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Abstract

In this paper we prove the Local Asymptotic Mixed Normality
(LAMN) property for the statistical model given by the observation of
local means of a diffusion process X. Our data are given by fol Xs+idp(s)
fori =0,...,n—1 and the unknown parameter appears in the diffusion
coefficient of the process X only. Although the data are nor Markovian
neither Gaussian we can write down, with help of Malliavin calculus,
an explicit expression for the log-likelihood of the model, and then
study the asymptotic expansion. We actually find that the asymp-
totic information of this model is the same one as for a usual discrete
sampling of X.

KEYWORDS: Diffusion processes, parametric estimation, LAMN property,
Malliavin calculus, non-Markovian data

AMS 2000 SUBJECT CLASSIFICATION: 60Fxx; 60Hxx; 62Fxx; 62Mxx

1 Statement of the problem and main results

1.1 Introduction

Let us consider the family of strong solutions, X, of the stochastic differen-
tial equation,

dX? = a(X?,0)dB; + b(X?)dt, (1)

X§ = &, (2)

where (B;)¢>0 is a one dimensional standard Brownian motion on some prob-

ability space (€2, A, P), and where the initial value &; is some real constant.
Suitable regularity assumptions on the coefficients b and a will be stated
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later (see assumption (R)). The unknown parameter 6 is assume to lie on
some compact interval © of R and for simplicity we have assumed that the
initial value £y does not depend on 6 and thus is known to the statistician.

Now, let p be some probability measure on [0, 1], and we assume that
our observation of the process is given by the local means of X associated
with this measure, with sampling of size 1/n:

1
(observations) X;=Xjn:= / Xstidu(s), for j=0,...,n— 1.
0 n

We also assume that 1 does not depend on 6 and is known by the statistician.
Clearly, the usual case of pointwise observation of X is obtained if p is

some Dirac measure. However we will exclude that the measure has mass

only on the end points of the interval and hence make the assumption:

1((0,1)) > 0. (3)

This paper is concerned with the Local Asymptotic Mixed Normality prop-
erty of this statistical model.

Motivations. Taking as the observation the integrated process instead
of the process itself is actually quite natural. For instance, it arises when
the realization of the process has been observed after passage through an
electronic filter. Also, in random mechanics (see Krée and Soize [18]), X
models the velocity of the system and in general, we observe its position,
i.e. the integral of X. The modeling of ice-core data can be made through
an integrated diffusion process (see Ditlevsen, Ditlevsen and Andersen [2]).
Integrated processes also play an important role in finance, when modelling
the stochastic volatility (see for instance Barndorff-Nielsen and Shepard [1]
and references therein).

Literature background. Despite of these numerous motivations, a
few statistical studies deal with this situation. The inherent difficulty of
this situation is that the observation is no longer a Markov process, which
eliminates many statistical and probabilistic tools. Gloter |6] [7] provides an
estimator in the multiplicative case a(z, 8) = fa(x) and proves its consistency
and asymptotic normality in the high frequency case t; = i/n. The case of
low frequency (say t;+1 —t; = 1) is studied by Ditlevsen and Sgrensen [3],
using prediction-based estimating functions. For a direct observation of the
diffusion, see Genon-Catalot and Jacod [5], Prakasa-Rao 23] and references
therein.

Here, we directly address the problem of the LAMN property, which fun-
damental consequence is to provide information on the minimal dispersion
for an estimator of the parameter 6 (see Ibragimov and Has'minskii [13],
Jeganathan [15] [16], Prakasa-Rao [23], Le Cam and Lo Yang [20]). Such
properties in the diffusion case have been established in the one-dimensional
setting by Dohnal [4], and then extended by the Gobet [9] [10] to the multi-
dimensional setting, both in the high frequency and ergodic framework. For



this, Malliavin calculus techniques were used and paved the way to possibly
handle more general situations than Markovian observations. This is exactly
this way we follow in this work, to tackle the case of integrated diffusion.

1.2 Main results

Before going into the details of our results, we present a very simple example
which gives an intuition on the type of results that one can expect.

Example 1 (Multiplicative Brownian case). Assume that the model is
X! =B,
(corresponding to b =0 and a(-,0) =0,& =0).

1. Consider a first situation where one observes the diffusion at discrete
times. Hence, the observation is (Xy,)i1<i<n, or equivalently (Z; =
0(Bt, — By, ) = 0Gi)1<i<n, where G; are independent centered Gaus-
sian variables, with a known variance. Thus, the estimation of 62 is
achieved at rate \/n, with a minimal variance equal to 20%.

2. Now consider a second situation where one observes only the inte-
grated diffusion at discrete times. Hence, the observation is (X; =
9[01 B syi pu(ds) = 0Gh)1<i<n, where (G}); is a centered Gaussian vec-
tor, with a known covariance matriz. In addition, this matriz is invert-
ible and thus, 6> can be estimated in the same conditions than before.

This means that observing the process at discrete times or its integrated ver-
sion is equivalent for the inference problem. The results of this paper state
that this is true, even for the more general models (1-2), which is far to be
ntuitive.

Before stating our main results, we define the working assumptions of
this paper. The coefficients ¢ : R x © — R and b : R — R, are assumed
to satisfy the following set of conditions (as usual, derivatives w.r.t. 6 are
denoted with a dot: for instance, 9pa = a).

Assumption (R)

1) The function a is C'*7 for some v € (0,1) and the functions x
a(z,0), x — a(z,0), x — b(x) are assumed to be C3(R).

2) The functions a, @ and b and all their derivatives with respect to x are
bounded uniformly in 6.

3) We have the non degeneracy condition, for some a: a(x,0) > a > 0 for
all x, 6.



Actually, the uniform controls in (R) can be weakened to local ones, using
extra techniques of space localization (see Lemma 4.1 in [9]). We omit further
details. An extension of our results to a multidimensional parameter # and
to time dependent coefficients is straightforward, in the same way that it is
done in [9] and [10].

We denote by PY the law on C([0,1]) of the process X% and then simply
denote X the canonical process on C([0,1]). We let p™® denote the law
on R"™ of the observation O" := (Yj)j:(],_,,th when the true value of the
parameter is 6. And for 6y, 6, two values of the parameter we introduce the
likelihood ratio, ,

n,0;
Z3y, = oy (O") @)

The main result, is that this statistical model satisfy the so called LAMN
property. For this denote the sequence u, := n~'/2, and let 6y € © and
h € R such that 6y + uph € ©, Vn. Then, by the following theorem, the
model has the LAMN property for the likelihood at point 6, with rate u,
and conditional information:

1 a 2
To, :2/ () (Xs, 00)ds.
0 a

Theorem 1. Assume (R), then we have the expansion,

108 24 g0 tunn = hNp + 1/20° I, + R,

Pfo Pfo . .
where I, —— —Z1g,, R, —— 0 and there exists an extra random variable
n—oo n—oo

N ~ N(0,1) independent of Ty, such that, N, converges in law under P% o
N /Ty, .

Moreover this convergence is stable, which in particular implies the joint
convergence under P% :

l
(In, Np) %’ (—Zoy, N/ Zg,)-

Remark 1. Let us stress that the rate u, = n='/2 and the information Ty,
are the same one as for the pointwise observation (see Genon-Catalot and
Jacod [5]). This corroborates the intuition from Ezample 1.

However, we will not be able to prove directly this result, but instead we
shall consider first the easier problem where one can observe additionally the
exact value of the diffusion at some sparse instants. This device was proved
to be useful in Gloter and Jacod [8] for the study of a Gaussian diffusion
process observed with noise that leads to non Markovian observations too.

Let k = k, be an integer in {1,...,n} and define L = L,, := |n/k|, then
we consider the set of random variables:

Omaug :(’)”U{X%,l: 1,...,L}U{X1}.
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Since this set of variables contains more data than the initial set, we call it
the augmented observation set. Clearly, we can split the set of augmented
observations into blocks, By, ...,Br, where for [ =0,...,L —1

B = {Xut, - Xntrh—1, Xp41)/n )

and By, = {YkL, oo, X, Xl}. Note that if kL = n we consider that the
last block is empty, and (immediate) modifications should take care of this
in the sequel, however to have shorter notations we will not explicitly write
these modifications.

The advantage of this set of augmented observation is that using the
Markov property of X, the law the block B; conditional to the previous
blocks (By)i<; only depends on the last variable, X, of the block B;_;.

Denote by p™*89 the law of O™ on R**L*! and introduce the like-
lihood ratio for the augmented observation:

n.aug _ dpn,augﬁl On-aug
60,01 dpn,aug,é?o( )- (5)

Theorem 2. There exists a sequence k, — 00, such that the augmented
model satisfies the LAMN property:

n,0ug _ aug 2 raug aug
log Z90790+unh = hNS" + 1/2R°1"9 + R},
aug P9 aug PY .
where I, —— —1g,, Rn” —— 0 and there exists an extra random

n—oo n—oo

variable N ~ N(0,1) independent of Ty, such that, Ny converges in law
under PP to N\/T%.

Moreover this convergence is stable, which implies in particular the joint
convergence under P% :

l
(Isug’Nsug) R (_1907N\/ 190)'

n—oo

Remark 2.

1) The fact that k, — oo means that the data added in the observation are
sparse compared to the initial data. Actually, the Theorem 2 holds for any
sequence ky, which growth to oo is slow enough.

2) If one let the size of the block ky, = k fized as n — oo then the augmented
model satisfy the LAMN property too but with an increased asymptotic in-
formation (see Section 3.3).

From Theorem 2 and from the consequences of the LAMN property, an
asymptotically optimal estimator 6, in the augmented model should satisfy
that /n(0, — 6p) is asymptotically distributed under Pg, as —A—N. How-

v/ Zog

ever any estimator in the initial model of observation O™ can be seen as an
estimator in the augmented model, hence the Theorem 2 would be sufficient
by itself to imply a lower bound for estimation in the initial model.



1.3 Outline of the paper

In Section 2 we study the score function given by the observation of only one
block of data (Bg for instance). We first focus on the existence of a density
for a block of data; and in the case of a block of size 2, (n'/? fol(Xs/n —
Xo)dpu(s),n'/?(X1 — X)) we give original lower and upper bounds of Gaus-
sian type for the ?iensity. It is useful for our proof of the LAMN property,
but it is also interesting for itself.

In Section 2.2 we present an exact expression for the score function of
a block of data By (see Theorem 4). This result is the key point in the
proof of the LAMN property, it extends a former result of Gobet [9] [10]
which gave the score function for the observation of X§. In Section 2.3 we

study an explicit approximation for the score function when the sampling
interval 1/n tends to zero and the length of the block k/n remains moderate
so that one can consider the coefficients of the diffusion X almost constant
on the interval [0, k/n]. The key point is the Gaussian approximation for the
diffusion given in Section 2.3.1.

In Section 3 we deduce from the previous results a proof of Theorem 2
and Section 4 deals on how to deduce Theorem 1 from Theorem 2.

Finally the Appendix contains the proof of some results of Section 2.1
together with some useful lemmas.

Notations. In our proofs, we will keep the same notation for constants
which may change from one line to another. In particular, the constants
¢, c(k), c(p), c(p, k) will stand for all finite, non-negative and non-decreasing
deterministic functions of an index p (arising from LP-norm) and of the block
size k. These constants are independent on 7,6 and depend on the process
XY only through the bounds on the coefficients a,b and their derivatives.

2 Score function for a block of data

In this section we shall study the law of the blocks of data B;; recalling
the Markov property of the process X it is sufficient to focus on By =
{Yo, ey Xpl 1, Xk/n} assuming that the diffusion X now starts from some
value xg. In this section it is convenient to transform the short time asymp-
totic k/n — 0 into an almost stationarity property of the coefficients. To
this end, we introduce the rescaled process th,e = n%(XoL — 20) (where X?

solves (1) with X§ = x). It solves the equation
A" = an(X,0)AW; + b (X0)dt, X3 =0, (6)

where W is a standard Brownian motion (arising from the rescaling of B),
and

an(z,0) = a(zo +n"%2,0), by(z) = n "V 2b(xo+n"Y22). (7



Since for the score we are only concerned with the law of X™¢ we can assume
that W is independent of the rescaling coefficient n.

2.1 The density of an integrated diffusion

In this section, we will present preliminary results on the density of the law
of the mean of a diffusion process. However the proofs are postponed to
Section 5.1. To our knowledge, the lower and upper bounds for this density
are new results.

2.1.1 Existence of the density

Our first result actually deals with the two dimensional variable given by
solely one local mean and the exact value:

1
e vty = ([ ataus, a0 )
1
o (7 [ (x4 = aoaue) 28— an))
0 n

Notice that, by the Markov property, the preliminary study of this bi-
dimensional variable will be a key step to obtain results on the observation
vector O™.

Theorem 3. Assume (R), then the vector (U™? V™) admits a density
Py (5, 0) on R?, and there exist two constants c¢; > co > 0, such that,

Cfle—cl(u2+v2) < pgo (U, v, 9) < C;le—cz(u2+y2)' (9)

The constants c1 and co only depend on the bounds on the coefficients a, b
and their derivatives.

The proof of this theorem is given in Section 5.1. The existence of the
density is obtained by means of the Malliavin calculus. On the other hand,
the upper and lower bounds rely on the direct study of (U m0 Ym0 around its
skeleton (see Hirsh and Song [11] [12] for related works; and Kohatsu-Higa
[17] for different methods involving Malliavin calculus).

The following is a direct corollary of Theorem 3:

Corollary 1. The vector By = {Yo, ooy X1, Xk/n} admits a positive den-
suty.
Proof. The bi-dimensional process (X, Xi11)1=0,. k-1 is a Markov chain

with transition density py, (Zi, z141,0) = npy, (n% (Tie1—10), ns (x1e1—17),0).
Then it is clear that the vector By admits a positive density. O



2.1.2 Invertibility of the Malliavin covariance matrix of a block

Actually the existence of a density for the law of the random variable Bg will
not be sufficient, and we need a non degeneracy condition for this variable.

Before this, let us precise briefly a few notations from the Malliavin cal-
culus, used in the sequel (see Nualart [21] [22] for details). We let H be
the Hilbert space L*([0,1]) so that the Brownian motion (Wy)iejo,1], ap-
pearing in (6), is canonically associated to this Hilbert space via the stan-
dard L? isometry. In this setting, for any p > 1 and natural number g,
recall that the set D%P denotes the space of real valued Wiener function-
als with ¢ derivatives and whose derivatives belong to LP(£2). If we denote
by D the derivative operator then the space D?9P is endowed with the norm,

1
|]F||q7p = [E(|F|P) + Z? HD F”L2( 011 )} " The space of variable with
q derivatives in any LP(f2) is denoted D> = N,>D?%P. These definitions
can be extended to random variables with values in any Hilbert space V' and
the corresponding spaces are denoted D?P(V'), D?°°(V') (see Section 1.5 in
Nualart [21]). In particular the operator D is then well defined from D%
to D¢ 1°°(H). Finally, the adjoint operator of D is the Skohorod integral d,
and the Malliavin covariance matrix of an element F' € DL>°(R?) is defined
as the matrix vp, ... g, = (D.F;, D.F}) yl1<ij<a-

Now, we con81der the variables,

1

Up" = [ anauts) (10)
0

v = /0 (A8 Xm0 du(s) (11)

n,0 n,0 n,0

U = / (X0~ Xm0 Ndp(s) (12)
1

U’ ::/0 (A7 — x5 du(s). (13)

Note that the joint law of these k 4 1 variables is, by rescaling, the same as
the law of the vector composed with variables of the first block Bg: ns (Yg —
a:O,Y? - Yg, e ,YZ,l - Yz,2,Xz - YZ,I). These variables satisfy the

following non degeneracy property whose proof is postponed to Section 5.1.3.

Proposition 1. Under (R), (U?,...,U"") € D¥*. Denote by K(6) the
Malliavin covariance matriz of (Ug’e, ce U,?’e). It is a.s. a invertible matriz
and for all p > 1, we have

E (|det(K(9))]77) < c(p, k).



2.2 An exact expression using Malliavin calculus

In this Section we intend to give en exact expression for the score function
of the observation of By or equivalently for the vector (Ug’e, cee U,?’e) given
by (10)—(13).

Under the condition (R), we know that there exists a version of the solu-

tion of (6) such that P—almost surely the function § — X} is continuously
n,0
differentiable for all ¢ and 7;" = 3957% is solution of the stochastic equation

(see Kunita [19]):

day, Oa,

n@ n,0 ab
,0 dW;
a:( )mi T tol7)

i = (A7, 0) AW, + (X )7 0dt (14)

n79 —
79 =0.

The main result of this section is an explicit representation for the derivative
of the log-likelihood of one block. This extends a former result given by
Gobet (see [9] [10]).

Theorem 4. The random vector (Ug“e, cee U,?’e) admits a positive density
on R¥L denoted by py,(uo, ..., u,0). For a.e. (ug,...,ug), this density
is an absolutely continuous function with respect to the parameter 6 and we
have the formula:

U

p — 0 ,0

= (g, ug, 0) = E 5| Y —=—K(0); DU | [ (U = )i,k
Pro o<k ’

where K (0)~1 is the inverse of the Malliavin covariance matriz of (Ug’e, e U:’g).

Proof. Denote U™ the Wiener functional, U™ = (U, . .. U,?’e) and let
f : R¥1 — R be a smooth function with compact support. Then the
function § — E [f(U™?)] can be differentiated pointwise and:

ou’
889 [fUno}: Zauj U™ =54

By Proposition 1 the Malliavin covariance matrix of U™ is invertible and a
standard computation on Wiener functionals (see formula (2.4) p.81 in Nu-

alart [21]) shows that: 8anj(U”’(’) = Z?/:O <D(f(U"’9)),DU;T,’6>HK(6’);;,.

It follows that %E [f(U™)] is equal to

B33 (pw . oo o2 % | < (om0 |

Jj=035'=0




where L? is the H-valued random variable:

ZZ 39 ]] ane‘ (15)

Jj=035"=0

Introducing the ¢ is the adjoint operator of D, we get

B [1wm)] = B [sw 5], (16)

Let g be any smooth function with compact support on R. Using the inte-
gration by part formula and the equation (16) we have:

[ass@Ewt) =~ [asgo) e [rwm)] = - [avgo)e [swm 5]
- [ ag@E [0 BB | W5, U]

Introducing the density of the random vector U™? the equation above writes,

/ d@/f UQy -+ -y pxo(uo,...,uk,e)duo...duk
/ da/f oy ) ES(LY) | (U = w)lpag (tos - - g, 6)du - . . .

From Fubini’s theorem this implies that for all smooth function g we have
dug . . .dug-everywhere

/ §(0)pao (o ., )0
- —/g(@)E[é(LQ) ] (Ul”’e = )] Pz (o, - - -, Uk, 0)do.  (17)

Considering a countable sequence of functions dense among smooth com-
pactly supported functions we may obtain that the equality above holds
actually for all smooth function g on the same set of full Lebesgue mea-
sure. Eventually, observe that (17) is sufficient to imply that the function
0 — pay(uo, . .., ug, 0) is absolutely continuous and that

Do (U0, - -, ug, 0) = E[S(L) | (U = wy)i]pag (uos - - - , u, 0).

Hence the theorem is proved. O

2.3 A Gaussian approximation for the log-likelihood

In this section we intend to give a tractable approximation for the score
. n,0 n,0
function of (Uy™",...,U.").

10



2.3.1 Approximation for the diffusion

We introduce X{ = a(zo,)W; and 7¢ = a(xq, #)W; which stand -by (6) and

n,0
(14)- for the first order approximations of th’g and ;" b — a/gte . Then, we

consider the quantities obtained by replacing in (10-13) the process X by
this Gaussian approximation:

~ 1 1
00 = a(xo,0) /O Wadp(s) = alzo, 0) /0 (s, 1]) AW, (18)

B 1
00 = a(:L‘o,H)/O (Wips = Wyorss)du(s), forj—=1,....k—=1  (19)
| »
= a(xo,0) /le w([0,s — (j — 1)))dWs + a(xo, 0) /jj+ w([s — 7,1])dWs,
B 1
08 += ale0.0) [ (Wi = Weer0)dn(s), (20)

k
= afa.0) [ (0.5 = (k= D)AW,,

-1

In the next lemma we control the difference between the Uf % and their
approximation in terms of Sobolev norm.

Lemma 1. For all k,p > 1, there exist constants c(k,p), c(p) such that for
all j €{0,...,k}:

ng 170 -1/2 4
-0, < etk |o7]], <etw e
oum? o ouU?
J J < clk —-1/2 —_J < 22
69 69 -~ C( ,p)n ) 60 —_ C(p)? ( )
2,p 3,p
vo<ig <k |B(UpUp - TIO))| <cln™t (23)

Proof. The inequalities on the right hand side of (21)—(22) are immediate
by the definition of [7]9

Comparing expressions of (10-13) with (18-20), the two remaining bounds
in (21)—(22) will be a consequence of the Minkowski inequality - for the
Sobolev norm - and of the control on the diffusions:

sup Hé’(t”’e — 2?”217 + sup Ttn,@ — ﬂ?HQp < n~Y2¢(k, p).

t<k t<k

0

We only prove the control on X™? since the proof for 7™ is analogous.

Recalling (6)—(7), we can write
t t
xMt X = / [an (X, 0) — a(x0,0)]dW, + / b (X)ds
0 0

1t 5’ 1t 0

11




But we know [21] that under (R) the variables X™? belongs to D3 with a
control (independent of 8,n): sup,, ,,<.<r E(|D2, ., x™0P) < ¢(p, k). This
is sufficient to deduce HXt"’e -7 ‘2

tions.

To obtain (23) note that by (21) it is sufficient to show FE ((U]ﬂ’e - fff)ﬁf/) <
c(k)n~!. This property will follow again from an analogous relation on the
diffusion,

< n 12 (p, k) after a few computa-

)

sup ‘E( — xS ) c(k)n=t.

tt<k

Indeed, from (24), the above expectation is equal to
tAL
1/2/ / ! (zo 4+ n " 2ux? o) 9} dua(zg, )ds+
t
n1/2/ E [b(xo + nil/QXg’e)Wt/} a(xp,0)ds.
0

Usmg‘E[ (1‘0,9))(”9]’ _‘ ol (xO,H)E[bn(XS’e)]du’ < en 12, E [b(wo)Wy] =

0 and the boundedness of @/, and ', we get the required estimate. O

2.3.2 Approximation for the log-likelihood

Let us denote the deterministic tridiagonal matrix K of size (k+1) x (k+1),

(v e 0 0 0]
c v tuvy . 0 0
K=o ' 01> (25)
0 0 Lot
_0 0 0 c v2 |

where the entries of the matrix are:
1 1 1
o = /0 p((s, 1)%ds, vy = /0 u(0,8])%ds, = /O ([0, s)([s, 1])ds.

It can be easily checked that a(zo, 0)K is the covariance matrix of the Gaus-
sian vector (UZ,. .. Uk) and is invertible (see Lemma 10 in the Appendix).

Now the idea is to 1ntroduce the score function that would be produced from
the observation of this Gaussian vector. Hence we let:

a
Ero(uo,...,ukﬁ) = a(.ﬁo,@) J}o, E u] ,uj/ — (k—i— 1) . (26)
0<7,5'<k

In this section, we will show that this quantity is an approximation for the

true score function %:

12



Theorem 5. Let us consider the difference,

D20 (o s 0) — Lo (ot 0) 1= 7o (0 s 0). (27)

Yz
Then we have the following bounds:
B [ra @3 U3, 0)] | < iy, (28)
1
Vp>1, E [ ray (U0, U,?"’,a)ﬂ "< ek, p)n 2, (29)

Proof. Keeping in mind the definition of L? (see (15)), we introduce its
approximation based on the Gaussian quantities defined above:

The first step is to obtain the following control on the difference r; :=
L9 — L

Vp > 1, |rillpe < elk,pn™/2. (30)
Actually, it is a easy consequence of Lemma 1, Proposition 1 and the in-
vertibility of K noting that the Malliavin covariance matrix of U U? coincides
with the covariance matrix a?(xo, H)K of the Gaussian vector U?. We omit
further details.
The second step is to obtain a simple expression for 5(59). To see this, we
first use the relation for F' € DV v € DV°(H), §(Fu) = Fé(u)—(D.F,u) 4
(see [21]):

ko k 776
- oU;
_ 271 i e
§' > alx0,0) 2K <D D0} > .
H
On the one hand, 6(D((7f,)) = fff, (6 o D is the identity operator on the

au’
first chaos space). On the other hand, one has % = Zgigag U? by (18-20).
Hence

. k k
(L) = W00 S S O, 0) 2K 10

J=05'=0
a(zo, 0) A O 2K-Y/put DU
oo S5 )R {0.1.D3),
Jj=0j'=0
k k
(o, 0) 0 o179  @(z0,0)
= X 0) K. ,U;, — k+1
a(zo,e););::o(]]“(%a ) 3 U; a(%?g)( +1)
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Now set

-TO 1'0
"= B ) § U/K LU — 3( s Sy UM E UL
a3(xg, 0 3 a (330,9) 33
0<_7 7' <k 0<4,7' <k

take the conditional expectation in the equality 6(L%) =
Theorem 4, we get (27) with 5, (ug, ..., ux,0) = E (6 r1) |

E (7"2 | (U} ); = (%‘)j)-
The final step in the proof is to show that r,, satisfies conditions (28)—
(29). For the first condition, since the Skorohod integral is zero mean, we
have Elry, (Uy?, ... U™ 6)] = E(rg) and we conclude using (23).

We now prove (29). The conditional expectation being a contraction in
LP? it is sufficient to prove

5(L9) + 8(r): by
(U5 = (3); )+

E(8(r)P)7 < c(p, k)2, E(lral’)? < c(p, k)n~V/2.

The first estimate follows from (30) and the continuity of the operator §
from DYP(H) to LP. The second one is an immediate consequence of Lemma
1. O

Remark 3. Let us note that the constants c(k), c(k,p) in Theorem 5 should
increase as the block length k goes to infinity since the Gaussian approzima-
tion ceases to be valid in that case. However in the sequel we shall not need
a precise evaluation of this dependence on k since we will have the possibility
to conveniently choose the growth rate of k = k,,.

In the following sections we will need this Corollary of Theorem 5.

Corollary 2. We have for all p > 1,

D 0 N
E[W(Ug’ N O ,9)’ ] < c(k,p).

Paxg

IN

o, . . nye TL,G p
Proof. By Theorem 5 it is sufficient to show that Hﬁxo Uy, ..., U7, 9)‘ }

¢(k,p). But from the expression of L,,, this estimate is clear.

3 Asymptotic study for the augmented model

In this paragraph we establish Theorem 2. Let us recall some notations: we
now deal with the diffusion given by (1)—(2); ky, is some integer in {1,...,n},
L, = |n/ky,| and our observation consists of the L, 4+ 1 blocks By, ..., By,
described in Section 1. The length of the block B; is k,,; + 1, where k,,; = k,,
ifl <L,—1andk,, =n— Lyk,. For sake of simplicity in the sequel we
sometimes omit the dependence of the size of the block upon n and [, and

14



let k,,; = k with a slight abuse of notation in particular for the last block of
data.

To be able to use the results of the Section 2, we introduce on each block
the random variables corresponding to the definitions (10-13) for the first
block. Hence for [ € {0,..., L,}, we define the k,; following variables:

Uoy =12 (Xp — Xnt),

1 —
n? (X1 — Xk,

S
||

N

Up—10=n (qukfl - Ykl+k72)7
Uk,l =n (Xk(l+1) — ykl-ﬁ-k—l)-

[N

Clearly the observation of the (Uj,;) for I € {0,...,L,},5 € {0,...,kn;}
is equivalent to the observation of the L, + 1 blocks. Using the Markov
property for the process X it appears that the law of the vector (Uj1);=o.... k,.,
conditionally to all the variables U,y with I < 1,5 € {0,...,k,} is the
same as conditionally to Xj;/, only; moreover this law - conditionally to
Xkim = o - coincides with that of the vector (Ug”’a, ce U,?’e) studied in
Section 2. Thus it admits the density px,, (uo,. .., ux, #) studied in Sections
2.2-2.3. Hence the log-likelihood of the au"gmented model admits the additive
structure:

,aug aug LTL kf (UO Ly ooy Z-Jvk:’l7 90 + unh)
In(Z™ On-au _ 1 kol
( 00,00 +unh ( )) ; n L(U()l?'..,Uk’l’eo)

ds.

Ln Oo+unh p X k1 (UO,ZJ ey Uk,l? 8)
-0 /90 IL(UOla"'aUk‘,l?s)

Owing to Theorem 5, we deduce the decomposition
Oo+unh
In(Zg 0k, (O™8)) Z /9 Lxyy (Uogs- -, Uk, )ds

L Oo+unh
+Z/0 %(Uoh---,Uk’l,S)dS,
=0 0

In the above decomposition, we will show in Sections 3.1-3.2 that the explicit
term involving L., governs the asymptotic behavior of the log-likelihood
ratio; the other term does not contribute in the limit.

15



3.1 Proof of Theorem 2: the explicit term

Let us introduce a slight modification of £,,, which has the advantage of
being a smoother function w.r.t. 6:

a _
&,n(0) = —(w0,60) | alzo, 0 2N UK Uy —(k+1) ., (31)
0<sj <k

and we set N3"8 = u,, 2170 €.,(60) and I3"8 = w2 SO0 8219” (6o).

Proposition 2. If k, — oo slowly enough,

Ln  r00+unh B2
/ 'C Xkl (UO[,...,UkJ,S)dS = hN'r?ug—f_ 7Igug+an (32)
=0 /6o n 2
0 0o
where I8 2, —1p,, R, P—> 0 and there ewists an extra random vari-
n—o0 n—

able N ~ N(0,1) independent of Ty, such that, Ny* converges stably in law
under P% to N Ly, -

Proof. Comparing (26) with the definition of § ,,(#) above and using a Taylor
expansion for & () around 6y, we get the equation (32) with a remainder

term R, = ng) + R(Q) satisfying:

60+unh U li(vv.i.l/ il
RW — / 1 (Xus) - f(XM 00)] DTy
(33)
Ln _
RO <ed il S Uk Uy (34)
=0 0<5,5'<k

(for R{? we have used that 0 — a(z, 0) is v-Holder continuous). To complete
the proof, we repeatedly use the following classical convergence result about
triangular arrays of random variables.

Lemma 2 (Genon-Catalot and Jacod [5], Lemma 9). Let (x}')o<i<L.,,

U be random variables, with xj' being F', \-measurable. The two following
conditions imply ZIL:"O X7 L u:

Ly Ly

DSCENIFT U and  YOE[0G)IF] 0

=0 =0
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e We first focus on Nj"®. Let us introduce the sigma field F* = (Xo; Bs, s <
%l) for | = 0,...,L, and F} | = 0(Xo;Bs,s < 1). Then the variable
&n(0o) is F|';-measurable and the asymptotic behavior of Nj"® will fol-
low from Lemma 2. To make clearer this point we introduce the following
approximation based on conditionally Gaussian variables:

~ a L~
§un(0) = —(Xu,60)  a(Xa,0)” 2N UK Uy —(k+1) o (35)
0<j,j' <k

Here, ﬁjJ is the Gaussian approximation under PY of U;, corresponding on
the block B; to the variables (18)—(20) on the block By:

Jun

. 1
Toy = a(Xa, O)n / (Buise — Bu)du(s),
n 0 n n

=
Il
IS
<
z
\.Qb
\_/
M\H

1
/ (Bkl+]+s _Bkl+j 1+5)d/.1/( ) fOI“j: 17...,]€_1,
0

N[

1
UkJ = CL(XM,H)R / (Bk(l+1) — Britk—14s )du(s).
n 0 n n

Observe that this vector (ﬁj,l)jzo,...,k has, under P? and conditionally to
X = xg, the same law as the vector (Uje)j:o,,_,,k defined in Section 2.3.

Thus its conditional law is Gaussian with covariance matrix a(Xu,0)2K

(by Lemma 10). Hence, the variable El,n(eo) is ;' ;-measurable and under
P% it is conditionally (to X ) distributed as a recentered x?(k+1) variable.
Thus we deduce the four follnowing properties:

1) Un, ZlL:n() E90 [gl,n(HO) | ‘En:| = 0;

2) Using u2 = 1/n, L, ~ n/k, — oo and k, — oo, one has
Ln _ Ln a2
w2 Y Eay |(€n(00)) | 7] = 2> 20k +1) <a> (Xs1,60)
=0 =0

_ 2(kn+1)/01 (a>2(X5,90)d3+0P90(1) (36)

kn, a

Pfo 1 a 2
— 2/ <> (XS, Qo)ds = I@O;
0

a

~ 4
3) ub F, Ea, Ugl,n(eo)‘ |]—"l”] < en Lokt < en Uk — 0, if k, goes

to oo slowly enough;
1) X242 Egy [En(00)[Besn — Bu) | 7| =0.
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From these four properties, it follows (see Jacod [14]) that w, ZzL:no 5,71(90)
converges stably under P% to a mixed Gaussian variable as in the statement
of the proposition. To obtain the limit for N;"#, it is sufficient to prove that

Ly,
~ 0
N2 — Y E(60) - 0. (37)
=0

Due to Lemma 2 a sufficient condition consists in the two following points:

1) tn X247 Eag [&0(60) = &n(60) | 72| — 0 in probability;

2) ud Y21 Eay | (&n(60) — €10(00))* | 77| — 0 in probability.

But these two points can be shown using (21) and (23) of Lemma 1 (for k,
slowly increasing).
e We now study I,"®. A direct differentiation of &,,(0) (recall (31)) gives

En(0) = (XM 90) X,d 0) Z Ul,] ,Ul,j/.
0<4,5' <k

Then, with a few computations similar to the study of Ny"®, we obtain (for
appropriate ky):

Ln

QIEEEQO o0 1 77] =023 20k 1) 0o 0400 (U2
=0

_ _2(’“"51) /01 (Z(X5,90)>2ds + op0y (1) (38)

P
_1-90 5

2) wh S2Fy By [[é1(00))% | 7] < en 't — 0.

Combined with Lemma 2, these two convergences imply that of I5;"® to —Zp,
under P%.

e The remainder term R,,. Firstly concerning R , a direct use of (21) gives
E(|R,|) < ¢(kn)n™"/? — 0if k, slowly goes to co. Secondly the convergence
to zero of RS) = ano R

2 is more delicate and Lemma 2 is helpful for this.
To this end we evaluate the conditional expectation of R l) using (23) and

the fact the (U 1); have the conditional covariance matrix a(Xu, 6) 2K

1) fotunh g a a(X 1, 00)
Bl R 177 = [ (X8~ (X B0y~ Db s

0 a’ n a’ n a(X,s)?
+ O(n tunce(ky)).

18



The function a being C**7 in 6, one gets: lL:no Eq, [RS; | FP| < en™/2 4

C(kL:)n_l/ 2 — 0 for appropriate k,. With similar considerations we evalu-

ate the second conditional moment and obtain u? zL:"o EQO[(RS))2 | F'] <
c(ky) Lyuat® 2222, 0. O

3.2 Proof of Theorem 2: the negligible terms

It remains to prove that, as announced, there is convergence to zero of
Ly . Oo+unh . .
dolom with mp = 900 b 7x (Uots- -, Uky,s)ds. We aim at applying

Lemma 2 by computing the first two conditional moments of 7; under P%.
The main difficulty here comes from the fact that we do not have an explicit
expression for r;,((u;);,0). Indeed by Theorem 5 we know bounds for the
moments Ej, (|rz,((Uj);,0)[") where by E7 , we denote the expectation
with respect to the law of X™? solution of (6). This is a priori insufficient
to compute the conditional moments of 7; under P% which involves quanti-
ties such as Ey (|14, ((Uj);,8)[") for s # 6p. Thus in Lemmas 7-8 in the
Appendix we study the transformation of such moments under change of
measure.

Firstly, we evaluate the conditional expectation of 7,

90+unh
Eyy It | 1] = /9 Ep ro(U3)5, )]y 5.
O n

But E(?O,z[rz((Uj)j»S)]‘ < !E?,x[rz((Uj)j»S)HJr)Ego,z[?“m((Uj)ja5)] — B [r2((Uj)j, 8]
can be bounded using (28) and Lemma 8 in the Appendix by c(k)n=t +
|s — 00| B2, [|r2((U;);,)[*] = for some constant o > 1. Then by (29) we de-
duce |E [ | )| < c(kn)[upn~t +u2n~1/2]. Finally a block length k, slowly
increasing guarantees ZZL:"O Eg, [m | F"] oo,

Secondly and similarly, owing to Theorem 5 and Lemma 7 in the Ap-

pendix, we get E [n? | 77| < c(ky)uin~! — 0. Therefore, by Lemma 2, we
0,
have proved ZZL:”O m 2, 0. This ends the proof of Theorem 2.

3.3 What happens if k, remains fixed?

If we assume now that k, = k£ € N remains fixed as n — oo, the num-
ber of data (X )i=o... 1, added to the model in order to force an additive
structure to the log-likelihood is not negligible compared to the number of
initial data. Hence the statistical properties of the augmented model shall
depend on k and thus differ from the statistical properties of the initial model
given in Theorem 1. Actually we have the following LAMN property for the
augmented model in that case.
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Theorem 6. If a sequence k, = k is fizved, then the augmented model sat-
isfies the LAMN property with a conditional variance equal to:

E+1\ [ /a\?
Tog =2 = =) (X, .
() [ () e

Proof. The proof is essentially the same as that of Theorem 2, the difference
in the asymptotic information comes from the difference in the limit of the
quantities (36)—(38) when k is fixed. O

As expected, the conditional information is greater by the a factor (k +
1)/k, due to the non negligibility of the added observation. Actually this
factor should be read as 1 + %, meaning that an addition of %% of datas
increases the information in the same way. Local means and values at discrete
points are not redundant (as expected from the multiplicative Brownian case,
see Example 1) and moreover, they bring an equal information. Considering
k = 1 is interesting, since we observe then on each block [i/n, (i + 1)/n]
both the exact value X: and a mean X,. It appears that the asymptotic
information is then twice the information given by the observation of only
the exact values (or only the means).

4 LAMN property for the initial model

In this Section we are back to the model where the observation is only O" =
(X)j=o0,...n—1 and we will prove Theorem 1 by relying on the LAMN property
for the augmented model.

A first intermediate result is that on can approximate the log-likelihood
of the augmented model by a function of the observation O".

Proposition 3. There exist 'y, random variables measurable with respect to
O™ such that:
n,aug , n—00
ln(290,90+unh(0n aug)) —Tn PY 0

Proof. We have seen in Section 3 that In(Zy"p®s . (O™*"8)) = hNy"® +
1/2h2I5"® 4 ops, (1) where the quantities Ny"® and I;"® were defined in Sec-
tion 3.1.

Thus the proof of the proposition consists in introducing a proper mod-
ification of these quantities which only depends on the observations. We let

forl =0,...,k,

d ~N —_ ~N A_
m(0) = - (Xki-1,00) q @ *Xu1,0) Y, UK Uy —(k=1) ¢,
1<),/ <k—1
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with the convention X _; = & is the known initial value of the diffusion and
the matrix a (xo, 0)K is the covariance matrix of the conditionally Gaussian
vector (UY, U )):
v1+vy ¢ 0 0

c 0

0 c

0 0 c v+ vy
Clearly, ObS(H) only depends on the observation O™ since we have sup-
pressed all occurrences of the variables Uo, and Uy, and replaced X by
Xji—1 from the expression of &, (0) (compare with (31)). Then we let

o

NS = 1y, S £0%5(09) and 19 = u2 SoEry 252 (g,
e Study of N;3"® — N2bS. The first step is to consider the conditionally re-
centered chi square approximation of £°bs( ) that we define as:

20 = L(Xu 00) S a2 (Xu0) Y DR A0 (k-1 (39)

1<5,j'<k—1

The first step is to prove the validity of the approximation:
obs Fobs PP
n Z{é — & (60)} — 0. (40)

This is done similarly to the proof of Ni"® — u, Zleno El,n(eo) — 0 in propo-
sition 2, by considering the first two conditional moments, but here the first
moment is more delicate to handle: the conditional moment Ep | Obs(eo)

§0%(60) | F']is of the form (k— D{g(X i) =g (Xp1-1)}(Xja—1)+0(c(kn) /n)
for g and h two C? functions. If we abruptly use the relation HXkl — X1 HL
D

¢(p)n~1/2 then we only deduce that u, S 1" - Ea, [f"bs( ) — §°bs( 0) | F*] re-
mains bounded in probability. To show that it actually converges to zero,
we have to apply again Lemma 2 to the new triangular array of variables,
U, Zfﬁo(k— 1){g(sz )—g(X1i—1)}h(Xki—1). Then by rather long computa-
tions, using that HXkl 11— X QHLP < ¢(p)(k/n)Y/? and ‘E@O[Xﬁ — X1 | ]—"ln_l]’ <

~! by the centering property we can prove,

IN

n

Y (k= 1) B [{9(Xax) = 9(Kua-0) I (Kri-) | Fil| < clhyn™/2 20

1=0
Ly ”
w3 (k= 1)?Egy{g(X 1) = 9(Xp-1) Ph(Xii1)? | Fy) < elbn ™ == 0
=0
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Thus we deduce u, 317 Eg,| Obs(eo) Obs( o) | F' — 0. The second
condition u2 Y, OEQO[( 0bs(ﬁo) Obs(eo))2 | F'] < e(k)n™ — 0 is easily
obtained and we deduce (40)

Thus, in view of the equation (37), it remains to prove that u,, Z {§°bs( o)—
5,,”(90)} is negligible. But by Lemma 11 in the Appendix, comparing expres-
sions (35) and (39), it appears that conditionally to F;* the random variable

£°bs(60) - 5,n(00) is a recentered y2(2) variable and hence the following
properties hold:

Ln ~ ~
w}jﬂh@%ww—&M%HJT)=Q

2ZE90 <{ obs )—é,n(eo } ) Zu 4 sz 0y) < ki — 0.

These two properties imply by Lemma 2 the convergence to 0 under P% of
~ ~ 6

wn X217 {E05%(60) — En(B0) }, and thus Ni" — Ngb> 22 0.

e Study of I5"® — I°". Exactly as we proved that I5"® tends to —Zy, we can

show that I9” — —Tj,. Thus the difference is negligible.
Finally the proposition is obtained by setting I',, = hN°PS+h2 /219 O

Then the Theorem 1 is a consequence of the following proposition com-
bined with Proposition 3 and Theorem 2.

Proposition 4. We have the convergence,

I 220

zy —e
00,00 +unh P90

Proof. The starting point is the relation between the likelihood of the ini-

n,aug
tial and of the augmented model: Zgo bo+unh = Eoo [Z%ﬁﬁunh | O"] By
Proposition 3 we can write Zg ael;gjru , = elme where ¢, tends to zero in

Py, probability. Using that I';, is O™ measurable we deduce,
Zg()790+unh — el = Ep, [eF"(eE" —-1)] (’)"} .

eln| <

We now use the inequality |e* — 1| < (Ju|Al)(e¥+1) to obtain that )Zglo Botunh <

an + B, with:
an = Eg, [(len| A1)e'™ | O"] = Egy [|len| A1| O] "
B = Eu, [(Jeal A D)5 | 0] = Ep, [(leal ADZE,, 107

It now remains to show the convergence to zero of «,, and j3,.
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For a,, let us notice that (e'"),, is a tight sequence and that Ep, [le,| A 1 | O™
converges in L(PPg,) norm to zero since,

n—oo

Egy [Eoy [len| A1 O"]] = Egy[len| A1) — 0.

For f3,,, we have Ey,[3,] = Egy+u,nllen| A 1]. But the sequence of proba-
bilities Py, and Pp, 44,5 restricted to the sigma fields O™*"& are contiguous
(this is a consequence of the LAMN property for the augmented model,
see for e.g. Proposition 1 in Jeganathan [15]); hence the sequence (g,),
which is measurable with respect to O™*'8 and converges to zero in Pg,—
probability converges also in Py, n,—probability. This implies Ey,[3,] =
E90+unh[|5n| A 1] — 0. O

5 Appendix

5.1 Proof of results of Section 2.1

Since the results of Section 2.1 concern only the study of a density for fixed
values of 6, we omit the dependence upon 6 in our notations. We will prove
the results in the following order. First in section 5.1.1, we show that the law

of the Wiener functional (U™, V") = (fol Xdu(s), X{‘) admits a density.
Then we prove the lower and upper bounds given in Theorem 3 (section
5.1.2) and eventually we deduce the Proposition 1 (section 5.1.3).

5.1.1 Existence of the density p},

We know [21] that under (R) the random variable A} is an element of D3
and its first derivative is equal to

DX = 11 g Vi (V) an (X)), (41)
where V" is the solution of
dVf' = apn (XYW + b, (X) Y dE, Vg = 1. (42)
In the sequel we will repeatedly use the positivity of Y™ and the control

E(sup (V{")P) + E(sup (V[')?) < c(p). (43)
te(0,1] te(0,1]

From this we can see that the random variables U™ and V"™ are elements of
D3 and using (41) with the linearity of the operator D, we have

1
DU = /0 1 g VPO an (X)dp(s) = an(X) (V) Lpeny /[ | Yians)
D" = an(th)y{Z(y?)_ll{tgl}o
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Using Theorem 2.1.2 p. 86 in [21], a sufficient condition for the existence of
a density for (U™, V™) is that its Malliavin covariance matrix vyyn yn» satisfy
a degeneracy condition given, for instance, by the following lemma.

Lemma 3. yyn» y» 45 a a.s invertible matriz and for all p > 1, we have

E (|det(yun,y»)|P) < e(p).

Proof. To have shorter notations, during the proof we will denote by ¢, any
generic positive random variable which satisfies E(ci”) < ¢(p) with ¢(p) as
in the statement of the lemma. By direct computations we have,

1 2
<U",U">H=/O ai(Xt")(W)_2( - ygdu(5)> dt, (44)

1
W%szﬁa%WW%Q(AfW@@>&WA (45)

1
Vv = [ e op . (46)
Now, define the probability density on [0, 1]
1 —1
wzmwwwﬂémwww%), (47
and put f™( f[tl Vdu(s). Thus we can write:

)= 0002 [ [t ([P o)

Hence the above bracket can be interpreted as the variance of the function
f™(t) under the probability measure m}'d¢t and hence:

dmwww=W%W%wn%[mﬂﬂm—([mwwmﬁra

But clearly under Assumption (R), (V", V”)2 > a?infye0,1)(Vf) 2 infrepo 1y (VF)?
and hence by (43) this yields, (V™ V™3 > c,, using our convention about
generic positive random variables c,. Similarly, by (47), we have m} > c,

and thus,
1 1 2
det(yyn,yn) > C*/o [f"(t) — (/0 m?f”(r)dr)} dt

Then, writing the integral above as

[ (o) e (frron)
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and using the simple ineq121ality 22+ y% > (x —y)?/2, we get: det(yyn yn) >
Cx 01/2 (f[t ) yngs)) dt. Using again inf,cp 1) Vs > ci, we obtain:
LR

det(yyn,yn) > c. 01/2 1 ([t,t +1/2))* dt. But this integral is positive as soon
as 1 ((0,1)) > 0 which is the case by assumption (3). Thus the lemma is
proved. ]

5.1.2 Bounds for the density

For the proof of (9), we make a crucial use of the fact that the diffusion
process X" is one dimensional by introducing the classical transformation:

i) 1= /0 Caly)dy, WP = sa(AD).

By the assumptions on a, the function s, is one to one on R and the
derivatives of of s, and s, ! are bounded independently of n. By Ito’s for-
mula, W" solves the equation dW}* = dW; + b,(W)dt where b, (w) :=
bu o 57 (w) — Lal, o sy (w) and the initial value is Wi = s, (AJ") = 0. We

an

let P be the probability defined on (€2, 4) by

dP L 1ty
1p = &P (—/0 bn(Wu)qu—2/0 bn(Wu)du>.

The Girsanov theorem implies that the process W" is under P a standard
Brownian motion. Note that the random variables (U", V") have the follow-
ing expressions with respect to this P-Brownian motion:

1
on = [ st ovndn(. (45)
0
V= st OWp). (49)
Now let hg and h; be non negative real functions, then:

Ep[ho(U")hi (V)] = Ep [ho(U™)ha (V) L], (50)

where L™ = exp (fol b, (W) dWr — 1 01 Ez(Wﬁ)dr) But using Itd’s for-
mula, L" = exp (BH(W?) -1 01(13721 + 5%)(Wﬁ)d7“> where B, is the primi-
tive function of b, vanishing at zero. Since b, and B;L are clearly bounded
by en~1/? for some constant ¢ only depending on a and b and ‘f)’n(az)‘ <
en~ Y2 |z| we have: ¢ exp (—cn_1/2 IWp|) < L™ < cexp (cn_1/2 Wi). By
(49) and the boundedness of s/, we deduce ¢ !exp (—cn /2 |V7|) < L™ <
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cexp (cn_l/2 |V™]). From this and (50), we obtain:
1
< Ep B (Ve V]
1o
< Ep [ho(U")hs (V)] < B [how")hl(vn)em v

Hence we have transformed the problem of finding bounds for the density
of the law of (U™, V™) under P into an analogous problem under P. Conse-
quently the bounds for p7 stated in (9) will follow from the next lemma.

Lemma 4. Let hg, h1 be two non negative functions. There exist some
constants c1 > ca > 0, depending only on the coefficients a and b such that:

' / / ho(w)hy (v)e= @) dudy <
Ep [ho(UMh (V)] < ;' //ho(u)hl(v)eCQ(“2+U2)dudv.

Proof. We first show the lower bound. Using that the random variable V"
is measurable with respect to Wj* (by (49)), we can write:

Ep[ho(UM ) (V™)) = Ep [ (V™) Ep [ho(U™) | WY
_ /g(w)h1 (7 (w)) Ep [ho(U™) | WI = w]dw, (51)

where g is the density of the standard Gaussian law. Now let us admit
temporarily the following relation on the conditional law of U™:

Ep [ho(U™) | WP > ¢ lemeV)? / ho(u)e—"*du. (52)
Then Eg [ho(U™)h1(V"™)] is greater than:
c_lfho(u)e_deu X /g(w)h1 (spt(w)) e’ duw.

The change of variable v = s !(w) in the second integral above, the inequal-
ities |w| < ¢|v| and s}, (v) > ¢ give the new lower bound

= / ho(u)e=" du x / 8 (5n(0)) b1 () e dv,

with a new constant c. Since g is the Gaussian kernel and thanks to the in-

equality |s,(v)| < c¢|v|, we deduce the required lower bound for Ez [ho(U™)hy (V")].

We obtain the upper bound quite similarly. Let us temporarily admit
that for all € small enough there exists ¢(e) such that:

Ep [ho(U™) | W} < c(e) ' esOM)? / ho(u)e O du, (53)
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Plugging this in equation (51), we deduce that Ez [ho(U™) | W}] is smaller
than

2

c(s)lfho(u)ec(s)uzdu X /g(w)esw hy (sp(w)) dw.

Since g(w) = exp(—w?/2)/+/2m, any choice of € smaller than 1/4 implies that

the second integral in the equation above is bounded by ¢ [ e‘i“ﬂhl (s;l (w)) dw.
As for the lower bound, we conclude by the change of variable v = s !(w).
The final step is to show that (52)—(53) really holds. This is done in the

following lemma. O

Lemma 5. For some constant ¢ > 0 and € > 0, we have
B [ho(U™) | Wi > ¢ leme0%)? / ho(uw)e—" du. (54)
For all € €)0,2(, there exists c(e) > 0 such that,
Ep [ho(U™) | WP < ¢(e) sV / ho(w)e % du. (55)

Proof. Let us recall that the process Wy := W' —tW/' is a Brownian bridge
on [0,1], independent of the variable W}'. Thus, we can evaluate the condi-
tional expectation Ep [ho(U™) | Wi = w] as the expectation (recall (48)),

Bl ([ satow +maun) . (56)

for W* some Brownian bridge. This Brownian bridge itself admits a decom-
position
Wi = &ne + W, (57)

where & is a N(0,1) variable and 7 is the deterministic triangle shaped

function:
e if + € [0,1/2]
TTYa-b ifteqy2)’

and W** is the process on [0, 1] constructed as the concatenation of two inde-

pendent Brownian bridges, one on [0,1/2] and another on [1/2,1]. Further-

more in this decomposition the r.v. 7 and the process W** are independent.
For any realization of W** we can introduce the real function,

1
T = gy (1) = / {s,:l (xme + W + tw)} du(t).
0
Using (57) and the independence of £ and W**| the quantity (56) now writes,

By Eey [ho(gwe=(€))] (58)
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where the inner expectation denotes the expectation with respect to the
random variable £ and the outer one with respect to the process W**.

First we evaluate the inner expectation. Using that & is a standard
Gaussian variable we have

Eie) [holgw--(6))] = (2m)~1/2 / holgwe (@)eFde. (59)

Note now that for any realization of W**, the function x +— gy« () is
differentiable and using that % < (s;1) < cwe get

1 1 1
C/o mdu(t) < gy (z) < C/o nedpu(t).

By assumption (3) on the measure p the integral fol nedpu(t) is positive. Thus
the function x +— gyy=«(z) is invertible on R, with a derivative bounded from
above and from below by some constant independent of W** and n. This
allows us to make a change of variable in (59) to obtain the bounds

(o @)’ (o @)
¢! /ho(u)e 2 du < Egy [ho(gw=(€))] < c/ho(u)e z du.
(60)
Now the proofs of (54) and (55) are treated separately.

e For the lower bound, we have seen that g;\}** is globally Lipschitz with
a constant independent of W** and thus |gyy..(u)| < cul + gy (0)] <
clul + ¢|gw==(0)|. In addition, a simple computation from the definition of

g+ and the boundedness of (s, ')’ shows that
lgw=(0)] < cflw| + sup [W|]. (61)

te(0,1]

Using this in (60) we find a new lower bound for the inner expectation:
E [ho (g (£))] > o lo—ew? g—esupiepo 1y (W/)? /ho(u)echdu.

Taking the expectation with respect to W** proves that (58) is greater
¢ E gy <e*CSuptE[0’1](Wt**)2> x e’ fho(u)e_CUQdu. This gives (54).

e For the upper bound, we write using that gyy«« is Lipschitz ||u| — [gw==(0)|| <
|9W** (G (1)) — Gyys (0)} <c ’g;‘}** (u)’ Together with the relation (z —
y)? > 15 —ey® (for z,y € R, e € (0,1)), we deduce that exp (=3 (g0 ())?)
is upper bounded by

eu? e(gw=(0))? eu? 2 2
o < e Hk
xp ( 2¢2(1+¢) + 2c2 ) =P 2c2(1+4¢) tewn gtzl[g)l](wt )

where we have used (61). Combining this with (60) and taking the expec-
tation with respect to W**, we get that the quantity (58) is smaller than:

2
__gu” 2 Hk) 2 . . .
¢ [ ho(u)e 20+ =" Eyyur (€7 suPrefo,1] (W)™ ) | The last expectation is finite

as soon as ¢ is small enough, and thus (55) holds. O
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5.1.3 Proof of Proposition 1

To have shorter notations we set ?? = fol AL du(t), for j > 0. First we
prove:

Lemma 6. Let us define T'* the Malliavin covariance matriz of the vector
5N .
((;\fj,xggl))j:o  of size 2k,

EARAE)

Then this matriz is a.s invertible and E(det(T'*)™P) < ¢(p, k).

Proof. In the case k = 1, the lemma reduces to Lemma 3. For k£ > 2, we can
proceed by induction on k using, indeed, that the Markov property of the
process X" induces actually in specific relations between the columns of T'*,

To see this, notice that firstly by (41) if ¢t < Kk — 1 and s > k — 1,
we have D;X" = Dy XD V(Y )~ and secondly if t > k — 1 and s <
k—1, D:X? = 0. Using these two properties, a calculation shows that if
(C})j=1,..2r denote the columns of I'*. we have the relation,

1
[Cok—1; Cox] = [(/ yﬁHs(yﬁl)_ldM(S)) Cop—o; Vi (Vi1)  Cop_s
0
00
o
00
(]
where 7 is the matrix of size 2 x 2 given by
k fkk_l(pt?};_ﬁmzt fk’f_l(lgtﬁcg)(Dt?Z_l)dt '
Sy (D) (D Xy )dt Sy (DeX)?dt

This proves that detI'* = detI'*"!'det~,. By the induction relation, it
remains to prove E((detyx)™P) < ¢(p). But direct computation using (41)
shows that the component of 4 have the following expression:

i 2
(Yr)11 = /k_l an (X2 (V)72 (/[t ’ ngsd,u(s)) de,

k
(V)12 = (W)21 = /k_l an(X)2 (V)7 (/[t ; yﬁusd/ﬁ(s)) dty,

k
() = /k an (X2 (V) 2012,

-1

These expressions are similar to the ones obtained for vyn y» in lemma 3
(see (44)-(46)) and similarly, one gets F((detv;) ?) < ¢(p). The lemma is
proved. O
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Now we can deduce the Proposition 1. Recalling (10-13) we can find a

invertible matrix M of size 2k x 2k that maps ((?;L, X]T‘H)) o e into a
=0, k—

vector whose k + 1 first components are exactly (Ug,...,U}’). Denoting rk

S )

the Malliavin covariance matrix of the image by M of <(??, X;ﬂrl)> o et
J=V;...,k—=

we have I'" = MT*M*. Thus, Lemma 6 yields E((det(I'*))?) < ¢(p, k)
since M is invertible.

Observe that the covariance matrix K is the matrix extracted from the
k + 1 first rows and columns of I'*. Hence, one has

det(T'%)

L . PRy s detl )
[det(K)] > /\mln(K> > )‘mm(r ) = [Tr(fk)]Qk—l

(where A\pin(A) is the smallest eigenvalue of the symmetric positive matrix
A). This implies Proposition 1 since E([Tr(I'*)]P) < ¢(p, k) for all p, k > 1.

5.2 Some estimates on the change of measures

For this section we denote by X' the canonical process on C([0,00)) and we
consider the random variable on this space defined by H = f(Uy,...,Uy),
where (Uy,...,Ux) is given by (10)—(13) with the canonical process X in
place of X%™: we denote by Eg? 2, the expectation with respect to the measure

induced on the canonical space by the law of X%" solution of (6).

Lemma 7. There exist 1 > 1 and a constant c¢(k) > 0, such that VH =
f(Uo,...,Ux) >0,V0,6 € O, Vg € R, we have

S =

By oo [H] < (k) Eg 4 [H']7

Proof. Recalling the notation of Section 2.1.1 we denote p (u, v, 0) the den-
sity of the vector (8) and for j =0,...,k — 1 we let

P, (fgl(Xj+s — &j)du(s), (Xj+1 — &), 9')
PR, (fol(Xj+s = Xj)du(s), (X1 — &), 9) |

Then using the Markov property of the process X under the laws Pj' and
Py, we have

Zj,979/ = (62)

~|

k-1 r

k—1
1 ’
Eg’,mo [H] = Eg,xo H H Zjﬁﬂ' < Eg,mo [HT] rEg,mo H(Zj,eﬂ/)r ’
=0 j=0

where r and r’ are conjugate exponents. But we know by Theorem 3 that
there exist two constants 0 < co < ¢1 (uniform en 6, zg,n) such that

-1 — 2 2 1 _ 2 2
cle (W) < pr (u,0,0) < cy'le ea(u+v7)
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Then one can bound the conditional expectation Eg’xo[(Zk_l,gﬁ/)’", | Xs, s <
(k—1)] by
(r'=1)
| . / €(u2+v2)(_T/02+(T/_1)Cl)dudv.
R2

-
Cy

But if 7 is chosen large enough such that 7’ is sufficiently close to 1 the latter
integral converges and is equal to some constant «. Proceeding by induction
we get:

1 1
k—1 v’ k—2 r’ .
/ / 1 /
Ep vy |I1Zi00)" | < Eiay | 1](Zivo)™ | w77 <o <7
j=0 7=0
which gives the result. O

Lemma 8. There ezist c¢(k) > 0 and o > 1 such that VH = f(Uy,...,Us)
(with By, |H|* < +00), ¥0,0" € ©, Vo € R, we have

|Efy oo [H) — Epo [H]| < (k) |0 0| [}, [ H|)=. (63)

Proof. Using the notations of Lemma 7, we write

Eg/,xo [H] - EgL,J,‘() [H] = Eg,m() H 7,0,0" — 1

T
L

Eg vy | (Zigo — H 0.0 H
Jj=i+1

Il
=)

7

Thus for conjugate exponents a and 3, the left hand side of (63) is bounded
by

_ 1
k—1 ) 5 k—1 B
[E§ oo [HIY) ™ Ef o || Zigor — 1 H (Zjo0)°
i=0 i j=it1
k-1 ) i 5 k-1
= [Egil‘o |H|a] * Eg,xo ‘Ziﬁﬂ’ - 1} Eg,ﬂﬁo H (Zjﬂﬁ’)ﬂ | Xs,s <i+1
i=0 i j=it1

Using the Markov property of X’ it can be shown exactly as in Lemma 7 that
the conditional expectation in the equation above is finite, as soon as 3 is

small enough and bounded by x*~*~1. Thus by Lemma 9 below we deduce
1

o [F1) = B 1| < €(9)10 = 01 [y 7] SEGHT 0
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Lemma 9. There exists 3 > 1 such that for all 1 < 8 < 3 we have:
1
EgLnTO |:|Zi’9’0/ B 1‘ﬁ:| ’ S C(ﬁ) ‘9 - 9,| '

Proof. Using expression of Z; g ¢, equation (8) with the Markov property it
suffices to bound the quantity

E” o

Zo,

Py, (U™ V",0) — v, (U™, V", 0) ’B] ’ (64

pr, (U™, V7, 0)

By Theorem 4 with k£ = 1 the function § — p,, (U™, V", 0) is absolutely con-

ﬂ]é
Using first the Minkowski inequality, a change of measure and then the
Holder inequality one find the following bounds for this quantity:

6/
0

9/
< E:L‘o ,S
0

7 UV s)ds
pz, (U™ V"™,0)

tinuous thus we can write the quantity above as: £ ,

1
B

pz, (U™, V",s) ds

pr, (U™, V", 0)

&) pgo U, ve,e)
pi, (U™ V7, s)

o’ Fo?
Exo,s

for two conjugate exponents o’ and 3’. But the first expectation in the right
hand side above is bounded by Corollary 2 (with & = 1) for all choice of o/,
(3 and the second expectation can be bounded if (8 — 1) is close enough to
zero by using (9) as in the proof of Lemma 7. This gives that (64) is smaller
than c|6 — 6’| O

Pz, (U™ V", s)
pi, (U™, V7,s)

ph, (U™, V", s)

4 ds
p, (U™, V", 0)

(6—1)6’] 57

5.3 Technical lemmas

Lemma 10. The covariance matriz of (ﬁg,...,ﬁg} is a®(x0,0)K. This
matriz 1s invertible.

Proof. The first statement is easily checked from the expressions (18)— (20).
Then we see that (Ao, ..., ) is element of the null space of K (zg,0) if the
variance of ), A\ U? is null which gives, for all j =0,...,k — 1:

1
[ Dol )+ Ao s as =

But from the assumption (3) on pu, the condition, au([0, s]) + Bu([s,1]) =0
ds—a.e on [0, 1], implies that & = # = 0 and hence we deduce \; = 0,Vj. O
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Lemma 11. Let (Go,...,Gg) be a centered Gaussian vector with invertible

covariance matrix Cyy1 and let us denote by Cy_1 the covariance matriz of
(Gl, ce 7Gk‘—1)' Then,

Y GGkl G — Y GGGy, (65)

0<5,5'<k 1<5,9'<k—-1
is a x%(2) random variable.

Proof. Write the Gram-Schmidt orthonormalization procedure for the L?2
vectors G, ..., Gg, Gg as:

Ho Go
=Pt |
Hi Gy
where the variables Hy, ..., Hy are i.i.d. with standard Gaussian law and Py

is some triangular matrix. Then a few linear algebra shows that (65) is equal
to Z?:o HJQ- — Zf;ll HJQ- = HZ + H; and thus is chi-square distributed. O
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