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 S
hwarz Methods for strongly heterogeneousand anisotropi
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a Gerardo-Giorda � and Fr�ed�eri
 Nataf yJune 8, 2005Abstra
tIn this paper we 
onsider unsymmetri
 ellipti
 problems of adve
tion-di�usion rea
tion type, with stronglyheterogeneous vis
osity 
oeÆ
ients. We build Optimized S
hwarz Methods (OSM) on non-overlapping do-main de
ompositions, dire
tly at the algebrai
 level, in order to guarantee robustness with respe
t to theheterogeneities in the 
oeÆ
ients. We study new interfa
e 
onditions where only one or two real parametershave to be 
hosen along the entire interfa
e. Using one real parameter it is possible to design interfa
e
onditions of Robin type, whereas the use of two real parameters and of more general interfa
e 
onditionsallows to better take into a

ount the heterogeneities of the medium. Numeri
al results validate the proposedinterfa
e 
onditions.1 Introdu
tionHigh 
uid pressures within the ro
k layers of the subsurfa
e are among the biggest problems an oil 
ompanyhas to deal with when drilling. A mathemati
al model for the predi
tion of 
uid pressures on a geologi
altime s
ale is based on 
onservation of mass and Dar
y's law (see for instan
e [6℄). This 
an be generalized toa time-dependent adve
tion-di�usion equation, where the region also 
hanges in time as ro
ks are depositedor eroded. An Euler ba
kward method is used for the time integration, and a numeri
al method su
h as �nitevolumes or �nite di�eren
es is applied at any time step in order to solve the adve
tion-di�usion equation,yielding a linear system of equations.A further 
ompli
ation of the physi
al problem is given by the heterogeneities of the underground: thepresen
e of layers with very large di�eren
es in permeability yields 
ontrasts up to seven orders of magnitudein the di�erent regions of the 
omputational domain. The widespread availability of parallel 
omputers makesdomain de
omposition methods a natural 
andidate to take into a

ount su
h problems. Su
h methods arebased on the subdivision of the 
omputational domain into several subdomains (whi
h may or may notoverlap) and the parallel solution of the lo
al problems. This pro
edure leads to an iterative method that
onverges to the solution of the original problem if the solutions in the subdomains are related by meansof suitable boundary 
onditions at the interfa
e. The performan
e of the method depends drasti
ally onthe design of interfa
e 
onditions, whi
h has been the subje
t of several works (see e.g. [24, 25, 29℄ andreferen
es therein).We 
onsider here ellipti
 problems of adve
tion-di�usion rea
tion type, with strongly heterogeneous vis
osity
oeÆ
ients. Su
h problems arise naturally also in several other appli
ations of pra
ti
al interest, wheredi�erent materials with di�erent physi
al properties are present in the 
omputational domain, as in themodeling ele
tri
al power networks, semi
ondu
tor devi
es and ele
tromagneti
s. These di�eren
es may berather signi�
ant and this would re
e
t into large dis
ontinuities in the 
oeÆ
ients of the problem.We use here an Optimized S
hwarz Method (OSM) with a non-overlapping de
omposition. The original�Dipartimento di Matemati
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S
hwarz Algorithm uses Diri
hlet interfa
e 
onditions, and overlapping is ne
essary to ensure 
onvergen
e. In[23℄ Robin interfa
e 
onditions are introdu
ed, ensuring 
onvergen
e without resorting to overlap. OptimizedS
hwarz Methods are be
oming quite popular and have been introdu
ed at the 
ontinuous level in [14, 21, 26℄for adve
tion-di�usion problems and then applied to other problems su
h Helmholtz and Maxwell equations(see for instan
e [9, 15, 5℄), and are based on Fourier analysis. Re
ently, su
h methods have been studieddire
tly at the dis
rete level in [28, 12, 24℄. In this paper we design the interfa
e 
onditions dire
tly at thealgebrai
 level, in order to guarantee robustness with respe
t to heterogeneities in the 
oeÆ
ients.The paper is organized as follows. In Se
tion 2 we enlighten the link between an LDU fa
torization of amatrixM and the 
onstru
tion of absorbing boundary 
onditions (ABC) to restri
t the underlying di�erentialproblem to a part of the 
omputational domain. In Se
tion 3, optimal algebrai
 interfa
e 
onditions indomain de
omposition are derived for the linear system arising from the dis
retization of a problem withlayered 
oeÆ
ients set on an in�nite strip. In Se
tion 4 we des
ribe the Algebrai
 S
hwarz algorithm, andin Se
tion 5 we derive two families of interfa
e 
onditions depending on one or two real parameters: weaddress both the 
ases of the underlying di�erential operator being symmetri
 and unsymmetri
. Finally, inSe
tion 6 some numeri
al results are given to validate the proposed interfa
e 
onditions, in both the 
asesof ade
tion dominated 
ows and di�usion dominated 
ows, with strongly heterogeneous and anisotropi
vis
osity 
oeÆ
ients. Some numeri
al tests intended to show the robustness of the interfa
e 
onditions withrespe
t to the mesh re�nement and the mesh heterogeneities 
on
lude the se
tion.2 LDU fa
torization and absorbing boundary 
onditionsIn this se
tion we enlighten the link between an LDU fa
torization of a matrix and the 
onstru
tion ofabsorbing 
onditions on the boundary of a domain. As it is well known in domain de
omposition literature,su
h 
onditions provide optimal interfa
e transmission operators.Let e
 2 R3 be a bounded polyedral domain. After a �nite element, �nite di�eren
es or �nite volumedis
retization of a PDE boundary value problem, we obtain a large sparse system of linear equations, givenby Bw = g: (2.1)Assume that the underlying grid is obtained as a deformation of a Cartesian grid on the unit 
ube, so thatfor suitable integers Nx, Ny, and Nz , w 2 RNx�Ny�Nz . If the unknowns are numbered lexi
ographi
ally,the ve
tor w is a 
olle
tion of Nx sub-ve
tors wi 2 RNy�Nz , i.e.w = (wT1 ; : : : ; wTNx)T ; (2.2)we have g = (g1; ::; gNx)T , ea
h gi being a Ny �Nz ve
tor, and the matrix B of the dis
rete problem has ablo
k tri-diagonal stru
ture B = 0BBBB� D1 U1L1 D2 . . .. . . . . . UNx�1LNx�1 DNx 1CCCCA ; (2.3)where ea
h blo
k is a matrix of order Ny �Nz.An exa
t blo
k fa
torization of the matrix B de�ned in (2.3) is given byB = (L+T)T�1(U+T); (2.4)whereL = 0BBBB� 0L1 . . .. . . . . .LNx�1 0 1CCCCA U = 0BBBB� 0 U1. . . . . .. . . UNx�10 1CCCCA T = 0BBBB� T1 . . . . . . TNx 1CCCCA ;
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the blo
ks Ti being matri
es de�ned re
ursively asTi = 8<: D1 for i = 1Di � Li�1T�1i�1Ui�1 for 1 � i � Nx:So far, we 
an give here the algebrai
 
ounterpart of absorbing boundary 
onditions to trun
ate a part ofthe 
omputational domain. Assume g = (0; ::; 0; gp+1; ::; gNx), and let Np = Nx � p+ 1. To redu
e the sizeof the problem, we look for a blo
k matrix K 2 (RNy�Nz )Np , ea
h entry of whi
h is a Ny�Nz matrix, su
hthat the solution of Kv = ~g = (0; gp+1; ::; gNx)T satis�es vk = wk+p�1 for k = 1; ::; Np. The rows 2 throughNp in the matrix K 
oin
ide with the last Np � 1 rows of the original matrix B. To identify the �rst row,whi
h 
orresponds to the absorbing boundary 
ondition, we take as a right hand side in (2.1) the ve
torg = (0; ::; 0; gp+1; ::; gNx), and, owing to (2.4), we 
onsider the �rst p rows of the fa
torized problem0BBB� T1L1 T2. . . . . .Lp�1 Tp 1CCCA0BBB� T�11 T�12 . . . T�1p 1CCCA0BBB� T1 U1T2 U2. . . . . .Tp Up 1CCCA0BBB� w1...wpwp+1 1CCCA = 0B� 0...0 1CA :The �rst two are p� p square invertible matri
es, so we need to 
onsider only the third one, a re
tangularp� (p+ 1) matrix: from the last row we getTpwp + Upwp+1 = 0; (2.5)whi
h, identifying v1 = wp and v2 = wp+1, provides the �rst row in matrix K.Assume then g = (g1; ::; gq�1; 0; ::; 0)T . A similar pro
edure 
an be developed to redu
e the size of theproblem, by starting the re
urren
e in the fa
torization (2.4) from DNx , aseTi = 8<: Di � Ui eT�1i+1Li for 1 � i < NxDNx for i = Nx;and we 
an easily obtain the equation for the last row in the redu
ed equation asLqwq�1 + eTqwq = 0: (2.6)3 Optimal interfa
e 
onditions in domain de
omposition foran in�nite layered domainLet 
 = R�Q, where Q is a bounded domain of R2, and 
onsider the ellipti
 PDE of adve
tion-di�usion-rea
tion type given by �div (
ru) + div (bu) + �u = f in 
Bu = g on R� �Q; (3.1)with the additional requirement on the solutions to be bounded at in�nity, where the 
oeÆ
ients are layered(i.e. they do not depend on the x variable), where B is a suitable boundary operator. This 
an be forinstan
e the 
ase of a strati�ed material, where dis
ontinuities in the 
oeÆ
ients are 
on
entrated in they and z dire
tions. After a �nite element, �nite di�eren
es or �nite volume dis
retization, we obtain anin�nite sparse system of linear equations, given byAw = f : (3.2)Under 
lassi
al assumtpions on the 
oeÆ
ients of the problem (e.g. � � 12divb > 0 a.e. in 
) the matrix Ain (3.2) is de�nite positive.We 
onsider a dis
retization on a uniform grid via a �nite volume s
heme (see for instan
e [10℄) with anupwind treatment of the adve
tive 
ux, and a lexi
ographi
 numbering of the unknowns. We solve problem3



(3.2) by means of an Optimized S
hwarz Method: su
h methods have been introdu
ed at the 
ontinuous levelin [23℄, and at the dis
rete level in [28℄. In the following, we design optimized interfa
e 
onditions dire
tlyat the algebrai
 level, in order to guarantee robustness with respe
t to heterogeneities in the 
oeÆ
ients. Inthis order, we �rstly extend the absorbing boundary 
onditions (ABC) of the previous se
tion to the 
ase ofin�nite domain. Then we introdu
e optimal interfa
e 
onditions for a S
hwarz method, expressed in termsof ABC.3.1 Absorbing boundary 
onditions for an in�nite layered domainThe lexi
ographi
 numbering of the degrees of freedom entails that the matrix of the dis
rete problem (3.2)is given by A = 0BBBBBB� . . . . . . . . .L D UL D UL D U. . . . . . . . .
1CCCCCCA : (3.3)As the number of 
olumns in (3.3) is in�nite, we 
an de�ne the blo
kT1 := D � LT�11 U: (3.4)Assuming f = (::; 0; fp+1; fp+2; ::), the absorbing boundary 
ondition for the restri
tion v = fwk j k � pg, isthus given by T1wp + Uwp+1 = 0: (3.5)Assuming then f = (::; fq�2; fq�1; 0; ::), the absorbing boundary 
ondition for the restri
tion v = fwk j k �q + 1g, 
an be obtained, by de�ning the blo
keT1 := D � U eT�11 L; (3.6)as Lwq�1 + eT1wq = 0: (3.7)3.2 Optimal interfa
e 
onditions in domain de
ompositionSo far, we 
onsider a two domain de
omposition �
 = �
1 [ �
2, 
1 \ 
2 = ;, where
1 = R� �Q; 
2 = R+ �Q;and we denote with � = �
1 \ �
2 the 
ommon interfa
e of the two subdomains.The resulting linear system is given by0� A11 A1� 0A�1 A�� A�20 A2� A22 1A 0� w1w�w2 1A = 0� f1f�f2 1A (3.8)where wi is the ve
tor of the internal unknowns in domain 
i (i = 1; 2), and w� is the ve
tor of interfa
eunknowns. In order to guarantee the 
onservativity of the �nite volume s
heme, the ve
tor of interfa
eunknown 
onsists of two sets of variables, w� = (w�; w�)T , the �rst one to express the 
ontinuity of thedi�usive 
ux, the se
ond to express the 
ontinuity of the adve
tive one.At the 
ost of dupli
ating the interfa
e variables w� into w�;1 and w�;2, we 
an write a S
hwarz methodby introdu
ing two square matri
es B1 and B2 (a
ting on the interfa
e variables), in the following way:� A11 A1�A�1 A�� + B1 �� wk+11wk+1�;1 � = � f1f� + B1wk�;2 �A�2wk2 � (3.9)� A22 A2�A�2 A�� + B2 �� wk+12wk+1�;2 � = � f2f� + B2wk�;1 �A�1wk2 � (3.10)4



Lemma 3.1 Assume A11 and A22 are invertible. Then, 
hoosingB1 = �A�2A�122 A2� B2 = �A�1A�111 A1�in (3.9)-(3.10) yields 
onvergen
e in two steps.Proof The result is well-known in the domain de
omposition literature. We report here the proof forsake of 
ompleteness. First of all, noti
e that with this 
hoi
e of B1 and B2, the bottom right blo
ks in(3.9) and (3.10) are S
hur 
omplements. It is 
lassi
al that the subproblems in (3.9) and (3.10) are well-posed. To prove 
onvergen
e it is enough, by linearity, to 
onsider 
onvergen
e to the zero solution when(f1;f2;f�)T = 0. At step 1 we have from (3.9)A11w11 +A1�w1�;1 = 0;whi
h is equivalent (applying A�1A�111 ) toA�1w11 +A�1A�111 A1�w1�;1 = 0:The right hand side in (3.10) thus vanishes at step 2 and we have 
onvergen
e to zero in two steps. Thesame proof holds also for 
1. �The matrix A of the 
oupled problem in (3.8) is given byA = 0BBBBBBBBBBB�
. . . . . . . . .L1 D1 U1L1 D1� ...0U1� 0� � � � � � 0 L�1 D�� U�2 0 � � � � � �0 L2�0... D2� U2L2 D2 U2. . . . . . . . .

1CCCCCCCCCCCA ; (3.11)where the blo
k D�� is square D�� = � D�� 00 D� � ;and the blo
ks Li�, and Ui� (i = 1; 2) are re
tangular and are given byL�1 = � L�1L�1 � L2� = � L2� L1� � U1� = � U1� U1� � U�2 = � U�2U�2 � :So far, we 
an prove the following result.Lemma 3.2 Let A be the matrix de�ned in (3.11), and let T1;1 and T21 be su
h thatT1;1 = D1 � L1T�11;1U1 T2;1 = D2 � U2T�12;1L2: (3.12)We then haveA�1A�111 A1� = L�1 �D1� � L1 T�11;1 U1��1U1� A�2A�122 A2� = U�2 �D2� � U2 T�12;1 L2��1 L2�:Proof Let us 
onsider 
1 and let V be a blo
k ve
tor de�ned as264 ...V�2V�1 375 := A�111 A1� = A�111 � 264 ...0U1� 375 ;whi
h 
an be rewritten as 264 ...0U1� 375 = 264 . . . . . . . . .L1 D1 U1L1 D1� 375 � 264 ...V�2V�1 375 :5



The last row reads U1� = L1V�2 +D1�V�1: (3.13)Sin
e the matrix A11 is in�nite, equation (3.5) allows to express V�2 in terms of V�1, asV�2 = �T�11;1U1V�1;where T1;1 = D1 � L1T�11;1U1. Substituting into (3.13), we getU1� = �D1� � L1T�11;1U1� V�1:So far, we 
an express the blo
k V�1 in terms of the blo
k U1�, asV�1 = �D1� � L1T�11;1U1��1 U1�:Now, multiplying A�111 A1� on the left by A�1 we obtainA�1A�111 A1� = � � � � 0 L�1 � � 264 ...V�2V�1 375 = L�1V�1:It is therefore immediate to see thatA�1A�111 A1� = L�1 �D1� � L1T�11;1U1��1 U1�:It is not diÆ
ult to see that a similar argument within 
2 
ompletes the proof. �We 
an thus rewrite the optimal S
hwarz algorithm (3.9)-(3.10) as� A11 A1�A�1 M2 �� wk+11wk+1�;1 � = � f1f� + (M2 �D��)wk�;2 �A�2wk2 �� A22 A2�A�2 M1 �� wk+12wk+1�;2 � = � f2f� + (M1 �D��)wk�;1 �A�1wk2 � (3.14)where we have setM1 = D�� � L�1 �D1� � L1T�11;1U1��1U1� M2 = D�� �U�2 �D2� � U2T�12;1L2��1 L2�: (3.15)4 An algebrai
 non-overlapping S
hwarz methodThe optimal S
hwarz algorithm (3.14) 
annot be used in pra
ti
e, due to the la
k of sparsity of the matri
esM1 and M2 in (3.15). Let thus Mapp1 and Mapp2 be suitable approximations of M1 and M2, respe
tively,and 
onsider the following algorithm.The method is de�ned dire
tly at the algebrai
 level, and reads� A11 A1�A�1 Mapp2 �� vk+11vk+1�;1 � = � f1f� + (Mapp2 �D��)vk�;2 �A�2vk2 �� A22 A2�A�2 Mapp1 �� vk+12vk+1�;2 � = � f2f� + (Mapp1 �D��)vk�;1 �A�1vk2 � : (4.1)We 
an prove the following result.Lemma 4.1 Assume that the matrix (Mapp1 +Mapp2 �D��) is invertible. Then, if the S
hwarz algorithm(4.1) 
onverges, it does to the solution to problem (3.8).6



Proof We have to prove that, at 
onvergen
evi = wi (for i 6= 0) v�;1 = v�;2 = w�:It is easy to see that, on
e 
onveregn
e is a
hieved, we have8<: L�1 v1�1 +Mapp2 v�;1 = �U�2 v21 +Mapp2 v�;2 + f� �D�� v�;2U�2 v21 +Mapp1 v�;2 = �L�1 v1�1 +Mapp2 v�;1 + f� �D�� v�;1Summing up the two equations above we get(Mapp1 +Mapp2 �D��)v�;1 = (Mapp1 +Mapp2 �D��)v�;2;whi
h entails the 
ontinuity of the blo
k variable v� := v�;1 = v�;2. A simple algebra providesL�1 v�1 +D�� v� +U�2 v1 = f�:Thus, v and w satisfy the same equations, and this 
on
ludes the proof. �4.1 Substru
turingThe iterative method 
an be substru
tured in order to use a Krylov type method and speed up the 
onver-gen
e. We introdu
e the auxiliary variablesh1 = (Mapp2 �D��) v�;2 �A�2 v2; h2 = (Mapp1 �D��) v�;1 �A�1 v1;and we de�ne the interfa
e operator KK : 0� h1h2f 1A 7�! 0� �A�1v1 + (Mapp1 �D��)v�;1(Mapp2 �D��)v�;2 �A�2v2 1Awhere f = (f1;f�;f2)T , whereas (v1;v�;1) and (v2;v�;2) are the solutions of� A11 A1�A�1 Mapp2 �� v1v�;1 � = � f1f� + h1 � (4.2)and � A22 A2�A�2 Mapp1 �� v2v�;2 � = � f2f� + h2 � : (4.3)So far, the substru
turing operator is obtained simply by mat
hing the 
onditions on the interfa
e, and reads� h1h2 ���K(h1;h2; 0) = �K(0; 0; f) (4.4)where � is the swap operator on the interfa
e, having the blo
k form� = 0� 0 IdId 0 1A :Problem (4.4) 
an be rewritten in the matrix form�Id��K� (h1;h2)T = F; (4.5)where F = �Th(0; 0; f), and where the matrix K is given in the following lemma.7



Lemma 4.2 The matrix K in (4.5) is given byK = 0� (Mapp1 �M1) (M1 +Mapp2 �D��)�1 00 (Mapp2 �M2) (M2 +Mapp1 �D��)�1 1AProof We have to express K(h1;h2; 0) for arbitrary ve
tors h1;h2 2 RNy�Nz . Owing to (4.2) we havewithin 
1: h1 =Mapp2 v�;1 +A�1 v1 = �Mapp2 �A�1A�111 A1�� v�;1= [Mapp2 �D�� +M1℄ v�;1the last equality being justi�ed by Lemma 3.2 and formula (3.15). We thus have8<: v�;1 = (M1 +Mapp2 �D��)�1h1v1 = �A�111 A1�(M1 +Mapp2 �D��)�1h1;and we easily get[K(h1;h2; 0)℄1 = �A�1 v1 + (Mapp1 �D��) v�;1= �A�1A�111 A1� +Mapp1 �D��� (M1 +Mapp2 �D��)�1h1= (Mapp1 �M1) (M1 +Mapp2 �D��)�1h1:A similar argument within 
2 provides[K(h1;h2; 0)℄2 = (Mapp2 �M2) (M2 +Mapp1 �D��)�1h2: �The 
onvergen
e properties of the S
hwarz algorithm depend 
learly on the 
hoi
e of the approximatedmatri
es Tapp1;� and Tapp2;� in the interfa
e 
ondition. The following se
tions are dedi
ated to their 
hoi
e.5 Approximation of the exa
t interfa
e 
onditionsIn this se
tion we design interfa
e 
onditions depending on real parameters, and we look for sparse approxi-mations of the exa
t interfa
e 
onditions given in (3.15). At the 
ost of enlarging the interfa
e problem, weapproximate M1 and M2 byMapp1 = D�� � L�1 �D1� � L1 (T app1;1)�1 U1��1U1� (5.1)and Mapp2 = D�� �U�2 �D2� � U2 (T app2;1)�1 L2��1 L2� (5.2)where T app1;1 and T app2;1 are suitable sparse approximations of T1;1 and T2;1 respe
tively, whi
h are optimizedto 
on
entrate at maximum around 1 the spatial distribution of the spe
trum of the substru
tured matrix.The optimization pro
edure is 
arried out in the 
ase where the underlying di�erential operator is the samein both subdomains, and the de
omposition has a minimal overlap of one 
ell. In this 
ase there is no need tointrodu
e the interfa
e variables w�, the unknowns of the 
ell in the overlap are dupli
ated and the matrixof the 
oupled problem isM = 0BBBBBBBBB� . . . . . . . . . ... ...L D U 0 0 � � �L T2 �T2 +D UL �T1 +D T1 U� � � 0 0 L D U... ... . . . . . . . . .
1CCCCCCCCCA ; (5.3)

8



where T1 and T2 are suitable approximations of T1;1 and T2;1, respe
tively.A dire
t 
omputation similar to that of Se
tion 4.1 yield the substru
tured matrix M = Id � �K, thematrix K being given byK = 0� (T1 � T1;1)(T2 + T1;1)�1 00 (T2 � T2;1)(T1 + T2;1)�1 1A : (5.4)One may argue that the optimization of the parameters has been done for a di�erent problem with respe
tto (4.5): however, owing to (5.1) and (5.2), we optimize the approximation of the inner operators Tj;1(j = 1; 2), rather than that of M1 and M2. Sin
e they are the only matri
es not sparse in (5.1) and (5.2), agood approximation of Tj;1 (j = 1; 2) entails a good approximation of the exa
t interfa
e 
onditions. Thenumeri
al tests of the next se
tion validate this approa
h. The main feature is that the so designed interfa
e
onditions are built dire
tly at the algebrai
 level and are easy to implement. Clearly, they rely on theapproximation of the S
hur 
omplement and, if on one hand the extension to a de
omposition into stripesappears quite straightforward, on the other hand further work needs to be done in order to analyse theirs
alability to an arbitrary de
omposition of the 
omputational domain.In the following we �rstly give an expli
it formula for the 
omputation of Tj;1, in both the 
ases of a sym-metri
 and, relying on a 
ommutativity assumption, a non-symmetri
 operator. Then we designe optimizedinterfa
e 
onditions depending on one or two real parameters.The symmetri
 
aseIf the ellipti
 operator is symmetri
, Lj = LTj = Uj , we haveTj;1 := Dj � LjT�1j;1Lj ;and we 
an prove the following result.Lemma 5.1 Assume that �Lj = �LTj and Kj = 2664 . . . . . . . . .Lj Dj Lj. . . . . . . . . 3775 are symmetri
 positivede�nite (SPD) matri
es. Then, Tj;1 = 12Dj + �j (5.5)where �j = (�Lj)1=2r14 (�Lj)�1=2Dj(�Lj)�1Dj(�Lj)�1=2 � Id (�L)1=2 (5.6)is a SPD matrix.Proof First of all, sin
e Kj is a SPD, both Dj and Dj + 2Lj are SPD matri
es. Let~Tj = (�Lj)�1=2Tj;1(�Lj)�1=2 and ~Dj = (�Lj)�1=2Dj(�Lj)�1=2:We have that ~Dj � 2 Id and then ~D2j � 4 Id. With these notations, we have14(�Lj)�1=2Dj(�Lj)�1Dj(�Lj)�1=2 � Id = 14 ~D2j � IdTherefore, 14 ~D2j � Id is a SPD matrix and formula (5.5) makes sense. From (5.5), we have~Tj = 12 ~Dj +r14 ~D2j � IdTherefore, we get ~T 2j � 12( ~Dj ~Tj + ~Tj ~Dj) + 14 ~D2j = 14 ~D2j � Id9



Using that ~Dj and ~Tj 
ommute, we have ~T 2j � ~Dj ~Tj = �Idor equivalently, ~Dj = ~Tj + ~T�1jIt means that Tj;1 is a solution to the matrix equationDj = Tj;1 + Lj T�1j;1 Lj �The unsymmetri
 
aseIn the unsymmetri
 
ase, Lj 6= Uj , and an expli
it formula for Tj;1 (j = 1; 2) 
annot be derived unless thematri
es Lj , Dj , and Uj 
ommute. In this 
ase, we 
an prove the following resultLemma 5.2 Assume that, for j = 1; 2, LjDj = DjLj , UjDj = DjUj , and LjUj = UjLj . ThenTj;1 = 12Dj + �j (5.7)where �1 = (�L1)1=2 r14(�L1)�1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)�1=2 � Id (�U1)1=2; (5.8)and �2 = (�U2)1=2 r14(�U2)�1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)�1=2 � Id (�L2)1=2: (5.9)Proof By multiplying the �rst equation in (3.12) on the left by (�L1)�1=2 and on the right by (�U1)�1=2we get (�L1)�1=2T1;1(�U1)�1=2 = (�L1)�1=2D1(�U1)�1=2 � (�L1)1=2T�11;1(�U1)1=2:So far, we set X = (�L1)�1=2T1;1(�U1)�1=2, A = (�L1)�1=2D1(�U1)�1=2, and, relying on the 
ommuta-tivity assumption, we 
an rewrite the above equation as X +X�1 = A. Multiplying by X on
e on the leftand on
e on the right, and summing up we obtain the equation�X � A2 �2 = A24 � Id;whose positive solution providesT1;1 = D12 + (�L1)1=2 r14(�L1)�1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)�1=2 � Id (�U1)1=2: (5.10)By a similar argument on the se
ond equation in (3.12), it 
an be easily seen that the following formulaholds for T2;1T2;1 = D22 + (�U2)1=2 r14 (�U2)�1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)�1=2 � Id (�L2)1=2: �
10



5.1 One parameter interfa
e 
onditionsOwing to the results of the previous se
tion, we 
hoose to approximate Tj;1 (j = 1; 2) asT1 = D12 + �app1 T2 = D22 + �app2 :A �rst opportunity 
onsists in 
hoosing a diagonal approximation of �1 and �2. We take�app1 = �opt1 D1 �app2 = �opt2 D2 (5.11)where Dj (j = 1; 2) are diagonal matri
es and the parameters �optj (j = 1; 2) are optimized in the following.5.1.1 The symmetri
 
aseIf the di�erential operator is symmetri
, we have T1;1 = T2;1 = D2 +�. ChoosingT1 = T2 = D2 + �D;where � 2 R and D is a diagonal matrix, we getK� = 0� (�D � �) (�D + �)�1 00 (�D � �) (�D + �)�1 1A :We 
an prove the following result.Lemma 5.3 Let � and D be symmetri
 positive de�nite matrix, let � 2 R, and let M� = Id��K�. Thenmin�2R�eff (M�) = �eff (M�opt) = �eff (D�1�)1=2where �opt = (�min(D�1�)�max(D�1�))1=2; (5.12)and where �eff (M) denotes the ratio of the largest eigenvalue of a matrix M over its smallest one.Proof Let �(M) denote the spe
trum of a matrix M , and let �(M) be its spe
tral radius. We have�(K�) = max�2�((�D)�1�) ����1� �1 + � ����= max(����1� �min((�D)�1�)1 + �min((�D)�1�) ���� ; ����1� �max((�D)�1�)1 + �max((�D)�1�) ����)This expression is minimized by taking � = �opt as de�ned in (5.12). In that 
ase, we get�(K�opt) = 1� 
1 + 
where 
 :=p�min(D�1�)=�max(D�1�) = �(D�1�)�1=2Thus, we have min�2R�eff (M�) = �eff (M�opt) = 1=
 = �eff (D�1�)1=2 �If the operator is symmetri
, owing to the following result by Van der Sluis, (see [30, 19℄)Theorem 5.1 (van der Sluis) If F is symmetri
 positive de�nite matrix, thenminD2D�(D�1=2FD�1=2) � �(diag(F )�1=2Fdiag(F )�1=2) � m: minD2D�(D�1=2FD�1=2)where D = fpositive definite diagonal matri
esg and m is the maximum number of nonzeros in any rowof F . 11



we 
hoose in the interfa
e operators (5.11) Dj = diag(�j);for j = 1; 2, and �optj = (�min(diag(�j))�1�j)�max(diag(�j))�1�j))1=2:5.1.2 The unsymmetri
 
aseIf the di�erential operator is not symmetri
, we haveT1;1 = D2 + �1; T2;1 = D2 + �2;and 
hoosing T1 = T2 = D2 + �D;we obtain the matrixK� = 0� (�D � �1) (�D + �1)�1 00 (�D � �2) (�D + �2)�1 1A :Let �1 = (�D��1) (�D+�1)�1, and �2 = (�D��2) (�D+�2)�1. Then, the following result 
an be easilyproved (see [18℄).Lemma 5.4 Let M� = Id��K�. Then
 2 �(M�) =) (1� 
)2 2 �(�1�2) � 2 �(�1�2) =) (1�p�) 2 �(M�) �The previous Lemma states that the eigevalues of the substru
tured problem are lo
ated in a dis
 of the
omplex plane 
entered in 1 and with radius at most �(�1�2), the spe
tral radius of the produ
t �1�2. Wethen minimize at on
e the spe
tral radii of both �1 and �2. We set, for � 2 R,�(�) := max�2�(�1D�1)[�(�2D�1) ������ ��+ � ����2 ;and we minimize it with respe
t to �. The solution is given in the following Lemma (for proof see [18℄).Lemma 5.5 Letr := min�2Sj=1;2 �(�jD�1)Re� R := max�2Sj=1;2 �(�jD�1)Re� I := max�2Sj=1;2 �(�jD�1) Im�:The solution �opt to problem �(�opt) = min�2R�(�)is given by �opt = maxnpr2 + I2 ; prR� I2o : (5.13)Thus, if the di�erential operator is nonsymmetri
, we 
hoose in the interfa
e operators (5.11)Dj = diag(�j);for j = 1; 2, and �optj = maxnqr2j + I2j ; qrjRj � I2jo ; (5.14)where we have set, for j = 1; 2,rj := min�2�(�jD�1j )Re� Rj := max�2�(�jD�1j )Re� Ij := max�2�(�jD�1j ) Im�: (5.15)12



5.2 Two parameters interfa
e 
onditionsWe 
an improve the approximate interfa
e 
onditions by blending together two diagonal approximations of�1 and �2, and using an algebrai
 
ounterpart of Higdon's tri
k for absorbing boundary 
onditions (see[20℄).5.2.1 The symmetri
 
aseUsing a standard sten
il notation, 
onsider now two interfa
e 
onditions for the S
hwarz algorithm as�L D2 + �1D� and �L D2 + �2D�where �1 and �2 are two parameters to be 
hosen, and 
onsider their produ
tQ = �L D2 + �1D�� �L D2 + �2D� :The produ
t is a three 
olumn sten
il:Q = �L2 L(D2 + �2D) + (D2 + �1D)L (D2 + �1D)(D2 + �2D)�The three 
olumn sten
il may be redu
ed to a two 
olumn sten
il using the interior equations, given by thethree 
olumn sten
il [L D L℄Left multiplying this last sten
il by L and subtra
ting it to Q, we get[M�1 M0℄where M�1 = 12(DL� LD) + �2LD + �1DL M0 = (D2 + �1D)(D2 + �2D)� L2We assume that M�1 is invertible and we left multiply by LM�1�1 to get an equivalent interfa
e 
ondition[L LM�1�1M0℄This amounts to approximate � by �ap = LM�1�1M0 � D2 : (5.16)The optimization is 
arried out under a 
ommutativity assumption. In this 
ase, infa
t, we haveM�1 = (�1 + �2)DL M0 = D24 + �1 + �22 DD + �1�2D � L2and, owing to (5.16) �ap = 1�1 + �2 �D�1 �D24 � L2�+ �1�2D� :Owing to (5.6), we have hD24 � L2i = �2, and the substru
tured problem uses the matrixK�1;�2 = 0BB� ��� D�1�2+�1�2D�1+�2 ��� + D�1�2+�1�2D�1+�2 ��1 00 ��� D�1�2+�1�2D�1+�2 ��� + D�1�2+�1�2D�1+�2 ��1 1CCA :The optimal parameters �1 and �2 are thus the ones that minimize the norm of the nonzero entries in thematrix K�1;�2 . Ea
h nonzero entry in the matrix K�1;�2 
an be easily seen to admit the fa
torization��� D�1�2 + �1�2D�1 + �2 ��� + D�1�2 + �1�2D�1 + �2 ��1 = ��� �1D� + �1D� ��� �2D� + �2D�and the following result holds (for proof see ([13, 11℄)13



Lemma 5.6 Let M�1;�2 = Id��K�1;�2 . Then, the solution to the minimization problem�eff (M�opt1 ;�opt2 ) = min�12R+;�22R+�eff (M�1;�2);is given by (�1; �2) su
h that �opt1 �opt2 = (�m�M)1=2�opt1 + �opt2 =q2(�m + �M)p�m�M (5.17)where we have set �m = minf� 2 �(D�1�)g �M = maxf� 2 �(D�1�)g:We therefore 
hoose the approximate interfa
e 
onditions (5.16), where Dj = diag(�j), and �1 and �2 arede�ned in (5.17).5.2.2 The unsymmetri
 
aseA similar pro
edure to the one of the previous se
tion 
an be 
arried out in the unsymmetri
 
ase. By usingstandard sten
il notations, the 
oeÆ
ients in the approximate interfa
e 
onditions 
an be rewritten as� D�11 L1 D�11 D12 + �Id � � D�12 D22 + �Id D�12 U2 � ;in 
1 and 
2 respe
tively.Let us fo
us on 
1, and 
onsider two interfa
e 
onditions based on two di�erent real parameters �1 and �2.The produ
t of su
h interfa
e 
onditions yields a three 
olumn sten
ilQ1 = � D�11 L1 D�11 D12 + �1Id �� � D�11 L1 D�11 D12 + �2Id �= h L21 L�11 � eD1 + �2Id�+ � eD1 + �1Id�L�11 � eD1 + �1Id�� eD1 + �2Id� i :where we have set, for sake of simpli
ity in notations, eD1 = D�11 D12 , and L1 = D�11 L1.So far, we 
an use the interior equation to redu
e Q1 to a two 
olumn sten
il. This 
an be obtained bymultiplying the sten
il of the interior equation,� L1 D1 U1 �on the left by D�1L1D�1 and subtra
ting it to Q1.We therefore get � A�1 A0 � ;where A�1 = [ eD1;L1℄ + (�1 + �2)L1 A0 = eD21 + (�1 + �2) eD1 + �1�2Id� L1U1[:; :℄ being the Lie bra
ket, and U1 = D�11 U1.Assuming that A�1 is invertible, we multiply on the left by L1A�1�1 and we get the equivalent sten
il� L1 L1A�1�1A0 � :This amounts to approximate T1;1 byT1 = L1 �[ eD1;L1℄ + (�1 + �2)L1��1 � eD21 + (�1 + �2) eD1 + �1�2Id� L1U1�where we take D1 = diag(�1), and, following the 
hoi
e done in the symmetri
 
ase,�1�2 = r1R1 �1 + �2 =q2 (r1 +R1)pr1R1; (5.18)14



r1 and R1 being de�ned asr1 := min�2�(�1D�1)Re� R1 := max�2�(�1D�1)Re�:It is then easy to see that, in a similar way, we get for 
2 the approximate interfa
e 
ondition� U2B�11 B0 U1 � ;where, letting eD2 = D�12 D22 , L2 = D�12 L2, and U2 = D�12 U2, we haveB0 = eD22 + (�1 + �2) eD2 + �1�2Id� U2L2 B1 = [ eD2;U2℄ + (�1 + �2)U2:We therefore approximate T2;1 byT2 = U2 �[ eD2;U2℄ + (�1 + �2)U2��1 � eD22 + (�1 + �2) eD2 + �1�2Id�U2L2� ;where D2 = diag(�2), and �1�2 = r2R2 �1 + �2 =q2 (r2 +R2)pr2R2; (5.19)r2 and R2 being again de�ned asr2 := min�2�(�2D�1)Re� R2 := max�2�(�2D�1)Re�:6 Numeri
al ResultsIn this se
tion we test the proposed interfa
e 
onditions: we deal with an in�nite tube in 2D, 
 = R� (0; 1),and 
onsider the operatorL := �� ��x
(y) ��x + ��y d(y) ��y�+ p(y) ��x + q(y) ��y + �(y)with Diri
hlet boundary 
onditions at the bottom and a Neumann boundary 
ondition on the top. We usea �nite volume dis
retization of the operator with an upwind s
heme for the adve
tive term. We build thematri
es of the substru
tured problem for various interfa
e 
onditions and we study their spe
tra. We givein the tables the iteration 
ounts 
orresponding to the solution of the substru
tured problem by a GMRESalgorithm with a random right hand side G, and the ratio of the largest modulus of the eigenvalues overthe smallest real part. The stopping 
riterion for the GMRES algorithm is a redu
tion of the residual by afa
tor 10�10. We 
onsider both adve
tion dominated and di�usion dominated 
ows, and di�erent kind ofheterogeneities, in both the 
oeÆ
ients and the mesh parameters.We 
onsider a 
onstant rea
tion term � = 1 and two di�erent velo
ity �elds:� p = q = 10: the velo
ity is diagonal with respe
t to the interfa
e and is 
onstant.� p = sin(8�y), q = 10(1 + y2): the velo
ity is variable and 
hanges sign along the interfa
e.The numeri
al tests are performed with MATLAB r
 6.5, and the interfa
e 
onditions use the operatorsMapp1and Mapp2 de�ned in (5.1) and (5.2). We list hereafter the di�erent 
hoi
es of �app1 and �app2 used in thenumeri
al tests.One parameter interfa
e 
onditions� �j : we 
hoose D1 = diag(�1), D2 = diag(�2), and the optimal parameters are the ones given in (5.14).This 
hoi
e 
an be seen as an utopi
al one parameter approximation, sin
e the 
omputation of �1 and�2 is too 
ostly to be performed in pra
ti
al problems.
15



� Robin: in order to have a usable 
ondition, we avoid the 
omputation of both �1 and �2. Observingthat, if Dj , Lj , and Uj (j = 1; 2) were all diagonal matri
es the same would hold also for Tj;1, let dj ,lj , and uj be their diagonals, respe
tively. We 
hooseD1 = diag pd21 � 4l1u12 ! D2 = diag pd22 � 4l2u22 ! :We 
an then 
al
ulate the square of the optimal parameter �opt1 from formula (5.14) where, owing to(5.10) we repla
e �1D�11 with� (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1�D�21 : (6.1)In a similar way, we 
an 
al
ulate the square of the optimal parameter �opt2 from formula (5.14) wherewe repla
e �2D�12 with� (�U2)1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)1=24 � U2L2�D�22 : (6.2)Two parameters interfa
e 
onditions� O2U: we 
hoose D1 = diag(�1), D2 = diag(�2), and the optimal parameters are the ones given in(5.18) and (5.19). Also this 
hoi
e 
an be seen as an utopi
al two parameters approximation, as in the
ase of the �1 approximation.� Order 2: we 
hoose againD1 = diag pd21 � 4l1u12 ! D2 = diag pd22 � 4l2u22 ! ;and the squares of the optimal parameters are given by (5.18) and (5.19), where we have repla
ed thematri
es �1D�11 and �2D�12 by the expressions in (6.1) and (6.2), respe
tively.6.1 Adve
tion dominated 
owsIn this �rst series of tests we 
onsider adve
tion dominated 
ows, whi
h are 
hara
terized by a large ratiobetween the velo
ity and the di�usion 
oeÆ
ients. The grid is uniform (hx = hy), and the subdomains areheterogeneous in the y dire
tion, but they are symmetri
 with respe
t to the interfa
e.Test 1: Symmetri
 SubdomainsThe domain 
 = R � (0; 1) is divided into ten slabs of height hy = :1, where the vis
osity 
oeÆ
ientsare 
onstant. The ratio of the vis
osities in two neighboring slabs 
an be of order 104. The vis
osity
oeÆ
ients in the i-th slab is given by 
 = d = �(i), the latter being the i-th 
omponent of the ve
tor� = [�; �; 
; �; �; �; �; �; 
; �℄, where � = 1:e0, � = 1:e�4, and 
 = 1:e�2. We report the results in Table 1:all the interfa
e 
onditions appear robust with respe
t to both the mesh size and the velo
ity �eld, in termsof iteration 
ounts and 
onditioning of the problem. The best results are obtained with the two parameterinterfa
e 
onditions O2U and Order2, whi
h appear almost insensitive to the mesh re�nement and to theadve
tive �eld.6.2 Di�usion dominated 
owsIn this series of tests we 
onsider di�usion dominated 
ows, whi
h are 
hara
terized by a small ratio betweenthe velo
ity and the di�usion 
oeÆ
ients. The grid is uniform (hx = hy).16



Velo
ity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 4 6 8 9 13 19Robin 4 6 8 11 16 23O2U 4 5 6 7 9 10Order 2 4 5 6 8 9 10
ond �j 1.05 1.25 1.67 2.25 4.14 8.88Robin 1.05 1.25 1.68 3.27 6.57 13.51O2U 1.01 1.02 1.11 1.30 1.54 1.83Order 2 1.01 1.02 1.14 1.34 1.61 1.92p = sin(8�y) iter �j 3 4 6 8 12 16q = 10(1 + y2) Robin 3 4 6 10 13 18O2U 5 4 6 7 8 9Order 2 5 4 6 6 8 9
ond �j 1.01 1.18 1.48 2.04 3.75 7.08Robin 1.01 1.18 1.61 2.67 4.70 8.63O2U 1.01 1.03 1.13 1.33 1.63 1.97Order 2 1.01 1.04 1.14 1.35 1.67 2.01Table 1: Test 1: Adve
tion dominated 
ows, symmetri
 subdomainsTest 2: Unsymmetri
 SubdomainsIn this test the vis
osity 
oeÆ
ients are heterogeneous in both the x and the y dire
tion. The subdomains 
1and 
2 are again divided into ten slabs of height hy = :1, where the vis
osity 
oeÆ
ients are 
onstant. Let� = 1:e4, � = 1:e2, and 
 = 1:e0. The vis
osity 
oeÆ
ients in the i-th slab of 
1 is given by 
1 = d1 = �1(i),the latter being the i-th 
omponent of the ve
tor �1 = [�; �; �; �; �; �; �; �; 
; �℄, whereas the vis
osity
oeÆ
ients in the i-th slab of 
2 is given by 
2 = d2 = �2(i), the latter being the i-th 
omponent of theve
tor �2 = [
; �; �; �; �; 
; �; �; �; �℄. We report the results in Table 2. The interfa
e 
onditions are robustin terms of both iteration 
ounts and 
onditioning with respe
t to the mesh re�nement. Moreover, they arealmost insensitive to the velo
ity �eld in terms of iteration 
ounts. The one parameter interfa
e 
onditions�j and Robin are a little sensitive to the velo
ity �eld in terms of 
onditioning but this latter remainsreasonable. The best performan
es are again obtained with the two parameters interfa
e 
onditions O2Uand Order2.Test 3: Anisotropi
 CoeÆ
ientsIn this test the vis
osity 
oeÆ
ients show strong dis
ontinuities in the x and y dire
tion, and are alsoanisotropi
. The subdomains 
1 and 
2 are again divided into ten slabs of height hy = :1, where thevis
osity 
oeÆ
ients are 
onstant. Let � = 1:e4, � = 1:e0, and 
 = 1:e2. The vis
osity 
oeÆ
ients in thei-th slab of 
1 are given, in the x dire
tion, by 
1 = �1(i), and in the y dire
tion by d1 = �1(i) the latterbeing the i-th 
omponents of the ve
tors �1 = [�; �; �; �; 
; �; �; �; 
; �℄, and �1 = [
; �; 
; �; �; �; 
; 
; �; 
℄,respe
tively. Similarly, the vis
osity 
oeÆ
ients in the i-th slab of 
2 are given, in the x dire
tion, by
2 = �2(i), and in the y dire
tion by d2 = �2(i) the latter being the i-th 
omponents of the ve
tors�2 = [
; �; �; �; 
; �; �; �; �; 
℄, and �2 = [�; �; �; �; 
; �; �; �; 
; �℄, respe
tively. We report the results inTable 3. The interfa
e 
onditions appear very little sensitive to the velo
ity �elds and the mesh re�nementin terms of iteration 
ounts. In terms of 
ondition number the Robin interfa
e 
ondition shows an in
erasewith the mesh re�nement, di�erently from the other interfa
e 
onditions. Again, the best results are obtainedwith the two parameters interfa
e 
onditions O2U and Order2.
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Velo
ity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 7 10 13 15 15 15Robin 7 10 13 16 19 21O2U 6 6 8 11 15 19Order 2 6 6 8 11 15 19
ond �j 1.71 1.95 2.89 3.61 3.94 16.02Robin 1.61 1.83 2.59 3.52 3.94 4.12O2U 1.19 1.25 1.28 1.79 2.69 3.65Order 2 1.21 1.26 1.30 1.83 2.76 3.68p = sin(8�y) iter �j 7 10 12 14 14 16q = 10(1 + y2) Robin 7 10 13 15 17 19O2U 6 6 8 10 14 17Order 2 6 6 8 10 18 17
ond �j 4.31 8.90 4.77 10.46 20.62 29.26Robin 4.13 7.21 3.24 4.27 8.38 13.12O2U 1.71 1.98 1.16 1.99 3.27 4.13Order 2 1.72 2.01 1.27 2.08 3.37 4.18Table 2: Test 2: Di�usion dominated 
ows, unsymmetri
 subdomainsVelo
ity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 10 17 26 29 31 33Robin 9 17 27 35 42 47O2U 7 10 14 17 20 21Order 2 7 10 14 16 19 21
ond �j 5.24 13.50 17.03 18.72 20.1 21.45Robin 5.42 18.27 24.75 31.04 38.32 47.29O2U 1.76 2.97 4.62 6.35 6.95 6.64Order 2 1.54 2.75 4.48 5.92 6.32 6.86p = sin(8�y) iter �j 7 12 14 18 22 24q = 10(1 + y2) Robin 7 12 14 19 26 31O2U 8 12 13 15 18 19Order 2 7 11 12 15 17 19
ond �j 1.79 12.53 15.09 18.11 19.94 21.42Robin 1.93 17.46 22.88 28.32 36.31 46.17O2U 3.93 2.34 3.56 4.31 4.44 5.19Order 2 1.33 2.27 3.34 3.75 4.01 5.21Table 3: Test 3: Di�usion dominated 
ows, anisotropi
 
oeÆ
ients6.3 In
uen
e of the mesh anisotropyIn this last series of tests we study the robustness of the proposed interfa
e 
onditions with respe
t to the meshanisotropy, for both adve
tion and di�usion dominated 
ows. We 
onsider the velo
ity �eld p = sin(8�y),q = 10(1 + y2), and the vis
osity 
oeÆ
ients as des
ribed in Test 2, where � = 1:e0, � = 1:e � 4, and
 = 1:e � 2 in the adve
tion dominated 
ase, whereas � = 1:e4, � = 1:e2, and 
 = 1:e0 in the edi�usiondominated one. We take hy = 1=80 (thus the size of the interfa
e problem remains un
hanged), and weeither 
oarsen or re�ne the mesh step in the x dire
tion, allowing di�erent levels of re�nement in the twodi�erent subdomains. We report the results in Table 4. We observe that when the mesh is 
oarsened in18



the x dire
tion all the intefa
e 
onditions perform better for both 
ows, in terms of both iteration 
ountsand 
onditioning of the problem. This is not surprising, sin
e the underlying �nite volume s
heme seeksfor information at the 
enter of adja
ent 
ells, thus it introdu
es a virtual overlap: the 
oarsening of themesh in the x dire
tion 
an be interpreted as an in
erase of the overlap size. In general, however, theinterfa
e 
onditions appear quite robust with respe
t to the re�nement in the x dire
tion. The eÆ
ien
yof the Robin interfa
e 
ondition de
ays more remarkably for di�usion dominated 
ows, nevertheless boththe iteration 
ounts and the 
onditioning remain reasonable. The best results are again obtained with thetwo parameters interfa
e 
onditions O2U and Order2; moreover, there is no appre
iable di�eren
e betweentheir performan
es.Velo
ity hx1=hy hx2=hy 10 10 1 1 :1 :1 :01 :01 :1 :01p = sin(8�y) iter �j 4 8 10 15 12q = 10(1 + y2) Robin 4 10 12 15 12O2U 4 7 9 9 9Order 2 4 7 9 9 9
ond �j 1.04 2.04 2.92 3.86 3.77Robin 1.04 2.67 4.18 4.11 4.33O2U 1.02 1.33 1.57 1.63 1.72Order 2 1.02 1.36 1.66 1.71 1.83p = sin(8�y) iter �j 6 13 18 22 17q = 10(1 + y2) Robin 7 15 25 26 20O2U 7 11 15 12 13Order 2 7 11 15 12 13
ond �j 12.58 10.46 21.21 8.88 14.49Robin 9.80 4.27 11.67 31.61 11.65O2U 2.33 1.99 2.78 2.25 2.20Order 2 2.33 2.08 2.93 2.46 2.21Table 4: In
uen
e of the mesh anisotropy for adve
tion (top) and di�usion (bottom) dominated 
ows7 Con
lusionsWe proposed here a way to build optimized interfa
e 
onditions in a domain de
omposition method foradve
tion-di�usion-rea
tion problems based only on algebrai
 
onsiderations on the dis
rete problem. Nu-meri
al experiments show that the proposed interfa
e 
onditions appear to be robust with respe
t to thevelo
ity �eld and the mesh size, also in the presen
e of highly dis
ontinuous 
oeÆ
ients both inside the sub-domains and a
ross the interfa
es, and anisotropies in both the vis
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