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Abstract

We consider an implicit time discretization for the motion of a hypersur-
face driven by its anisotropic mean curvature. We prove some convergence
results of the scheme under very general assumptions on the forcing term,
which include in particular the case of a typical path of the Brownian mo-
tion. We compare this limit with other available solutions, whenever they are
de�ned. As a by-product of the analysis, we also provide a simple proof of
the coincidence of the limit �ow with the regular evolutions, de�ned for small
times, in the case of a regular forcing term.

1 Introduction

Mean curvature �ow has attracted a lot of attention in the past few years. Being one

of the simplest evolution of hypersurfaces of Rn, its analysis arises many di�cult

issues mainly related to the formation of singularities, which sometimes lead to

changes of the topology. To deal with this phenomenon, several notions of weak

solutions have been proposed, such as (only to mention some) the varifold theory

of Brakke [6], the level-set solution de�ned through the viscosity theory [13, 14,

10], the minimal barrier method of De Giorgi [11], the limit of a reaction-di�usion

equations [9, 16] and the minimizing movements method [1, 20, 2], that corresponds

to an implicit time-discrete scheme.

Each of these methods has di�erent features and presents advantages and dis-

advantages. In particular, the level-set method always provides a unique solution,

globally de�ned in time in the class of compact subsets of Rn, but it is often very

di�cult to prove that such a solution is a regular hypersurface. There are even some

singular situations in which this solution becomes a compact set with nonempty in-

terior, showing to the so-called fattening phenomenon. The minimal barrier method

is a geometric counterpart of the level-set method and produces essentially the same

solution [5].
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On the contrary, the minimizing movements method produces a solution, called

the �at �ow, which can be nonunique but is always a (possibly nonsmooth) hyper-

surface. One of the di�culties in this approach is to show that the solution coincides

with the classical smooth solution, whenever the latter exists, a property which is

very easy to prove in the context of level-set viscosity solutions. One faces similar

di�culties in proving that the �at �ow is always contained in the level-set solution.

In this paper we study the (anisotropic) mean curvature �ow with a possibly

discontinuous driving force, by adapting the minimizing movements method, which

has been originally developed without any forcing term. More precisely, we consider

the evolution E(t) of a set whose boundary is driven by the velocity

V (x) = −(κφ(x) + g(x, t))nφ(x) (1)

for any x ∈ ∂E(t), where κφ(x) and nφ(x) are respectively the φ-curvature and

φ-normal to ∂E(t) at x (see Section 2 for precise de�nitions).

The purpose of this paper is twofold:

1. We extend the method to evolutions with a driving force, providing proofs

of the coincidence with regular solutions and the inclusion in the level-set

solution which are simpler than the original ones [1, 17];

2. Our approach also applies to the case where the forcing term is discontinuous.

One important example is a forcing term which is the time derivative of an

Hölder continuous function G(t), e.g., a typical path of the Brownian motion

dW/dt. A theory yielding existence and uniqueness for such evolutions, based

on a level-set formulation in the framework of the viscosity theory, has been

recently developed in [18, 19], and a corresponding theory in the framework

of minimal barriers (valid only for x-independent forcing terms) has been

proposed in [12].

We do not address in the present paper the issue of continuity in time (in a suitable

topology) of the limit �at �ow, even if we prove some weaker continuity results in

the Hausdor� distance (see Propositions 4.2, 4.3 and Remark 4.4).

We expect that this method can be adapted to the stochastic case, i.e., when

we replace the forcing term with a Brownian motion in time possibly correlated in

the spatial variable, in the spirit of [18, 19] (see also [21, 22] for a di�erent approach

to this problem, which still uses an implicit time discretization procedure).

2 Preliminary de�nitions and results

Let φ : RN → R be a norm on RN (that is, an even, convex, one-homogeneous

function) such that φ ∈ C2(RN \ {0}) (we shall simply say that φ is smooth) and

∇2(φ2) ≥ c Id for some c > 0, so that φ is uniformly convex or elliptic. Most of

our results could be extended to more general norms (or even possibly non-even
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convex one-homogeneous functions), but the proof of the consistency theorem 3.3,

in the form presented here, needs such a regularity. Moreover, providing a clear and

sound de�nition of a sub/super�ow, as in De�nition 2.1 below, is more di�cult if

the anisotropy is only Lipschitz-continuous, or non elliptic.

Let φ◦ be the polar norm, that is, φ◦(ξ) := supφ(η)≤1 ξ · η, for all ξ ∈ RN . It

turns out that also φ◦ is smooth and elliptic. In the sequel, the couple (φ, φ◦) will

be referred as the anisotropy. A ball of radius r > 0 centered in x0 ∈ RN for the

norm φ, i.e., the set Wφ(x0, r) := {φ(x− x0) ≤ ρ}, will be called a Wul� shape (we

set for simplicity Wφ := Wφ(0, 1)).

When E,F ⊂ RN , we denote by distφ(E,F ) the distance between E and F with

respect to φ:

distφ(E,F ) := inf
x∈E, y∈F

φ(x− y).

Given a set E ⊂ RN , we also de�ne dE(x), the signed distance function to ∂E (with

respect to the norm φ), by

dE(x) := inf
y∈E

φ(x− y) − inf
y∈RN\E

φ(y − x).

We let nφ(x) := ∇φ◦(∇dE(x)) and κφ(x) := divnφ(x) be respectively the φ-normal

and the φ-curvature of ∂E at x. Notice that if ∂E is of class C2, then the functions

nφ and κφ are de�ned and continuous in an open neighbourhood of ∂E.

We say that E satis�es an interior (resp. exterior) εWφ-condition, ε > 0, if E =

{dE < −ε}+ εWφ (resp. RN \E = {dE > ε}+ εWφ), which is equivalent to require

that at each point of ∂E, there is a Wul� shape of radius ε inside E (resp., outside

E), that is tangent to ∂E at x.

2.1 Evolution law

De�nition 2.1. Let E(t) ⊂ RN , t ∈ [t0, t1]. We say that E(t) is a super�ow of (1),

if there exists a bounded open set A ⊂ RN , with
⋃

t0≤t≤t1
∂E(t)×{t} ⊂ A× [t0, t1],

and δ > 0, such that d(x, t) = dE(t)(x) ∈ C0([t0, t1];C2(A)), and

d(x, s)− d(x, t) ≥
∫ s

t

div∇φ◦(∇d)(x, τ) dτ + G(x, s) − G(x, t) + δ(s− t), (2)

for a.e. x ∈ A and any t, s with t0 ≤ t ≤ s ≤ t1, where G(x, t) :=
∫ t

0
g(x, s) ds.

We say that E(t) is a sub�ow whenever δ < 0 and the reverse inequality holds

in (2).

We indicate with F+ (resp. F−) the family of all super�ows (resp. sub�ows)

of (1).

We observe that if g is continuous in (x, t), and d is C1 in t, condition (2) is

equivalent to require
∂d

∂t
> div∇φ◦(∇d) + g
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in A × [t0, t1]. On the other hand, De�nition 2.1 still makes sense if the driving

term is the �time-derivative� of a function G ∈ C0([t0, t1];L∞(A)), even when G is

nondi�erentiable with respect to t.

2.2 Barriers

We recall the de�nition of minimal and maximal barrier in the sense of De Giorgi.

De�nition 2.2. We say that a function Φ : [t0,+∞) → P(RN ) is a barrier with

respect to F+ if for any Σ(t) ∈ F+, t ∈ [a, b] ⊂ [t0,+∞), Σ(a) ⊆ Φ(a) implies

Σ(b) ⊆ Φ(b).

Similarly, we say that Φ is a barrier with respect to F− if for any Σ(t) ∈ F−,
t ∈ [a, b] ⊂ [t0,+∞), Σ(a) ⊇ Φ(a) implies Σ(b) ⊇ Φ(b).

In the following we denote by B±t0 the class of all barriers with respect to F±,
de�ned on [t0,+∞).

De�nition 2.3. Let E ⊆ RN , t0 ∈ R. The minimal barrier M(E, t0) : [t0,+∞) →
P(RN ) starting from E at time t0 is de�ned as:

M(E, t0)(t) :=
⋂{

Φ(t) : Φ ∈ B+
t0 , Φ(t0) ⊇ E

}
.

We de�ne the maximal barrier N (E, t0) : [t0,+∞) → P(RN ) starting from E at

time t0 as:

N (E, t0)(t) :=
⋃{

Φ(t) : Φ ∈ B−t0 , Φ(t0) ⊆ E
}
.

We also de�ne the upper and lower regularized barriers as

M∗(E, t0)(t) :=
⋃
ρ>0

M(E−ρ , t0)(t) M∗(E, t0)(t) :=
⋂
ρ>0

M(E+
ρ , t0)(t),

N∗(E, t0)(t) :=
⋃
ρ>0

N (E−ρ , t0)(t) N ∗(E, t0)(t) :=
⋂
ρ>0

N (E+
ρ , t0)(t) ,

where E±ρ = {dE ≤ ±ρ}.

We recall the following result, proved in [5].

Theorem 2.4. Assume that G(x, t) =
∫ t

0
g(x, s) ds, with g continuous. Then, we

haveM∗(E, t0)(t) = N ∗(E, t0)(t) andM∗(E, t0)(t) = N∗(E, t0)(t) for any E ⊂ RN

and t ≥ t0. Moreover, the set M∗(E, t0)(t) \M∗(E, t0)(t) coincides with the zero

level-set of the viscosity solution of the parabolic equation corresponding to (1).

In the sequel, we shall omit the explicit dependence of barriers on t0 whenever

t0 = 0.

2.3 Anisotropic total variation

The total variation of a function w ∈ L1(Ω) is de�ned as

sup
{∫

Ω

u(x)divψ(x) dx : ψ ∈ C1
0 (Ω; RN ), |ψ(x)| ≤ 1 ∀ x ∈ Ω

}
.
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It turns out that it is �nite if and only if the distributional derivative Dw is a

bounded Radon measure. In this case, the total variation is equal to the variation

|Dw|(Ω) =
∫
Ω
|Dw| of the measure Dw, and w belongs to the space BV (Ω) of

functions with bounded variation.

Given (φ, φ◦) a couple of mutually polar norms in RN (an anisotropy), one

de�nes in the same way the anisotropic total variation∫
Ω

φ◦(Dw) = sup
{∫

Ω

u(x)divψ(x) dx : ψ ∈ C1
0 (Ω; RN ), φ(ψ(x)) ≤ 1 ∀ x ∈ Ω

}
.

Clearly, it is �nite if and only if w ∈ BV (Ω). In the case w = χE , the characteristic

function of a measurable set E, then w ∈ BV (Ω) if and only if E is a set of �nite

perimeter in Ω (a Caccioppoli set). In this case, one can de�ne a reduced boundary

∂∗E (which is HN−1�equivalent to the measure theoretical boundary, that is, the

set of points where E has Lebesgue density neither 0 nor 1), on which is well de�ned

a normal unit vector νE(x), and such that DχE = νEHN−1 ∂∗E. Then, one has∫
Ω

|DχE | = HN−1(∂∗E) and

∫
Ω

φ◦(DχE) =
∫

∂∗E

φ◦(νE(x)) dHN−1(x).

See [15, 3] for more details.

3 The implicit time discretization

Let Ω be a bounded, convex, open subset of RN . Let G ∈ C0([0,+∞), L∞(Ω)) and

let ωG,T its modulus of continuity in [0, T ]. Let (φ, φ◦) be the anisotropy, which we

assume to be smooth and elliptic. Let E ⊆ RN . Given s > t ≥ 0, let w denote the

unique solution of

min
w∈L2(Ω)

∫
Ω

φ◦(Dw) +
1

2(s− t)

∫
Ω

(
w(x)− dE(x)−G(x, s) +G(x, t)

)2

dx . (3)

We let Tt,s(E) = {x ∈ Ω : w(x) < 0}.
Notice that the set Tt,s(E) is the minimizer of a prescribed curvature problem,

with bounded mean curvature. Indeed, reasoning as in [8, 7, 4], one can check that

this set is a solution of the variational problem

min
(∫

Ω∩∂∗F

φ◦(νF (x))dHN−1(x) +
1

s− t

∫
F

dE(x) +G(x, s)−G(x, t) dx
)
,

where the minimum is taken among the subsets F of Ω of �nite perimeter. It

follows that the set Tt,s(E) has boundary of class C1,α inside Ω, outside a compact

singular set of zero HN−1-dimension [1] (when N = 2, the set Tt,s(E) has boundary

of class C1,1). The variational problem above is the generalization of the approach

proposed in [1, 20], for building mean curvature �ows without driving terms, through

an implicit time discretization.

For s = t+h, the Euler equation for w at a point x ∈ ∂Tt,t+h(E) formally reads

as

dE(x) = −h
(
κφ(x) +

G(x, t+ h)−G(x, t)
h

)
,
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with κφ being the φ-curvature at x of ∂Tt,t+h(E), so that it corresponds to an

implicit time-discretization of (1). Observe also that this approximation is mono-

tone: indeed if E ⊆ E′ then dE ≥ dE′ , which yields w ≥ w′, w and w′ being the

solutions of (3) for the distance functions dE and dE′ respectively. We deduce that

{w < 0} ⊆ {w′ < 0}, that is, Tt,s(E) ⊆ Tt,s(E′).

We will soon show (Theorem 3.3) that this scheme is also consistent, in some

sense, with the evolution (1). Before this, let us prove that it is independent on

Ω, in the sense that when ∂E ⊂ Ω, then for s − t is small enough the set Tt,s(E)

is also the zero sublevel-set of any function w′ solving (3) in any larger open set

Ω′ ⊇ Ω. This justi�es why we may ignore the dependency on Ω in our notation.

Here and in the rest of the paper we shall assume that G is de�ned in the whole

space: G ∈ C0([0,+∞);L∞(RN )).

Proposition 3.1. For any δ > 0 and T > 0, there exists h0 > 0 such that if E is a

closed set with compact boundary ∂E ⊂ Ω, such that distφ(∂Ω, ∂E) ≥ δ, then when

h ≤ h0, for any t ≤ T , the set Tt,t+h(E) is the same if computed in Ω or in any

larger open set Ω′ ⊇ Ω.

Before proving this proposition, we show a result that allows us to control in

some uniform way the speed at which an initial Wul� shape {φ(x − x0) ≤ ρ}
decreases in an iteration of the algorithm. The convexity of Ω is needed in the

proof of this result.

Lemma 3.2. Let x0 ∈ Ω and ρ > 0, and let t ≥ 0. Let w solve

min
w∈L2(Ω)

∫
Ω

φ◦(Dw) +
1
2h

∫
Ω

(w(x)−(φ(x−x0)−ρ)−G(x, t+h)+G(x, t))2 dx . (4)

Then

w(x) ≤


φ(x− x0) + h

N − 1
φ(x− x0)

+ ∆h(t)− ρ if φ(x− x0) ≥
√
h(N + 1)

√
h

2N√
N + 1

+ ∆h(t)− ρ otherwise,
(5)

where ∆h(t) := ‖G(·, t+ h)−G(·, t)‖L∞(Ω).

Proof. Let w denote the function given in the right-hand side of equation (5). Let

z be the �eld given by

z(x) =


x− x0

φ(x− x0)
if φ(x− x0) ≥

√
h(N + 1)(

1−
(

φ(x−x0)√
h(N+1)

− 1
)2
)

x− x0

φ(x− x0)
otherwise.

One checks, as in [7, App. B], that z ∈ ∂φ◦(∇w(x)) a.e., and

w(x)− φ(x− x0) + ρ

h
− div z(x) =

∆h(t)
h
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a.e. in Ω. Moreover, if x ∈ ∂Ω, z(x) · νΩ(x) has the sign of (x − x0) · νΩ(x), which

is nonnegative since Ω is convex. By de�nition of ∆h(t), we deduce that w is a

supersolution for (4), so that w ≥ w a.e. in Ω.

Indeed, we have∫
Ω

[(w − w)+]2 =
∫
{w>w}

(w − w)(div z − div z)

=
∫

∂Ω∩{w>w}
(w − w)(z − z) · νΩ −

∫
{w>w}

(∇w −∇w) · (z − z)

≤ −
∫

∂Ω∩{w>w}
(w − w)z · νΩ ≤ 0 ,

since z · νΩ = 0, where z ∈ ∂φ◦(w) is such that w(x)−φ(x−x0) + ρ−G(x, t+h) +

G(x, t)− h div z(x) = 0 (see for instance [7, 4]).

Proof of Proposition 3.1. We assume E ⊂ Ω, the proof being identical in the other

case RN \ E ⊂ Ω. Let w solve

min
w∈L2(Ω)

∫
Ω

φ◦(Dw) +
1
2h

∫
Ω

(
w(x)− dE(x)−G(x, t+ h) +G(x, t)

)2
dx ,

and let x ∈ Ω with dE(x) ≥ δ/2. One has dE ≥ δ/2 − φ(· − x) in Ω. Invoking

Lemma 3.2, we deduce that w(x) ≥ δ/2−∆h(t)− 2N
√
h/
√
N + 1. Hence if h0 ≤ 1

is such that ωG,T+1(h0) + 2N
√
h0/

√
N + 1 ≤ δ/4, we �nd that when h ≤ h0 we

have w(x) ≥ δ/4.

Let now Ω′ ⊇ Ω. If h ≤ h0, we have in particular that dE(x) + G(x, t + h) −
G(x, t) ≥ δ/4 for any x ∈ Ω′ \ Ω, t ≤ T . We can hence reproduce the proof of

Corollary A.2 in [8], that shows that if w′ is the solution of the same problem as w,

but in Ω′ instead of Ω, then w′ ∧ (δ/4) is the function equal to w ∧ (δ/4) in Ω and

to δ/4 in Ω′ \ Ω. We deduce {w < 0} = {w′ < 0}. Observe that in this proof, the

larger domain Ω′ does not need to be convex.

The previous proposition allows to de�ne in a unique and intrinsic way the

evolution Tt,t+h(E) in RN for any t ≥ 0 and h > 0, of a set E with compact

boundary ∂E b RN , by considering the corresponding set computed in a ball with

radius large enough. Therefore, from now on we shall assume ∂E b RN and we

shall omit the dependence on Ω in the construction of the limit �ow. We now prove

our main consistency result.

Theorem 3.3. Let E(t), t ∈ [t0, t1] be a super�ow of (1). Then there exists h0

such that for any h < h0 and any t with t0 ≤ t < t+h ≤ t1, Tt,t+h(E(t)) ⊇ E(t+h).

Respectively, if E(t) is a sub�ow of (1), then Tt,t+h(E(t)) ⊆ E(t + h) for h small

enough.

Proof. Let A ⊂ RN be the open set associated to the super�ow E(t) (cf. De�ni-

tion 2.1) and let Ω be a bounded, convex open set with A b Ω.

We �rst observe that there exists ε > 0 such that C := {(x, t) : t0 ≤ t ≤
t1, |d(x, t)| ≤ ε} ⊂ A× [t0, t1]. Since d(·, t) is uniformly bounded in C2(A), we can
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also assume, possibly reducing ε, that E(t) satis�es for all t an interior and exterior

εWφ-condition. Given t, h with t0 ≤ t < t + h ≤ t1, we build from d(·, t + h) a

supersolution for problem (3). Consider ψ : R → R a smooth increasing function

with ψ(s) ≥ s and ψ(s) = s for |s| ≤ ε/2. We set, for x ∈ B = {|d(·, t)| < ε},
v(x) := ψ(d(x, t+ h)). Then, for x ∈ B, from (2) it follows

v(x)− dE(t)(x)−G(x, t+ h) +G(x, t)
h

≥ d(x, t+ h)− d(x, t)−G(x, t+ h) +G(x, t)
h

≥ 1
h

∫ t+h

t

(div∇φ◦(∇d)(x, s)) ds + δ .

Let now ω be a modulus of continuity for div∇φ◦(∇d) in C: we �nd

v(x)− dE(t)(x)−G(x, t+ h) +G(x, t)
h

≥ div∇φ◦(∇d)(x, t+ h) + δ − ω(h).

Observe that for any x ∈ B it holds ∇v(x) = ψ′(d(x, t + h))∇d(x, t + h), so

that (recall that ∇φ◦ 0-homogeneous), ∇φ◦(∇v(x)) = ∇φ◦(∇d(x, t + h)) hence

div∇φ◦(∇d)(x, t + h) = div∇φ◦(∇v)(x). Therefore, if h is small enough so that

ω(h) ≤ δ, we get

v(x)− dE(t)(x)−G(x, t+ h) +G(x, t)
h

≥ div∇φ◦(∇v)(x).

Let w solve (3), with E = E(t) and s = t+ h. We will show that we may choose ψ

in order to have v ≥ w on ∂B, so that v is a supersolution for the problem

min

{∫
B

φ◦(Du) +
1
2h

∫
B

(u(x)− dE(t)(x)−G(x, t+ h) +G(x, t))2 dx :

u = w on ∂B

}

(which is solved by w). We will deduce that v ≥ w in B, hence {w < 0} ⊇ {v <
0} = {d(·, t+ h) < 0}, that is, Tt,t+h(E(t)) ⊇ E(t+ h).

First of all, d is uniformly continuous in time, so that if h is small enough, one

has d(x, t + h) ≥ 3ε/4 if d(x, t) = ε. If M > diamΩ, then M ≥ w in Ω. We may

choose a function ψ with ψ(3ε/4) ≥M , so that v(x) ≥M ≥ w(x) if d(x, t) = ε.

On the other hand, since E(t) satis�es the interior εWφ-condition, one deduces

from Lemma 3.2 that w(x) ≤ 2N
√
h/
√
N + 1 + ∆h(t) − ε whenever d(x, t) = −ε.

We observe that ∆h(t) → 0 as h → 0 uniformly in [t0, t1]. Hence if h is small

enough, we �nd that w(x) ≤ −3ε/4. We can choose ψ such that ψ(s) ≥ −3ε/4 for

any s, so that v(x) ≥ w(x) if d(x, t) = −ε. We conclude that v ≥ w on ∂B. Hence

v is a supersolution for (3), which implies Tt,t+h(E(t)) ⊇ E(t+ h).

If E(t) is a sub�ow, we can reproduce the same proof to show that Tt,t+h(E(t)) ⊆
E(t+ h).
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We deduce the following comparison result for sub/super�ows.

Corollary 3.4. Assume that E1(t), E2(t) are respectively a super�ow and a sub�ow

of (1) on [t0, t1], such that E1(t0) ⊆ E2(t0). Then E1(t) ⊆ E2(t) for all t ∈ [t0, t1].

Proof. By the previous theorem, there exists h0 such that Tt,t+h(E1(t)) ⊇ E1(t+h)

and Tt,t+h(E2(t)) ⊆ E2(t + h) for any t ∈ [t0, t1 − h], as soon as h ≤ h0. Hence,

if t ∈ [t0, t1], we just let n ≥ 1 be such that (t − t0)/n = h ≤ h0. Then, letting

tk = t0 + kh, one can easily check by induction that E1(tk) ⊆ Ttk−1,tk
(E1(tk−1)) ⊆

Ttk−1,tk
(E2(tk−1)) ⊆ E2(tk) for any 1 ≤ k ≤ n, which implies the thesis since

t = tn.

Remark 3.5. It could be interesting, from a numerical analysis point of view,

to modify slightly the algorithm presented in this paper by introducing a threshold

S > 0 and replace in problem (3) the distance function dE with a truncated distance

function (−S ∧ dE) ∨ S. Almost all of the results presented in this paper would

remain identical (in particular, the consistency still holds). Only the comparison

results in section 4.2 are not completely clear, since they rely on comparisons of the

true distance functions. However, it is reasonable to believe that in the limit h→ 0

also these results hold.

4 Convergence of the algorithm

4.1 The discrete �ow and its limit

Given E ⊂ RN , closed with compact boundary, and h > 0, we de�ne the �tube�

Eh ⊂ RN × [0,+∞) as follows

Eh(t) := T[ t
h ]h−h,[ t

h ]h · · ·T2h,3h Th,2h T0,h(E) , (6)

where [x] denotes the integer part of x. We then de�ne Eh :=
⋃

t≥0Eh(t)× {t}.
There exists a sequence (hn)n≥1 such that both Ehn and RN × [0,+∞) \Ehn =

cEhn converge in the Hausdor� distance (locally in time) to E∗ and cE∗ respec-

tively. Such convergence is equivalent to the locally uniform convergence, in RN ×
[0,+∞), of the distance functions dist((x, t), Ehn

) and dist((x, t), cEhn
) to the dis-

tance functions dist((x, t), E∗) and dist((x, t), cE∗), see [7, App. A]. In particular,

for any (x, t) ∈ E∗ (resp., cE∗), there exists (xn, tn) ∈ Ehn (resp., cEhn) such that

(xn, tn) → (x, t), and if (xn, tn) ∈ Ehn
(resp., cEhn

) and converge to some point

(x, t) ∈ Ω × [0,+∞), then (x, t) ∈ E∗ (resp., cE∗). In the sequel we denote by

(h)h>0 the sequence (hn)n≥1.

Clearly, E∗ is open while E∗ is closed, and E∗ ⊂ E∗. For any t ≥ 0, we denote

by E∗(t) (resp. E∗(t)) the section {x : (x, t) ∈ E∗} (resp. {x : (x, t) ∈ E∗}). From
the de�nition of E∗, E

∗ it follows

E∗(0) ⊆ int(E), E ⊆ E∗(0). (7)
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If F (t) is a super�ow on [t0, t1] such that F (t0) ⊂ E∗(t0), since dist(F (t0) ×
{t0}, cE∗) > 0, one sees that for h small enough, F (t0) ⊂ Eh([t0/h]h)∩Eh([t0/h]h+

h). It then follows from Theorem 3.3 that (if h is enough small) F (t) ⊂ Eh(t) for

any t ∈ [t0, t1], and passing to the limit we get F ⊂ E∗ ∩ (RN × [t0, t1]). Hence

E∗ satis�es a comparison principle for super�ows that start inside and analogously

E∗ satis�es a comparision principle for sub�ows starting outside, i.e. E∗ ∈ B+ and

E∗ ∈ B−. (It is not clear if we also have E∗ ∈ B− and E∗ ∈ B+.)

Let us now show that E∗(0) = int(E) and E∗(0) = E. In order to do so, we

further require that the function G satis�es the following regularity assumption: for

any T > 0 there exists C = C(T ) such that∣∣∣∣G(x, s)−G(y, s)−G(x, t) +G(y, t)
s− t

∣∣∣∣ ≤ C , (8)

for any s, t ≤ T . Note that this is equivalent to require that G can be writ-

ten as the sum G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and G2 ∈
Liploc([0,+∞);L∞(RN )).

We �rst construct explicit super/sub�ows starting from a Wul� shapeWφ(x0, r)

of radius r > 0 (or its complement), at time t ≥ 0. More precisely, we construct

super�ows W+
x0,t,r(s), with s ∈ [t,+∞), starting from Wφ(x0, r) at time t, which

are smooth on [t, t + τ ] and vanish after t + τ , where the duration τ depends only

on r, and such that for all h > 0, s ≥ t, we have Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+h).

Lemma 4.1. Let x0 ∈ RN and r > 0. We consider the functions

d±(x, s) := ±
(
φ(x− x0)− r +

s− t

2τ
r

)
+ G(x0, s)−G(x0, t) , (9)

for (x, s) ∈ Rn × [t, t+ τ ], where τ is such that

ωG,t+τ (τ) ≤ r

4
, (10)

τ ≤ r2

2(C(t+ τ) + 4(N − 1))
∧ r2

16(N + 1)
, (11)

where C(·) is the constant appearing in (8).

LetW+
x0,t,r(s) := {d+(·, s) ≤ 0} when s ∈ [t, t+τ ], andW+

x0,t,r(s) := ∅ for s > t+

τ . Then, for any s ≥ t, h > 0, we have Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+ h). On the

other hand, if W−
x0,t,r(s) := {d−(·, s) ≤ 0} when s ∈ [t, t+ τ ], and W−

x0,t,r(s) := RN

for s > t+τ , then, for any s ≥ t, h > 0, we have Ts,s+h(W−
x0,t,r(s)) ⊆W−

x0,t,r(s+h).

Notice that, letting τ(r) be the maximal time τ satisfying (10) and (11) for a

given r > 0, we have τ(r) > 0 and

lim
r→∞

τ(r) = +∞ .

Notice also that the condition ωG,t+τ (τ) ≤ r
4 ensures the inclusion Wφ(x0, r/4) ⊆

W+
x0,t,r(s) for s ∈ [t, t + τ ], hence in particular the set W+

x0,t,r(s) is nonempty. In

fact, one can easily check that W+
x0,t,r is a super�ow (in the sense of De�nition 2.1)

on [t, t+ τ ], while W−
x0,t,r is a sub�ow.
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Proof. Let s ∈ [t, t+ τ ] and h > 0. If s+h > t+ τ , W+
x0,t,r(s) = ∅ so that the thesis

is obvious, hence we may assume s+ h ≤ t+ τ . For any x ∈ RN , by (8) we have

d+(x, s) + G(x, s+ h)−G(x, s)

= φ(x− x0)− r +G(x0, s)−G(x0, t) +G(x, s+ h)−G(x, s) +
s− t

2τ
r

≤ φ(x− x0)− r +G(x0, s+ h)−G(x0, t) +
s− t

2τ
r + C(t+ τ)h .

Let now Ω be an open and bounded subset of RN which is big enough to guarantee

that the set Ts,s+h(W+
x0,t,r(s)) does not depend on Ω (Proposition 3.1). Hence the

solution w of (3), with E replaced by W+
x0,t,r(s) and (t, s) replaced by (s, s+ h), is

less than the solution of

min
v∈BV (Ω)

∫
Ω

φ◦(Dv)

+
1
2h

∫
Ω

(
v − φ(x− x0) + r −G(x0, s+ h) +G(x0, t)−

s− t

2τ
r − C(t+ τ)h

)2
dx,

which, in turn, is less (as shown in the proof of Lemma 3.2) than the function

φ(x− x0) + h
N − 1

φ(x− x0)
− r +G(x0, s+ h)−G(x0, t) +

s− t

2τ
r + C(t+ τ)h

if φ(x− x0) ≥
√
h(N + 1),

√
h

2N√
N + 1

− r +G(x0, s+ h)−G(x0, t) +
s− t

2τ
r + C(t+ τ)h

otherwise.

Hence, we see that

w(x) ≤ d+(x, s+ h) + h
N − 1

φ(x− x0)
− h

r

2τ
+ C(t+ τ)h

when φ(x − x0) ≥
√
h(N + 1). Now, since τ ≤ r2/(16(N + 1)) and h ≤ τ , we

get r/4 ≥
√
h(N + 1) so that we can replace the last condition with the stronger

condition φ(x − x0) ≥ r/4. On the other hand, if both φ(x − x0) ≥ r/4 and

τ ≤ r2/(2(C(t+ τ) + 4(N − 1))), then

r

2τ
≥ C(t+ τ) + 4(N − 1)

r
≥ C(t+ τ) +

N − 1
φ(x− x0)

,

so that w(x) ≤ d+(x, s+ h). This shows that Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+ h).

The proof of the similar thesis for W−
x0,t,r is analogous.

By the previous lemma, if Eh(t) ⊇Wφ(x0, r), then Eh(t+nh) ⊇W+
x0,t,r(t+nh)

for any n ≥ 1 and, in particular, Eh(t + nh) ⊇ Wφ(x0, r/4) as long as nh ≤ τ(r).

In other words, for any r > 0, then nh ≤ τ(r) yields

Eh(t+ nh) ⊇ {x : dEh(t)(x) ≤ −r}.
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We can easily deduce the same �semicontinuity� property for E∗: indeed, when

dE∗(t)(x) = −r, then, for any r′ < r, Wφ(x, r′) ⊂ Eh(t) as soon as h is small

enough, so that Wφ(x, r′/4) ⊂ Eh(t+ [τ/h]h) for all τ < τ(r′). Letting �rst h→ 0

and then r′ → r, we �nd that, if τ < τ(r), it follows

E∗(t+ τ) ⊇ {x : dE∗(t)(x) ≤ −r}. (12)

In the same way we obtain

E∗(t+ τ) ⊆ {x : dE∗(t)(x) < r}. (13)

Moreover, one can easily verify that the same properties hold at t = 0 with E∗(t)

replaced with E and E∗(t) replaced with int(E), where E is the initial set. From (12)

and (13) we also get

E∗(t+ τ) \ E∗(t+ τ)) ⊆ {distφ(·, E∗(t) \ E∗(t)) < r}. (14)

As a consequence, we obtain the following semicontinuity property for the tubes

E∗, E
∗.

Proposition 4.2. Assume that G satis�es (8). Let E be a closed subset of RN with

compact boundary. Let O,F be an open and a closed subset of RN respectively. Let

t ≥ 0 and let (τn)n≥0 be a sequence of nonnegative numbers going to 0. Then

• If cE∗(t+ τn) → cO in the Hausdor� sense, E∗(t) ⊆ O ,

• If E∗(t+ τn) → F in the Hausdor� sense, F ⊆ E∗(t) ,

moreover, if both convergences hold, then O ⊂ F and any Hausdor� limit of E∗(t+

τn) \ E∗(t + τn) is included in F \ O, which in turn is a subset of E∗(t) \ E∗(t).
Moreover, if t = 0, we can replace E∗(t) with int(E) in the �rst statement and E∗(t)

with E in the second. In particular, choosing τn ≡ 0, we get

int(E) ⊆ E∗(0) ⊆ E∗(0) ⊆ E ,

which implies, recalling (7), that E∗(0) = int(E) and E∗(0) = E.

Since O ⊂ F in the above proposition, we see also that if E∗(t) = E∗(t), then

E∗(t+ τ) → E∗(t) in the Hausdor� sense as τ → 0, whereas if E∗(t) = int(E∗(t)),

then cE∗(t+ τ) → cE∗(t), and if both are true, then E∗(t+ τ)\E∗(t+ τ) → ∂E∗(t)

as τ → 0. To show this one just needs to show that for any x ∈ ∂E∗(t), there exists
xτ ∈ E∗(t+ τ) \E∗(t+ τ) that converge to x as τ → 0. We know that there exists

yτ ∈ E∗(t+ τ) and zτ 6∈ E∗(t+ τ) such that both yτ and zτ converge to x. Then,

the segment [yτ , zτ ] must intersect the set E∗(t + τ) \ E∗(t + τ) and any point xτ

in this intersection will satisfy the desired property.

Notice also that, if E is such that E = int(E), we deduce that E∗(t) \ E∗(t)
converges to ∂E as t→ 0, in the Hausdor� sense.

The left continuity of the tubes E∗, E
∗ is given by the following proposition.
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Proposition 4.3. Assume that G satis�es (8). Let E be a closed subset of RN

with compact boundary, and let t > 0. Then cE∗(t− τ) → cE∗(t) in the Hausdor�

sense as τ → 0, τ ≥ 0, while E∗(t− τ) → E∗(t). Moreover, E∗(t− τ) \E∗(t− τ) →
E∗(t) \ E∗(t).

Proof. We sketch the proof of this proposition. As for the previous proposition,

one will deduce from (12) that if cE∗(t− τn) → cO in the Hausdor� sense, along a

subsequence τn going to 0, then O ⊆ E∗(t). On the other hand, since cE∗ is closed

in Ω× [0,+∞), one must have cO ⊆ cE∗(t). Thus O = E∗(t) and the thesis follows.

In the same way, (13) yields that if E∗(t − τn) → F in the Hausdor� sense, then

E∗(t) ⊆ F . From the closedness of F ∗ we conclude in the same way that F = E∗(t).

The last assertion follows from (14): �rst of all, any Hausdor� limit F of a

subsequence E∗(t− τn) \E∗(t− τn) is inside E∗(t) \E∗(t), by the previous results.

Now, since distφ(·, E∗(t − τn) \ E∗(t − τn)) converges uniformly to distφ(·, F ) as

n → ∞, E∗(t) \ E∗(t) ⊆ {distφ(·, F ) ≤ r} for any r > 0, hence it lies in F . Thus

F = E∗(t) \ E∗(t).

Remark 4.4. Notice that in general we cannot expect the maps t → E∗(t) and

t → E∗(t) to be continuous in the Hausdor� distance: indeed, this would prevent

small disconnected parts from disappearing in �nite time, a phenomenon which is

known to happen even when G ≡ 0. On the other hand, these maps are likely to

be continuous in the L1-topology, under suitable assumptions on G (when G ≡ 0 it

is proved in [1, Theorem 4.4]).

From the previous discussion, and recalling De�nition 2.2 and Theorem 3.3, we

get the following

Corollary 4.5. If G satis�es condition (8), we have

E∗(t) \ E∗(t) ⊆ N ∗(E, 0)(t) \M∗(E, 0)(t).

In particular, as long as N ∗(E, 0)(t) \ M∗(E, 0)(t) has no interior (nonfattening

condition), then the motions E∗(t) and E∗(t) are uniquely de�ned and do not depend

on the sequence along which the limits are obtained.

Remark 4.6. Notice that, as long as the set E has compact boundary, all the

resuls of this section can be easily extended to functions G which are only locally

bounded in x, i.e. G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and G2 ∈
Liploc([0,+∞);L∞loc(RN )).

Proposition 4.7. If G(x, t) =
∫ t

0
g(x, s) ds, with g continuous, then E∗(t) \ E∗(t)

is contained in the zero level-set of the corresponding viscosity solution.

Proof. It follows immediately from Theorem 2.4 and Corollary 4.5.

From Corollary 4.5 and from [12, Section 3] we also have the following consis-

tency result in the case of an x-independent forcing term.
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Proposition 4.8. Let G(x, t) = G(t) ∈ C0([0,+∞)) and let φ(x) = |x| (i.e.
isotropic mean curvature �ow). Then E∗(t) \ E∗(t) is contained in the minimal

barrier solution de�ned in [12]. In particular, if ∂E is of class C2,α, E∗(t) = E∗(t)

and ∂E∗(t) coincides with the unique (local in time) solution of (1) given in [12].

Remark 4.9. As already pointed out in the Introduction, the viscosity theory

can be applied under more general assumptions on G than what is required in

Proposition 4.7 (see [18, 19]). However, it is still not clear which is the relation

between the limit set E∗(t) \E∗(t) and the zero level-set of such viscosity solutions,

except for the particular case of an x-independent forcing term, where the equality

holds for small times as a consequence of Proposition 4.8 (if ∂E is regular enough).

4.2 An inclusion principle

Let us now consider the case where the driving term is the �time-derivative� of a

function G(x, t) that satis�es∣∣∣∣G(x, s)−G(y, s)−G(x, t) +G(y, t)
s− t

∣∣∣∣ ≤ C(T )|x− y|. (15)

This condition is stronger than condition (8) (see also Remark 4.6) and is for

instance true whenever G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and

G2 ∈ C1([0,+∞);Lip(RN )). In particular, all the results of Section 4.1 still hold

under assumption (15).

Given a closed set E ⊂ RN with nonempty compact boundary ∂E, we de�ne

the maximal existence time T ∗E ∈ [0,+∞] for the �ow E∗ as the supremum of all

times times t such that E∗(t) 6= ∅ and E∗(t) 6= RN . The fact that T ∗E > 0 is ensured

by Proposition 4.2, whenever int(E) 6= ∅.
Consider now two closed sets E1 and E2, with nonempty compact boundary,

and assume E1 ⊂ E2 and D := distφ(∂E1, ∂E2) > 0. Notice that, if G depends

only on time, then for each z such that φ(z) ≤ D, we have z + E1 ⊂ E2, so

that T0,h(z + E1) ⊂ T0,h(E2) for any h > 0. Since G does not depend on x,

we get T0,h(z + E1) = z + T0,h(E1). It follows Wφ(0, D) + T0,h(E1) ⊂ T0,h(E2),

which implies distφ(∂T0,h(E1), ∂T0,h(E2)) ≥ D. By induction, we deduce that

distφ(∂E1
h(t), ∂E2

h(t)) ≥ D for any t ≥ 0 (where we set the distance equal to +∞ if

one of the two sets disappears).

For a general G the estimate is slightly trickier, even if it follows the same idea.

Assume T ∗ = min{T ∗E1 , T ∗E2} > 0 and let T < T ∗. By Proposition 3.1, we can �nd

a �large� bounded open set Ω ⊂ RN such that the sets E1
h(t) and E2

h(t) de�ned

in (6) do not depend on Ω, for t ∈ [0, T ] and h small enough. In particular, we

can assume that ∂E1
h(t) and ∂E2

h(t) remain at a positive distance from ∂Ω for any

t ∈ [0, T ]. Let w1, w2 be the solutions of the variational problem (3), for t = 0 and

s = h, with dE replaced by dE1 , dE2 respectively. Notice that, for z ∈ RN , the set

z + T0,h(E1) = z + {w1 < 0} coincides with the set {x ∈ z + Ω : w1(x − z) < 0},
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and the function w̃1(x) = w1(x− z), de�ned in z + Ω, is the solution of

min
w∈L2(z+Ω)

∫
z+Ω

φ◦(Dw) +
1
2h

∫
z+Ω

(w(x)−dE1(x−z)−G(x−z, h)+G(x−z, 0))2 dx .

Possibly enlarging the set Ω, we can assume that both functions w2 and w̃1 are

solutions of their respective variational problems in the same domain (for instance,

Ω ∪ (z + Ω)). Then, since dE1(x − z) ≥ dE1(x) − φ(z) ≥ dE2(x) + D − φ(z) and,

using (15), −G(x− z, h) +G(x− z, 0) ≥ −G(x, h) +G(x, 0)− C(T )|z|h, one �nds
that w̃1 ≥ w2 + D − φ(z) − C(T )|z|h. In particular, if φ(z) ≤ D/(1 + hC ′(T ))

with C ′(T ) = C(T ) supz 6=0 |z|/φ(z), we get {w̃1 ≤ 0} ⊂ {w2 ≤ 0}, which in turn

implies distφ(∂T0,h(E1), ∂T0,h(E2)) ≥ D/(1 + hC ′(T )). By an induction argument,

we deduce that distφ(∂E1
h(t), ∂E2

h(t)) ≥ D(1 + hC ′(T ))−[t/h] for any t ∈ [0, T − h]

and h > 0 small enough. Observe that, as h → 0, we have D(1 + hC ′(T ))−[t/h] →
De−C′(T )t. We will show that this estimate also holds in the limit, for the motions

(E1)∗ and (E2)∗, obtained along the same subsequence (hk)k≥1 (which we will still

denote by (h)h>0).

Fix δ < De−C′(T )T . Then, if h is small enough, we have δ ≤ distφ(E1
h(t),Ω \

E2
h(t)) for any t ∈ [0, T ). Given a �xed t < T , choose a subsequence (hk) such that

both Hausdor� limits of E1
hk

(t) and Ω \ E2
hk

(t) exist in Ω, and denote by K and

L, respectively, these limits. Since distφ(E1
h(t),Ω \ E2

h(t)) ≥ δ, in the limit we �nd

distφ(K,L) ≥ δ. We also have K ⊆ (E1)∗(t) and L ⊆ Ω \ (E2)∗(t). De�ne now

Kδ/2 = K + Wφ(0, δ/2), which has its boundary between ∂K and ∂L and lies at

distance at least δ/2 from both boundaries. Let δ′ < δ and set δ′′ = (δ+δ′)/2. If x ∈
∂Kδ/2, thenWφ(x, δ′′/2) b Ω\(K∪L) so that if hk is small enough, Wφ(x, δ′′/2) ⊂
E2

hk
(t) and Wφ(x, δ′′/2)∩E1

hk
(t) = ∅. By Lemma 4.1 there exists τ > 0, depending

only on δ′′ and δ′ < δ′′, such thatWφ(x, δ′/2) ⊂ E2
hk

(s) andWφ(x, δ′/2)∩E1
hk

(s) = ∅
for all t ≤ s < t+ τ . In the limit, this implies that for t ≤ s < t+ τ , Wφ(x, δ′/2) ⊂
(E2)∗(s) and (E1)∗(s)∩Wφ(x, δ′/2) = ∅. Since x is an arbitrary point of ∂Kδ/2, this

implies that both distφ(∂Kδ/2, ∂(E1)∗(s)) ≥ δ′

2 and distφ(∂Kδ/2, ∂(E2)∗(s)) ≥ δ′

2 .

We deduce that for any s in (t, t + τ), distφ(∂(E1)∗(s), ∂(E2)∗(s)) ≥ δ′. Since t

is arbitrary in [0, T ) and τ does not depend on t, we deduce that in fact for any

t ∈ [0, T ), distφ(∂(E1)∗(t), ∂(E2)∗(t)) ≥ δ′. (The case t = 0 follows directly from

Proposition 4.2.) We may send δ′ → δ to see that the inequality holds with δ

instead od δ′. In fact, we can deduce from the previous argument that the distance

between the two sets decreases at most like De−C′(T )t, t ∈ [0, T ).

We have obtained the following result.

Proposition 4.10. Let E1 ⊂ E2 ⊂ RN be two closed sets with nonempty compact

boundary, and assume distφ(∂E1, ∂E2) > 0. Denote by E1
h and E2

h, h > 0, the

corresponding discrete evolutions in RN × [0,+∞). Let (hk) be a subsequence such

that E1
hk
→ (E1)∗, and cE2

hk
→ c(E2)∗ in the Hausdor� sense. Assume also that

E2
hk
→ (E2)∗. Then, for any t ≥ 0 we have (E1)∗(t) ⊆ (E2)∗(t).

In particular, for any t ∈ [0, T ), with T := max{T ∗E1 , T ∗E2}, we have, for any t′
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with t < t′ < T ,

distφ(∂(E1)∗(t), ∂(E2)∗(t)) ≥ distφ(∂E1, ∂E2)e−C′(t′)t > 0 (16)

where C ′ is proportional to the constant in (15).

Remark 4.11. Notice that the inclusions (E1)∗(t) ⊆ (E2)∗(t) and (E1)∗(t) ⊆
(E2)∗(t) always hold (without any assumption on distφ(∂E1, ∂E2)).

Remark 4.12. We remark that we do not know if the thesis of Proposition 4.10

still holds if (E1)∗ and (E2)∗ are limits of E1
hk

and E2
hj

(respectively) along dif-

ferent subsequences. This would be an important result, yielding for instance the

uniqueness of the level-set solution u(x, t), de�ned in Section 4.3.

4.3 The level-set approach

Consider now a function u0 ∈ BUC(RN ), such that for each t ∈ R, the level-set

∂{u0 > t} is bounded. For all q ∈ Q consider the level-sets Eq := {u0 ≥ q} and let

Eq
h ⊂ RN × [0,+∞) be the discrete evolutions of Eq. Then, a diagonal argument

shows that, along a subsequence (hk)k≥1, we have Eq
hk

→ (Eq)∗ and cEq
hk

→
c(Eq)∗ locally in the Hausdor� sense, i.e. the distance functions dist(·, Eq

hk
) and

dist(·,RN×[0,+∞)\Eq
hk

) converge to dist(·, (Eq)∗) and dist(·,RN×[0,+∞)\(Eq)∗)

respectively, uniformly in RN × [0, T ] for any T > 0.

Observe that (Remark 4.11) for each q, r ∈ Q with q ≥ r, we have (Eq)∗(t) ⊆
(Er)∗(t) and (Eq)∗(t) ⊆ (Er)∗(t), for any t ≥ 0. Hence we can de�ne two functions

u∗, u∗ : RN × 0,+∞) → R, by letting

u∗(x, t) := sup{q ∈ Q : x ∈ (Eq)∗(t)} , u∗(x, t) := sup{q ∈ Q : x ∈ (Eq)∗(t)}.

By Proposition 4.10, we know that (Eq)∗(t) ⊂ (Er)∗(t) for any t ≥ 0 whenever

q > r, which implies u∗(x, t) = u∗(x, t) for any (x, t) ∈ RN × [0,+∞). Indeed, if q >

u∗(x, t), then x 6∈ (Eq)∗(t), so that it is neither in (Eq)∗(t), hence u∗(x, t) ≤ u∗(x, t);

on the other hand, if q > u∗(x, t), then if q′ ∈ (u∗(x, t), q) ∩ Q, x 6∈ (Eq′)∗(t) ⊃
(Eq)∗(t), hence x 6∈ (Eq)∗(t): we deduce u∗(x, t) ≤ u∗(x, t). We simply denote by

u(x, t) this common value.

Let us observe that, for each t ≥ 0, from Proposition 4.10 (more exactly from

the estimate (16)) it follows that u(·, t) is uniformly continuous on RN (with the

same modulus of continuity as u0 if C(T ) = 0 in (15)). It also follows easily from

Propositions 4.2 and 4.3 that if (xn, tn) → (x, t), then u(xn, tn) → u(x, t): indeed,

for instance, one sees that if u(xn, tn) < q for n large enough, then xn 6∈ (Eq)∗(tn),

hence in the limit x 6∈ (Eq)∗(t) so that u(x, t) ≤ q. This means that the function

u is globally continuous on RN × [0,+∞). In particular, we have the inclusions

(Eq)∗(t) ⊂ (Es)∗(t) for any t ≥ 0 whenever q > s, q, s ∈ R. We deduce easily that

(Es)∗ \ (Es)∗ ⊆ {(x, t) : u(x, t) = s} (17)
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Now, letN := {s ∈ R : |{(x, t) ∈ RN×[0,+∞) : u(x, t) = s}| = 0}. The setN is at

most countable. If s 6∈ N , then (17) is in fact an equality: one has {u > s} = (Es)∗
and {u ≥ s} = (Es)∗. One can deduce that ∂Es

hk
converges to {u = s} in the local

Hausdor� sense. For these values of s, the �ow de�ned by our algorithm is a �true�

evolution of hypersurfaces. Indeed, at any time t ≥ 0, we can show that {u(·, t) = s}
has empty interior. Otherwise, there would exist Wφ(x, ρ) ⊆ {u(·, t) = s}. In

particular, if q > s > q′, q, q′ ∈ Q, we would have Wφ(x, ρ) ⊆ (Eq′)∗(t) while

Wφ(x, ρ) ∩ (Eq)∗(t) = ∅. By (12) and (13), it would follow that, if t ≤ t′ <

t + τt+1(ρ/2), then Wφ(x, ρ/2) ⊂ (Eq′)∗(t) and Wφ(x, ρ/2) ∩ (Eq)∗(t) = ∅, which
would imply that {u = s} has nonempty interior, leading to a contradiction. We

can not prove in general the uniqueness of the �ow (Es)∗, since it could depend

on the subsequence (hk) along which the �rst limits have been taken. If on the

contrary s ∈ N , then a fattening of the corresponding level-set happens, and we

can only deduce the inclusion (17). As in the case of classical level-set solutions, we

expect nonuniqueness of the limit �ow in this situation (and in this situation only).

If G(x, t) =
∫ t

0
g(x, s) ds with g continuous, then (by Proposition 4.7), one sees

that u is the unique viscosity solution [10] of

∂u

∂t
= φ◦(∇u) (div∇φ◦(∇u) + g) .

In particular, in this case, the limit u is the same along any subsequence. We can

then deduce that ∂Es
h(t) → {u(·, t) = s} as h → 0, for each level s 6∈ N , or each

time t before the moment the level s ∈ N fattens.

In case G is an arbirary driving term satisfying (15), we conjecture that our u

is still the viscosity solution of

∂u

∂t
= φ◦(∇u)

(
div∇φ◦(∇u) +

∂G

∂t

)
built by Lions and Souganidis [18, 19]. However, to show this, we would need either

to show the stability of our construction under small perturbations of G (that

would allow us to approximate G with smooth functions), or a comparison result

like Theorem 2.4 between barriers and viscosity solutions (in the sense of [18, 19])

and then use Corollary 4.5. This is subject of future studies.

Let us eventually make a few remarks. We �rst observe that our construction

can still be performed if φ and φ◦ are nonsmooth: typically, in the crystalline case,

where the Wul� shape {φ ≤ 1} is a polyhedron. In this case, our proof of consistency
does not hold (neither is clear how to extend the de�nition of a sub/super�ow). On

the other hand, most of the results are still valid, including the comparison principle

in Proposition 4.10, and the construction of the level-set function u starting from

u0 still makes sense.

We also mention that in the convex case, if G = G(t), by the same arguments as

in [7] we can show that the evolution (de�ned in RN ) remains convex for all time,

including when the anisotropy is nonsmooth. We also expect that the results in [4]
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still hold with similar proofs, and that a unique �regular� evolution can be de�ned

for small times as the unique limit of our algorithm, when the initial convex set

satis�es an interior εWφ-condition. This would in turn yield the uniqueness of the

level-set function de�ned above.
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