.12) we get

_ 1/ ~- o~ _ 1 ~
(A + 5 ((BA)T = (MB)") = AT + £ (B,
2 4
namely )
A+ (I\ITL? - §I\1T) =A+ -8

)

=

which is nothing but equation (3.13) .
So far, we get
Ay =CVPvT A v e?
. (3.14)
Ay = CY2V1IRTY OV = o2y ! (C_I/ZVA1V_10_1/2) vol?,

and the thesis follows since the matrices C and V' commute. O

Remark 3.2 Under the hypoteses of Proposition 3.1, since V is diagonal, an immediate consequence of
(3.11) is that A1 and A share the same diagonal, i.e.

diag(A1) = diag(A2).

Notice moreover that in general As # AT, unless A s already a symmetric matriz (i.e. V = Id): this is
the case, for instance, of an advective field normal to the interface, yielding a symmetric operator in the y
direction.



4 Substructuring

If we could use the interface conditions

QlZC%+‘I’2 sz—%c-l-@l (4.1)

the Schwarz algorithm would converge in two steps, and the result would be optimal in the sense of iteration
counts. Unfortunately, as the matrices ®; and ®, are not sparse, they cannot be used in practice due to
their high computational cost. We therefore consider the approximated matrices

a B | ,a a B ,a
<I>1pp = E + Alpp ¢2pp = _5 + Azpp’ (4'2)

where ASPP and ASPP are sparse and suitably approximate A; and A, (recall that B is diagonal), and we
consider the Schwarz algorithm (3.1) with the interface conditions (4.1), where the exact interface operators

®; (j = 1,2) are replaced by the approximated ones ®7°".
We introduce the auxiliary variables

) a 0 a
Hl = (C% + (pzpp> u2 H2 = (_Ca_ﬂ',‘ + (Dlpp) ui, (43)

where w1 and us denote the restrictions of the solution u to 2; and €2, respectively, and we substructure
the original problem in terms of these latter variables.

Lemma 4.1 Let L be defined in (2.3). The Schwarz algorithm (3.1) with interface conditions Q1 = C’% +

BPP gnd Qy = —2C + PP can be substructured in form (3.3), where the matriz T is given by
2 o 1
[~ Az + AZPP][A; + AP 0
T = . (4.4)
0 [ As AP A+ A7)

Proof. We have to compute T(H1, H2,0,0). The general solution in Q; is given by

vi(z) = exp{é (g +A1> x} ai,

whereas the general solution within €, is given by

vo(z) = exp{é (g - A2) x} as,

where the vectors a; and ay are completely determined by the interface conditions on I'.

We have, within Qg
9] a 1
. (C% + <I>2pp> exp {Efblx}al

3] a 1
H, = (—C% +‘I>1pp> exp{6<1>2m},6‘2

= (®1+ ) a1,

=0

o .
H = (O%MZPP) o1 (=)

and, within Qo,

Thus,

vi(x) = exp {éfblx} [®; — ®2PP)7 H, v2(x) = exp {észx} [—®y + B2PP)7! H,.

‘We then have:

Qi(v2) = (C% - Qgpp> va(z) = [®2 — BPP] [ D2 + q;.ilipp]—l Ho,
Qa(v) = (—C% + <I>?"") vi(z) = [~ 1 + B3P [B) — BFP] L Hy.
Owing to (3.5) and (4.2), the thesis follows. -



4.1 Spectral analysis of the substructured problem

In this section we focus on the spatial distribution of the spectrum of the substructured matrix Id — IIT.
In the following, we denote, for any square matrix M, with o(M) the spectrum of M. For sake of simplicity,
we set

D= (A AP [Ae + AP B i= [—Ar 4+ APP][AL + AP
and the substructured matrix can be rewritten as
Id -X»
Id - IIT = , (4.5)
-3 Id

and we can prove the following result, giving a characterization of the eigenvalues of the substructured
problem.

Lemma 4.2 Let the matriz Id — II'T be defined in (4.5). We have
yEo(Id—TT) = (1—7)°€o(122)

peEo(Z1¥2) = (1x./p) €o(ld-1IIT)
Proof. For the first part of the proof, let v be an eigenvalue of (Id — II'T), associated with the eigenvector
(x,y), i.e.

Id -3, X X

=7 (4.6)
—>1 1d y Yy

Equation (4.6) can be equivalently rewritten as

I-7)x=%y

(4.7)
(1-7)y=%1x
So far, applying X1 to the first equation in (4.7) and using the second one we get
TS y=(1-7)Zix=(1-7)"y. (4.8)

For the second part of the proof, we recall that if y is an eigenvalue of ¥1X,, with associated eigenvector w,
i.e.
¥13ow = pw,

then, p is an eigenvalue also for ¥2X¥; with associated eigenvector Yaw. So far, let then
X =Yow y = +/pw, (4.9)
where (u, w) is an eigenpair of ¥13;. Computing X1x and Xy, we get

Yix=NiYow=pw==%,/pty

Zzyzzl:\/ﬁﬁngzl:\/ﬁx,

which, setting v = 1 & /1, are equivalent to equations (4.7), and this concludes the proof. O
The previous lemma states that the eigenvalues of the substructured matrix (Id — II'T) lie in the interior
of a disc of the complex plane centered in 1 with radius equal to square root of the spectral radius of the
matrix 132, which corresponds to the reduction factor of the Schwarz algorithm with interface conditions
Q; = (CZ —2@3*°) and Q> = (—2 C + ®}®P). To ensure convergence, the matrices A;P® and A5P® in the
interface conditions have thus to be chosen in order to have p(X1X2) < 1. A partial result in this direction
is given by the following lemma.



Lemma 4.3 Let A{P? = ASPP = A, where A is a symmetric positive definite matriz. Then we have
p(X1) <1,  p(¥2) <1

Proof. Since A is symmetric positive definite, we can write
—1 ;
B =[—A; + A][A; + A7 = AY? [_A—l/?z\jz\—l/2 + Id] [A_l/zAjA_l/z + Id] ATV,

-1
and the spectrum of ¥; coincides with the spectrum of [—A_1/2AjA_1/2 + Id] [A_1/2AjA_1/2 + Id] . Let

then (y,w) be an eigenpair of this latter matrix, i.e.
-1
[—A_1/2AjA_1/2 + Id] [A—I/ZA,-A—I/2 + Id] w=nw.
Multiplying on the right by [Afl/zAjAfl/z + Id], a simple algebra leads

AV2N A2 = L0,
1+~

Owing to Lemma 3.1, A~Y/2A;A~1/2 is a real positive matrix: we then have, for any z € CVv

Re(AY2A;A7Y2%2,2) > 0.

Thus,
11— 1—
Re(7+1>=— v Re<—7)<0,
v—1 147 1+~
and owing to the Cayley transformation we can conclude that |y| < 1. O

Remark 4.1 From Lemma 4.2 it is immediate to see that if one could take ®PP = @1 or ®3F* = @, in
(4.2), the preconditioning would be exact, as ¥1 = Xy = 0.

The following sections are dedicated to the choice of the approximate matrices AJ"” and A3PP.

5 Robin interface conditions

For sake of simplicity at the computational level, the most natural choice consists in approximating A; and
A> by suitable positive definite diagonal matrices D, and D;. Owing to Proposition 3.1 (which states that
under some not so restrictive assumptions the matrices A; and A have the same diagonal) and to Lemma
4.3, we choose D; = Dy = aD, where D is an approximation of the diagonal of Aj 2. The Robin interface
conditions are thus given by
0 B 0 B
=C-——=+aD =—C—+—-+aD
A oz 3 + Q> oz + 2 +

where a € R is a parameter to be tuned for sake of optimization of the convergence rate of the OSM. The
problem of optimization is widely studied for the symmetric positive case, but no theoretical result exists in
this sense for the unsymmetric case. The optimal parameter aopt is sought here in order to minimize the

maximum between the spectral radii p”(Z¢) and p°(E%), where we have set ©F = [—A; + aD][A; + aD]™!
2
(j =1,2). Since, for any a € RT, p(2%) = mMaxye, (A, p-1) /;’Tg , we set
2
¢(a) == max A—a ,

Aeo(AaD—1)Uo(A2D-1) [ A+
and we would like to solve the optimization problem

{(aopt) = min ((a). (5.1)

acRt



A simple manipulation leads to the equivalent problem
A—al’
Ata

C(aopt) = min max
a€Rt A€o (A1 D~1)Uo(AgD—1)

(ReA—a)+iImA
(ReA+ ) +iImA

2
= min max = (5.2)
a€R*T Aeo(A1D—1)Uo (Ao D—1)

1—-4 ma min aRe A
= —_ X .
a€R+ \ A€o (A1D-1)Uc(A2D-1) (@ + ReA)2 + (Im A)2

Differently from what is done in [12], we do not have an explicit formula linking the real part and the
imaginary part of the eigenvalues of the matrices A; D™ (j = 1,2), and we cannot solve the optimization
problem (5.1) analytically. Let

= min Re A R :=

= = max Re I:=
/\EUjO'(AJ-D—l) AeU; a(A; D)

= max Im . (5.3)
A€U; a(A; DY)
Owing to (5.2), we reduce ourselves to solve the optimization problem

max min %,
aeR+ (z,y)elnRIx[0,1] (@ + )2 +y

(5.4)

the latter interval being justified by symmetry with respect to 0 in the y variable, whose solution is given
by the following lemma.

Lemma 5.1 The solution of the optimization problem (5.4) is given by

aoptzmax{\/rz—}-P, \/T‘R—IQ} (5.5)

and the optimal reduction factor is bounded from above by

2r(rvr2ir) e if rR—1I%<r?+1I?
27 (r+w/r2+12 )12
Copt S (56)
r+R—2/rR—12 FrR—I2>r2 4+ 12
R if rR >ro+
Proof. Let p(a,z,y) := CEmE g As

ary
1é) =-2—=

y@(a,x,y) [(a+$)2 +y2]2)
and o € R, it is not difficult to se that ¢(a, z,y) is decreasing with respect to y in [0, I], thus the minimum
has to be sought for y = 1I.
Since o

9 P S R
wﬂﬁ(aax,y) [(O[ +$)2 + y2]2 a +y )

we immediately have that, if a® < 72 —I?, p(a, z,¥) is decreasing in = and thus the minimum is attained at
z=R. If r* —I> < a® < R®> — I, there exists zo € (1, R), To = o’ + 4, that maximizes ¢(a, z,%), and the
minimum is attained at one endpoint of the interval. Finally, if o® > R* — I?, ¢(a,z,y) is increasing in
and the minimum is attained at = = r. Notice that, if R> — I? < 0, this is always the situation that occurs.
Thus, for any o € R™, and whatever the sign of r> — I? and R? — I?, the minimum of ¢(a, z,v) is attained
either at (r,I) or at (R, I), and we have

oR B or - a(R—r)(a2—rR+IZ>
(@+R?+I*  (a+r)?+I*  [(a+7r)’+][(a+R)*+I7]

10



case1 Case 1: y(a)
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Figure 1: [rR —I? < 0] Left: ¢1(a) (solid) and t2(a) (dashed). Right: (c) (solid)

If o® < rR — I? the minimum is attained in (R,I), whereas if a® > rR — I* the minimum is attained in
(r,I). The optimization problem reduces thus to seek the maximum of the function () defined as follows:

_ aR . 2 72
o 1&1((1)—7(&_‘_}2)2_'_12 if a* <rR—-1
P(a) =
ar
= if o2 — I
a2 (a) CETEEYE if o >rR
For any fixed (z,y), we have
_ . r .2 2 2
aa‘P(a,xzy) - [(Ct+$)2 +y2]2 I:m +y « ],

and it is immediate to see that the maximum of ¢(a,z,y) is attained in
Unax = 2 + 77,
We have thus to consider three different occurrences.

i) rR—1I? < 0 (Figure 1): in this case 1(a) = t2(a) for any a € RT, and the optimal parameter is given by

Qopt = V r2 + 12,

i) 0 < rR—I? < r?4+I? (Figure 2): in this case the maxima of both 11 (a) and 2 (a) occur for o > rR—1I?,
and the optimal parameter is again given by

Qopt = V12 + I2.

ii3) 7 + I* < rR— I? (Figure 3): in this latter case o> = rR — I? separates the maxima of 1; (@) and (),
and 9(a) can be easily seen to be increasing for o®> < rR — I and decreasing afterwards. The optimal
parameter is thus given by

Qopt = VTR —I2.
So far, a simple algebra provides estimate (5.6), and concludes the proof. O

Remark 5.1 A wvery simple situation occurs when the advection field vanishes. In this case B = 0, the
operator is symmetric, and we have an explicit expression for A = Ay = A2, given by

A=CYV2AV20M 2 — CI/Z(C_1/2AC_1/2)1/2CI/2.
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Figure 2: [rR —I? < r? 4+ I?] Left: ¥1(a) (solid) and () (dashed). Right: ¢ (a) (solid)

Case3 Case 3: y(a)

025 T T —— T

S

0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 B

Figure 3: [r? + I? < rR — I?] Left: ¢1() (solid) and () (dashed). Right: ¥ (a) (solid)

The Robin interface condition can thus be written as

C% + aC*diag(A)/*C*/?

and the tuning of the parameter a € R coincides with the optimization done in [15] in the case of purely
elliptic problems.

6 Second order interface conditions

In the previous section, we used an interface condition of Robin type which reads, for domain 2:

0 B
C———=+aD
or 2
where D is a suitable diagonal matrix. We are interested here in considering more general interface conditions,
whose performance is better than the Robin ones.

Taking inspiration from Higdon’s trick (see [25]) for absorbing boundary conditions, we consider interface

conditions of the form
=~ 0 B 19} B
Q= (C_Bx -3 +aD> (C_Bx -3 +ﬂD>

12



where D is a positive diagonal matrix, and « and § are positive parameters. The product yields a second
order derivative with respect to z, the direction normal to the interface,

_ o 8 o 0 a+f8 s , B?
= +—C+——B+— —_— — B —_
Q C(Bm £y Bax)+(a+ﬂ)CD8m 5 D+ aBD” + 1
Owing to (2.3), we can replace the terms in the parenthesis by C A, and we get the interface condition
~ B2
0= CA+(a+ﬂ)CD(% - a;ﬂBD+aﬁD2 + 5

In order to write the interface condition in the form Cd/0x — B/2 4+ A®*PP| and, owing on one hand to the
fact that interface conditions are equivalent up to an invertible transformation on the interface, and on the
other hand to the fact that B, C, and D are diagonal and commute, we can multiply on the left Q by the
inverse of (a + B)D, obtaining finally the interface condition

8 B aBfD+D'CA+(1/4)D'B?

=C— — = . 6.1
Q or 2 * a+p (6.1)
This amount to choose an approximation of the matrices A; and A2 by means of

aBD+ D 'CA+ (1/4) D! B?
a+p ’

Aapp —

where the parameters a and 8 have to be suitably tuned: the optimization of the parameters in the un-
symmetric case is still an open problem. Following what is done in [15] for purely elliptic problems, in the
numerical tests of the following section, we choose a and 3 such that:

af =rR, a+pB=12(r+R)VrR, (6.2)
where r and R are defined in (5.3).

7 Numerical results

In this section we test several different interface conditions and algorithms in the semi-continuous framework
of the previous sections. More precisely, we deal with an infinite tube in 2D, Q = R x (0,1), and consider
the operator

0 0 9] 0 0 0
L:=—(_— — 4+ —d(y) = — —
(5c) g + 2d) 2 ) +p0) o +4) 50+ 1)
with a Dirichlet boundary condition at the bottom and a Neumann boundary condition on the top. We
use a finite volume discretization of the operator in the y direction yielding a tridiagonal matrix A of order
ny. We build the matrices of the substructured problem for various interface conditions and we study their
spectra. We give in the tables the ratio of the largest modulus of the eigenvalues over the smallest real part.
We also give the number of subdomain solves corresponding to the solution of the substructured problem
(3.3) by a GMRES algorithm with a random right hand side G. The numerical tests are performed with
MATLAB® 6.1, and the stopping criterion is a reduction of the residual by a factor 107°. Although we do
not consider a discretization in the z direction, the results are a good indication of what would happen in
the corresponding fully discrete case.
We use interface conditions of the form
0 B 0 B
—c2 _ B peep - _9 D, pzpp
Ql Cax 2+ 2 Q2 a$0+2+ 1
and we list hereafter the different approximations of A; (7 = 1,2) we used in the numerical tests.
¢ Diagonal: The interface condition uses the approximated matrix AJP? = Dp = diag(A1) = diag(A2).

e A°P": The interface condition uses the diagonal matrix Ds weighted by the optimal parameter aopt
defined in (5.5).

13



e Robin: Let D be the square root of the diagonal matrix Q = diag(A+ %2), where A and B are defined
in Section 3. The approximate matrix in the interface condition is given by the diagonal matrix D
weighted by the optimal parameter ap given by formula (5.5) where we have replaced (r, R,I) with

Fi= min ReA'?, R:.= max ReA?, [:= max Im AY2. (7.1)
,\eU((A+BT2)D—2) AEG((A-+BT2)D—2) ,\eU((A+BT2)D—2)

e Order 2: The interface condition is given by formula (6.1) where D is defined as for the Robin
interface condition, and the optimal parameters o8 and « + § are given by formula (6.2), where we
have replaced r and R by 7 and R as defined in (7.1).

For the first two interface conditions (Diagonal and A°P") it is necessary to compute explicitly the matrices
A; (¢ =1,2). Since no explicit formula is available in this direction, we use an iterative procedure to solve
equations (3.9) and (3.10), and at each step we have to compute the square root of a full matrix. Such
procedure turns out to be too costly to be conceivable in practice. To avoid such a drawback, we use in the
Robin and Order 2 interface conditions a simpler approach that can be used in practice. The approxima-
tions of A1 and A2 are built neglecting the Lie bracket in equations (3.9) and (3.10). Moreover, to avoid
the computation of the square root of a matrix, we simply compute the square root of its diagonal, which is
extremely cheap.

We have also implemented the Generalized Robin/Robin algorithm (see [19]): we will refer to it as GRR.
This choice corresponds to apply the GMRES algorithm to the interface problem

(®1+P)u=gyg

preconditioned by

1
Co(Cr + 02)_1,

P=Ci(C1+Cy)7! (q’l — g) C1(C1+C2)™ "+ Co(Cr + C2) ! (‘I>2 + 5)

where C; (j = 1,2) is the matrix of the viscosity coefficients in ;. Notice that in this case the size of the
interface problem to be solved is half the size of other cases, but, on the other hand, each iteration consists
in solving both a Dirichlet and a Robin boundary value problem in each subdomain. We report in the tables
the total number of subdomains solves.

7.1 Layered coefficients with strong discontinuities

In this first series of tests, we consider the case where the viscosity coefficients show strong discontinuities
in the y direction. The domain Q@ = R x (0, 1) is divided into ten slabs of height hy = .1, where the viscosity
coefficients are constant. The difference between the viscosities in two neighboring slabs can be of order 10*.
The viscosity coefficients in the i-th slab is given by ¢ = d = v(i), the latter being the i-th component of the
vector v = [a, 8,7, 8,8, 8, @, @, 7, a], where @ = 1.e0, 8 = l.e4, and v = 1.e2. We take a constant reaction
term 7 = 10, and the following advective fields

1) p =100, ¢ = 0: the velocity is normal with respect to the interface.

1) p =0, g = 100: the velocity is parallel with respect to the interface.
#ii) p = q = 100: the velocity field is diagonal with respect to the interface.
i) p(y) = 100y?, q(y) = 100 cos(4xy): the velocity is no longer constant.

In Table 1 we report the results for different mesh parameters hy = 1/ny. The proposed interface conditions
show on one hand an increase in both subdomain solves and condition number with respect to the meshsize,
although they remain reasonable (apart for the condition number of the diagonal preconditioning). On the
other hand all the proposed interface conditions show a fair insensitivity with respect to the velocity field.
For an advection field parallel to the interface the Generalized Robin/Robin algorithm shows the expected
exact preconditioning due to the symmetry of the problem. The best performances among the proposed
interface conditions are obtained with the second order ones.

14



| Velocity | ny | 10 20 40 80 160
p =100 subd. solves | Diagonal 13 21 24 35 50
g=0 Aopt 19 30 36 47 61

Robin 18 26 35 47 61
Order 2 16 18 21 23 25
GRR 10 12 12 12 12
cond Diagonal || 108.17 | 299.14 | 675.8 | 1.42e+03 | 2.92¢+03
Acpt 14.27 | 24.97 34.8 49.2 69.7
Robin 16.71 | 31.53 49.5 73.2 105.3
Order 2 2.79 5.46 7.41 9.32 11.25
GRR 1.14 1.18 1.19 1.18 1.20
p=0 subd. solves | Diagonal 12 20 25 36 52
g =100 Acrt 18 30 37 49 62
Robin 18 28 37 49 62
Order 2 14 17 20 23 25
GRR 2 2 2 2 2
cond Diagonal || 45.65 | 124.14 | 280.66 | 592.77 | 1.21e+03
Acrt 8.83 1548 | 21.66 30.92 44.1
Robin 9.19 14.54 | 21.36 30.77 43.9
Order 2 1.98 2.70 3.26 3.92 4.7
GRR 1.00 1.00 1.00 1.00 1.00
p =100 subd. solves | Diagonal 12 20 25 35 51
g =100 Acpt 19 30 36 48 61
Robin 18 26 36 48 61
Order 2 14 17 20 23 26
GRR 8 8 8 8 8
cond Diagonal || 45.62 | 124.05 | 280.43 592.29 1.21e+03
Acrt 8.86 15.51 | 21.70 30.94 44.1
Robin 9.05 15.54 | 23.30 33.78 48.2
Order 2 2.00 2.71 3.56 4.43 5.3
GRR 1.01 1.01 1.02 1.02 1.02
p = 100y> subd. solves | Diagonal 13 21 25 37 54
q = 100 cos(4my) A°pt 19 30 37 48 61
Robin 18 26 36 49 62
Order 2 16 19 22 24 26
GRR 6 8 8 8 8
cond Diagonal || 81.02 | 205.20 | 394.87 | 796.31 1.61e+03
Acrt 11.79 | 19.94 | 25.72 35.85 50.74
Robin 12.06 | 19.34 | 25.92 36.49 51.70
Order 2 2.27 3.02 3.50 4.20 5.03
GRR 1.02 1.06 1.09 1.09 1.09

Table 1: Results for layered subdomains, strongly heterogeneous coefficients
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7.2 Different subdomains

Up to now we have considered discontinuities in the y direction, which yield two subdomains symmetric
with respect to the interface. In this section we consider discontinuities in the viscosity coefficients also in
the z direction, yielding two different subdomains. The operators in £2; and {2 are thus not the same, and
the model problem reads

£1,h’LL1 = f in Q1 £2,hu2 = f in Q2
(7.2)
BU1 _ 8U2 _
ClE—CQW onTI U1 = u2 onT’
where £; , (¢ = 1,2) is a finite volume discretization of
0 0 0 0 0 0
L= (it e + i) o) + i) 3+ 50) o+ (1)
We solve problem (7.2) by an additive Schwarz method which reads
£1,hu717'+1 =f in 4
7.3)
o B o B (
(Cla — 72 + Az,ap) “;H—l = (CZ% - 72 + A2,aiﬂ) u; onT
ﬁz,h’ug-'_l = f in QQ
(7.4)

<_C25% + % + Al,ap) US-H = (_Cl% + % + Al,ap) ’U/? onT
where the matrices A;qp are suitable approximation of the matrices A; for the domain €;, and where B;
is the matrix of the coefficients p;. The matrices A;qp are built separately as in Sections 5 and 6: these
approximations don’t take into account the fact that they are used in a domain decomposition where the
operators vary from one subdomain to the other.
We focus here on three different situations. Firstly we consider the subdomains Q; and Q3 to be ho-
mogeneous, namely, the viscosity coefficients do not change in the interior of each subdomain, and the
discontinuities are located along the interfaces. Then, we allow the viscosity coefficients to have discontinu-
ities also inside the subdomains. Finally, we consider anisotropic coefficients, where the permeability in the
x direction differs from the permeability in the y direction. Such situations typically arise in the simulation
of reservoirs and sedimentary basins, due the compaction of rocks. In all cases we compare the performances
of the proposed interface conditions with the Generalized Robin/Robin algorithm, which is especially suited
to treat the first occurrence.
In all cases, we take a uniform reaction term 7; = 72 = 10, and the same advection fields described in
Section 7.1. In Tables 2 through 4 we report the results for different mesh parameters hy = 1/ny. In
the homogeneous subdomains case the viscosity coefficients are ¢1 = di = l.ed, and ¢2 = d2 = 1 respec-
tively. In the heterogeneous subdomains case, the subdomains {2; and 2, are again divided into ten slabs
of height hy = .1, where the viscosity coefficients are constant. Let @ = 1.e4, § = 1.e2, and v = 1.e0. The
viscosity coefficients in the i-th slab of Qi is given by ¢1 = di = v1(4), the latter being the i-th compo-
nent of the vector 11 = [, , 8, @, a, a, e, 8,7, @], whereas the viscosity coeflicients in the i-th slab of Qs is
given by ca = d2 = v»(i), the latter being the i-th component of the vector v» = [y,a, @, @, 8,7, @, a, &, .
In the anisotropic case, finally, the viscosity coefficients in the ¢-th slab are given, in the z direction, by
c1 =v1(4) in Q1 and by c2 = v2(¢) within Q», while in the y direction are given by di = pi1 (i) in Q1 and by
dy = po(i) within Qs, the latter being the i-th components of the vectors u1 = [y, a, v, a, 8, @,%,7, 3,7] and
p2 = [/6: a, 8, a,7, a, 8, 8,7, ﬁ]’ respectively.
In the case of homogeneous subdomains (Table 2), the Generalized Robin/Robin algorithm shows the ex-
pected optimal condition number, whereas in terms of subdomain solves the other interface conditions are
slightly better (recall that one iteration of GRR amounts to two subdomain solves instead of one for the op-
timized Schwarz methods), and there is no appreciable difference among them. In the case of heterogeneous
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Figure 4: Heterogeneous subdomains: spectra of the substructured problems.

subdomains (Table 3), the condition number for the Generalized Robin/Robin algorithm grows significantly,
although not so remarkably as for the diagonal preconditioner. This is particularly evident in the case of an
advection field normal to the interface. The best performances in terms of both iteration counts and condi-
tion number are obtained for the second order interface conditions. In fact, in terms of subdomain solves,
the second order conditions and the Generalized Robin/Robin algorithm are comparable, but the condition
number provided by this latter is significantly higher. In the case of anisotropic coefficients (Table 4) the
Generalized Robin/Robin algorithm shows a quick growth in terms of subdomain solves, although insensitive
to the advection field, and it is comparable to the first order interface conditions. In this latter case the
diagonal preconditioner, although giving a bad condition number for the interface problem, shows a good
performance in terms of number of subdomains solves. Once again, the second order interface conditions
provide the best results in terms of both condition number and number of subdomain solves. In Figure 4
we give the spectra of the substructured problems for the various interface conditions in the heterogeneous
case with ny = 40, in Figure 5 the spectrum of the substructured problem for the Generalized Robin/Robin
Algorithm in the same situation, in Figure 6 we give the convergence history for the proposed interface
conditions, and in Figure 7 the convergence history of the Generalized Robin/Robin algorithm.

8 Conclusions

We proposed here a way to build optimized interface conditions for unsymmetric layered elliptic problems,
based on a semi-continuous formulation of the differential problem, in order to handle strong discontinuities
and anisotropies in the coefficients. The numerical tests performed in a semi-discrete setting enlighten the
robustness of such interface conditions with respect to the meshsize, the advective field, the heterogeneities
and the anisotropies in the viscosity coefficients. The comparison with the Generalized Robin/Robin algo-
rithm, especially suited to handle discontinuous viscosity coefficients provided the discontinuities are located
across the subdomains interfaces, is quite promising towards a fully discrete approach, in terms of both
iteration counts and, most of all, of condition number of the problem. Further work needs to be done in
this direction, in order to extend such optimization of interface conditions to a fully discrete problem, and
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| Velocity

ny | 10 | 20 [ 40 | 80 [ 160

p =100 subd. solves Diagonal 3 5 5 5 5
qg=0 APt Robin 5 5 5 5 5
Order 2 4 5 5 5 5
GRR 6 6 6 8 8

cond Diagonal 1.02 | 1.05 | 1.08 | 1.14 | 1.23

A°P* Robin || 1.02 | 1.04 | 1.07 | 1.11 | 1.15

Order 2 1.01 | 1.02 | 1.01 | 1.02 | 1.03

GRR 1.01 | 1.01 | 1.01 | 1.01 | 1.01
p=0 subd. solves Diagonal 5 5 5 ) 5
q =100 A°P* Robin 5 5 5 5 5
Order 2 5 5 5 b} 5
GRR 6 6 6 6 6

cond Diagonal 1.06 | 1.09 | 1.13 | 1.18 | 1.26

A°P* Robin || 1.03 | 1.04 | 1.05 | 1.06 | 1.07

Order 2 1.01 | 1.01 | 1.02 | 1.02 | 1.03

GRR 1.01 | 1.01 | 1.01 | 1.01 | 1.01
p =100 subd. solves | Diagonal 5 5 5 5 5
q =100 A°P* Robin 5 5 5 5 5
Order 2 b) 5 5 5 5
GRR 8 8 8 8 8

cond Diagonal 1.04 | 1.07 | 1.11 | 1.17 | 1.24

A°P* Robin || 1.05 | 1.05 | 1.06 | 1.07 | 1.08

Order 2 1.01 | 1.01 | 1.02 | 1.02 | 1.03

GRR 1.01 | 1.01 | 1.01 | 1.01 | 1.01
p = 100y> subd. solves | Diagonal 5 5 5 5 7
g = 100 cos(4my) Aopt 5 5 5 5 5
Robin 5 5 5 5 5
Order 2 5 5 5 5 5
GRR 6 6 6 6 6

cond Diagonal 1.06 | 1.08 | 1.12 | 1.17 | 1.25

A°P? 1.04 | 1.05 | 1.06 | 1.07 | 1.08

Robin 1.04 | 1.05 | 1.06 | 1.07 | 1.08

Order 2 1.01 | 1.01 | 1.02 | 1.02 | 1.03

GRR 1.01 | 1.01 | 1.01 | 1.01 | 1.01

Table 2: Results for homogeneous subdomains
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| Velocity | ny| 10 | 20 | 40 80 160
p =100 subd. solves | Diagonal 10 16 20 27 37
g=0 Acpt 18 32 48 64 85

Robin 15 27 37 50 62
Order 2 9 15 19 23 26
GRR 14 18 20 22 24
cond Diagonal || 6.54 | 27.15 | 64.27 | 137.94 | 285.19
A°pt 5.89 | 25.26 | 35.75 | 50.70 71.94
Robin 295 | 11.72 | 17.86 | 25.86 | 37.05
Order 2 2.03 | 245 | 2.99 3.59 4.30
GRR 32.99 | 42.31 | 51.84 | 61.46 71.11
p=0 subd. solves | Diagonal 9 16 20 27 36
g =100 Acpt 17 28 40 52 66
Robin 15 25 35 45 57
Order 2 9 15 19 22 25
GRR 14 18 20 22 24
cond Diagonal || 6.02 | 22.56 | 53.27 | 114.35 | 236.47
Acpt 3.60 | 14.23 | 20.43 | 29.15 | 41.46
Robin 2.69 | 879 | 14.45 | 21.55 | 31.14
Order 2 1.84 | 2.11 | 2.68 3.27 3.94
GRR 10.11 | 12.70 | 15.56 | 18.52 21.45
p=100 subd. solves | Diagonal 10 16 20 26 36
g =100 Acpt 17 28 39 52 66
Robin 15 25 34 44 57
Order 2 9 15 19 22 25
GRR 14 18 20 22 24
cond Diagonal || 6.02 | 22.56 | 53.27 | 114.35 | 236.47
A°P? 3.59 | 14.21 | 20.41 | 29.12 41.42
Robin 2.69 | 842 | 13.72 | 20.40 29.53
Order 2 1.85 2.06 2.61 3.18 3.84
GRR 10.42 | 12.56 | 15.58 | 18.40 21.35
p = 100y? subd. solves | Diagonal 9 16 20 26 36
q = 100 cos(4my) Aopt 17 27 37 51 62
Robin 15 27 33 43 55
Order 2 9 15 19 22 25
GRR 14 18 20 22 24
cond Diagonal || 5.71 | 21.59 | 50.77 | 108.86 | 225.05
A°P? 3.55 | 13.42 | 18.89 | 26.74 | 37.92
Robin 2.61 8.01 | 12.98 | 19.43 28.17
Order 2 1.96 2.01 2.53 3.11 3.75
GRR 11.81 | 13.96 | 16.97 | 20.10 23.28

Table 3: Results for different subdomains

19




| Velocity | ny | 10 | 20 | 40 | 80 [ 160
p =100 subd. solves | Diagonal 12 15 20 26 36
g=0 Acpt 18 33 46 60 72

Robin 18 32 41 51 60
Order 2 12 16 19 20 25
GRR 20 34 46 54 62
cond Diagonal || 6.40 | 15.02 | 32.04 | 65.47 | 131.51
Acpt 3.03 | 11.58 | 20.64 | 31.35 | 45.58
Robin 5.26 | 9.97 | 15.63 | 22.77 | 32.55
Order 2 | 3.71 | 3.36 | 3.98 | 4.71 5.74
GRR 8.82 | 24.57 | 25.49 | 25.52 | 25.52
p=20 subd. solves | Diagonal 11 15 19 26 34
q =100 Acpt 15 28 39 49 59
Robin 19 33 45 56 66
Order 2 14 17 19 22 24
GRR 18 32 44 56 74
cond Diagonal || 2.49 | 7.64 | 16.25 | 33.16 | 66.70
Acpt 2.03 | 7.03 | 12.59 | 19.17 | 27.90
Robin 5.50 | 10.65 | 16.70 | 24.35 | 34.80
Order 2 || 510 | 5.03 | 5.10 | 5.38 6.14
GRR 3.89 | 13.83 | 17.02 | 20.16 | 22.43
p =100 subd. solves | Diagonal 11 15 19 26 34
g =100 Acpt 15 27 38 49 59
Robin 17 31 40 49 59
Order 2 12 16 18 20 24
GRR 20 32 44 56 74
cond Diagonal || 2.51 | 7.67 | 16.29 | 33.25 | 66.87
Acpt 2.03 | 7.02 | 12.59 | 19.17 | 27.89
Robin 454 | 872 | 13.65 | 19.89 | 28.44
Order 2 || 448 | 4.33 | 435 | 4.71 5.58
GRR 3.89 | 13.85 | 17.04 | 20.17 | 22.44
p = 100y? subd. solves | Diagonal || 11 15 19 26 36
q = 100 cos(4my) Aopt 18 35 54 72 88
Robin 19 32 42 54 64
Order 2 13 16 19 21 24
GRR 18 32 44 56 74
cond Diagonal || 3.15 | 9.87 | 21.44 | 44.35 | 90.01
Acpt 3.35 | 14.26 | 27.06 | 43.11 | 64.68
Robin 5.56 | 10.28 | 16.08 | 23.43 | 33.51
Order 2 || 948 | 6.12 | 535 | 5.18 5.45
GRR 6.93 | 17.46 | 19.52 | 21.52 | 23.22

Table 4: Results for anisotropic coefficients
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it will be the subject of a forthcoming paper ([20]).
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