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Abstract

In this paper, we first give an error expansion of the weak error associated to a
discretely killed Brownian motion in a cone that writes as an intersection of half
spaces. We exploit this first result to derive an original correction method to improve
the initial convergence rate. This method is based on the sensitivity of the underlying
Dirichlet problem with respect to the domain and turns out to be a numerically
cheaper and sharper alternative to standard extrapolation techniques.
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1 Introduction: statement of the problem

Let (Xi)ico,r) be a d-dimensional Brownian Motion (BM in short) with dy-
namics

Xy =x+ put + oW, (1)
with a fixed initial data x and a fixed terminal time 7. Here W is a standard
d-dimensional BM defined on a probability space (2, F, (F;)icjo,11, P) with the
usual assumptions on (F).cpo,r)- We assume oo™ to be positive definite.

Let D be a domain (i.e. an open connected subset) of R Define 7 := inf{t >
0: X, ¢ D}. Consider a regular time mesh of the interval [0, 7] with N time
steps, (t; = ih)ico.n], h = T/N being the step size. Introduce 7 := inf{t; >
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0 : X;, ¢ D}. For a measurable nonnegative function f and an initial point
x € D, denoting E,[.] = E[.| X, = x|, we refer to the quantity

Err(T, h, f,2) = Bo[f(X1)Lvor] — Bo[f(X7) 157

as the weak error associated to the discrete time killing of X w.r.t. the do-
main D. This is the main quantity studied in this paper. We recall that the
numerical approximation of E,[f(Xr)1,~7] is a well known issue in finance
since it is linked to the price of a barrier option in a Black-Scholes framework,
see Andersen and Brotherton-Ratcliffe [ABR96| for some references on the
subject. The discrete approximation of the exit time allows to define a sim-
ple Monte Carlo procedure to estimate the previous quantity. In this context,
Err(T, h, f,z) can thus be seen as the error associated to the discretization of
the exit time.

Let us first recall some controls on Err(7), h, f,z) given in the literature. In
[GM04] and Chapter I of [Men04], we proved, in the wider framework of
killed diffusion processes approximated by their discrete Euler scheme, that
for smooth domains and functions f satisfying either some support condition
w.r.t. D or some smoothness properties and compatibility conditions, one had
that Err(7, h, f,z) was upper and lower bounded at order 1/2 w.r.t. h. We
also showed in [GMO5] that, for a large class of It6 processes, the upper bound
holds true for an intersection of smooth domains.

Still in [GMO04], we stated an expansion and correction result for Err (7, h, f, x)
in the special case of the half-space in a Brownian framework. In this work,
we extend these results to the case of an intersection of half-spaces which is of
particular interest in mathematical finance since the domain of a multi-asset
barrier option is often defined as a product domain.

Let D C R? be a domain of the form D = N D', m € [1,d] where
the (Di)ie[[l,m]] are d-dimensional half spaces with non-empty intersection.
Under suitable smoothness properties up to the boundary for the function
v(t,z) == E;[f(X7_¢)1;57_¢], we obtain an error expansion at order  w.r.t.
h for Err(T, h, f, x).

As emphasized in [GMO04], the leading term in the weak error is still the one
associated to the overshoot of the killed process above the boundary (the over-
shoot being defined as the distance to the boundary of the process when it
exits the domain).

In the special case of Brownian Motion, for half spaces or intersections of half
spaces forming a cone, we are able to obtain the asymptotic distribution of
the overshoot, extending previous results obtained by Siegmund [Sie79]. To
derive the error expansion we then use usual techniques based on Taylor’s ex-
pansions. The smoothness of v is needed for this last step. From a theoretical
point of view, the main difficulty is analytical and consists in having good
smoothness properties of v up to the boundary of a non-smooth domain.



From a numerical point of view, the error expansion is the preliminary step
for a procedure that aims to improve the convergence rate. A standard one in
this framework is the Romberg extrapolation, see Talay and Tubaro [TT90]
and Section 3 for details.

We propose an alternative correction method based on the recent work of
Costantini, El Karoui and Gobet [CKGO03| concerning the sensitivity of the
Dirichlet problem w.r.t. the domain. Unlike in the Romberg extrapolation, we
do not need to refine the time step and thus the procedure is computationally
cheaper. Note also that the empirical variance associated to the Monte Carlo
estimator is by construction smaller. We simply proceed to the simulation
w.r.t. a more constrained domain. Namely, instead of killing the process when
it exits from D at one of the discretization times, we kill it when it leaves
Dy, =N, Di. Di :={y € R?: y—C;v/hn; € D'} where n; denotes the inner
unit normal associated to the half-space D. We will see that, for suitable
positive constants C;, this new choice of discrete time killing allows to remove
the leading term in the error development.

We mention that in a one dimensional setting, both the expansion result and
the correction procedure could be derived by direct computations from the
work of Broadie, Glasserman and Kou [BGK99].

Outline of the paper. We state our main results in Section 2. Numerical
results are presented in Section 3. They confirm the correction procedure is
rather accurate. The proofs of the main results are developed in Section 4. In
Section 5 we give some smoothness properties of v in non-smooth domains.
We conclude in Section 6 evoking possible extensions and open problems.
Appendices A and B are respectively devoted to the proofs of technical points
concerning the asymptotic behavior of the overshoot and the killed heat kernel
in a non-smooth domain.

2 Main results
2.1 Clurrent working assumptions.

We suppose our domain satisfies Assumption
(D) D=nm,D?, Vje[l,m], DI :={yeRe:y; > b}, where m € [1,d].
We introduce

(BM) The d-dimensional process (X;)s>o has the form X := z+0,W, where W is

X 0
a standard d-dimensional BM and oo = is assumed to be pos-
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itive definite and X is a correlation matrix with coefficients (pi;) (i jyeq1,m2-
The integer m € [1,d] is the same as in assumption (D).

Suppose (BM), (D) are in force. For a given positive measurable function f
we define V(¢,y) € [0,T] x R, v(t,y) := Ey[f(Xr—)Lrsr_i]-

In the following, under (BM), (D), we assume

(S) The function f vanishes on the boundary. The associated function v belongs
to Cp/*T/21%2([0,T] x D) N C*2([0,T) x D), o > 0, i.e. there exists a
constant C' > 0, s.t.

‘V’U(S,(L’> B VU(t7y)| < C.
o o= 1 e — gl

|U‘oo,[0,T]><D + ‘vv|oo,[0,T]><D + sup
(z,y) € D?,(s,t) € [0, T
T Fy,sF£t

In particular, this means that the function f is at least C}™* (D). We specify
in Section 5 sufficient conditions on f to obtain (S) in some special cases.

2.2  Statement of the main theorems

Theorem 1 (Error expansion for the correlated Brownian motion in
an orthant). Assume (BM), (D) and (S). The error writes

Err(T, h, f,2) = C1Vh + o(Vh)

with C, = C’OZEx[1TiST,A].€[[Lm]]\mTj>Ti(8yiv(7'i, X)), 7 i=inf{s >0: X! =
i=1

| Eo[s2 | |
bot, Co = M, where sy := 0,Yn > 1,s, = >, G", the G* being
Q]E()[STJr]

i.i.d. standard centered normal variables and 7+ :=inf{n > 0:s, > 0}.

Ey|[s? 1/2
One knows from [Sie79| and [AGP95] that % = _C\(/Q/_w) = 0.5823.. .,

where ( denotes Riemann’s Zeta function.

Under our current assumptions (BM), (D), (S), the next Theorem improves
the accuracy of the numerical procedure by removing the term of order % in
the error. For this, the simulation of (X}, )o<i<n is performed in a modified
domain, namely D" := {y € R? : Vi € [I,m], v; > b} + Covh} instead of
D:={yeR:Vie[l,m], y; > b}

We denote 75, (resp. Tpn) the discrete (resp. continuous) exit time from this
domain D".



Theorem 2 Assume (BM), (D), (S). We have
Exr'(T, h, f,2) = Eo[f(Xr) 1oy o] = Eolf(X1)1rsr] = o(Vh).

Remark 3 Consider now the more general case Xy = x + us + oW, D =
{x € RY: (Az); > b;, Vi € [1,m]} where A = (ay ay ... an)* is of rank m.
Using a clear change of probability measure and a rotation of coordinates using
a matriz A (with the i™ row equal to ||§i3§|| for i € [1,m] and the remaining
rows forming an orthonormal basis of {Span((c*a;);ep.m))}*) preserving the
Wiener measure, one easily obtains that for a borelian bounded function f

EI‘I‘(T, h, f, CL’) = EO[fO(WT)(]'TD(])V>T — ]'TDO>T>]

where W is a centered d-dimensional Brownian motion with covariance matrix

000G = 01 , and V(i, j) € [1,m], Xy = (0%a;,0a;)/(|lo”aill[|[o"a;]))-
d—m
The domain Dy writes Dy := ML D}, where for all j € [1,m], D} = {y €

RY: oy > v}, b = %29 " Denoting Tpy = inf{s >0 : W, gz D }

To*a;T

inf{s; > 0: W,, & D}}, we have 1p, = N2 1TDJ,TDO = N1, The functwn

fo writes fo(y) = exp(o—p- Aty — 1o “” T)f(:B+c7A‘1y).

If assumption (S) is fulfilled by v (one could weaken the boundedness condition
in (S) to an exponential growth condition), then the former error erpansion
remains valid. We can as in the previous theorem remove the leading term of
the error by simulating w.r.t. D" := {x € R? : (Az); > (b+ CoeVh);, i €
[Lml}, €= (lo*al, s 1o am])*-

Note also that in the half space case, i.e. for m = 1, this transformation
tllustrates that the problem is essentially one-dimensional. This last aspect still
holds true for a domain delimited by parallel hyperplanes. This is the reason
why we did not take this case into consideration in (D).

3 Numerical Results

In this section we provide some numerical tests and compare the method from
Theorem 2 with the usual Romberg correction that we briefly recall.
From Theorem 1, we derive ﬁE[f(XT)(ﬁ]_T2N>T—1TN>T)] —E[f(X7)1:>7]

= 0(\/5). The Romberg extrapolation technique consists in approximating by
a Monte Carlo method the first term in the L.h.s. of the previous equation.
We point out that our correction is numerically less expensive than the Rom-
berg procedure that requires to refine the time step. The Monte Carlo esti-
mator deriving from Theorem 2 also has by construction a smaller empirical
variance.



Bidimensional cone. We consider a two-dimensional risky asset following
the Black-Scholes-Merton dynamics, S} = Siexp(oiW}! + (r — %%)t), S?
S2exp(aa(pW} + (1 — p)V2W2) + (r — %g)t), where W is a standard bidi-
mensional BM. For a fixed final time 7', a given strike K and threshold B,
put D := {(s1,s2) € R? : sy > B,sy > B}. We are interested in comput-
ing E[e"T1,-7h(Sr)], where h is a smooth approximation of the indicator
function that one expects in the case of a digital barrier option. We take
h(s) == 15 (1)1 (s2) with 15 (s1) =0, if sy < K —¢, 15 (1) = 1if 5, >
K, and in between we use the smooth interpolating function 1% (s;)
10e™3(sy — (K —¢€))® — 15e7%(s; — (K — €))* + 6e7%(s; — (K — ¢))°. The
previous function h satisfies the compatibility and support conditions from
assumption (F2), defined in Section 5.2, that guarantees (S) is fulfilled under
(D), (BM), cf. Proposition 16, as soon as K > B + . One can show that
the conditions required on vy introduced in Remark 3 are satisfied using a
standard Girsanov argument and the explicit controls obtained in Lemma 15.
Forr=.04,00 =0y,=.3,p=.5,5=52=100=K,B=90,T =1, =5 we
compute the standard Monte-Carlo approximation, the Romberg approxima-
tion and the correction proposed in Theorem 2 for 10° paths. The reference
value has been computed with 10° paths and 15000 times steps.

Empirical mean

Unbiased variance estimator

N

MC MC Shift | Romberg | Reference MC |MC Shift | Romberg | Reference
N = 20 |.180807| 0.12295 |0.124209 | 0.122017 N = 20 |.146365| 0.106928 | .298985 .10413
N =50 |.159831| 0.121661 | 0.123736 | 0.122017 N =50 |.132417 | 0.105984 | .230244 .10413
N =80 | .15251 | 0.12184 |0.122422| 0.122017 N =80 [.127643| 0.106117 | .205762 .10413
N = 110(.147821 | 0.121735 | 0.122145 | 0.122017 N = 110| .12445 [ 0.106048 | .191531 .10413
N = 140(.144559 | 0.122581 | 0.122338 | 0.122017 N = 140(.122845| 0.106683 | .182411 .10413
N = 170(.142827( 0.122393 | 0.122717 | 0.122017 N =170(.121412 | 0.106549 | .175806 .10413
Monte-Carlo Estimation in function of the number N of time steps
019 Standard estimation
Romberg approximation ———

018 Referencevale  +

017

016 -

015 B .

014

013

012 i L N I N I I !

0 20 40 60 80 100 120 140 160 180

The width of the 95%-confidence interval is essentially equal to 1.5 1073,
Furthermore we also observe that the associated empirical variance is lower
than the one of the Romberg extrapolation.

From a numerical point of view a natural question concerns the behaviour of
the o(v/h) appearing in Theorem 2. We have not experimentally emphasized



a constant exponent, anyhow it turns out that the numerical rest is smaller
than O(h3/2).

Experiments in higher dimensions. We introduce here a d-dimensional
model for which we do not have the required smoothness of assumption (S).
Set d € N*,d > 2. We consider a d-dimensional BM X, = x + oW,
where W is a d-dimensional standard BM and V(i,j) € [1,d]?, (o00g)i; =
1i—j + 757 1iz5, @ < 1, so that ogo; has dominant diagonal and is thus positive
definite. We take D := {z € R? : z; > 0, Vi € [1,d]} and we are inter-
ested in approximating the quantity E,[h(Xr)1,~7] where Vo € D, h(z) =
e, 1k <57 exp(sa;)- Here Sy € R? is a fixed vector and s is a fixed scale factor.
Note that h is not as smooth as required in (S).

The results below have been obtained with d = 5,7 =1, K = 100,a = s =
05,5, = 95,2; = .85, Vi € [1,d]. The reference value has been computed
with the standard Monte-Carlo procedure for 2 x 10° paths and 2 x 10* steps.
It comes

Empirical mean Unbiased variance estimator

MC MC Shift | Romberg | Reference MC MC Shift | Romberg | Reference
30 | .11168 | .0763648 | .18754 .069879

=60 | .101939 | .0768374 | .152264 | .069879
90 | .098633 | .0784061 | .141044 | .069879
120(.0945224 | .0769788 | .129368 | .069879

= 150|.0937689 | .0779463 | .124412 | .069879
180.0921404 | .0779695 | .120608 | .069879

N = 30 |.128265| .0833072 | .0821488 | .0847798
N = 60 [.115335 | .0838812 | .0832571 | .0847798
N =90 |.111043| .0857746 | .0851829 | .0847798
N = 120(.105783 | .0840571 | .083779 | .0847798
N = 150].104819 | .0852239 | .0857012 | .0847798
N = 180]| .10276 | .0852529 [.0852469 | .0847798

Monte-Carlo Estimation in function of the number N of time steps
012 T T T T T

Corrected estimation —
Romberg extrapolation ——
Referencevalue ©

0.105 —

01 —

0.095 —

The size of the 95%-confidence interval is essentially equal to 1.5 1073.

Even though we are not under the assumptions of the main theorems the
correction technique gives good result. Although we can not say any more
that it is more accurate than the Romberg extrapolation for the empirical
mean, we still observe that it provides a smaller empirical variance.



4 Proof of the main results
4.1 Additional notations and usual controls

For smooth functions ¢(¢,z), the notation H,(¢,x) stands for the Hessian
matrix of ¢ w.r.t. . Time derivatives are denoted by 9/ ¢(t,z), 3 € N*.

We will keep the same notation C' (or C”) for all finite, non-negative constants
which will appear in our computations: they may depend on D, T', gq, or f,
but they will not depend on the number of time steps N and the initial value
x. We reserve the notation ¢ and ¢ for constants also independent of 7" and
f. Other possible dependences for the constants are explicitly indicated.

In the following O, (h) (resp. O(h)) stands for every quantity R(h) such that
Vn € N, for some C' > 0, one has |R(h)| < Ch™ (resp. |R(h)| < Ch) (uniformly

in ).

Lemma 4 (Bernstein’s inequality) . Assume (BM). Consider two stop-
ping times S, S" upper bounded by T with 0 < S"— S < A <T. Then for any
p > 1, there are some constants ¢ > 0 and C, such that for any n > 0, one
has a.s:

2
Pl sup [|X, — Xsl| > 5| 5] <Coxp (-%) |
t€[S,5]

E[ sup || X, — X" | Fs] <CAP2.
te[S,5"]

For a proof of the first inequality we refer to Chapter 3, §3 in [RY99|. The
other inequality easily follows from the first one or from the BDG inequalities.

4.2 Proof of Theorem 1 (Ezpansion result)

Let us briefly outline the scheme of the proof. First, we write the error as
a sum of increments of the function v. Using Taylor expansions, we then
introduce the overshoot terms of the process in the previous development (the
overshoot being defined as the distance of the process to the domain when it
exits the domain). We finally conclude using the asymptotic independence of
the rescaled overshoot, as well as its integrability properties, and the discrete
exit time. Recalling that the function v vanishes on DY, we write



Err (T, h, f,2) =E,[o(T AT I p(Xpamn))] — (0, z)

N-1

Bl (0(tien AT, Tp( Xy inev)) = 0t AT, T p(Xpnen))]
0

= Y Eallovsy, (0t TIp(Xe,.) = v(ti X))

i

(2

i

Il
o

Introduce Vt € [0,T), 7 == inf{s >t : X ¢ D}. Recall also that the function
v satisfies the PDE

(O + 5tr(Huo005))(t,y) = 0, (t,y) € [0,T) x D,

_ (2)
u(t; op = 0,t € [0, T, v(T,y) = f(y), y € D.

Hence, (v(s A 7, Xoar,))scp,r] is @ martingale. It comes

=2

-1

EI‘I‘(T, h, f7 ZE) - E-'E[]'TN>ti 1Tti<ti+1 (U(ti—i-lv HD(XtH—l)) o U(Ttw XTti ))]

i

Il
o

Remark 5 This kind of development for the error associated to the discretiza-
tion of the exit time s still valid in the wider context of It processes, see

[GMO5].
Define Vj € [1,m], 77 = inf{s >t : XJ = b}}. Since P[r{, = 7| F,,] = 0, j #
k, one gets P[X,., ¢ DIF.] =y, E[1 JB[X,.., ¢ DIF, )7

Jj=1 Tty <tit1,Te; =T, i+1 .
1
> 5P, < tia| Fe,l-

Remark 6 From the above control we derive SN o' P [mN > t;, 7, < tip1] <
25 NP, [TN = ti41] < 2. This last identity will be frequently used from now
on to isolate the rests, see e.qg. last equality below.

Using (S) and Lemma 4 we obtain

Err(T,h, f,z) =
N-1
E$[17N>ti1Tti<ti+1{vv(7-ti’ XT%) ) (HD(XtH—l) - XTti) + 0(h1/2>}]
1=0
N-1

- i=0 'ZlEm[17-N>ti]'Tfi<ti+1,-rti=‘rgiam]'v(7_é7 ng')(Xgm - b{))ﬂ + 0(h1/2>‘

=0 j=
For the last equality we used the explicit expression of the projection on D,
namely p(y) = (05 + (y1 —05) ", -, 08 + (Yo — B5) ", Y1, -, ya) and also that
V(5 k) € [1,m]?, j#k, Vs €[0,T], 8xkv(s,y)|yeRd:yj:bé = (. This is a simple
consequence of the fact that v vanishes on DC. By symmetry, assumption (S)



and the previous arguments we derive

m

Err(Th, f,2) = 3 Eu (L gy v(r™, p(X,n)) (X2y — B) ] + R+ oY)
i—1
(3)
where

N-1

Bl =133

1=

EalLoon L o 0oy T (X ))(XE, = )7)

SEMS

2

COVEYS Y Eo[Levot, L) <oy, et 02,070, I (X -

1=0 j=1ke[1,m], k#j

Define Vn > 0, VI*(h") := {y € R? : |y, — b}| < h", | € {j,k}}. Put also
CO* .= {y e R : y, = bl,, | € {j,k}}. Note that Y(¢,y) € [0,7] x CO* N
D, Vu(t,y) = 0. Thus, from Lemma 4, assumption (S) and Remark 6 we
derive that for 4 small enough

N—1m

‘R| S C\/EZ Z Z EI[]‘TN>ti ]‘XtiEij(hl/‘l)]‘Tj <tit1,Tt; —Tf
i=0 j=1ke[1,m], k#j
%1000 (77, Wp(X 7)) = B0 (7, Wp (Heoir (X5 )] + Opat(h)
N—1m

< O[Z Z Z ECE [17’N>ti 1X,,_J evjk(hl/S)]_T] <tii1,m, _Ttk
t

1=0 j=1ke[1,m], k#j

XX = Moo (X)) + Opar(h) = O(hz*5) = o(h'/?).
Plugging this last estimate into (3) it comes
Err (T, h, f,x ZE (1,8 <Oy, v (7N T (Xn)) (X — b)) 7] + o(h/?)

m (4)
Z o(h! /2

Remark 7 We emphasize that, up to now, we did not have used the specific
Brownian dynamics of the process X. The expansion (4) is valid for the error
associated to the discretization of a diffusion process approrimated by its dis-
cretely killed Fuler scheme, provided that the process is non adherent to the
boundary and that (S) is fulfilled for the associated function v.

We now detail the asymptotic behavior of E;. The other terms could be han-
dled exactly in the same way. The following Lemma, whose proof is postponed
to Appendix A and strongly relies on the Brownian setting, is the main tool
needed.

10



Lemma 8 Asymptotic independence of the hitting time and the
overshoot

Assume (BM), (D). Put Vi € [1,m], 70 := inf{t > 0: X; = b}}, 7™V :=
inf{t; := jh > 0: X{ <0by}. One has Vy € R*,

Px[\/ﬁ_l(XTlN — b)) >y, NV <t TN < AL TN
— (1= H(y))Pu[r! <t, 7! < AZyT']

where, using the notations of Theorem 1, H(y) := (Eo[s;+]) ™" J§ d2Po[s,+ >
z]. The limit is uniform on [0, T].

In order to isolate the rescaled overshoot Zy := \/E_l(XiN — b)) in Ey, we
rewrite the components X2, ..., X™, of the correlated part of X in terms of X'
and an additional correlated (m — 1)-dimensional BM X independent of X
and (X*)icfm+1,4- Namely, Vi € [2,m], Xi = puX]+(1-p})' 2 X7 X5 =
(26— pryap) /(1= pi,) /. Set also (p, X3+ (1=p} ) 2X ) = (o X+ (1 -
,0%2)1/2)(;, 7/01mX + (1 plm)1/2Xm 1) (Xs2> ’Xsm) = X37m’ X:qj—i-l’d =
(X1, X,

For notational convenience we introduce Vy € R4 Tl pea(y) == ((y1 — b3) T +
B2, .o, (Y1 — D8 4+ B2 Yy -y Yg—1). The term El, defined in (4), writes

— VREL[Zx1on <70, v(7Y, BY, T e ((pr. (b — VR Zy)
+(1 _ p%')1/2)2%}1)2,m’ X:r]LV-de))]
= \/EEI [ZN]'TNSTaxlv(TN, b(lj, HDde((pl.b(l) + (1 _ p%‘)1/2X7._]—V1)2,m, X77_7]1V+1,d>>]
+Ry,

where

Ry o= VB[ Zy1,wer (axlw, B T (1. (8 — VRZ)+
(1= ph) V2R, X))

— 0,y 0(T™, b, Wpea((prb + (L= p7)M 2 X5, f?’vﬂ’d)))]‘

Under (S) the function d,,v is continuous and bounded. Proposition 6 from
[GMO04] gives the uniform integrability of Zy on the event 7! < T. We thus
derive from Lemma 8 by convergence in law that for h small enough E; =
VRE[Z]E, (1<, Na 5100, 0(1!, X11)] 4 o(Vh) + Ry, where the distribution

function of Z is given by H defined in Lemma 8. Recalling that E[Z] =
M = C, we finally obtain E; = vhC,E[1 LT AT TJ>T18mlv( ,Xo1)] +

2E]s,
(\/ﬁ)+R1 Now, from assumption (S) we have |R;| < Ch™> E,[Z\ 1 ~xi<7).

1+a

11



14+

Thus, by Proposition 6 in [GMO04] it comes R; = O(h™z ) which completes
the proof. O

Remark 9 The controls in the previous proof as well as the residual terms
appearing in the computations are locally uniform w.r.t. the domain D.

Remark 10 7o conclude this section, we would like to emphasize that the
main difficulty in order to apply the previous Theorem consists in finding con-
ditions on [ that guarantee (S) is fulfilled. We provide some sufficient con-
ditions in Section 5 but in all generality this is far from being easy. Anyhow,
this difficulty is essentially of analytical nature.

4.8 Proof of Theorem 2 (Correction result)

In this subsection we detail how the arguments from Costantini, El Karoui
and Gobet, see [CKGO03], can be employed to prove our correction result. We
write

EI'I“/(T, h> fv ilj’) = E:c [f(XT)]‘T]DVh>T] - E:c [f(XT)]-TDh>T]
+E [f(X7)1r, >7] — Eu[f(X7)1ror] i= By + Eo.

From Remark 9 we derive that one could show just like in Theorem 1 that
even though the domain depends on h we have F, = Cyvh + o(v/h), where
(7 denotes the constant introduced in the quoted theorem. For E> we adapt
some ideas from |[CKGO3| concerning the sensitivity of the Dirichlet problem
w.r.t. the domain.
For a given ¢ € R?, let us denote ¥n > 0, D, := {y € R? : y —nc € D}.
We define 7p, := inf{s > 0 : X, ¢ D,} and we introduce for all z € D
the mapping J : n — E,[f(X7)1,, >7]. We show below that under the
assumptions of Theorem 2, the mapping J7 is differentiable in n = 0 and for
c=(1,..,1,0,...,0), one has

N NG

m d—m

OnTEM) =0 = —E[Vo(r, X;).cl.op] = —ZEw[awi’U(Ti,XTi)].TiST7/\j¢i7-j>Ti].
i=1
(5)
From (5) we then derive that Fy = J*(Covh) — J(0) = 0,T%(0)Covh +
o(v/h) = —C1vh + o(v/h) which proves the Theorem. O

4.8.1  Proof of (5)

Let us define X7 := X, —nc, 7”7 = inf{s > 0 : X7 ¢ D}. Note that
mp, = 727 Denoting A, = E,[f(X? + nc)1.pms7] — v(0,2), we have to
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identify the limit of A, /n as n — 0. It comes

Ay =E.[f (X7 +n0)Lipsr] — B[ f(X7) L0057
AE (X)L pmsr — (T AP Xpprnn)]

+E [o(T A TP, Xrproa)] = 0(0,2) = Ayy + Ao+ Ay

Since (M)icor) = (v(t A T, X&f—))te[O,T] is a martingale and 777 < 7, we
readily get A, 3 = 0.

Note that f(X})1,pmep = v(T A 7P X7

tr-pa). One also has 7p, —

—0, a.s
7. From Assumption (S), v is continuously differentiable. Thus, 071718 gets
lim, oAy 2/n = —E,[Vu(T AT, Xrpr).c].

On the other hand, since we assumed f to be continuously differentiable we ob-
tain lim, oA, 1/n = E.[Vf(X,).c 1,57]. Recalling Vo € D, v(T,z) = f(z)
we write

0 TEM) =0 = —Ea| (VU(T AT, Xgpr) = VF(X1)1757) ]
= —E,[1,<rVu(r, X;).C]

which for ¢ = (1, ..., 1,0, ...,0) proves (5). O
m d—m

Remark 11 We mention that in the special case of a half space, an alternative
proof based on the explicit expression of the hitting time densities is possible,
see Chapter III of [Men04].

5 Some smoothness properties of v under (D): sufficient conditions
to fulfill (S)

In the whole section we assume (BM), (D). We only deal with the case
d > 2,m > 2. Indeed, for m = 1 the domain D is smooth and standard
results, based on the explicit expression of the density of the killed BM, can
be used to derive the required smoothness in (S).

This section is divided into two parts. In Subsection 5.1 we recall the explicit
expression of the killed heat kernel under (D) and also state a control of
its derivatives in dimension 2. Using these results and some standard PDE
techniques we then derive in Subsection 5.2 some sufficient conditions to get
(S) when d =m = 2.

13



5.1 Euxplicit expression of the heat kernel under (D) and associated controls

Note first that
Pt >t, X, € [y, y + dy)] = |det(og ) |Ps[F > t, X, € [2,2 +dz)]  (6)

where & = og'z, z = oy 'y, X; = T + W, with I standard BM, D= {z €
R?: (0g2); > by}, 7:=inf{s>0: X, & D}.

Equation (6) gives the expression of the killed density of X under (D) in
function of the density of the killed standard BM in a convex cone D that
writes as an intersection of half spaces. The domain D is piece-wise C*° and
hence the trace of the cone on the unit sphere S?~! with center at the vertex
of D is a normal domain in the sense of Chavel [Cha84] (see definition page 16
of this reference). Denoting this trace by I' := DNS* !, we derive from p. 169
of the above reference that we have a Sturm-Liouville spectral decomposition
of the Laplace-Beltrami operator for the elliptic Dirichlet problem on I, i.e.
the normalized eigenfunctions (m;);en+ 0of Aga—1 form an orthonormal basis
of L*(T') and the eigenvalues ()\;)jen+ are s.t. 0 < A\; < Ay < A3 < ... T 400.

As a direct consequence of Equation (2.2) in Bafiuelos and Smits [BS97|, we
derive the following

Proposition 12 Let D be a cone with origin 0 that writes as a non-empty
intersection of half-spaces. One has

V(t,z,y) € R™ x D%, x =70, y=pn, (6,n) € (S1)2, (p,r) € (RT*)?

_piHr +00

~ . e 2t r _

P,[X, € dy, 7> 1] = WZ[” (%) m;(0)m;(n)p" dpdo ()
2 j=1

= qt(x>y)dy7 Vi = ()‘] + (% - 1)2)1/2a

where \;, (resp. m;) are the eigenvalues (resp. the normalized eigenfunctions)
of Aga—1 on I' for the elliptic Dirichlet problem and I, denotes the modified
Bessel function of order v.

Remark 13 The result of Proposition 12 is standard in the bidimensional
case. It is in that case a simple extension of the well known method of images
that consists, for special angles, in writing the killed heat kernel as a suitable
sum of standard Gaussian kernels alternating heat sources and sinks in order
to satisfy the boundary conditions. We refer to Carslaw and Jaeger [CJ59] or
to Iyengar [Iye85] for details.

Remark 14 In the special case d = m = 2 the eigenvalues (resp. the normal-
ized eigenfunctions) write \; = (7j/w)? (resp. m;(0) = fsin(% arg(f))),

w
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where w € (0,27) is the angle of the cone. For m > 2, we do not have such an
explicit expression but analysis techniques, see Weyl’s Lemma [Cha84] p. 172,
give some controls on the behavior of these eigenvalues, see also Remark 20.

Lemma 15 Radial control of the derivatives when d = m =2

For a given w € (0,7), let D := {x = (rcosf,rsinf) € R* : r > 0, 6 €
(0,w)}. Note that D is a convex cone. For all R > 0,T > 0, there exist
positive constants C := C(R,T), c,€ s.t. ¥(t,z,y) € (0,T]x (DNB(0, R)) x D,

z = (reosf, rsin(8)), y = (pcos(n). psin(m)), (0,7) € (0,w)?, (p,7) € (R*)2,

one has
a(x,y) + |0vq(z,9)| + | Ve (z,9)| < t%exp (_C|T’ —tp\2>
and Jogy > 0,
sup Vau(z,y) — V(o' y)| < g exp (_C|7’ —pP A — p|2> ‘
(,2') € (BN B0, R))?, |z — 2’| I ;

z # a2’ = (r' cos(0"), rsin(0’))

The proof of the above Lemma is postponed to Appendix B.

5.2 Derivation of (S) when d =m =2

In Remark 13 we mentioned that for special angles of the cone, one could
express the killed heat kernel ¢ in terms of a sum of standard Gaussian
kernels. To be precise, this can be done when the angle of the cone writes
w = m/mgy, my € N*. For our original problem (2), one can establish a connec-
tion between the killed heat kernel ¢ and the density of the killed BM in the
orthant thanks to (6). One therefore deduces that for some particular correla-
tion coefficients, corresponding to angles that have the previous form, under
suitable assumptions on the final condition f one has the “usual” smoothness
properties for the solution v of problem (2), and hence (S) is satisfied. We
now give a smoothness result for the solution v of (2) for general correlation
coefficients. We introduce Assumption

(F2) The function f € C;**(D), a > 0, flop = Tr(H;oo05)lop = 0 and
d(supp(f), bo) = 2 > 0.

Proposition 16 Assume (D), (BM), (F2). For D = {x € R* : 2; >

1
by, w2 > b2}, o0y = P , p € (=1,1), there exists o/ > 0 s.t. the unique
pl

solution v of (2) belongs to Cr/*T/**7(10,T] x D). In particular (S) is
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satisfied.

Proof. From Proposition 12 we derive that problem (2) has a unique solution
v e CY([0,T) x D)NCY([0,T] x D).

Let us now note that as a consequence of the support condition in (F2) and the
radial control of Lemma 15 there exists ag > 0 s.t. v € C'V/2Fe0/21+a0(] T x
B(bo, 5) N D)

Choose now D; to be a C* domain s.t. d(Dy,by) > ¢/3 > 0 and {z € R?:
|l —by| > e,0 € OD} = {x € R? : |v — by| > ¢,2 € OD;}. From the
techniques used in Chapter IV of Friedman [Fri64] to prove the boundary
Schauder estimates and Theorem 5.2 Chapter 4 in [LSU68|, we derive that
v € C1F/22+([0, T x Dy). Put o/ := a A ag. The proof is complete. O

6 Conclusion

In this paper we obtained an expansion result for the weak error in the spe-
cial case of a discretely killed Brownian Motion in an orthant provided we
had smoothness properties of the solution of the underlying Cauchy-Dirichlet
problem. We exploited the explicit asymptotic distribution of the overshoot
above the boundary that had previously been characterized as the leading
term of the weak error, see [GMO04]. The correction method proposed to im-
prove the convergence rate also gave promising results. A natural question
concerns its possible extension to a wider framework than the Brownian one.
We proposed in Chapter III of [Men04| an intuitive algorithm to extend the
previous boundary correction to general domains and diffusion processes dis-
cretized with the Euler scheme. Its theoretical and numerical analysis will
concern further research.

The main motivation that led us to deal with conical cases comes from Math-
ematical finance. Indeed, with multi assets, one often defines the domain of
a barrier option as a product domain. For the moment we are only able to
treat in whole generality the case of bidimensional domains in a Black-Scholes
framework.

Concerning further extensions in bigger dimensions, let us point out that the
remaining efforts to be done concern the smoothness properties of the underly-
ing function v(t, ) = E,[f(X7_¢)1,~7—¢]. Anyhow, for some special angles, or
equivalently for special correlation coefficients, we can extend the method of
images to express the transition density as a sum of standard Gaussian kernels.
In that case, under suitable assumptions on f, we have the usual smoothness
properties on v, and both the expansion and correction results hold true.

Let us mention that the proof of the main results would work if v had a uniform
Holder continuous first spatial derivative with exponential growth only in a
neighbourhood of the boundary. This could allow to relax the boundedness
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assumption on f.

A Asymptotic behavior of the overshoot

This section is dedicated to the proof of Lemma 8 introduced in Section 4.2
concerning the asymptotic behavior of the overshoot. In the following, we
freely use the notations introduced in Theorem 1 and Lemma 8.

A.1  Asymptotic independence of the overshoot and the exit time

We first state a one-dimensional result due to Siegmund [Sie79|.

Lemma 17 (Asymptotic independence of the overshoot and the dis-
crete exit time) Let W be a standard linear BM. Put x > 0 and consider
the domain D :=| — oo, z|. We have for any y > 0

Jim Po[r? <, (Wyx —2) < yV'h] = Po[r < t|H(y). (A.1)
The limits is uniform in t € [0,T.

Proof. Equation (A.1) is a direct consequence of Lemma 3 in [Sie79] for a fixed
t. We derive the uniformity on [0,7] using Dini-like arguments noting that
the L.h.s. of (A.1) defines a sequence of (discontinuous) increasing functions
and that the simple limit is continuous (see e.g. problem 7.2.3 in [Die71])or
Subsection A.2. O

From now on, we assume m > 2 and proceed to the

Proof of Lemma 18.

-1

Let us first show that V(¢,y) € [0, T] x RT*, (n(t) =P [Vh  (Xiv, =)~ >
y 7 St TN S AL — (L= H(y))Po[r! < ¢, A7 > 7] = ((t). We
write
(n(t) = Px[\/ﬁ_l(XTlN,l — by >y, N < ]
VR (Xl = b)) 2y, T STV s AN (A2)
= (v — @)

From Lemma 17 one gets

Cn(t) — CH(1) = (1= H(y))Py[r" <] (A.3)
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uniformly on [0, 7]. Let us turn to the control of (%. As a consequence of the
strong Markov property of X it comes

-1

12\7(15) = E:c[1A§’;27N’iStlTNv1>A?;27N’i]P)[\/E (XTINJ - b(l))_ >y, 7V < t‘]‘_Ay;QTN’iH
= EI[1/\;(7;27-N,i§t1TN,1>/\;1;27N,i€N(X/1\;12TN’i, /\?;27—]\7,2" t)]

with &y (X}, o A1) =Py VA (Kb — b)) > 5, 7 <t -

/\m 27.N %
A,V where (X});>0 is a standard BM with starting point Xpm -~ and
L= inf{t; == ih > 0: X} < b}

For a given arbitrary compact interval K := [IC, K] C (b}, +00) we split (%(1)
into two parts.

€]2V(t> - Ew[lAZ';QTN'iStlTN’1>/\ZZ2TN’i]-Xi N EIC&N( /\m , TN /\er;27_N,i7 t)]

i=27
N.i
Ex[1A;’127'Nvi§t17N’1>/\1@27N’i 1x1 QIC&V( A TN NZoT ™, t)]
= = AT

— ) + CR(1). *

Fix € > 0. We now show that one can choose K(g), Ny := Ny(g,K(¢)) s.t. for
N 2 NO;
(v(t) = (1= Hy))P AT < 7' 7! < 1]+ O(e). (A.4)

Control of 3 (t). Write first

31t = (GBH(t) = (1 = H)Po A7 < 7870 <8, X} € K])
+(1 = H(y))P A7 < 7H 71 < t] — R(t, K)

where R(t,K) = (1 — H(y))P AR, 7" < 71,71 < t,Xi,,LQTi ¢ K]. Note that

0 < R(t,K) <P [ AL, 7' < T, X}, . >K]|
+P [ ARy T < T X € (), K| = Ri(K) + Ra(K).

Lemma 4 readily gives R;(K) < Cexp(— M) On the other hand,
Ry(K) — 0. Hence, for € > 0 we can choose K = K(¢) s.t.

_>b

) = (R — (1= Hu)Po Ay < 77t <t XL, € K)))
+(1 — H(y))P[Ar,7 < 7H 71 < t] + O(e)
= On(t) + (1 — H(y))P AT < 7H 71 < t] + O(e).
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For the term 0, (t) we introduce the following Lemma whose proof is postponed
to the end of the section.

Lemma 18 Let i( L be a standard BM with starting point T in a given compact
interval K = [IC, K] C (b}, +o0). Then

PV (Xba —0)” 2y, 7" <u] o (1=~ HO)BS[F <]

uniformly on (Z,u) € IC x [0, 7.

From Lemma 18, Ve > 0, IN, := Ny(K(¢),¢), s.t. N > Ny

on(t)=(1—H(y)) {E:c[1/\;7127Nvi<t1A;7i27N7i<7N71 1Xim naECX

7 <t = ATV — P [AT, T < 7L 7t <t,XiZQTi E/C]}+O(£)

= (1-H(y)) (EI[1/\?L27N7i<t]—A;’L27—N»i<TN»1 1Xi eicft( A TN AZpTV)]

i=

— ]E.r [1/\;(7;27i§t1/\;(7;27.i<7—1 1X/1\m Z-E’Cé-t(X/l\?'iQT“ /\;7;27'2)]> + O(€>

i=2" =
Note that &(x,u) = P, [% <t — u] is continuous in (z,u) € (b}, +oo) [0, t].
Recall that 7V % 7', i € [1,m], and by continuity X S —> Xim o
One can check that the law of (7!, A72,7", X}, 271) is absolutely contmuous
w.r.t. the Lebesgue measure. We thus derive by convergence in law that for
N large enough

on(t) = O(e), (F(t) = (1= Hy)P ALy < 7' 7" <t] +0(e).  (AD)

Control of (33(t). The arguments we use to control this term are quite similar

to those introduced to treat the terms R;(K), Ro(K) above.
Indeed, since &y € [0, 1] one gets

(1) < BolAZyr™ ST X v > K4 By < T, XL v € (B K])
= RN(K) + RY(K).

From Lemma 4 we get RY(K) < C exp(—c(z_; %) The previous choice of K

gives RY(K) = O(g). Write now, RY(K) := (RY(K) — Ro(K)) + Ra(K). On

the one hand, the former choice of I yields Ry(K) = O(s). On the other hand,
for the difference (RY — Ry)(K), since 77+ % T i€ [2m], Xin o %
Xi,,i i with the same arguments we employed to control dy(t), we derive by
convergence in law 3Ny := Ny(K,¢), N > Ny, |(RY — R2)(K)| < €. Hence, for
N := N(K,¢) large enough, we write (3?(t) = O(eg) which together with (A.5)
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gives (A.4). From (A.4), (A.3) and (A.2) we derive the simple convergence of
(n to ¢ for a fixed t € [0, T].

The uniformity in ¢ € [0, 7] derives from the fact that (y(¢) is a cumulative
distribution function with continuous limit, see also the arguments at the
beginning of the proof of Lemma 17. a

A.2  Proof of Lemma 18.

Let us define V(z,u) € K = [K, K| x[0,T], K > b}, Un(z,u) = ]P)x[\/ﬁ_l(X;N,l_
b))~ >y, 7V < ). For a fixed x € K, Lemma 17 yields that ¥y (x,u) —

(1—-H(y))P,[m' < u] := ¥(z,u) uniformly on u € [0, T]. Let us now show that
for a fixed u € [0, T] we have the uniform convergence w.r.t. x € K. Write

Uy (w,u) = Po[VE (Xhvi =85 > 4] = Po[VR (Xlvy — b)) > 4, 7% > 0]
= Ul (z) — U3 (2, u).

With the notations of Theorem 1, introducing Ya > 0,7, := inf{n € N :
50 > a}, we wiite Wk (x) = P[VE (kv — b)) > o] = Pol(sr_,, , —
7%

(z — by)/Vh) > y]. Equation (19) from [Sie79] gives limy .o, Po[ss, — b > y] =
1 — H(y). Hence, ¥} (z) — (1 — H(y)) uniformly on x € K. We develop U3,

like in the proof of Lemma 3 from the same reference, controlling that we can
isolate uniform rests. We get

Ui (2, u) = ]P’[(Sm_bé)/ﬁ —(z - bé)/\/ﬁ) > Y Ta—bl)/vh = ¢(u)/h]
= [Pl syn > 9/ (@ = B)/VE = son € [.2+ d2)
xP[sz, — 2z > y].
We split the above integral into three terms W3}, W22 ¥2%3 respectively asso-

ciated to the intervals (0,e(z — b)/Vh), (e(z — b})/Vh, (x — b})/(eVR)),
((x — b})/(ev/h), 00) for an arbitrary € € (0,1). One has

(1—¢)(z— b)) x — by
W2 (2, 0) < P < N(O,1) < —" =P
(@) | Vh (,15(u)/h1 0.1 Vh (b(u)/h]
< B! ?S;_ W v < i < St
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uniformly for x € K. We also have

U2 (z,u) < PIN(0,1) < (1 —1)x_b(1J <PN(0,1) < (1 *)E_bé
N\, U) > [ (7 = — & ¢(U)1/2] [ (’ — —€ T1/2]
CcT'? ¢
<7—
T K-b1-¢

which is still uniform w.r.t. x € K. From these computations we derive that
for N large enough, ¥2*(z,u) = (1 — H(y))P.[F™' > u] + O(e), where
the rest is uniform w.r.t. K. It therefore remains to show P,[7V! > u] :=
v (u, ) - y(u,x) = Py[7' > wu| uniformly on K. We note that 1 —
Y (u, ) = Po[Sup;eo.p(u)/n] X} > (z — b})] is decreasing in z, so that yx(u,.)
is increasing. Since the simple limit is continuous, we derive the uniformity
using the same arguments as in the proof of Lemma 17.

Now, we have shown that for a fixed parameter = € K, u € [0,7], we have
the uniform convergence with respect to the other. Let us now show the joint
uniform convergence. The limit W is uniformly continuous on K x [0, T']. This
reads

Ve > 0,3n:=n(e),Y(z,2') x (t,t') € K2 x [0, T, |t —t'| + |z — 2'| <,

(W (z,t) — V(2 )] < e.
(A.6)
In particular, [t —t'| <7 = sup,cx |¥(z,t) —¥(z,t')| < e. Let us now consider
a regular grid A := {s;}ic1,q of [0, 7] with step s = 5,41 — s; < 7. Since for a
fixed ¢t € [0, 7] we have uniform convergence in space it comes

Ve >0, 3Ny = max Ny(s;), N > Ny, sup sup|Un(z,s;) — V(z,s;)| <e.
i€[L,a] i€[l,a] zek
(A7)

Noting that both Wy (z,.), ¥(z,.) are increasing functions we derive from
(A.6), (A.7)

YVt € [82‘, 82'4_1], \I/(ZE, 82‘) — ‘IJ(CL’,SZ'_H) + \I’(ZE, 52‘—4—1) - ‘IJN(ZL’, 82‘4_1)
< \I/((L’,t) - \I[N(mut> < ‘Ij(xasi—i-l) - \I’(ZE, Si) + ‘IJ(CL’,SZ') - ‘IJN('I7SZ')7
Ve > 0,3Ng, N > No, sup;epor]SUPsex |V (7,1) — Un(2,t)| <€

which shows the joint uniformity and completes the proof. O
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B Results about the killed heat kernel: proof of Lemma 15

One of the key tools in the proof of the Lemma is the following identity
Ve >0, Vu>v >0, I,(x) < I(x). (B.1)

Relation (B.1) was proved by Jones in [Jon68]. From identity 9.6.34 in Abramo-
witz and Stegun we also get that exp(z) = [y(2) +2>0°, I,(2). Hence, from
the explicit expression of the killed heat kernel, see Proposition 12 and Remark
14, and recalling that v, := nr/w > n, (B.1) yields

2
2exp(— = [r— P\ )

-0 2ex _ 2y 00 exp(—
qt(x,y)gT%)zoo I, (TP)SP(T%)Z I, (Tp)g p(tw

Put A; := Y02, Oc(sin(v,0) sin(v,n) 1, (%)) From the recurrence relations

on modified Bessel functions, see formula 9.6.26 in [AST72|, one gets |A;| <
33 2omet (Lo 1 + 1 —1) ( ) < C% exp( ) Thus,

eXp( )‘At‘ < CF exp (_|r;f\2) <O(% + M7 pl)exp( oot )

<O+ ) exp (—eE) < gexp( Ir—ol?)

which gives the result for the time derivative.

The boundedness and Hoélder continuity of the gradient is somehow trickier
to obtain. Let us show these properties for the partial derivative of the heat
kernel w.r.t. the first parameter. They could be obtained for the other ones
exactly in the same way. Bare hand calculations yield

O (2, y) = =Sz, y) + £ exp( . +p ) Z sin(v,n) ¥
{sin((vn = O, -1 (2) + sm((yn +1)0) 1,11 (%)}
The previous arguments give the stated control for |0, ¢ (z,y)]|.
Now, the most “singular” term in the expression of 0,,¢/(x,y) is the one in-

volving the modified Bessel functions of lowest order. Thus, we have to prove
the Holder continuity of

) S sin(wn) sin((v, — D)L, (+)

g(@,y) = s exp (—2F
n=1

2, 2
- ;_tp)Bt(x7y>
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Still by direct computation we get that

C r > r
w5l < Lo () + X1 ()],
t t) = t
Now, since z € R™*, from equation 9.6.20 in [AS72]

1

I,(2) = ;/OW exp(z cos(y)) cos(vy)dy —

M/OOO exp(—z cosh(t) — vt)dt.

™

From this expression it is easily seen that VYn € N, z > 0, [,(z) = I_,(z) and
Vv >0, Ve >0

L, —1,|(x)<C /0 ~ exp(—z cosh(t)) exp(vt)dt

1 ) o
= C/ exp(_%(u—l + u))u_(H”)du < CZ—(V+£)/ w19 qu, < Y —te)
0 0 -
Thus, for all e > 0
O T r —(2—V1+8)
VeBi(z,y)| < TP {exp (f’) +et (7") 1V1<2} . (B.2)

Take (x,2") € (B(0,R) N D)2, s.t. r < r'. For ay € (0, 1] to be specified later
on, it comes

A <ty (-8) oo () e (-5) B0

toxp (—=52) Bia’,y) — Bulw,y)] x o — o[ o0 := (A} + A2)(a, ).

Recalling that |x — 2’| > |r — /| and |Bi(z,y)| < Cexp (%3) we derive
2 T
&2 exp (—%) SUD g [, XD (—%) | — 7|17 x exp (7’))

C 2
< & exp (—c%) .

A (2, 2)

IN

(B.3)

We also have A?(z,2') < <L exp (—’”'2;;’)2) SUP,epo.1) | Vo Bi(ur+(1—u)2’, y)||z—
2/|'720_ Hence, from (B.2) we get

2 212 i _ r —(2—v1+e)
A¥(z,2') < S exp (—%) {eXp (TP) +e7! (7’)) 1u1<2} X
|x _ x/|1—a0‘
If 1 > 2, the above control together with (B.3) give the statement of the

proposition with oy = 1, i.e. the gradient is Lipschitz continuous. So from
now on, we consider the case 1y < 2.
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If |z — 2’| < r, we derive from the previous expression that for v; > ¢

(1ne)

' —p|? v1i—l—e—«
< (g OXP (—C| i~ )(1+7’ 1T,

2 / c _ =l 1—ag—(2—v1+e)
Al (z,2') < tgexp( c— )(1—1—7’ 0 1)y (B.4)

On the other hand, if |z — 2'| > r, we write

12
A(z,2") < Dexp (252 [Bi(z,y) — Bula',y)| x | — /|~
24 p2 00 T
< Lexp (—F2) (S0 (v — Dl (22) +

S22 s () = Lyoi (Z2)]) % |z — 2|70 o= Lexp (—252) (D} + D).

(B.5)
From the recurrence relations on modified Bessel functions, see equation 9.6.26
in [AS72|, and since |z — 2’| > r one gets

D € S Eoalhs 1) () < St () { ()77 1)

—1—¢
< AW e\ vi—l—e—ag
Coxp () {2 4 (1) ),

Recall now formula 9.6.18 from [AST72], i.e.

IA

Vv > —1/2, 1,(z) = (32)" /1 (1 — u?)"~Y2 cosh(zu)du.

20 (v + 3) /1

Hence,

D} < C{ L1 () = Lo (%) | + A5 exp (52 | — a’| 70
<OQ(8)" It = (8) e () I e

<C (g)w—l |r —rf|rieo 4 (f)yl + f} exp (#) :

(B.7)
Plugging (B.6) and (B.7) into (B.5) we derive that for |z — 2’| > r

Cj I 12
A?(]J,ZL’,) < exp <_c|’f’ p| ) {1 + |7, i 7,/|y1—1—a0 + r”l—l—é—ao} '

(L Ae)ts t
(B.8)
Take now £ > 0s.t. vy —1 —¢ > 0. Set ag = v; — 1 — . From (B.4) and (B.8)
the proof is complete. O

Remark 19 The spectral theory suggests our previous Hélder constant for the
gradient is somehow optimal. Indeed, if ¢, denotes the first eigenfunction of
the elliptic Dirichlet problem for the Laplacian in a bidimensional truncated
cone of angle w and vertex 0, we have from Ezample 4.6.5 in Davies [Dav89]
that ¢1(x) = O(r™), vy = m/w when v — 0 non tangentially, and the heat
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kernel also writes q;(x,y) Zexp —Eit)¢i(x)pi(y) where the (E;)ien+ are the

ergenvalues of the Laplaczan zn the truncated cone (0 < E; < Ey < ... ] 00)
and the (¢;)ien+ the orthonormal eigenfunctions.

The spectral decomposition of the heat kernel also suggests that we can not
expect more spatial smoothness than the one of the elliptic problem. A general
study of this kind of problem is far from being easy. A Sobolev approach can be
found in Dauge [Dau88] and Kozlov et al. [KMR97|. The possible application
of their arguments to the parabolic case will concern further research.

Remark 20 The control of the time derivative stated in Lemma 15 holds
true up to d = 4 without major changes in the proof. The main tool needed
1s Weyl’s asymptotic Lemma that gives some controls on the behaviour of the
eigenfunctions that appear in Proposition 12, see [Cha84] p. 172. The remain-
ing computations are rather similar to the previous ones.
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