
ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES
UMR CNRS 7641

91128 PALAISEAU CEDEX (FRANCE). Tél: 01 69 33 41 50. Fax: 01 69 33 30 11
http://www.cmap.polytechnique.fr/

Convergence of an algorithm for
anisotropic mean curvature

motion

A. Chambolle, M. Novaga

R.I. 572 April, 2005



Convergence of an algorithm

for anisotropic mean curvature motion

A. Chambolle ∗ , M. Novaga †

Abstract

We give a simple proof of convergence of the anisotropic variant of a well-
known algorithm for mean curvature motion, introduced in 1992 by Merriman,
Bence and Osher. The algorithm consists in alternating the resolution of the
(anisotropic) heat equation, with initial datum the characteristic function of
the evolving set, and a thresholding at level 1/2.

1 Introduction: the algorithm

More than ten years ago, Merriman, Bence and Osher [22] proposed the following

algorithm for the computation of the motion by mean curvature of a surface. Given

a closed set E ⊂ RN , they let ThE = {u(·, h) ≥ 1/2}, where u solves the following

heat equation: 
∂u

∂t
(x, t) = ∆u(x, t) t > 0, x ∈ RN ,

u(·, 0) = χE (t = 0) .
(1)

Then, they let Eh(t) = T
[t/h]
h E (with [t/h] the integer part of t/h), and conjecture

that ∂Eh(t) converges to ∂E(t), as h → 0, where ∂E(t) is the (generalized) evolution

by mean curvature starting from ∂E.

The proof of convergence of this scheme was established by Evans [14], Barles

and Georgelin [2]. Other proofs were given by H. Ishii [18] and Cao [10], where

the evolution in (1) was replaced by the convolution of χE with a more general

symmetric kernel. This was generalized by H. Ishii, Pires and Souganidis [19] to the

case of the convolution with an arbitrary kernel (with some growth assumptions).

This approach was also studied by Ruuth and Merriman [24] (see also [23]). Fabi-

ana Leoni [21] studied another generalization, where (1) was replaced with a time

and space dependent anisotropic heat equation, plus a lower order term.

We would like here to study the generalization of this algorithm to the so-called

anisotropic and crystalline curvature motion, as de�ned in [17, 28, 27, 26]. More
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precisely, we follow the de�nition of [8]. We consider (φ, φ◦) a pair of mutually

polar convex one homogeneous functions in RN , (i.e., φ◦(ξ) = supφ(η)≤1 ξ ·η, φ(η) =

supφ◦(ξ)≤1 ξ · η), that are assumed to be locally �nite, and, to simplify, even. This

pair is referred as the anisotropy.

For E ⊂ RN and x ∈ RN , we denote by distφ(x,E) := infy∈E φ(x − y) the

φ-distance of x to the set E, and by

dφ
E(x) := distφ(x, RN \ E) − distφ(x,E)

the signed distance to ∂E, positive in the interior of E and negative outside its

closure. A Cahn-Ho�man vector �eld nφ is a vector �eld on ∂E such that nφ(x) ∈
∂φ◦(νE(x)) = ∂φ◦(−∇dφ

E(x)) a.e. on ∂E. Here ∂φ◦ is the (zero-homogeneous)

subgradient of φ◦, and νE is the (euclidean) exterior normal to ∂E. If such a �eld

is given in a neigborhood of ∂E, then κφ = divnφ is a φ-curvature of ∂E. The

φ-curvature �ow is then an evolution E(t) such that at each time, the velocity of

∂E(t) is given by

V = −κφ nφ , (2)

where nφ is a Cahn-Ho�man vector �eld and κφ is the associated curvature. If φ, φ◦

are smooth (e.g., in C2(Ω \ {0})) then nφ, κφ are uniquely de�ned, whereas if φ,

φ◦ are merely Lipschitz (when, for instance, the Wul� shape {φ ≤ 1} is a convex

polytope), then nφ can be nonunique and the anisotropy is called crystalline [28, 7].

As easily shown by formal asymptotic expansion, the natural anisotropic gener-

alization of the Merriman-Bence-Osher algorithm is as follows. Given E a closed set

with compact boundary in RN , we let Th(E) = {x : u(x, h) ≥ 1/2} where u(x, t)

is the solution of
∂u

∂t
(x, t) ∈ div

(
φ◦(∇u)∂φ◦(∇u)

)
(x, t) t > 0, x ∈ RN ,

u(·, 0) = χE (t = 0) .
(3)

This evolution is well de�ned and unique by classical results on contraction semi-

groups [9], it corresponds to the �ow in L2(RN ) of the subdi�erential of the func-

tional u 7→
∫

RN φ◦(∇u)2/2 dx if u ∈ H1(RN ), and +∞ otherwise.

We therefore will study the limit of the discrete evolutions t 7→ Eh(t) = T
[t/h]
h E,

as h → 0. Our main result will be that if there exists a reasonably regular evolution

starting from E (in a sense introduced in [7], which includes smooth evolutions when

the anisotropy is smooth), then Eh(t) converges to this evolution. This result,

together with the obvious monotonicity of the scheme (E ⊆ F ⇒ ThE ⊆ ThF ),

yields also consistency with all generalized solutions de�ned (in the smooth case)

using barriers [5, 6] or, equivalently, viscosity solutions [12, 13, 3], as long as these

are unique. Also, it yields the consistency of the scheme with crystalline evolutions,

whose existence is proven in [4] in the convex case, and provide an alternative proof

of uniqueness for such evolutions [7].
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We observe that the case of the evolution law (2) is not be covered by the

anisotropic motions of Ishii, Pires and Souganidis [19], generated by convolution.

The possible anisotropic laws that may be obtained by convolution generated motion

have been studied, in 2D, by Ruuth and Merriman [24, 25].

Our evolution is also di�erent from the evolutions considered by Leoni [21]:

in her paper, the heat equation (1) is replaced with an equation of the form

ut = A(x, t) : D2u + H(x, t,Du). The resulting surface motion is a variant of

the Mean Curvature Motion, with a (x, t)-dependent velocity which is a function of

a Riemannian curvature (depending on A) plus a lower order forcing term.

It would be interesting to prove a similar consistency result for the variational

variant of (3), which is somehow simpler to solve numerically (in the truly nonlinear

anisotropic cases): for E ⊂ RN bounded, one would de�ne ThE = {uh ≥ 1/2} where
uh is the solution of (with Ω c E bounded or Ω = RN )

min
u∈H1(Ω)

∫
Ω

φ◦(∇u(x))2 +
1
h

(u(x)− χE(x))2 dx . (4)

Although it is likely that this variant produces the same evolution as the original

scheme (it is true in the isotropic case, since uh is given by the convolution of χE

with a radially symmetric kernel), we could not extend our proof in all cases to

this new scheme (in the smooth cases, a proof can be given, which is slightly more

complicated than for the original algorithm).

Our proof follows the same idea as our recent proof of consistency [11] for (a

generalization of) the variational algorithm of Almgren, Taylor and Wang [1]. How-

ever, we have just learned that K. Ishii [20] has recently given an optimal estimate

on the rate of convergence of Merriman-Bence-Osher's algorithm, in the isotropic

case, by means of a new proof of convergence which is very similar to the proof we

give here.

2 The consistency result

If E ⊂ RN we say that E satis�es the interior rWφ-condition if and only if for any

x ∈ ∂E, there exists y ∈ E with φ(x−y) = r and φ(x′−y) ≥ r for any x′ ∈ RN \E.

We say that E satis�es the exterior rWφ-condition if RN \ E satis�es the interior

rWφ-condition.

We will show a consistency result with regular evolutions of (2), in the sense of

the following de�nition:

De�nition 2.1 We say that t 7→ E(t) is a rWφ-regular φ-curvature �ow on [t0, t1],

t0 < t1, if and only if

(i.) for any t ∈ [t0, t1], E(t) satis�es the interior and exterior rWφ-conditions;

(ii.) there exists a bounded and relatively open neighborhood A of
⋃

t0≤t≤t1
∂E(t)×

{t} in RN × [t0, t1] such that d(x, t) := dφ
E(t)(x) is Lipschitz in A;
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(iii.) there exists a vector �eld n : A → RN with n ∈ ∂φ◦(−∇d) a.e. in A, and

divn ∈ L∞(A);

(iv.) there exists c > 0 such that |∂d/∂t + divn| ≤ c|d| a.e. in A.

This de�nition, up to the additional requirement that E(t) satis�es an interior and

exterior rWφ-condition, is due to Bellettini and Novaga [7, Def. 2.2].

Such evolutions are known to exist if φ, φ◦ and ∂E are smooth enough (for

instance, in C3,α(RN \ {0}) [1]), or for any φ, φ◦, when the initial set E is convex

and satis�es an interior rWφ-condition (exterior is always true in the case of convex

sets) [4]. They also exist in the purely crystalline case, i.e., when both φ and φ◦ are

piecewise linear, in dimension N = 2 [15, 16, 26] (see Section 4 for an example).

Our main theorem states that the anisotropic Merriman-Bence-Osher scheme is

consistent with such evolutions.

Theorem 1 Let E be a regular �ow in the sense of De�nition 2.1, on a time

interval [t0, t1]. Then, for any t and τ with t0 ≤ t < t + τ ≤ t1, ∂T
[τ/h]
h E(t)

converges to ∂E(t + τ) in the Hausdor� sense, as h → 0.

The following corollary, also shown in [7], is obvious.

Corollary 2.2 Let E, F be two �ows in the sense of De�nition 2.1, on [t0, t1],

and assume E(t0) ⊆ F (t0). Then E(t) ⊆ F (t) for all t ∈ [t0, t1]. In particular, if

E(t0) = F (t0), then E(t) = F (t) for all t ∈ [t0, t1].

The next corollary follows, with a standard proof, from the monotonicity and con-

sistency of the scheme.

Corollary 2.3 Assume E ⊂ RN is a closed set with compact boundary such that

the generalized φ-curvature �ow E(t), starting from E, is uniquely de�ned on a time

interval [0, T ) (e.g., φ, φ◦ ∈ C2(RN \ {0}), and no fattening occurs [12]). Then

∂T
[t/h]
h E(t) → ∂E(t) in the Hausdor� sense for any t < T , as h → 0. The same

conclusion holds for any φ, φ◦ if E is convex, by the uniqueness result in [4].

Let us observe that this result follows easily from Theorem 1 when evolutions ac-

cording to De�nition 2.1 are known to exist. If not (e.g., if φ, φ◦ are merely C2) this

is still true, however the proof relies on a comparison with appropriate strict super-

and subsolutions, de�ned according to obvious modi�cations of De�nition 2.1 (as

in [11]).

3 Proof of Theorem 1

The proof of Theorem 1 is divided in several steps. The idea is to build appropriate

sub- and super-solutions to equation (3), by means of the function d(x, t), and to

compare ThE(t) with E(t + h).
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These barriers will be built by means of the function γ : R × [0,+∞) → [0, 1]

that solves the following heat equation
∂γ

∂τ
(ξ, τ) =

∂2γ

∂ξ2
(ξ, τ) , ξ ∈ R , τ > 0 ,

γ(ξ, 0) = Y (ξ) , ξ ∈ R , (τ = 0) .

(5)

where Y = χ[0,+∞) is the Heavyside function. It is well known that γ is given by

γ(ξ, τ) =
1

2
√

πτ

∫ ξ

−∞
e−

s2
4τ ds .

In particular, one readily sees that it is self-similar: indeed, the change of variables

s′ = s/
√

τ yields

γ(ξ, τ) =
1

2
√

π

∫ ξ√
τ

−∞
e−

s′2
4 ds′ = γ

(
ξ√
τ

, 1
)

=: γ1

(
ξ√
τ

)
.

We �rst show the following (obvious) result.

Lemma 3.1 For any ε > 0, there exists τ0 > 0 such that if 0 ≤ τ ≤ τ0, then

γ(ε, τ) ≥ 1− τ .

Proof. We just need to observe that τ 7→ γ(ε, τ) is C1 with derivative 0 at 0. This

derivative is indeed given by (−ε/τ3/2)γ′1(ε/
√

τ) = (−ε/τ3/2) exp(−ε2/(4τ)). There

exists τ0 such that it is in [−1, 0] for τ ≤ τ0, hence γ(ε, τ) ≥ γ(ε, 0)− τ if τ ∈ [0, τ0],

which shows the lemma.

Let us now consider E, r > 0, t0 ≤ t1, A and the functions d(x, t), n(x, t), as in

De�nition 2.1. Possibly reducing r, we can assume that {|d| ≤ r} ⊂ A. Let us �x

t ∈ [t0, t1), δ ∈ [0, r/2] and let F = {d(·, t) ≥ −δ}. Let u be the solution of
∂u

∂τ
(x, τ) ∈ div

(
φ◦(∇u)∂φ◦(∇u)

)
(x, τ) τ > 0, x ∈ RN ,

u(·, 0) = χF = Y (d(·, t) + δ) (τ = 0) .
(6)

We �rst show the following result.

Lemma 3.2 For any ε ∈ (0, r/2), there exists τ0 > 0 (independent of δ) such that

τ ≤ τ0 yields u(x, τ) ≤ τ for any x such that d(x, t) + δ = −ε.

Proof. Let us �x x0 ∈ RN \ F with d(x0, t) + δ = −ε. Since E(t) satis�es the

exterior rWφ-condition, the function (d(·, t) + δ) is, outside F , equal to distφ(·, F ).

Hence, letting W = {x : φ(x−x0) < ε}, one sees that W ∩F = ∅. We deduce that

χF ≤ 1− χW in RN , so that u(·, τ) ≤ 1− w(·, τ) where w is the solution of
∂w

∂τ
(x, τ) ∈ div

(
φ◦(∇w)∂φ◦(∇w)

)
(x, τ) τ > 0, x ∈ RN ,

w(·, 0) = χW (τ = 0) .
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This solution is explicitly given by w(x, τ) = U(φ(x − x0)/ε, τ/ε2) where U(|x|, τ)

is the solution of the heat equation ∂2U/∂t2 = ∆U with initial datum χB1 , the

characteristic function of the unit ball. In particular, one has

U(|x|, τ) =
1

√
4πτ

N

∫
{|y|≤1}

exp

(
−(|x| − y1)2 −

∑N
i=2 y2

i

4τ

)
dy .

Using arguments similar to the proof of the previous lemma (based on the fact that

U is smooth near (ξ, τ) = 0, 0 and ∂U/∂t(0, 0) = 0), one sees that there exists τ0 > 0

such that if τ ≤ τ0, U(0, τ) ≥ 1− ε2τ , hence w(0, τ) ≥ 1− τ if τ ≤ τ ′0 = τ0/ε2. We

deduce that u(x0, τ) ≤ τ if τ ≤ τ ′0, depending only on ε. This shows the lemma.

Let us �x ε < r/4 and let us look for a supersolution of (6) on a time interval

[0, h], h small, of the form

v(x, τ) = γ
(
d(x, t + τ) + δ + c ετ, τ

)
+ h ,

in B =
⋃

0≤τ≤h{x : −ε ≤ d(x, t)+δ , d(x, t+τ)+δ ≤ ε}×{τ}, where the constant ε

will be precised later on. We observe that since the speed of the motion is bounded

at any time for τ small enough, if h is small enough (depending only on r, ε), B

remains inside {(x, τ) ∈ RN × [0, h] : −δ − 2ε ≤ d(x, t + τ) ≤ −δ + ε}, and
(0, t) + B ⊂ A.

At τ = 0, v(x, 0) = Y (d(x, t) + δ) + h is strictly larger than χF (x) = u(x, 0). If

0 ≤ τ ≤ h and d(x, t) + δ = −ε, by Lemma 3.2 we have u(x, τ) ≤ τ ≤ h ≤ v(x, τ),

provided h is small enough. If on the other hand, d(x, t + τ) + δ = ε, then by

Lemma 3.1, still for h small enough, v(x, τ) = γ(d(x, t + τ) + δ + c ετ, τ) + h ≥
γ(ε, τ) + h ≥ 1 − τ + h, hence v(x, τ) ≥ 1 ≥ u(x, τ). Hence, to get that v is

a supersolution of (6) in B, one has to show that ∂v/∂τ ≥ divZ, for some �eld

Z ∈ φ◦(∇v)∂φ◦(∇v), inside B.

One has, a.e. in B,

∂v

∂τ
(x, τ) =

(
∂d

∂t
(x, t + τ) + c ε

)
∂γ

∂ξ
(d(x, t + τ) + δ + c ετ, τ)

+
∂γ

∂τ
(d(x, t + τ) + δ + c ετ, τ)

whereas

∇v(x, τ) =
∂γ

∂ξ
(d(x, t + τ) + δ + c ετ, τ)∇d(x, t + τ) ,

so that φ◦(∇v) = ∂γ/∂ξ and ∂φ◦(∇v) = ∂φ◦(∇d). Hence

divφ◦(∇v)∂φ◦(∇v)(x, τ) = div

[
∂γ

∂ξ
(d(x, t + τ) + δ + c ετ, τ)∂φ◦(∇d(x, t + τ))

]
=

∂2γ

∂ξ2
(d(x, t+τ)+δ+c ετ, τ) +

∂γ

∂ξ
(d(x, t+τ)+δ+c ετ, τ)(div ∂φ◦(∇d))(x, t+τ))
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Let Z(x, τ) = −(∂γ/∂ξ)(d(x, t + τ) + δ + c ετ, τ)n(x, t + τ). Since we have

∂d/∂t ≥ −divn− c|d| in B, we deduce

∂v

∂τ
(x, τ) ≥ divZ(x, τ) − ∂2γ

∂ξ2
(d(x, t + τ) + δ + c ετ, τ)

+ c(ε−|d(x, t+τ)|)∂γ

∂ξ
(d(x, t+τ)+δ+c ετ, τ) +

∂γ

∂τ
(d(x, t+τ)+δ+c ετ, τ) .

Now, γ satis�es the heat equation, so that if |d(x, t + τ)| ≤ ε a.e. in B, it remains

∂v

∂τ
(x, τ) ≥ divZ(x, τ) .

By standard comparisons results on elliptic equations, we �nd that if ε ≥ δ + 2ε,

v(x, h) ≥ u(x, h). In particular, we deduce that there exists h0 > 0 (depending only

on r, ε) such that if h < h0,

ThF =
{

u(·, h) ≥ 1
2

}
⊂
{

v(·, h) ≥ 1
2

}
=
{

x ∈ RN : d(x, t + h) ≥ −δ + [γ(·, h)]−1

(
1
2
− h

)
− c εh

}
Now, γ(ξ, h) = γ1(ξ/

√
h), and γ1(0) = 1/2, γ′1(0) = 1/(2

√
π), so that γ−1

1 (1/2−h) =

−2
√

πh + o(h) and [γ(·, h)]−1(1/2 − h) = (−2
√

πh + o(h))
√

h. Hence, possibly

changing h0, one gets that if h < h0, then [γ(·, h)]−1(1/2− h) ≥ −4h3/2. One gets,

if h < h0, and choosing ε = δ + 2ε,

ThF ⊂
{

x ∈ RN : d(x, t + h) ≥ −[δ + (c(δ + 2ε) + 4
√

h)h]
}

.

Now, we deduce that (ε ∈ (0, r/4) being �xed) if t ∈ [t0, t1), h ≤ h0 and k ≥ 1

with t + kh ≤ t0, one has

T k
h (E(t)) ⊂

{
x ∈ RN : d(x, t + kh) ≥ −δk

}
with δ0 = 0 and δk = δk−1 + (c(δk−1 + 2ε) + 4

√
h)h, as long as δk−1 ≤ r/2. By

induction, we �nd

δk =
(
(1 + ch)k − 1

)(
2ε +

4
√

h

c

)
.

In particular, if τ > 0 is �xed, with t + τ ≤ t1, and k = [τ/h], we see that

limh→0 δk = 2ε(ecτ−1). If ε < r/4 is chosen small enough (less than (r/4)/(ecτ−1)),

we see that for h > 0 small enough, δ[τ/h] ≤ r/2. If now E′ is the Hausdor� limit

of any converging subsequence of T
[τ/h]
h E(t), as h → 0, we deduce that E′ ⊆

{d(·, t + τ) ≥ −2ε(ecτ − 1)}. Since this must be true for all ε > 0 small enough,

one sees that E′ ⊆ E(t + τ). On the other hand, a symmetric argument (based on

subsolutions of the equation) will yield that if RN \ E′′ is the Hausdor� limit of a

converging subsequence of (RN \ T
[τ/h]
h E(t))h>0, then RN \ E′′ ⊆ RN \ E(t + τ),

that is, int(E(t + τ)) ⊆ E′′. Without loss of generality, one can choose the same

subsequence in both limits above, getting that E′′ ⊂ E′, and that E′ \ E′′ is the

Hausdor� limit of ∂T
[τ/h]
h E(t). Since int(E(t + τ)) ⊆ E′′ ⊂ E′ ⊆ E(t + τ), we see

that E′′ = int(E(t + τ)), E′ = E(t + τ), E′ \E′′ = ∂E(t + τ), and by uniqueness of

this Hausdor� limit we deduce Theorem 1.
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4 A numerical example

The algorithm is quite easy to implement, numerically. Of course, there is some

di�culty in computing precisely the solution of (3) in strongly anisotropic or crys-

talline cases, especially when the subgradient ∂φ◦ is multivalued. We experimented

an implicit method, based on iterative resolutions of the variational problem (4).

More precisely, we approximate u(·, h) with wn(x) where h = nh′, n is a �xed

(small) integer, w0 = χE and for i = 0, . . . , n − 1, wi+1 solves (in a domain Ω

�large� with respect to E)

min
w∈H1(Ω)

∫
Ω

φ◦(∇w(x))2 +
1
h′

(w(x)− wi(x))2 dx .

To solve this minimization problem in the crystalline case, we discretize (here, on

a bidimensional �nite di�erences grid) and solve the dual problem

min
ξ∈L2(Ω;RN )

∫
Ω

φ(ξ(x))2 + h((wi(x)/h′)− div ξ(x))2 dx ,

using a conjugate-gradient method. Then, wi+1 = wi−h′div ξ. The thresholding at

level 1/2 is replaced by a �soft thresholding� wn(x) 7→ min{1,max{1/2+σ(wn(x)−
1/2), 0}}, where σ is adapted to the spatial discretization step, in order to keep

a precision slightly higher that the grid's. In the example shown in Figure 1, the

Wul� shape {φ ≤ 1} is an hexagon.

Figure 1: Evolutions at times t = 0, 5, 25, 60, 400, 800.
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