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Abstract

In this paper we prove the Local Asymptotic Mixed Normality
(LAMN) property for the statistical model given by the observation of
local means of a di�usion process X. Our data are given by

∫ 1

0
X s+i

n
dµ(s)

for i = 0, . . . , n−1 and the unknown parameter appears in the di�usion
coe�cient of the process X only. Although the data are nor Markovian
neither Gaussian we can write down, with help of Malliavin calculus,
an explicit expression for the log-likelihood of the model, and then
study the asymptotic expansion. We actually �nd that the asymp-
totic information of this model is the same one as for a usual discrete
sampling of X.

KEYWORDS: Di�usion processes, parametric estimation, LAMN property,
Malliavin calculus, non-Markovian data
AMS 2000 SUBJECT CLASSIFICATION: 60Fxx; 60Hxx; 62Fxx; 62Mxx

1 Statement of the problem and main results

1.1 Introduction

Let us consider the family of strong solutions, Xθ, of the stochastic di�eren-
tial equation,

dXθ
t = a(Xθ

t , θ)dBt + b(Xθ
t )dt, (1)

Xθ
0 = ξ0, (2)

where (Bt)t≥0 is a one dimensional standard Brownian motion on some prob-
ability space (Ω,A, P ), and where the initial value ξ0 is some real constant.
Suitable regularity assumptions on the coe�cients b and a will be stated
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later (see assumption (R)). The unknown parameter θ is assume to lie on
some compact interval Θ of R and for simplicity we have assumed that the
initial value ξ0 does not depend on θ and thus is known to the statistician.

Now, let µ be some probability measure on [0, 1], and we assume that
our observation of the process is given by the local means of X associated
with this measure, with sampling of size 1/n:

(observations) Xj = Xj,n :=
∫ 1

0
X s+j

n
dµ(s), for j = 0, . . . , n− 1.

We also assume that µ does not depend on θ and is known by the statistician.
Clearly, the usual case of pointwise observation of X is obtained if µ is

some Dirac measure. However we will exclude that the measure has mass
only on the end points of the interval and hence make the assumption:

µ((0, 1)) > 0. (3)

This paper is concerned with the Local Asymptotic Mixed Normality prop-
erty of this statistical model.

Motivations. Taking as the observation the integrated process instead
of the process itself is actually quite natural. For instance, it arises when
the realization of the process has been observed after passage through an
electronic �lter. Also, in random mechanics (see Krée and Soize [18]), X
models the velocity of the system and in general, we observe its position,
i.e. the integral of X. The modeling of ice-core data can be made through
an integrated di�usion process (see Ditlevsen, Ditlevsen and Andersen [2]).
Integrated processes also play an important role in �nance, when modelling
the stochastic volatility (see for instance Barndor�-Nielsen and Shepard [1]
and references therein).

Literature background. Despite of these numerous motivations, a
few statistical studies deal with this situation. The inherent di�culty of
this situation is that the observation is no longer a Markov process, which
eliminates many statistical and probabilistic tools. Gloter [6] [7] provides an
estimator in the multiplicative case a(x, θ) = θa(x) and proves its consistency
and asymptotic normality in the high frequency case ti = i/n. The case of
low frequency (say ti+1 − ti = 1) is studied by Ditlevsen and Sørensen [3],
using prediction-based estimating functions. For a direct observation of the
di�usion, see Genon-Catalot and Jacod [5], Prakasa-Rao [23] and references
therein.

Here, we directly address the problem of the LAMN property, which fun-
damental consequence is to provide information on the minimal dispersion
for an estimator of the parameter θ (see Ibragimov and Has'minskii [13],
Jeganathan [15] [16], Prakasa-Rao [23], Le Cam and Lo Yang [20]). Such
properties in the di�usion case have been established in the one-dimensional
setting by Dohnal [4], and then extended by the Gobet [9] [10] to the multi-
dimensional setting, both in the high frequency and ergodic framework. For
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this, Malliavin calculus techniques were used and paved the way to possibly
handle more general situations than Markovian observations. This is exactly
this way we follow in this work, to tackle the case of integrated di�usion.

1.2 Main results

Before going into the details of our results, we present a very simple example
which gives an intuition on the type of results that one can expect.

Example 1 (Multiplicative Brownian case). Assume that the model is

Xθ
t = θBt

(corresponding to b ≡ 0 and a(·, θ) = θ, ξ0 = 0).

1. Consider a �rst situation where one observes the di�usion at discrete
times. Hence, the observation is (Xti)1≤i≤n, or equivalently (Zi =
θ(Bti −Bti−1) = θGi)1≤i≤n, where Gi are independent centered Gaus-
sian variables, with a known variance. Thus, the estimation of θ2 is
achieved at rate

√
n, with a minimal variance equal to 2θ4.

2. Now consider a second situation where one observes only the inte-
grated di�usion at discrete times. Hence, the observation is (X̄i =
θ
∫ 1
0 B (s+i)

n

µ(ds) = θG′
i)1≤i≤n, where (G′

i)i is a centered Gaussian vec-

tor, with a known covariance matrix. In addition, this matrix is invert-
ible and thus, θ2 can be estimated in the same conditions than before.

This means that observing the process at discrete times or its integrated ver-
sion is equivalent for the inference problem. The results of this paper state
that this is true, even for the more general models (1-2), which is far to be
intuitive.

Before stating our main results, we de�ne the working assumptions of
this paper. The coe�cients a : R × Θ → R and b : R → R, are assumed
to satisfy the following set of conditions (as usual, derivatives w.r.t. θ are
denoted with a dot: for instance, ∂θa = ȧ).
Assumption (R)

1) The function a is C1+γ for some γ ∈ (0, 1) and the functions x 7→
a(x, θ), x 7→ ȧ(x, θ), x 7→ b(x) are assumed to be C3(R).

2) The functions a, ȧ and b and all their derivatives with respect to x are
bounded uniformly in θ.

3) We have the non degeneracy condition, for some a: a(x, θ) > a > 0 for
all x, θ.
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Actually, the uniform controls in (R) can be weakened to local ones, using
extra techniques of space localization (see Lemma 4.1 in [9]). We omit further
details. An extension of our results to a multidimensional parameter θ and
to time dependent coe�cients is straightforward, in the same way that it is
done in [9] and [10].

We denote by Pθ the law on C([0, 1]) of the process Xθ, and then simply
denote X the canonical process on C([0, 1]). We let pn,θ denote the law
on Rn of the observation On := (Xj)j=0,...,n−1, when the true value of the
parameter is θ. And for θ0, θ1 two values of the parameter we introduce the
likelihood ratio,

Zn
θ0,θ1

=
dpn,θ1

dpn,θ0
(On). (4)

The main result, is that this statistical model satisfy the so called LAMN
property. For this denote the sequence un := n−1/2, and let θ0 ∈ Θ and
h ∈ R such that θ0 + unh ∈ Θ, ∀n. Then, by the following theorem, the
model has the LAMN property for the likelihood at point θ0, with rate un

and conditional information:

Iθ0 = 2
∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds.

Theorem 1. Assume (R), then we have the expansion,

log Zn
θ0,θ0+unh = hNn + 1/2h2In + Rn,

where In
Pθ0−−−→

n→∞
−Iθ0 , Rn

Pθ0−−−→
n→∞

0 and there exists an extra random variable

N ∼ N (0, 1) independent of Iθ0 such that, Nn converges in law under Pθ0 to
N
√
Iθ0 .
Moreover this convergence is stable, which in particular implies the joint

convergence under Pθ0 :

(In, Nn) law−−−→
n→∞

(−Iθ0 , N
√
Iθ0).

Remark 1. Let us stress that the rate un = n−1/2 and the information Iθ0

are the same one as for the pointwise observation (see Genon�Catalot and
Jacod [5]). This corroborates the intuition from Example 1.

However, we will not be able to prove directly this result, but instead we
shall consider �rst the easier problem where one can observe additionally the
exact value of the di�usion at some sparse instants. This device was proved
to be useful in Gloter and Jacod [8] for the study of a Gaussian di�usion
process observed with noise that leads to non Markovian observations too.

Let k = kn be an integer in {1, . . . , n} and de�ne L = Ln := bn/kc, then
we consider the set of random variables:

On,aug = On ∪
{

X kl
n
, l = 1, . . . , L

}
∪ {X1} .
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Since this set of variables contains more data than the initial set, we call it
the augmented observation set. Clearly, we can split the set of augmented
observations into blocks, B0, . . . , BL, where for l = 0, . . . , L− 1

Bl =
{
Xkl, . . . , Xkl+k−1, Xk(l+1)/n

}
and BL =

{
XkL, . . . , Xn−1, X1

}
. Note that if kL = n we consider that the

last block is empty, and (immediate) modi�cations should take care of this
in the sequel, however to have shorter notations we will not explicitly write
these modi�cations.

The advantage of this set of augmented observation is that using the
Markov property of X, the law the block Bl conditional to the previous
blocks (Bl′)l′<l only depends on the last variable, X kl

n
, of the block Bl−1.

Denote by pn,aug,θ the law of On,aug on Rn+L+1 and introduce the like-
lihood ratio for the augmented observation:

Zn,aug
θ0,θ1

=
dpn,aug,θ1

dpn,aug,θ0
(On,aug). (5)

Theorem 2. There exists a sequence kn → ∞, such that the augmented
model satis�es the LAMN property:

log Zn,aug
θ0,θ0+unh = hNaug

n + 1/2h2Iaugn + Raug
n ,

where Iaugn
Pθ0−−−→

n→∞
−Iθ0 , Raug

n
Pθ0−−−→

n→∞
0 and there exists an extra random

variable N ∼ N (0, 1) independent of Iθ0 such that, Naug
n converges in law

under Pθ0 to N
√
Iθ0 .

Moreover this convergence is stable, which implies in particular the joint
convergence under Pθ0 :

(Iaugn , Naug
n ) law−−−→

n→∞
(−Iθ0 , N

√
Iθ0).

Remark 2.
1) The fact that kn → ∞ means that the data added in the observation are
sparse compared to the initial data. Actually, the Theorem 2 holds for any
sequence kn which growth to ∞ is slow enough.
2) If one let the size of the block kn = k �xed as n →∞ then the augmented
model satisfy the LAMN property too but with an increased asymptotic in-
formation (see Section 3.3).

From Theorem 2 and from the consequences of the LAMN property, an
asymptotically optimal estimator θn in the augmented model should satisfy
that √n(θn − θ0) is asymptotically distributed under Pθ0 as 1√

Iθ0

N . How-
ever any estimator in the initial model of observation On can be seen as an
estimator in the augmented model, hence the Theorem 2 would be su�cient
by itself to imply a lower bound for estimation in the initial model.
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1.3 Outline of the paper

In Section 2 we study the score function given by the observation of only one
block of data (B0 for instance). We �rst focus on the existence of a density
for a block of data; and in the case of a block of size 2, (n1/2

∫ 1
0 (Xs/n −

X0)dµ(s), n1/2(X 1
n
−X0)) we give original lower and upper bounds of Gaus-

sian type for the density. It is useful for our proof of the LAMN property,
but it is also interesting for itself.

In Section 2.2 we present an exact expression for the score function of
a block of data B0 (see Theorem 4). This result is the key point in the
proof of the LAMN property, it extends a former result of Gobet [9] [10]
which gave the score function for the observation of Xθ

1
n

. In Section 2.3 we
study an explicit approximation for the score function when the sampling
interval 1/n tends to zero and the length of the block k/n remains moderate
so that one can consider the coe�cients of the di�usion X almost constant
on the interval [0, k/n]. The key point is the Gaussian approximation for the
di�usion given in Section 2.3.1.

In Section 3 we deduce from the previous results a proof of Theorem 2
and Section 4 deals on how to deduce Theorem 1 from Theorem 2.

Finally the Appendix contains the proof of some results of Section 2.1
together with some useful lemmas.

Notations. In our proofs, we will keep the same notation for constants
which may change from one line to another. In particular, the constants
c, c(k), c(p), c(p, k) will stand for all �nite, non-negative and non-decreasing
deterministic functions of an index p (arising from Lp-norm) and of the block
size k. These constants are independent on n, θ and depend on the process
Xθ, only through the bounds on the coe�cients a, b and their derivatives.

2 Score function for a block of data

In this section we shall study the law of the blocks of data Bl; recalling
the Markov property of the process X it is su�cient to focus on B0 ={
X0, . . . , Xk−1, Xk/n

}
assuming that the di�usion X now starts from some

value x0. In this section it is convenient to transform the short time asymp-
totic k/n → 0 into an almost stationarity property of the coe�cients. To
this end, we introduce the rescaled process X n,θ

t = n
1
2 (Xθ

t
n

− x0) (where Xθ

solves (1) with Xθ
0 = x0). It solves the equation

dX n,θ
t = an(X n,θ

t , θ)dWt + bn(X n,θ
t )dt, X n,θ

0 = 0, (6)
where W is a standard Brownian motion (arising from the rescaling of B),
and

an(x, θ) = a(x0 + n−1/2x, θ), bn(x) = n−1/2b(x0 + n−1/2x). (7)
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Since for the score we are only concerned with the law of X n,θ, we can assume
that W is independent of the rescaling coe�cient n.

2.1 The density of an integrated di�usion

In this section, we will present preliminary results on the density of the law
of the mean of a di�usion process. However the proofs are postponed to
Section 5.1. To our knowledge, the lower and upper bounds for this density
are new results.

2.1.1 Existence of the density

Our �rst result actually deals with the two dimensional variable given by
solely one local mean and the exact value:

(Un,θ, V n,θ) : =
(∫ 1

0
X n,θ

s dµ(s),X n,θ
1

)
(8)

law=
(

n1/2

∫ 1

0
(Xθ

s
n
− x0)dµ(s), n1/2(Xθ

1
n

− x0)
)

.

Notice that, by the Markov property, the preliminary study of this bi�
dimensional variable will be a key step to obtain results on the observation
vector On.

Theorem 3. Assume (R), then the vector (Un,θ, V n,θ) admits a density
pn

x0
(., ., θ) on R2, and there exist two constants c1 > c2 > 0, such that,

c−1
1 e−c1(u2+v2) ≤ pn

x0
(u, v, θ) ≤ c−1

2 e−c2(u2+v2). (9)

The constants c1 and c2 only depend on the bounds on the coe�cients a, b
and their derivatives.

The proof of this theorem is given in Section 5.1. The existence of the
density is obtained by means of the Malliavin calculus. On the other hand,
the upper and lower bounds rely on the direct study of (Un,θ, V n,θ) around its
skeleton (see Hirsh and Song [11] [12] for related works; and Kohatsu�Higa
[17] for di�erent methods involving Malliavin calculus).

The following is a direct corollary of Theorem 3:

Corollary 1. The vector B0 =
{
X0, . . . , Xk−1, Xk/n

}
admits a positive den-

sity.

Proof. The bi�dimensional process (X l, X l+1
n

)l=0,...,k−1 is a Markov chain
with transition density pxl

(xl, xl+1, θ) = npn
xl

(n
1
2 (xl+1−xl), n

1
2 (xl+1−xl), θ).

Then it is clear that the vector B0 admits a positive density.
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2.1.2 Invertibility of the Malliavin covariance matrix of a block

Actually the existence of a density for the law of the random variable B0 will
not be su�cient, and we need a non degeneracy condition for this variable.

Before this, let us precise brie�y a few notations from the Malliavin cal-
culus, used in the sequel (see Nualart [21] [22] for details). We let H be
the Hilbert space L2([0, 1]) so that the Brownian motion (Wt)t∈[0,1], ap-
pearing in (6), is canonically associated to this Hilbert space via the stan-
dard L2 isometry. In this setting, for any p ≥ 1 and natural number q,
recall that the set Dq,p denotes the space of real valued Wiener function-
als with q derivatives and whose derivatives belong to Lp(Ω). If we denote
by D the derivative operator then the space Dq,p is endowed with the norm,
‖F‖q,p =

[
E(|F |p) +

∑q
j=1 E(

∥∥DjF
∥∥p

L2([0,1]j)
)
] 1

p
. The space of variable with

q derivatives in any Lp(Ω) is denoted Dq,∞ = ∩p≥1Dq,p. These de�nitions
can be extended to random variables with values in any Hilbert space V and
the corresponding spaces are denoted Dq,p(V ), Dq,∞(V ) (see Section 1.5 in
Nualart [21]). In particular the operator D is then well de�ned from Dq,∞

to Dq−1,∞(H). Finally, the adjoint operator of D is the Skohorod integral δ,
and the Malliavin covariance matrix of an element F ∈ D1,∞(Rd) is de�ned
as the matrix γF1,··· ,Fd

= [〈D.Fi, D.Fj〉H ]1≤i,j≤d.
Now, we consider the variables,

Un,θ
0 :=

∫ 1

0
X n,θ

s dµ(s) (10)

Un,θ
1 :=

∫ 1

0
(X n,θ

s+1 −X n,θ
s )dµ(s) (11)

...

Un,θ
k−1 :=

∫ 1

0
(X n,θ

s+k−1 −X n,θ
s+k−2)dµ(s) (12)

Un,θ
k :=

∫ 1

0
(X n,θ

k −X n,θ
s+k−1)dµ(s). (13)

Note that the joint law of these k + 1 variables is, by rescaling, the same as
the law of the vector composed with variables of the �rst block B0: n

1
2 (Xθ

0−
x0, X

θ
1 − X

θ
0, . . . , X

θ
k−1 − X

θ
k−2, X

θ
k
n

− X
θ
k−1). These variables satisfy the

following non degeneracy property whose proof is postponed to Section 5.1.3.

Proposition 1. Under (R), (Un,θ
0 , . . . , Un,θ

k ) ∈ D3,∞. Denote by K(θ) the

Malliavin covariance matrix of (Un,θ
0 , . . . , Un,θ

k ). It is a.s. a invertible matrix
and for all p ≥ 1, we have

E
(
|det(K(θ))|−p) ≤ c(p, k).
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2.2 An exact expression using Malliavin calculus

In this Section we intend to give en exact expression for the score function
of the observation of B0 or equivalently for the vector (Un,θ

0 , . . . , Un,θ
k ) given

by (10)�(13).
Under the condition (R), we know that there exists a version of the solu-

tion of (6) such that P−almost surely the function θ → X θ
t is continuously

di�erentiable for all t and τn,θ
t := ∂Xn,θ

t
∂θ is solution of the stochastic equation

(see Kunita [19]):

dτn,θ
t =

∂an

∂x
(X n,θ

t , θ)τn,θ
t dWt +

∂an

∂θ
(X n,θ

t , θ)dWt +
∂bn

∂x
(X n,θ

t )τn,θ
t dt (14)

τn,θ
0 = 0.

The main result of this section is an explicit representation for the derivative
of the log-likelihood of one block. This extends a former result given by
Gobet (see [9] [10]).

Theorem 4. The random vector (Un,θ
0 , . . . , Un,θ

k ) admits a positive density
on Rk+1, denoted by px0(u0, . . . , uk, θ). For a.e. (u0, . . . , uk), this density
is an absolutely continuous function with respect to the parameter θ and we
have the formula:

ṗx0

px0

(u0, . . . , uk, θ) = E

δ

 ∑
0≤j,j′≤k

∂Un,θ
j

∂θ
K(θ)−1

j,j′D.Un,θ
j′

 | (Un,θ
j = uj)j=0,...,k

 ,

where K(θ)−1 is the inverse of the Malliavin covariance matrix of (Un,θ
0 , . . . , Un,θ

k ).

Proof. Denote Un,θ the Wiener functional, Un,θ = (Un,θ
0 , . . . , Un,θ

k ) and let
f : Rk+1 → R be a smooth function with compact support. Then the
function θ 7→ E

[
f(Un,θ)

]
can be di�erentiated pointwise and:

∂

∂θ
E
[
f(Un,θ)

]
= E

 k∑
j=0

∂f

∂uj
(Un,θ)

∂Un,θ
j

∂θ

 .

By Proposition 1 the Malliavin covariance matrix of Un,θ is invertible and a
standard computation on Wiener functionals (see formula (2.4) p.81 in Nu-
alart [21]) shows that: ∂f

∂uj
(Un,θ) =

∑k
j′=0

〈
D(f(Un,θ)), DUn,θ

j′

〉
H

K(θ)−1
j,j′ .

It follows that ∂
∂θE

[
f(Un,θ)

]
is equal to

E

 k∑
j=0

k∑
j′=0

〈
D(f(Un,θ)), DUn,θ

j′

〉
H

K(θ)−1
j,j′

∂Un,θ
j

∂θ

 = E
[〈

D(f(Un,θ)), Lθ
〉

H

]

9



where Lθ is the H-valued random variable:

Lθ :=
k∑

j=0

k∑
j′=0

∂Un,θ
j

∂θ
K(θ)−1

j,j′DUn,θ
j′ . (15)

Introducing the δ is the adjoint operator of D, we get

∂

∂θ
E
[
f(Un,θ)

]
= E

[
f(Un,θ)δ(Lθ)

]
. (16)

Let g be any smooth function with compact support on R. Using the inte-
gration by part formula and the equation (16) we have:∫

dθġ(θ)E(f(Un,θ)) = −
∫

dθg(θ)
∂

∂θ
E
[
f(Un,θ)

]
= −

∫
dθg(θ)E

[
f(Un,θ)δ(Lθ)

]
= −

∫
dθg(θ)E

[
f(Un,θ)E[δ(Lθ) | (Un,θ

0 , . . . , Un,θ
k )]

]
.

Introducing the density of the random vector Un,θ the equation above writes,∫
ġ(θ)dθ

∫
f(u0, . . . , uk)px0(u0, . . . , uk, θ)du0 . . . duk

= −
∫

g(θ)dθ

∫
f(u0, . . . , uk)E[δ(Lθ) | (Un,θ

l = ul)l]px0(u0, . . . , uk, θ)du0 . . . duk.

From Fubini's theorem this implies that for all smooth function g we have
du0 . . . duk-everywhere∫

ġ(θ)px0(u0, . . . , uk, θ)dθ

= −
∫

g(θ)E[δ(Lθ) | (Un,θ
l = ul)l]px0(u0, . . . , uk, θ)dθ. (17)

Considering a countable sequence of functions dense among smooth com-
pactly supported functions we may obtain that the equality above holds
actually for all smooth function g on the same set of full Lebesgue mea-
sure. Eventually, observe that (17) is su�cient to imply that the function
θ → px0(u0, . . . , uk, θ) is absolutely continuous and that

ṗx0(u0, . . . , uk, θ) = E[δ(Lθ) | (Un,θ
l = ul)l]px0(u0, . . . , uk, θ).

Hence the theorem is proved.

2.3 A Gaussian approximation for the log-likelihood

In this section we intend to give a tractable approximation for the score
function of (Un,θ

0 , . . . , Un,θ
k ).
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2.3.1 Approximation for the di�usion

We introduce X̃ θ
t = a(x0, θ)Wt and τ̃ θ

t = ȧ(x0, θ)Wt which stand -by (6) and
(14)- for the �rst order approximations of X n,θ

t and τn,θ
t = ∂Xn,θ

t
∂θ . Then, we

consider the quantities obtained by replacing in (10�13) the process X by
this Gaussian approximation:

Ũ θ
0 := a(x0, θ)

∫ 1

0
Wsdµ(s) = a(x0, θ)

∫ 1

0
µ([s, 1])dWs, (18)

Ũ θ
j := a(x0, θ)

∫ 1

0
(Wj+s −Wj−1+s)dµ(s), for j = 1, . . . , k − 1 (19)

= a(x0, θ)
∫ j

j−1
µ([0, s− (j − 1)])dWs + a(x0, θ)

∫ j+1

j
µ([s− j, 1])dWs,

Ũ θ
k := a(x0, θ)

∫ 1

0
(Wk −Wk−1+s)dµ(s), (20)

= a(x0, θ)
∫ k

k−1
µ([0, s− (k − 1)])dWs.

In the next lemma we control the di�erence between the Un,θ
j and their

approximation in terms of Sobolev norm.
Lemma 1. For all k, p > 1, there exist constants c(k, p), c(p) such that for
all j ∈ {0, . . . , k}:∥∥∥Un,θ

j − Ũ θ
j

∥∥∥
2,p

≤ c(k, p)n−1/2,
∥∥∥Ũ θ

j

∥∥∥
3,p

≤ c(p), (21)∥∥∥∥∥∂Un,θ
j

∂θ
−

∂Ũn,θ
j

∂θ

∥∥∥∥∥
2,p

≤ c(k, p)n−1/2,

∥∥∥∥∥∂Ũ θ
j

∂θ

∥∥∥∥∥
3,p

≤ c(p), (22)

∀ 0 ≤ j, j′ ≤ k,
∣∣∣E (Un,θ

j Un,θ
j′ − Ũ θ

j Ũ θ
j′

)∣∣∣ ≤ c(k)n−1. (23)

Proof. The inequalities on the right hand side of (21)�(22) are immediate
by the de�nition of Ũ θ

j .
Comparing expressions of (10�13) with (18�20), the two remaining bounds

in (21)�(22) will be a consequence of the Minkowski inequality - for the
Sobolev norm - and of the control on the di�usions:

sup
t≤k

∥∥∥X n,θ
t − X̃ θ

t

∥∥∥
2,p

+ sup
t≤k

∥∥∥τn,θ
t − τ̃ θ

t

∥∥∥
2,p

≤ n−1/2c(k, p).

We only prove the control on X n,θ since the proof for τn,θ is analogous.
Recalling (6)�(7), we can write

X n,θ
t − X̃ θ

t =
∫ t

0
[an(X n,θ

s , θ)− a(x0, θ)]dWs +
∫ t

0
bn(X n,θ

s )ds

=
1√
n

∫ t

0

∫ 1

0
a′x(x0 +

uX n,θ
s√
n

, θ)X n,θ
s dudWs +

1√
n

∫ t

0
b(x0 +

X n,θ
s√
n

)ds. (24)
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But we know [21] that under (R) the variables X n,θ belongs to D3,∞ with a
control (independent of θ, n): supu1,u2≤s≤k E(|D2

u1,u2
X n,θ

s |p) ≤ c(p, k). This
is su�cient to deduce

∥∥∥X n,θ
t − X̃ θ

t

∥∥∥
2,p

≤ n−1/2c(p, k) after a few computa-
tions.

To obtain (23) note that by (21) it is su�cient to show E
(
(Un,θ

j − Ũ θ
j )Ũ θ

j′

)
≤

c(k)n−1. This property will follow again from an analogous relation on the
di�usion,

sup
t,t′≤k

∣∣∣E ((X n,θ
t − X̃ θ

t )X̃ θ
t′

)∣∣∣ ≤ c(k)n−1.

Indeed, from (24), the above expectation is equal to

n−1/2

∫ t∧t′

0

∫ 1

0
E
[
a′x(x0 + n−1/2uX n,θ

s , θ)X n,θ
s

]
dua(x0, θ0)ds+

n−1/2

∫ t

0
E
[
b(x0 + n−1/2X n,θ

s )Wt′

]
a(x0, θ)ds.

Using
∣∣∣E[a′x(x0, θ)X n,θ

s ]
∣∣∣ = ∣∣∣∫ s

0 a′x(x0, θ)E[bn(X n,θ
u )]du

∣∣∣ ≤ cn−1/2, E [b(x0)Wt′ ] =
0 and the boundedness of a′′xx and b′, we get the required estimate.

2.3.2 Approximation for the log-likelihood

Let us denote the deterministic tridiagonal matrix K̃ of size (k+1)×(k+1),

K̃ =



v1 c 0 0 0

c v1 + v2
. . . 0 0

0
. . . . . . . . . 0

0 0
. . . v1 + v2 c

0 0 0 c v2


, (25)

where the entries of the matrix are:

v1 =
∫ 1

0
µ([s, 1])2ds, v2 =

∫ 1

0
µ([0, s])2ds, c =

∫ 1

0
µ([0, s])µ([s, 1])ds.

It can be easily checked that a2(x0, θ)K̃ is the covariance matrix of the Gaus-
sian vector (Ũ θ

0 , . . . , Ũ θ
k ) and is invertible (see Lemma 10 in the Appendix).

Now the idea is to introduce the score function that would be produced from
the observation of this Gaussian vector. Hence we let:

Lx0(u0, . . . , uk, θ) =
ȧ

a
(x0, θ)

a(x0, θ)−2
∑

0≤j,j′≤k

ujK̃
−1
j,j′uj′ − (k + 1)

 . (26)

In this section, we will show that this quantity is an approximation for the
true score function ṗ

p :

12



Theorem 5. Let us consider the di�erence,

ṗx0

px0

(u0, . . . , uk, θ)− Lx0(u0, . . . , uk, θ) := rx0(u0, . . . , uk, θ). (27)

Then we have the following bounds:∣∣∣E [rx0(U
n,θ
0 , . . . , Un,θ

k , θ)
]∣∣∣ ≤ c(k)n−1, (28)

∀p ≥ 1, E
[∣∣∣rx0(U

n,θ
0 , . . . , Un,θ

k , θ)
∣∣∣p] 1

p ≤ c(k, p)n−1/2. (29)

Proof. Keeping in mind the de�nition of Lθ (see (15)), we introduce its
approximation based on the Gaussian quantities de�ned above:

L̃θ :=
k∑

j=0

k∑
j′=0

∂Ũ θ
j

∂θ
a(x0, θ)−2K̃−1

j,j′DŨ θ
j′ .

The �rst step is to obtain the following control on the di�erence r1 :=
Lθ − L̃θ:

∀p > 1, ‖r1‖D1,p(H) ≤ c(k, p)n−1/2. (30)
Actually, it is a easy consequence of Lemma 1, Proposition 1 and the in-
vertibility of K̃, noting that the Malliavin covariance matrix of Ũ θ coincides
with the covariance matrix a2(x0, θ)K̃ of the Gaussian vector Ũ θ. We omit
further details.
The second step is to obtain a simple expression for δ(L̃θ). To see this, we
�rst use the relation for F ∈ D1,∞, u ∈ D1,∞(H), δ(Fu) = Fδ(u)−〈D.F, u〉H
(see [21]):

δ(L̃θ) =
k∑

j=0

k∑
j′=0

∂Ũ θ
j

∂θ
a(x0, θ)−2K̃−1

j,j′δ(D(Ũ θ
j′))

−
k∑

j=0

k∑
j′=0

a(x0, θ)−2K̃−1
j,j′

〈
D.

∂Ũ θ
j

∂θ
,D.Ũ θ

j′

〉
H

.

On the one hand, δ(D(Ũ θ
j′)) = Ũ θ

j′ (δ ◦ D is the identity operator on the

�rst chaos space). On the other hand, one has ∂ eUθ
j

∂θ = ȧ(x0,θ)
a(x0,θ) Ũ

θ
j by (18�20).

Hence

δ(L̃θ) =
ȧ(x0, θ)
a(x0, θ)

k∑
j=0

k∑
j′=0

Ũ θ
j a(x0, θ)−2K̃−1

j,j′Ũ
θ
j′

− ȧ(x0, θ)
a(x0, θ)

k∑
j=0

k∑
j′=0

a(x0, θ)−2K̃−1
j,j′

〈
D.Ũ θ

j , D.Ũ θ
j′

〉
H

=
ȧ(x0, θ)
a(x0, θ)

k∑
j=0

k∑
j′=0

Ũ θ
j a(x0, θ)−2K̃−1

j,j′Ũ
θ
j′ −

ȧ(x0, θ)
a(x0, θ)

(k + 1).

13



Now set

r2 =
ȧ(x0, θ)
a3(x0, θ)

∑
0≤j,j′≤k

Ũ θ
j K̃−1

j,j′Ũ
θ
j′ −

ȧ(x0, θ)
a3(x0, θ)

∑
0≤j,j′≤k

Un,θ
j K̃−1

j,j′U
n,θ
j′ ,

take the conditional expectation in the equality δ(Lθ) = δ(L̃θ) + δ(r1): by
Theorem 4, we get (27) with rx0(u0, . . . , uk, θ) = E

(
δ(r1) | (Un,θ

j )j = (uj)j

)
+

E
(
r2 | (Un,θ

j )j = (uj)j

)
.

The �nal step in the proof is to show that rx0 satis�es conditions (28)�
(29). For the �rst condition, since the Skorohod integral is zero mean, we
have E[rx0(U

n,θ
0 , . . . , Un,θ

k , θ)] = E(r2) and we conclude using (23).
We now prove (29). The conditional expectation being a contraction in

Lp it is su�cient to prove

E(|δ(r1)|p)
1
p ≤ c(p, k)n−1/2, E(|r2|p)

1
p ≤ c(p, k)n−1/2.

The �rst estimate follows from (30) and the continuity of the operator δ
from D1,p(H) to Lp. The second one is an immediate consequence of Lemma
1.

Remark 3. Let us note that the constants c(k), c(k, p) in Theorem 5 should
increase as the block length k goes to in�nity since the Gaussian approxima-
tion ceases to be valid in that case. However in the sequel we shall not need
a precise evaluation of this dependence on k since we will have the possibility
to conveniently choose the growth rate of k = kn.

In the following sections we will need this Corollary of Theorem 5.

Corollary 2. We have for all p > 1,

E

[∣∣∣∣ ṗx0

px0

(Un,θ
0 , . . . , Un,θ

k , θ)
∣∣∣∣p] ≤ c(k, p).

Proof. By Theorem 5 it is su�cient to show that E
[∣∣∣Lx0(U

n,θ
0 , . . . , Un,θ

k , θ)
∣∣∣p] ≤

c(k, p). But from the expression of Lx0 , this estimate is clear.

3 Asymptotic study for the augmented model

In this paragraph we establish Theorem 2. Let us recall some notations: we
now deal with the di�usion given by (1)�(2); kn is some integer in {1, . . . , n},
Ln = bn/knc and our observation consists of the Ln + 1 blocks B0, . . . , BLn

described in Section 1. The length of the block Bl is kn,l +1, where kn,l = kn

if l ≤ Ln − 1 and kn,Ln = n− Lnkn. For sake of simplicity in the sequel we
sometimes omit the dependence of the size of the block upon n and l, and
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let kn,l = k with a slight abuse of notation in particular for the last block of
data.

To be able to use the results of the Section 2, we introduce on each block
the random variables corresponding to the de�nitions (10�13) for the �rst
block. Hence for l ∈ {0, . . . , Ln}, we de�ne the kn,l following variables:

U0,l = n
1
2 (Xkl −X kl

n
),

U1,l = n
1
2 (Xkl+1 −Xkl),

...

Uk−1,l = n
1
2 (Xkl+k−1 −Xkl+k−2),

Uk,l = n
1
2 (X k(l+1)

n

−Xkl+k−1).

Clearly the observation of the (Uj,l) for l ∈ {0, . . . , Ln}, j ∈ {0, . . . , kn,l}
is equivalent to the observation of the Ln + 1 blocks. Using the Markov
property for the process X it appears that the law of the vector (Uj,l)j=0,...,kn,l

conditionally to all the variables Uj,l′ with l′ < l, j ∈ {0, . . . , kn,l′} is the
same as conditionally to Xkl/n only; moreover this law - conditionally to
Xkl/n = x0 - coincides with that of the vector (Un,θ

0 , . . . , Un,θ
k ) studied in

Section 2. Thus it admits the density pX kl
n

(u0, . . . , uk, θ) studied in Sections
2.2�2.3. Hence the log-likelihood of the augmented model admits the additive
structure:

ln(Zn,aug
θ0,θ0+unh(On,aug)) =

Ln∑
l=0

ln
pX kl

n

(U0,l, . . . , Uk,l, θ0 + unh)

pX kl
n

(U0,l, . . . , Uk,l, θ0)

=
Ln∑
l=0

∫ θ0+unh

θ0

ṗX kl
n

(U0,l, . . . , Uk,l, s)

pX kl
n

(U0,l, . . . , Uk,l, s)
ds.

Owing to Theorem 5, we deduce the decomposition

ln(Zn,aug
θ0,θ0+unh(On,aug)) =

Ln∑
l=0

∫ θ0+unh

θ0

LX kl
n

(U0,l, . . . , Uk,l, s)ds

+
Ln∑
l=0

∫ θ0+unh

θ0

rX kl
n

(U0,l, . . . , Uk,l, s)ds.

In the above decomposition, we will show in Sections 3.1�3.2 that the explicit
term involving Lx0 governs the asymptotic behavior of the log-likelihood
ratio; the other term does not contribute in the limit.
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3.1 Proof of Theorem 2: the explicit term

Let us introduce a slight modi�cation of Lx0 , which has the advantage of
being a smoother function w.r.t. θ:

ξl,n(θ) =
ȧ

a
(x0, θ0)

a(x0, θ)−2
∑

0≤j,j′≤k

Uj,lK̃
−1
j,j′Uj′,l − (k + 1)

 , (31)

and we set Naug
n = un

∑Ln
l=0 ξl,n(θ0) and Iaugn = u2

n

∑Ln
l=0

∂ξl,n

∂θ (θ0).

Proposition 2. If kn →∞ slowly enough,

Ln∑
l=0

∫ θ0+unh

θ0

LX kl
n

(U0,l, . . . , Uk,l, s)ds = hNaug
n +

h2

2
Iaugn + Rn, (32)

where Iaugn
Pθ0−−−→

n→∞
−Iθ0 , Rn

Pθ0−−−→
n→∞

0 and there exists an extra random vari-

able N ∼ N (0, 1) independent of Iθ0 such that, Naug
n converges stably in law

under Pθ0 to N
√
Iθ0 .

Proof. Comparing (26) with the de�nition of ξl,n(θ) above and using a Taylor
expansion for ξl,n(θ) around θ0, we get the equation (32) with a remainder
term Rn = R

(1)
n + R

(2)
n satisfying:

R(1)
n =

Ln∑
l=0

∫ θ0+unh

θ0

[
ȧ

a
(X kl

n
, s)− ȧ

a
(X kl

n
, θ0)]

 ∑
0≤j,j′≤k

Uj,lK̃
−1
j,j′Uj′,l

a(X kl
n
, s)2

− (k + 1)

 ds,

(33)∣∣∣R(2)
n

∣∣∣ ≤ c

Ln∑
l=0

u2+γ
n

 ∑
0≤j,j′≤k

∣∣∣Uj,lK̃
−1
j,j′Uj′,l

∣∣∣
 (34)

(for R
(2)
n we have used that θ 7→ ȧ(x, θ) is γ-Hölder continuous). To complete

the proof, we repeatedly use the following classical convergence result about
triangular arrays of random variables.
Lemma 2 (Genon-Catalot and Jacod [5], Lemma 9). Let (χn

l )0≤l≤Ln,
U be random variables, with χn

l being Fn
l+1-measurable. The two following

conditions imply
∑Ln

l=0 χn
l

P→ U :

Ln∑
l=0

E [χn
l |Fn

l ] P→ U and

Ln∑
l=0

E
[
(χn

l )2|Fn
l

] P→ 0.
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•We �rst focus on Naug
n . Let us introduce the sigma �eld Fn

l = σ(X0;Bs, s ≤
kl
n ) for l = 0, . . . , Ln and Fn

Ln+1 = σ(X0;Bs, s ≤ 1). Then the variable
ξl,n(θ0) is Fn

l+1�measurable and the asymptotic behavior of Naug
n will fol-

low from Lemma 2. To make clearer this point we introduce the following
approximation based on conditionally Gaussian variables:

ξ̃l,n(θ) =
ȧ

a
(X kl

n
, θ0)

a(X kl
n
, θ)−2

∑
0≤j,j′≤k

Ũj,lK̃
−1
j,j′Ũj′,l − (k + 1)

 . (35)

Here, Ũj,l is the Gaussian approximation under Pθ of Uj,l corresponding on
the block Bl to the variables (18)�(20) on the block B0:

Ũ0,l := a(X kl
n
, θ)n

1
2

∫ 1

0
(B kl+s

n
−B kl

n
)dµ(s),

Ũj,l := a(X kl
n
, θ)n

1
2

∫ 1

0
(B kl+j+s

n
−B kl+j−1+s

n
)dµ(s) for j = 1, . . . , k − 1,

Ũk,l := a(X kl
n
, θ)n

1
2

∫ 1

0
(B k(l+1)

n

−B kl+k−1+s
n

)dµ(s).

Observe that this vector (Ũj,l)j=0,...,k has, under Pθ and conditionally to
X kl

n
= x0, the same law as the vector (Ũ θ

j )j=0,...,k de�ned in Section 2.3.
Thus its conditional law is Gaussian with covariance matrix a(X kl

n
, θ)2K̃

(by Lemma 10). Hence, the variable ξ̃l,n(θ0) is Fn
l+1�measurable and under

Pθ0 , it is conditionally (to X kl
n
) distributed as a recentered χ2(k+1) variable.

Thus we deduce the four following properties:

1) un
∑Ln

l=0 Eθ0

[
ξ̃l,n(θ0) | Fn

l

]
= 0;

2) Using u2
n = 1/n, Ln ∼ n/kn →∞ and kn →∞, one has

u2
n

Ln∑
l=0

Eθ0

[
(ξ̃l,n(θ0))2 | Fn

l

]
= u2

n

Ln∑
l=0

2(kn + 1)
(

ȧ

a

)2

(X kl
n
, θ0)

=
2(kn + 1)

kn

∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds + oPθ0 (1) (36)

Pθ0−−→ 2
∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds = Iθ0 ;

3) u4
n

∑Ln
l=0 Eθ0

[∣∣∣ξ̃l,n(θ0)
∣∣∣4 | Fn

l

]
≤ cn−2Lnk4

n ≤ cn−1k3
n → 0, if kn goes

to ∞ slowly enough;

4) un
∑Ln

l=0 Eθ0

[
ξ̃l,n(θ0)[B (k+1)l

n

−B kl
n
] | Fn

l

]
= 0.

17



From these four properties, it follows (see Jacod [14]) that un
∑Ln

l=0 ξ̃l,n(θ0)
converges stably under Pθ0 to a mixed Gaussian variable as in the statement
of the proposition. To obtain the limit for Naug

n , it is su�cient to prove that

Naug
n − un

Ln∑
l=0

ξ̃l,n(θ0)
Pθ0−−→ 0. (37)

Due to Lemma 2 a su�cient condition consists in the two following points:

1) un
∑Ln

l=0 Eθ0

[
ξ̃l,n(θ0)− ξl,n(θ0) | Fn

l

]
→ 0 in probability;

2) u2
n

∑Ln
l=0 Eθ0

[
(ξ̃l,n(θ0)− ξl,n(θ0))2 | Fn

l

]
→ 0 in probability.

But these two points can be shown using (21) and (23) of Lemma 1 (for kn

slowly increasing).
• We now study Iaugn . A direct di�erentiation of ξl,n(θ) (recall (31)) gives

ξ̇l,n(θ) =
ȧ

a
(X kl

n
, θ0)

−2ȧ

a3
(X kl

n
, θ)

∑
0≤j,j′≤k

Ul,jK̃
−1
j,j′Ul,j′ .

Then, with a few computations similar to the study of Naug
n , we obtain (for

appropriate kn):

1) u2
n

Ln∑
l=0

Eθ0

[
ξ̇l,n(θ0) | Fn

l

]
= u2

n

Ln∑
l=0

−2(kn,l+1)
(ȧ)2

a2
(X kl

n
, θ0)+OPθ0 (

c(kn)√
n

)

= −2
(kn + 1)

kn

∫ 1

0

(
ȧ

a
(Xs, θ0)

)2

ds + oPθ0 (1) (38)

Pθ0−−→ −Iθ0 ;

2) u4
n

∑Ln
l=0 Eθ0

[
[ξ̇l,n(θ0)]2 | Fn

l

]
≤ cn−1k4

n → 0.

Combined with Lemma 2, these two convergences imply that of Iaugn to −Iθ0

under Pθ0 .
• The remainder term Rn. Firstly concerning R

(2)
n , a direct use of (21) gives

E(|Rn|) ≤ c(kn)n−γ/2 → 0 if kn slowly goes to∞. Secondly the convergence
to zero of R

(1)
n =

∑Ln
l=0 R

(1)
n,l is more delicate and Lemma 2 is helpful for this.

To this end we evaluate the conditional expectation of R
(1)
n,l using (23) and

the fact the (Ũj,l)j have the conditional covariance matrix a(X kl
n
, θ)2K̃:

Eθ0 [R
(1)
n,l | F

n
l ] =

∫ θ0+unh

θ0

[
ȧ

a
(X kl

n
, s)− ȧ

a
(X kl

n
, θ0)]{

a(X kl
n
, θ0)2

a(X kl
n
, s)2

−1}(kn+1)ds

+ O(n−1unc(kn)).
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The function a being C1+γ in θ, one gets:
∑Ln

l=0

∣∣∣Eθ0 [R
(1)
n,l | F

n
l ]
∣∣∣ ≤ cn−γ/2 +

c(kn)
kn

n−1/2 → 0 for appropriate kn. With similar considerations we evalu-
ate the second conditional moment and obtain u2

n

∑Ln
l=0 Eθ0 [(R

(1)
n )2 | Fn

l ] ≤
c(kn)Lnu2+2γ

n
n→∞−−−→ 0.

3.2 Proof of Theorem 2: the negligible terms

It remains to prove that, as announced, there is convergence to zero of∑Ln
l=0 ηl with ηl =

∫ θ0+unh
θ0

rX kl
n

(U0,l, . . . , Uk,l, s)ds. We aim at applying
Lemma 2 by computing the �rst two conditional moments of ηl under Pθ0 .
The main di�culty here comes from the fact that we do not have an explicit
expression for rx0((uj)j , θ). Indeed by Theorem 5 we know bounds for the
moments En

θ,x0
(|rx0((Uj)j , θ)|p) where by En

x0,θ we denote the expectation
with respect to the law of X n,θ solution of (6). This is a priori insu�cient
to compute the conditional moments of ηl under Pθ0 which involves quanti-
ties such as En

θ0,x0
(|rx0((Uj)j , s)|p) for s 6= θ0. Thus in Lemmas 7-8 in the

Appendix we study the transformation of such moments under change of
measure.

Firstly, we evaluate the conditional expectation of ηl,

Eθ0 [ηl | Fn
l ] =

∫ θ0+unh

θ0

En
θ0,x[rx((Uj)j , s)]|x=X kl

n

ds.

But
∣∣∣En

θ0,x[rx((Uj)j , s)]
∣∣∣ ≤ ∣∣En

s,x[rx((Uj)j , s)]
∣∣+∣∣∣En

θ0,x[rx((Uj)j , s)]− En
s,x[rx((Uj)j , s)]

∣∣∣
can be bounded using (28) and Lemma 8 in the Appendix by c(k)n−1 +
|s− θ0|En

s,x[|rx((Uj)j , s)|α]
1
α for some constant α ≥ 1. Then by (29) we de-

duce |E [ηl | Fn
l ]| ≤ c(kn)[unn−1+u2

nn−1/2]. Finally a block length kn slowly
increasing guarantees

∑Ln
l=0 Eθ0 [ηl | Fn

l ] Pθ0−−→ 0.
Secondly and similarly, owing to Theorem 5 and Lemma 7 in the Ap-

pendix, we get E
[
η2

l | Fn
l

]
≤ c(kn)u2

nn−1 → 0. Therefore, by Lemma 2, we
have proved

∑Ln
l=0 ηl

Pθ0−−→ 0. This ends the proof of Theorem 2.

3.3 What happens if kn remains �xed?

If we assume now that kn = k ∈ N remains �xed as n → ∞, the num-
ber of data (X kl

n
)l=0,...,Ln added to the model in order to force an additive

structure to the log-likelihood is not negligible compared to the number of
initial data. Hence the statistical properties of the augmented model shall
depend on k and thus di�er from the statistical properties of the initial model
given in Theorem 1. Actually we have the following LAMN property for the
augmented model in that case.
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Theorem 6. If a sequence kn = k is �xed, then the augmented model sat-
is�es the LAMN property with a conditional variance equal to:

Ik,θ0 = 2
(

k + 1
k

)∫ 1

0

(
ȧ

a

)2

(Xs, θ0)ds.

Proof. The proof is essentially the same as that of Theorem 2, the di�erence
in the asymptotic information comes from the di�erence in the limit of the
quantities (36)�(38) when k is �xed.

As expected, the conditional information is greater by the a factor (k +
1)/k, due to the non negligibility of the added observation. Actually this
factor should be read as 1 + 1

k , meaning that an addition of 1
k% of datas

increases the information in the same way. Local means and values at discrete
points are not redundant (as expected from the multiplicative Brownian case,
see Example 1) and moreover, they bring an equal information. Considering
k = 1 is interesting, since we observe then on each block [i/n, (i + 1)/n]
both the exact value X i

n
and a mean Xi. It appears that the asymptotic

information is then twice the information given by the observation of only
the exact values (or only the means).

4 LAMN property for the initial model

In this Section we are back to the model where the observation is only On =
(Xj)j=0,...,n−1 and we will prove Theorem 1 by relying on the LAMN property
for the augmented model.

A �rst intermediate result is that on can approximate the log-likelihood
of the augmented model by a function of the observation On.

Proposition 3. There exist Γn random variables measurable with respect to
On such that:

ln(Zn,aug
θ0,θ0+unh(On,aug))− Γn

n→∞−−−→
Pθ0

0.

Proof. We have seen in Section 3 that ln(Zn,aug
θ0,θ0+unh(On,aug)) = hNaug

n +
1/2h2Iaugn + oPθ0 (1) where the quantities Naug

n and Iaugn were de�ned in Sec-
tion 3.1.

Thus the proof of the proposition consists in introducing a proper mod-
i�cation of these quantities which only depends on the observations. We let
for l = 0, . . . , kn

ξobsl,n (θ) =
ȧ

a
(Xkl−1, θ0)

a−2(Xkl−1, θ)
∑

1≤j,j′≤k−1

Ul,jK̂
−1
j,j′Ul,j′ − (k − 1)

 ,
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with the convention X−1 = ξ0 is the known initial value of the di�usion and
the matrix a2(x0, θ)K̂ is the covariance matrix of the conditionally Gaussian
vector (Ũ θ

1 , , Ũ θ
k−1):

K̂ =


v1 + v2 c 0 0

c
. . . . . . 0

0
. . . . . . c

0 0 c v1 + v2

 .

Clearly, ξobsl,n (θ) only depends on the observation On since we have sup-
pressed all occurrences of the variables U0,l and Uk,l and replaced X kl

n
by

Xkl−1 from the expression of ξl,n(θ) (compare with (31)). Then we let
Nobs

n = un
∑Ln

l=0 ξobsl,n (θ0) and Iobsn = u2
n

∑Ln
l=0

∂ξobsl,n

∂θ (θ0).
• Study of Naug

n −Nobs
n . The �rst step is to consider the conditionally re-

centered chi square approximation of ξobsl,n (θ) that we de�ne as:

ξ̃obsl,n (θ) =
ȧ

a
(X kl

n
, θ0)

a−2(X kl
n
, θ)

∑
1≤j,j′≤k−1

Ũl,jK̂
−1
j,j′Ũl,j′ − (k − 1)

 . (39)

The �rst step is to prove the validity of the approximation:

un

Ln∑
l=0

{ξobsl,n (θ0)− ξ̃obsl,n (θ0)}
Pθ0−−→ 0. (40)

This is done similarly to the proof of Naug
n − un

∑Ln
l=0 ξ̃l,n(θ0) → 0 in propo-

sition 2, by considering the �rst two conditional moments, but here the �rst
moment is more delicate to handle: the conditional moment Eθ0 [ξ

obs
l,n (θ0) −

ξ̃obsl,n (θ0) | Fn
l ] is of the form (k−1){g(X kl

n
)−g(Xkl−1)}h(Xkl−1)+O(c(kn)/n)

for g and h two C2 functions. If we abruptly use the relation
∥∥∥X kl

n
−Xkl−1

∥∥∥
Lp
≤

c(p)n−1/2 then we only deduce that un
∑Ln

l=0 Eθ0 [ξ
obs
l,n (θ0)− ξ̃obsl,n (θ0) | Fn

l ] re-
mains bounded in probability. To show that it actually converges to zero,
we have to apply again Lemma 2 to the new triangular array of variables,
un
∑Ln

l=0(k−1){g(X kl
n
)−g(Xkl−1)}h(Xkl−1). Then by rather long computa-

tions, using that
∥∥Xkl−1 −Xkl−2

∥∥
Lp ≤ c(p)(k/n)1/2 and

∣∣∣Eθ0 [X kl
n
−Xkl−1 | Fn

l−1]
∣∣∣ ≤

cn−1 by the centering property we can prove,

un

Ln∑
l=0

(k − 1)
∣∣∣Eθ0 [{g(X kl

n
)− g(Xkl−1)}h(Xkl−1) | Fn

l−1]
∣∣∣ ≤ c(k)n−1/2 Pθ0−−→ 0,

u2
n

Ln∑
l=0

(k − 1)2Eθ0 [{g(X kl
n
)− g(Xkl−1)}2h(Xkl−1)2 | Fn

l−1] ≤ c(k)n−1 Pθ0−−→ 0.
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Thus we deduce un
∑Ln

l=0 Eθ0 [ξ
obs
l,n (θ0) − ξ̃obsl,n (θ0) | Fn

l ] → 0. The second
condition u2

n

∑Ln
l=0 Eθ0 [(ξ

obs
l,n (θ0) − ξ̃obsl,n (θ0))2 | Fn

l ] ≤ c(k)n−1 → 0 is easily
obtained and we deduce (40).

Thus, in view of the equation (37), it remains to prove that un
∑Ln

l=0{ξ̃obsl,n (θ0)−
ξ̃l,n(θ0)} is negligible. But by Lemma 11 in the Appendix, comparing expres-
sions (35) and (39), it appears that conditionally to Fn

l the random variable
ξ̃obsl,n (θ0) − ξ̃l,n(θ0) is a recentered χ2(2) variable and hence the following
properties hold:

un

Ln∑
l=0

Eθ0

(
ξ̃obsl,n (θ0)− ξ̃l,n(θ0) | Fn

l

)
= 0,

u2
n

Ln∑
l=0

Eθ0

({
ξ̃obsl,n (θ0)− ξ̃l,n(θ0)

}2
| Fn

l

)
=

Ln∑
l=0

u2
n4

ȧ2

a2
(X kl

n
, θ0) ≤

c

kn
→ 0.

These two properties imply by Lemma 2 the convergence to 0 under Pθ0 of
un
∑Ln

l=0

{
ξ̃obsl,n (θ0)− ξ̃l,n(θ0)

}
, and thus Naug

n −Nobs
n

Pθ0−−→ 0.
• Study of Iaugn − Iobsn . Exactly as we proved that Iaugn tends to −Iθ0 we can
show that Iobsn → −Iθ0 . Thus the di�erence is negligible.

Finally the proposition is obtained by setting Γn = hNobs
n +h2/2Iobsn .

Then the Theorem 1 is a consequence of the following proposition com-
bined with Proposition 3 and Theorem 2.

Proposition 4. We have the convergence,

Zn
θ0,θ0+unh − eΓn n→∞−−−→

Pθ0

0.

Proof. The starting point is the relation between the likelihood of the ini-
tial and of the augmented model: Zn

θ0,θ0+unh = Eθ0

[
Zn,aug

θ0,θ0+unh | O
n
]
. By

Proposition 3 we can write Zn,aug
θ0,θ0+unh = eΓneεn where εn tends to zero in

Pθ0 probability. Using that Γn is On measurable we deduce,

Zn
θ0,θ0+unh − eΓn = Eθ0

[
eΓn(eεn − 1) | On

]
.

We now use the inequality |eu − 1| ≤ (|u|∧1)(eu+1) to obtain that
∣∣∣Zn

θ0,θ0+unh − eΓn

∣∣∣ ≤
αn + βn with:

αn = Eθ0

[
(|εn| ∧ 1)eΓn | On

]
= Eθ0 [|εn| ∧ 1 | On] eΓn ,

βn = Eθ0

[
(|εn| ∧ 1)eΓneεn | On

]
= Eθ0

[
(|εn| ∧ 1)Zn,aug

θ0,θ0+unh | O
n
]
.

It now remains to show the convergence to zero of αn and βn.
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For αn, let us notice that (eΓn)n is a tight sequence and that Eθ0 [|εn| ∧ 1 | On]
converges in L1(Pθ0) norm to zero since,

Eθ0 [Eθ0 [|εn| ∧ 1 | On]] = Eθ0 [|εn| ∧ 1] n→∞−−−→ 0.

For βn, we have Eθ0 [βn] = Eθ0+unh[|εn| ∧ 1]. But the sequence of proba-
bilities Pθ0 and Pθ0+unh restricted to the sigma �elds On,aug are contiguous
(this is a consequence of the LAMN property for the augmented model,
see for e.g. Proposition 1 in Jeganathan [15]); hence the sequence (εn)n

which is measurable with respect to On,aug and converges to zero in Pθ0�
probability converges also in Pθ0+unh�probability. This implies Eθ0 [βn] =
Eθ0+unh[|εn| ∧ 1] → 0.

5 Appendix

5.1 Proof of results of Section 2.1

Since the results of Section 2.1 concern only the study of a density for �xed
values of θ, we omit the dependence upon θ in our notations. We will prove
the results in the following order. First in section 5.1.1, we show that the law
of the Wiener functional (Un, V n) =

(∫ 1
0 X

n
s dµ(s),X n

1

)
admits a density.

Then we prove the lower and upper bounds given in Theorem 3 (section
5.1.2) and eventually we deduce the Proposition 1 (section 5.1.3).

5.1.1 Existence of the density pn
x0

We know [21] that under (R) the random variable X n
t is an element of D3,∞

and its �rst derivative is equal to

DtX n
s = 1{t≤s}Yn

s (Yn
t )−1an(X n

t ), (41)

where Yn is the solution of

dYn
t = a′n(X n

t )Yn
t dWt + b′n(X n

t )Yn
t dt, Yn

0 = 1. (42)

In the sequel we will repeatedly use the positivity of Yn and the control

E( sup
t∈[0,1]

(Yn
t )p) + E( sup

t∈[0,1]
(Yn

t )−p) ≤ c(p). (43)

From this we can see that the random variables Un and V n are elements of
D3,∞ and using (41) with the linearity of the operator D, we have

DtU
n =

∫ 1

0
1{t≤s}Yn

s (Yn
t )−1an(X n

t )dµ(s) = an(X n
t )(Yn

t )−11{t≤1}

∫
[t,1]

Yn
s dµ(s),

DtV
n = an(X n

t )Yn
1 (Yn

t )−11{t≤1}.
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Using Theorem 2.1.2 p. 86 in [21], a su�cient condition for the existence of
a density for (Un, V n) is that its Malliavin covariance matrix γUn,V n satisfy
a degeneracy condition given, for instance, by the following lemma.

Lemma 3. γUn,V n is a a.s invertible matrix and for all p ≥ 1, we have

E
(
|det(γUn,V n)|−p) ≤ c(p).

Proof. To have shorter notations, during the proof we will denote by c∗ any
generic positive random variable which satis�es E(c−p

∗ ) ≤ c(p) with c(p) as
in the statement of the lemma. By direct computations we have,

〈Un, Un〉H =
∫ 1

0
a2

n(X n
t )(Yn

t )−2

(∫
[t,1]

Yn
s dµ(s)

)2

dt, (44)

〈Un, V n〉H =
∫ 1

0
a2

n(X n
t )(Yn

t )−2

(∫
[t,1]

Yn
s dµ(s)

)
dt Yn

1 , (45)

〈V n, V n〉H =
∫ 1

0
a2

n(X n
t )(Yn

t )−2dt (Yn
1 )2. (46)

Now, de�ne the probability density on [0, 1]

mn
t = a2

n(X n
t )(Yn

t )−2

(∫ 1

0
a2

n(X n
s )(Yn

s )−2ds

)−1

, (47)

and put fn(t) :=
∫
[t,1] Y

n
s dµ(s). Thus we can write:

det(γUn,V n) = 〈V n, V n〉2H(Yn
1 )−2

[∫ 1

0
mn

t fn(t)2dt−
(∫ 1

0
mn

s fn(s)ds

)2
]

.

Hence the above bracket can be interpreted as the variance of the function
fn(t) under the probability measure mn

t dt and hence:

det(γUn,V n) = 〈V n, V n〉2H(Yn
1 )−2

∫ 1

0
mn

t

[
fn(t)−

(∫ 1

0
mn

r fn(r)dr

)]2

dt.

But clearly under Assumption (R), 〈V n, V n〉2H ≥ a2 inft∈[0,1](Yn
t )−2 inft∈[0,1](Yn

t )2

and hence by (43) this yields, 〈V n, V n〉2H ≥ c∗, using our convention about
generic positive random variables c∗. Similarly, by (47), we have mn

t ≥ c∗
and thus,

det(γUn,V n) ≥ c∗

∫ 1

0

[
fn(t)−

(∫ 1

0
mn

r fn(r)dr

)]2

dt.

Then, writing the integral above as∫ 1/2

0

[
fn(t)−

(∫ 1

0
mn

r fn(r)dr

)]2

+
[
fn(t + 1/2)−

(∫ 1

0
mn

r fn(r)dr

)]2

dt,
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and using the simple inequality x2 + y2 ≥ (x− y)2/2, we get: det(γUn,V n) ≥

c∗
∫ 1/2
0

(∫
[t,t+ 1

2
) Y

n
s dµ(s)

)2
dt. Using again infs∈[0,1] Yn

s ≥ c∗, we obtain:

det(γUn,V n) ≥ c∗
∫ 1/2
0 µ ([t, t + 1/2))2 dt. But this integral is positive as soon

as µ ((0, 1)) > 0 which is the case by assumption (3). Thus the lemma is
proved.

5.1.2 Bounds for the density

For the proof of (9), we make a crucial use of the fact that the di�usion
process X n is one dimensional by introducing the classical transformation:

sn(x) :=
∫ x

0
a−1

n (y)dy, Wn
t := sn(X n

t ).

By the assumptions on a, the function sn is one to one on R and the
derivatives of of sn and s−1

n are bounded independently of n. By Itô's for-
mula, Wn solves the equation dWn

t = dWt + b̃n(Wn
t )dt where b̃n(w) :=

bn
an
◦ s−1

n (w) − 1
2a′n ◦ s−1

n (w) and the initial value is Wn
0 = sn(X n

0 ) = 0. We
let P̃ be the probability de�ned on (Ω,A) by

dP̃

dP
= exp

(
−
∫ 1

0
b̃n(Wn

u )dWu −
1
2

∫ 1

0
b̃2
n(Wn

u )du

)
.

The Girsanov theorem implies that the process Wn is under P̃ a standard
Brownian motion. Note that the random variables (Un, V n) have the follow-
ing expressions with respect to this P̃�Brownian motion:

Un =
∫ 1

0
s−1
n (Wn

r )dµ(r), (48)

V n = s−1
n (Wn

1 ). (49)

Now let h0 and h1 be non negative real functions, then:

EP [h0(Un)h1(V n)] = EP̃ [h0(Un)h1(V n)Ln] , (50)

where Ln = exp
(∫ 1

0 b̃n(Wn
r )dWn

r − 1
2

∫ 1
0 b̃2

n(Wn
r )dr

)
. But using Itô's for-

mula, Ln = exp
(
B̃n(Wn

1 )− 1
2

∫ 1
0 (b̃2

n + b̃′n)(Wn
r )dr

)
where B̃n is the primi-

tive function of b̃n vanishing at zero. Since b̃n and b̃′n are clearly bounded
by cn−1/2 for some constant c only depending on a and b and

∣∣∣B̃n(x)
∣∣∣ ≤

cn−1/2 |x| we have: c−1 exp
(
−cn−1/2 |Wn

1 |
)
≤ Ln ≤ c exp

(
cn−1/2 |Wn

1 |
)
. By

(49) and the boundedness of s′n we deduce c−1 exp
(
−cn−1/2 |V n|

)
≤ Ln ≤
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c exp
(
cn−1/2 |V n|

)
. From this and (50), we obtain:

c−1EP̃

[
h0(Un)h1(V n)e−cn−

1
2 |V n|

]
≤ EP [h0(Un)h1(V n)] ≤ cEP̃

[
h0(Un)h1(V n)ecn−

1
2 |V n|

]
.

Hence we have transformed the problem of �nding bounds for the density
of the law of (Un, V n) under P into an analogous problem under P̃ . Conse-
quently the bounds for pn

x0
stated in (9) will follow from the next lemma.

Lemma 4. Let h0, h1 be two non negative functions. There exist some
constants c1 > c2 > 0, depending only on the coe�cients a and b such that:

c−1
1

∫ ∫
h0(u)h1(v)e−c1(u2+v2)dudv ≤

EP̃ [h0(Un)h1(V n)] ≤ c−1
2

∫ ∫
h0(u)h1(v)e−c2(u2+v2)dudv.

Proof. We �rst show the lower bound. Using that the random variable V n

is measurable with respect to Wn
1 (by (49)), we can write:

EP̃ [h0(Un)h1(V n)] = EP̃

[
h1(V n)EP̃ [h0(Un) | Wn

1 ]
]

=
∫

g(w)h1

(
s−1
n (w)

)
EP̃ [h0(Un) | Wn

1 = w] dw, (51)

where g is the density of the standard Gaussian law. Now let us admit
temporarily the following relation on the conditional law of Un:

EP̃ [h0(Un) | Wn
1 ] ≥ c−1e−c(Wn

1 )2
∫

h0(u)e−cu2du. (52)

Then EP̃ [h0(Un)h1(V n)] is greater than:

c−1

∫
h0(u)e−cu2du×

∫
g(w)h1

(
s−1
n (w)

)
e−cw2dw.

The change of variable v = s−1
n (w) in the second integral above, the inequal-

ities |w| ≤ c |v| and s′n(v) ≥ c give the new lower bound

c−1

∫
h0(u)e−cu2du×

∫
g (sn(v))h1 (v) e−cv2dv,

with a new constant c. Since g is the Gaussian kernel and thanks to the in-
equality |sn(v)| ≤ c |v|, we deduce the required lower bound for EP̃ [h0(Un)h1(V n)].

We obtain the upper bound quite similarly. Let us temporarily admit
that for all ε small enough there exists c(ε) such that:

EP̃ [h0(Un) | Wn
1 ] ≤ c(ε)−1eε(Wn

1 )2
∫

h0(u)e−c(ε)u2du. (53)
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Plugging this in equation (51), we deduce that EP̃ [h0(Un) | Wn
1 ] is smaller

than
c(ε)−1

∫
h0(u)e−c(ε)u2du×

∫
g(w)eεw2

h1

(
s−1
n (w)

)
dw.

Since g(w) = exp(−w2/2)/
√

2π, any choice of ε smaller than 1/4 implies that
the second integral in the equation above is bounded by c

∫
e−

1
4
w2

h1

(
s−1
n (w)

)
dw.

As for the lower bound, we conclude by the change of variable v = s−1
n (w).

The �nal step is to show that (52)�(53) really holds. This is done in the
following lemma.

Lemma 5. For some constant c > 0 and ε > 0, we have

EP̃ [h0(Un) | Wn
1 ] ≥ c−1e−c(Wn

1 )2
∫

h0(u)e−cu2
du. (54)

For all ε ∈)0, ε(, there exists c(ε) > 0 such that,

EP̃ [h0(Un) | Wn
1 ] ≤ c(ε)−1eε(Wn

1 )2
∫

h0(u)e−c(ε)u2
du. (55)

Proof. Let us recall that the processW∗
t := Wn

t − tWn
1 is a Brownian bridge

on [0, 1], independent of the variable Wn
1 . Thus, we can evaluate the condi-

tional expectation EP̃ [h0(Un) | Wn
1 = w] as the expectation (recall (48)),

E

[
h0

(∫ 1

0
s−1
n (W∗

t + tw) dµ(t)
)]

, (56)

for W∗ some Brownian bridge. This Brownian bridge itself admits a decom-
position

W∗
t = ξηt +W∗∗

t , (57)

where ξ is a N (0, 1) variable and η is the deterministic triangle shaped
function:

ηt =

{
t if t ∈ [0, 1/2]
(1− t) if t ∈ [1/2, 1]

,

andW∗∗ is the process on [0, 1] constructed as the concatenation of two inde-
pendent Brownian bridges, one on [0, 1/2] and another on [1/2, 1]. Further-
more in this decomposition the r.v. η and the process W∗∗ are independent.

For any realization of W∗∗ we can introduce the real function,

x 7→ gW∗∗(x) =
∫ 1

0

{
s−1
n (xηt +W∗∗

t + tw)
}
dµ(t).

Using (57) and the independence of ξ andW∗∗, the quantity (56) now writes,

E(W∗∗)E(ξ) [h0(gW∗∗(ξ))] (58)
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where the inner expectation denotes the expectation with respect to the
random variable ξ and the outer one with respect to the process W∗∗.

First we evaluate the inner expectation. Using that ξ is a standard
Gaussian variable we have

E(ξ) [h0(gW∗∗(ξ))] = (2π)−1/2

∫
h0(gW∗∗(x))e−

x2

2 dx. (59)

Note now that for any realization of W∗∗, the function x 7→ gW∗∗(x) is
di�erentiable and using that 1

c ≤ (s−1
n )′ ≤ c we get

1
c

∫ 1

0
ηtdµ(t) ≤ g′W∗∗(x) ≤ c

∫ 1

0
ηtdµ(t).

By assumption (3) on the measure µ the integral
∫ 1
0 ηtdµ(t) is positive. Thus

the function x 7→ gW∗∗(x) is invertible on R, with a derivative bounded from
above and from below by some constant independent of W∗∗ and n. This
allows us to make a change of variable in (59) to obtain the bounds

c−1

∫
h0(u)e−

(g−1
W∗∗ (u))2

2 du ≤ E(ξ) [h0(gW∗∗(ξ))] ≤ c

∫
h0(u)e−

(g−1
W∗∗ (u))2

2 du.

(60)
Now the proofs of (54) and (55) are treated separately.

• For the lower bound, we have seen that g−1
W∗∗ is globally Lipschitz with

a constant independent of W∗∗ and thus
∣∣g−1
W∗∗(u)

∣∣ ≤ c |u| +
∣∣g−1
W∗∗(0)

∣∣ ≤
c |u| + c |gW∗∗(0)|. In addition, a simple computation from the de�nition of
gW∗∗ and the boundedness of (s−1

n )′ shows that
|gW∗∗(0)| ≤ c[|w|+ sup

t∈[0,1]
|W∗∗

t |]. (61)

Using this in (60) we �nd a new lower bound for the inner expectation:

E(ξ) [h0(gW∗∗(ξ))] ≥ c−1e−cw2
e−c supt∈[0,1](W

∗∗
t )2

∫
h0(u)e−cu2du.

Taking the expectation with respect to W∗∗ proves that (58) is greater
c−1E(W∗∗)

(
e−c supt∈[0,1](W

∗∗
t )2
)
× e−cw2 ∫

h0(u)e−cu2du. This gives (54).
• For the upper bound, we write using that gW∗∗ is Lipschitz ||u| − |gW∗∗(0)|| ≤∣∣gW∗∗(g−1

W∗∗(u))− gW∗∗(0)
∣∣ ≤ c

∣∣g−1
W∗∗(u)

∣∣. Together with the relation (x −
y)2 ≥ x2 ε

1+ε−εy2 (for x, y ∈ R, ε ∈ (0, 1)), we deduce that exp
(
−1

2(g−1
W∗∗(u))2

)
is upper bounded by

exp
(
− εu2

2c2(1 + ε)
+

ε(gW∗∗(0))2

2c2

)
≤ exp

(
− εu2

2c2(1 + ε)
+ εw2 + ε sup

t∈[0,1]
(W∗∗

t )2
)

where we have used (61). Combining this with (60) and taking the expec-
tation with respect to W∗∗, we get that the quantity (58) is smaller than:
c
∫

h0(u)e−
εu2

2c(1+ε) eεw2
EW∗∗

(
eε supt∈[0,1](W∗∗

t )2
)

. The last expectation is �nite
as soon as ε is small enough, and thus (55) holds.
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5.1.3 Proof of Proposition 1

To have shorter notations we set X n
j =

∫ 1
0 X

n
j+tdµ(t), for j ≥ 0. First we

prove:

Lemma 6. Let us de�ne Γk the Malliavin covariance matrix of the vector(
(X n

j ,X n
j+1)

)
j=0,...,k−1

of size 2k.

Then this matrix is a.s invertible and E(det(Γk)−p) ≤ c(p, k).

Proof. In the case k = 1, the lemma reduces to Lemma 3. For k ≥ 2, we can
proceed by induction on k using, indeed, that the Markov property of the
process X n induces actually in speci�c relations between the columns of Γk.

To see this, notice that �rstly by (41) if t < k − 1 and s > k − 1,
we have DtX n

s = DtX n
k−1Yn

s (Yn
k−1)

−1; and secondly if t > k − 1 and s <
k − 1, DtX n

s = 0. Using these two properties, a calculation shows that if
(Cj)j=1,...,2k denote the columns of Γk, we have the relation,

[C2k−1;C2k] =
[(∫ 1

0
Yn

k−1+s(Yn
k−1)

−1dµ(s)
)

C2k−2;Yn
k (Yn

k−1)
−1C2k−2

]

+


0 0
...

...
0 0[
γk

]


where γk is the matrix of size 2× 2 given by( ∫ k
k−1(DtX

n
k−1)

2dt
∫ k
k−1(DtX n

k )(DtX
n
k−1)dt∫ k

k−1(DtX n
k )(DtX

n
k−1)dt

∫ k
k−1(DtX n

k )2dt

)
.

This proves that det Γk = det Γk−1 det γk. By the induction relation, it
remains to prove E((det γk)−p) ≤ c(p). But direct computation using (41)
shows that the component of γk have the following expression:

(γk)11 =
∫ k

k−1
an(X n

t )2(Yn
t )−2

(∫
[t,1]

Yn
k−1+sdµ(s)

)2

dt,

(γk)12 = (γk)21 =
∫ k

k−1
an(X n

t )2(Yn
t )−2

(∫
[t,1]

Yn
k−1+sdµ(s)

)
dtYn

k ,

(γk)22 =
∫ k

k−1
an(X n

t )2(Yn
t )−2dt(Yn

k )2.

These expressions are similar to the ones obtained for γUn,V n in lemma 3
(see (44)�(46)) and similarly, one gets E((det γk)−p) ≤ c(p). The lemma is
proved.
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Now we can deduce the Proposition 1. Recalling (10�13) we can �nd a
invertible matrix M of size 2k× 2k that maps

(
(X n

j ,X n
j+1)

)
j=0,...,k−1

into a

vector whose k + 1 �rst components are exactly (Un
0 , . . . , Un

k ). Denoting Γ̂k

the Malliavin covariance matrix of the image by M of
(
(X n

j ,X n
j+1)

)
j=0,...,k−1

,

we have Γ̂k = MΓkM?. Thus, Lemma 6 yields E((det(Γ̂k))−p) ≤ c(p, k)
since M is invertible.

Observe that the covariance matrix K is the matrix extracted from the
k + 1 �rst rows and columns of Γ̂k. Hence, one has

[det(K)]
1

k+1 ≥ λmin(K) ≥ λmin(Γ̂k) ≥ det(Γ̂k)
[Tr(Γ̂k)]2k−1

(where λmin(A) is the smallest eigenvalue of the symmetric positive matrix
A). This implies Proposition 1 since E([Tr(Γ̂k)]p) ≤ c(p, k) for all p, k ≥ 1.

5.2 Some estimates on the change of measures

For this section we denote by X the canonical process on C([0,∞)) and we
consider the random variable on this space de�ned by H = f(U0, . . . , Uk),
where (U0, . . . , Uk) is given by (10)�(13) with the canonical process X in
place of X θ,n; we denote by En

θ,x0
the expectation with respect to the measure

induced on the canonical space by the law of X θ,n solution of (6).

Lemma 7. There exist r ≥ 1 and a constant c(k) ≥ 0, such that ∀H =
f(U0, . . . , Uk) ≥ 0, ∀θ, θ′ ∈ Θ, ∀x0 ∈ R, we have

En
θ′,x0

[H] ≤ c(k)En
θ,x0

[Hr]
1
r .

Proof. Recalling the notation of Section 2.1.1 we denote pn
x0

(u, v, θ) the den-
sity of the vector (8) and for j = 0, . . . , k − 1 we let

Zj,θ,θ′ =
pn
Xj

(∫ 1
0 (Xj+s −Xj)dµ(s), (Xj+1 −Xj), θ′

)
pn
Xj

(∫ 1
0 (Xj+s −Xj)dµ(s), (Xj+1 −Xj), θ

) . (62)

Then using the Markov property of the process X under the laws Pn
θ and

Pn
θ′ , we have

En
θ′,x0

[H] = En
θ,x0

H
k−1∏
j=0

Zj,θ,θ′

 ≤ En
θ,x0

[Hr]
1
r En

θ,x0

k−1∏
j=0

(Zj,θ,θ′)r′

 1
r′

,

where r and r′ are conjugate exponents. But we know by Theorem 3 that
there exist two constants 0 < c2 ≤ c1 (uniform en θ, x0, n) such that

c−1
1 e−c1(u2+v2) ≤ pn

x0
(u, v, θ) ≤ c−1

2 e−c2(u2+v2).

30



Then one can bound the conditional expectation En
θ,x0

[(Zk−1,θ,θ′)r′ | Xs, s ≤
(k − 1)] by

c
(r′−1)
1

cr′
2

∫
R2

e(u2+v2)(−r′c2+(r′−1)c1)dudv.

But if r is chosen large enough such that r′ is su�ciently close to 1 the latter
integral converges and is equal to some constant κ. Proceeding by induction
we get:

En
θ,x0

k−1∏
j=0

(Zj,θ,θ′)r′

 1
r′

≤ En
θ,x0

k−2∏
j=0

(Zj,θ,θ′)r′

 1
r′

κ
1
r′ ≤ · · · ≤ κk/r′

which gives the result.

Lemma 8. There exist c(k) ≥ 0 and α ≥ 1 such that ∀H = f(U0, . . . , Uk)
(with En

θ,x0
|H|α < +∞), ∀θ, θ′ ∈ Θ, ∀x0 ∈ R, we have∣∣En

θ′,x0
[H]− En

θ,x0
[H]
∣∣ ≤ c(k)

∣∣θ − θ′
∣∣ [En

θ,x0
|H|α]

1
α . (63)

Proof. Using the notations of Lemma 7, we write

En
θ′,x0

[H]− En
θ,x0

[H] = En
θ,x0

k−1∏
j=0

Zj,θ,θ′ − 1

H


=

k−1∑
i=0

En
θ,x0

(Zi,θ,θ′ − 1
) k−1∏

j=i+1

Zj,θ,θ′H

 .

Thus for conjugate exponents α and β, the left hand side of (63) is bounded
by

k−1∑
i=0

[
En

θ,x0
|H|α

] 1
α En

θ,x0

∣∣Zi,θ,θ′ − 1
∣∣β k−1∏

j=i+1

(Zj,θ,θ′)β

 1
β

=
k−1∑
i=0

[
En

θ,x0
|H|α

] 1
α En

θ,x0

∣∣Zi,θ,θ′ − 1
∣∣β En

θ,x0

 k−1∏
j=i+1

(Zj,θ,θ′)β | Xs, s ≤ i + 1

 1
β

Using the Markov property of X it can be shown exactly as in Lemma 7 that
the conditional expectation in the equation above is �nite, as soon as β is
small enough and bounded by κk−i−1. Thus by Lemma 9 below, we deduce∣∣Eθ′,x0 [H]− Eθ,x0 [H]

∣∣ ≤ c(β) |θ − θ′|
[
En

θ,x0
|H|α

] 1
α ∑k−1

i=0 k
k−i−1

β′ .
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Lemma 9. There exists β > 1 such that for all 1 < β ≤ β we have:

En
θ,x0

[∣∣Zi,θ,θ′ − 1
∣∣β] 1

β ≤ c(β)
∣∣θ − θ′

∣∣ .
Proof. Using expression of Zi,θ,θ′ , equation (8) with the Markov property it
su�ces to bound the quantity

En
x0,θ

[∣∣∣∣pn
x0

(Un, V n, θ′)− pn
x0

(Un, V n, θ)
pn

x0
(Un, V n, θ)

∣∣∣∣β
] 1

β

. (64)

By Theorem 4 with k = 1 the function θ → px0(U
n, V n, θ) is absolutely con-

tinuous thus we can write the quantity above as: En
x0,θ

[∣∣∣∣R θ′
θ ṗn

x0
(Un,V n,s)ds

pn
x0

(Un,V n,θ)

∣∣∣∣β
] 1

β

.

Using �rst the Minkowski inequality, a change of measure and then the
Hölder inequality one �nd the following bounds for this quantity:

∫ θ′

θ
En

x0,s

[∣∣∣∣ ṗn
x0

(Un, V n, s)
pn

x0
(Un, V n, θ)

∣∣∣∣β pn
x0

(Un, V n, θ)
pn

x0
(Un, V n, s)

] 1
β

ds

≤
∫ θ′

θ
Ex0,s

[∣∣∣∣ ṗn
x0

(Un, V n, s)
pn

x0
(Un, V n, s)

∣∣∣∣βα′
] 1

βα′

Ex0,s

[∣∣∣∣pn
x0

(Un, V n, s)
pn

x0
(Un, V n, θ)

∣∣∣∣(β−1)β′
] 1

ββ′

ds

for two conjugate exponents α′ and β′. But the �rst expectation in the right
hand side above is bounded by Corollary 2 (with k = 1) for all choice of α′,
β and the second expectation can be bounded if (β− 1)β′ is close enough to
zero by using (9) as in the proof of Lemma 7. This gives that (64) is smaller
than c |θ − θ′|.

5.3 Technical lemmas

Lemma 10. The covariance matrix of (Ũ θ
0 , . . . , Ũ θ

k ) is a2(x0, θ)K̃. This
matrix is invertible.

Proof. The �rst statement is easily checked from the expressions (18)� (20).
Then we see that (λ0, . . . , λk) is element of the null space of K̃(x0, θ) if the
variance of

∑
i λiŨ

θ
i is null which gives, for all j = 0, . . . , k − 1:∫ 1

0
[λjµ([s, 1]) + λj+1µ([0, s])]2 ds = 0.

But from the assumption (3) on µ, the condition, αµ([0, s]) + βµ([s, 1]) = 0
ds−a.e on [0, 1], implies that α = β = 0 and hence we deduce λj = 0,∀j.
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Lemma 11. Let (G0, . . . , Gk) be a centered Gaussian vector with invertible
covariance matrix Ck+1 and let us denote by Ck−1 the covariance matrix of
(G1, . . . , Gk−1). Then,∑

0≤j,j′≤k

Gj [Ck+1]−1
j,j′Gj′ −

∑
1≤j,j′≤k−1

Gj [Ck−1]−1
j,j′Gj′ , (65)

is a χ2(2) random variable.

Proof. Write the Gram-Schmidt orthonormalization procedure for the L2

vectors G1, . . . , Gk, G0 as: H0
...
Hk

 = Pk

G0
...

Gk

 ,

where the variables H0, . . . ,Hk are i.i.d. with standard Gaussian law and Pk

is some triangular matrix. Then a few linear algebra shows that (65) is equal
to
∑k

j=0H2
j −

∑k−1
j=1 H2

j = H2
0 +H2

k and thus is chi-square distributed.
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