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Abstract

In this paper we consider unsymmetric elliptic problems of advection-diffusion reaction type, with strongly
heterogeneous viscosity coefficients. We build Optimized Schwarz Methods (OSM) on non-overlapping do-
main decompositions, directly at the algebraic level, in order to guarantee robustness with respect to the
heterogeneities in the coefficients. We study new interface conditions where only one or two real parameters
have to be chosen along the entire interface. Using one real parameter it is possible to design interface
conditions of Robin type, whereas the use of two real parameters and of more general interface conditions
allows to better take into account the heterogeneities of the medium. Numerical results validate the proposed
interface conditions.

1 Introduction

High fluid pressures within the rock layers of the subsurface are among the biggest problems an oil company
has to deal with when drilling. A mathematical model for the prediction of fluid pressures on a geological
time scale is based on conservation of mass and Darcy’s law (see for instance [6]). This can be generalized to
a time-dependent advection-diffusion equation, where the region also changes in time as rocks are deposited
or eroded. An Euler backward method is used for the time integration, and a numerical method such as finite
volumes or finite differences is applied at any time step in order to solve the advection-diffusion equation,
yielding a linear system of equations.

A further complication of the physical problem is given by the heterogeneities of the underground: the
presence of layers with very large differences in permeability yields contrasts up to seven orders of magnitude
in the different regions of the computational domain. The widespread availability of parallel computers makes
domain decomposition methods a natural candidate to take into account such problems. Such methods are
based on the subdivision of the computational domain into several subdomains (which may or may not
overlap) and the parallel solution of the local problems. This procedure leads to an iterative method that
converges to the solution of the original problem if the solutions in the subdomains are related by means
of suitable boundary conditions at the interface. The performance of the method depends drastically on
the design of interface conditions, which has been the subject of several works (see e.g. [24, 25, 29] and
references therein).

We consider here elliptic problems of advection-diffusion reaction type, with strongly heterogeneous viscosity
coefficients. Such problems arise naturally also in several other applications of practical interest, where
different materials with different physical properties are present in the computational domain, as in the
modeling electrical power networks, semiconductor devices and electromagnetics. These differences may be
rather significant and this would reflect into large discontinuities in the coefficients of the problem.

We use here an Optimized Schwarz Method (OSM) with a non-overlapping decomposition. The original
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Schwarz Algorithm uses Dirichlet interface conditions, and overlapping is necessary to ensure convergence. In
[23] Robin interface conditions are introduced, ensuring convergence without resorting to overlap. Optimized
Schwarz Methods are becoming quite popular and have been introduced at the continuous level in [14, 21, 26]
for advection-diffusion problems and then applied to other problems such Helmholtz and Maxwell equations
(see for instance [9, 15, 5]), and are based on Fourier analysis. Recently, such methods have been studied
directly at the discrete level in [28, 12, 24]. In this paper we design the interface conditions directly at the
algebraic level, in order to guarantee robustness with respect to heterogeneities in the coefficients.

The paper is organized as follows. In Section 2 we enlighten the link between an LDU factorization of a
matrix M and the construction of absorbing boundary conditions (ABC) to restrict the underlying differential
problem to a part of the computational domain. In Section 3, optimal algebraic interface conditions in
domain decomposition are derived for the linear system arising from the discretization of a problem with
layered coefficients set on an infinite strip. In Section 4 we describe the Algebraic Schwarz algorithm, and
in Section 5 we derive two families of interface conditions depending on one or two real parameters: we
address both the cases of the underlying differential operator being symmetric and unsymmetric. Finally, in
Section 6 some numerical results are given to validate the proposed interface conditions, in both the cases
of adection dominated flows and diffusion dominated flows, with strongly heterogeneous and anisotropic
viscosity coefficients. Some numerical tests intended to show the robustness of the interface conditions with
respect to the mesh refinement and the mesh heterogeneities conclude the section.

2 LDU factorization and absorbing boundary conditions

In this section we enlighten the link between an LDU factorization of a matrix and the construction of
absorbing conditions on the boundary of a domain. As it is well known in domain decomposition literature,
such conditions provide optimal interface transmission operators.
Let © € R® be a bounded polyedral domain. After a finite element, finite differences or finite volume
discretization of a PDE boundary value problem, we obtain a large sparse system of linear equations, given
by

Bw=g. (2.1)

Assume that the underlying grid is obtained as a deformation of a Cartesian grid on the unit cube, so that
for suitable integers N, N,, and N,, w € RY>*Yv*N= [f the unknowns are numbered lexicographically,
the vector w is a collection of N, sub-vectors w; € R XNZ, i.e.

(2.2)

)’T‘i

T T
w=(wy,...,wy,
we have g = (g1,..,gn,)", each g; being a N, x N, vector, and the matrix B of the discrete problem has a

block tri-diagonal structure
D U

B=| I+ P = : (2.3)
- . Un, -1
Ln,-1 Dn,
where each block is a matrix of order NV, x N..
An exact block factorization of the matrix B defined in (2.3) is given by

B=(L+T)T (U+T), (2.4)
where
0 0 U T
L= Ly U= T = )
" Un, -1 .
Ly,-1 O 0 Tn,



the blocks T; being matrices defined recursively as

D fori=1
T =
D — Li 1T, Ui for 1 <i < N,.

So far, we can give here the algebraic counterpart of absorbing boundary conditions to truncate a part of
the computational domain. Assume g = (0, ..,0, gp+1,..,gn, ), and let N, = N, — p+ 1. To reduce the size
of the problem, we look for a block matrix K € (R"v*"=)"e each entry of which is a N, x IV, matrix, such
that the solution of Kv = g = (0, gp+1, .-, gn. )" satisfies v = wpyp—1 for k =1,.., N,,. The rows 2 through
N, in the matrix K coincide with the last IV, — 1 rows of the original matrix B. To identify the first row,
which corresponds to the absorbing boundary condition, we take as a right hand side in (2.1) the vector
g=1(0,.,0,9p+1, .-, gn. ), and, owing to (2.4), we consider the first p rows of the factorized problem

T, Tf 1 T U w1 0
L 1 T2 T{ ! T2 U2
. .. . . wp 0
Lp,1 Tp T;l Tp Up Wp+1

The first two are p x p square invertible matrices, so we need to consider only the third one, a rectangular
p X (p+ 1) matrix: from the last row we get

Tywp + Upwpy1 =0, (2.5)

which, identifying v1 = w, and va = wyp41, provides the first row in matrix K.
Assume then g = (g1, .., gg—1,0, ..,O)T. A similar procedure can be developed to reduce the size of the
problem, by starting the recurrence in the factorization (2.4) from Dy, , as

D; — UiT;,\ Li for 1 <i< N,

i

t

.

DNm for 1 = .Z\[;,;7
and we can easily obtain the equation for the last row in the reduced equation as

Lowg—1 + Tywg = 0. (2.6)

3 Optimal interface conditions in domain decomposition for
an infinite layered domain

Let © = R x @, where @ is a bounded domain of R?, and consider the elliptic PDE of advection-diffusion-
reaction type given by
—div (¢Vu) + div (bu) + nu = f in Q
Bu=g on R x 0Q),

with the additional requirement on the solutions to be bounded at infinity, where the coefficients are layered
(i.e. they do not depend on the z variable), where B is a suitable boundary operator. This can be for
instance the case of a stratified material, where discontinuities in the coefficients are concentrated in the
y and z directions. After a finite element, finite differences or finite volume discretization, we obtain an
infinite sparse system of linear equations, given by

(3.1)

Aw = f. (3.2)

Under classical assumtpions on the coefficients of the problem (e.g. n — 3divb > 0 a.e. in Q) the matrix A
in (3.2) is definite positive.

We consider a discretization on a uniform grid via a finite volume scheme (see for instance [10]) with an
upwind treatment of the advective flux, and a lexicographic numbering of the unknowns. We solve problem



(3.2) by means of an Optimized Schwarz Method: such methods have been introduced at the continuous level
in [23], and at the discrete level in [28]. In the following, we design optimized interface conditions directly
at the algebraic level, in order to guarantee robustness with respect to heterogeneities in the coefficients. In
this order, we firstly extend the absorbing boundary conditions (ABC) of the previous section to the case of
infinite domain. Then we introduce optimal interface conditions for a Schwarz method, expressed in terms

of ABC.

3.1 Absorbing boundary conditions for an infinite layered domain

The lexicographic numbering of the degrees of freedom entails that the matrix of the discrete problem (3.2)
is given by

U
A= D U (3.3)
L D U
As the number of columns in (3.3) is infinite, we can define the block
To :=D— LTL'U. (3.4)

Assuming f = (.., 0, fp+1, fp+2,..), the absorbing boundary condition for the restriction v = {wy | k > p}, is
thus given by
Toowy + Uwp1 = 0. (3.5)

Assuming then f = (.., fq—2, f¢—1,0, ..), the absorbing boundary condition for the restriction v = {wy |k <
g + 1}, can be obtained, by defining the block

T =D —-UTL'L, (3.6)
as _
Lwg—1 + Toowy = 0. (3.7
3.2 Optimal interface conditions in domain decomposition
So far, we consider a two domain decomposition Q=0U Qg, Q1 N Qs = 0, where
O =R~ xQ, Q0 =R' xQ,

and we denote with T' = 9Q; N Qs the common interface of the two subdomains.
The resulting linear system is given by

A, Air 0 w I
Ari Arr A wr = fr (3.8)
0 Asr Axp w> Ia

where w; is the vector of the internal unknowns in domain §2; (¢ = 1,2), and wr is the vector of interface
unknowns. In order to guarantee the conservativity of the finite volume scheme, the vector of interface
unknown consists of two sets of variables, wr = (wr,wx)”, the first one to express the continuity of the
diffusive flux, the second to express the continuity of the advective one.

At the cost of duplicating the interface variables wr into wr,; and wr,2, we can write a Schwarz method
by introducing two square matrices By and B» (acting on the interface variables), in the following way:

A A wit 7 (3.9)
Ar1 Arr+ By w{iﬁl fr+ Bﬂvlﬁg — Arywh ’
Az Aor wy Y £ (3.10)
Aras  Arr+ B» w’ff; fr+ 8211”12,1 — Ariw} '



Lemma 3.1 Assume A11 and Aas are invertible. Then, choosing
By = —Ar2Ay, Aor By = —ArmAj Air
in (3.9)-(3.10) yields convergence in two steps.

Proof The result is well-known in the domain decomposition literature. We report here the proof for
sake of completeness. First of all, notice that with this choice of B; and B2, the bottom right blocks in
(3.9) and (3.10) are Schur complements. It is classical that the subproblems in (3.9) and (3.10) are well-
posed. To prove convergence it is enough, by linearity, to consider convergence to the zero solution when
(f1, fs, fr)T = 0. At step 1 we have from (3.9)

1 1
Anw; + Airwr =0,

which is equivalent (applying Ar1A;7') to

Ar1w} + Arg A?ﬂ A1rw},1 = 0.

The right hand side in (3.10) thus vanishes at step 2 and we have convergence to zero in two steps. The
same proof holds also for ;. O

The matrix A of the coupled problem in (3.8) is given by

L, DI U 0 0
Ly Dir Uir
A= 0 L Drr Ur: 0 ; (3.11)
Lor Dor  Us
0 0 L, D, U
where the block Drr is square
_ Drr 0
Der = { 0 Dy } ’
and the blocks L;r, and U;r (i = 1,2) are rectangular and are given by
Ly Ur2
Lr = Lor = | L L Uir=| U U Ur: = .
o= ] Le=lLe L] Ue=[Or Un] Un=| ]
So far, we can prove the following result.
Lemma 3.2 Let A be the matriz defined in (3.11), and let Th oo and Taso be such that
Tioo = D1 — LTy o U Ts.00 = D2 — UsT; 1 Lo. (3.12)

We then have
Ar AT A =Lpy (Dir — LT L U)) 7 Une ArsAy) Aor = Ups (Dor — Us Ty L L) Lor.

Proof Let us consider €1 and let V be a block vector defined as

v, | =ALAr=AY - o |,
V_oi | Uir
which can be rewritten as
0 = Ly D U 1 Voo
Uir L Ly Dir V.,



The last row reads

where T oo = Dy — LTy, Ur. Substituting into (3.13), we get

Now, multiplying A;;' Air on the left by Ari we obtain

It is therefore immediate to see that

We can thus rewrite the optimal Schwarz algorithm (3.9)-(3.10) as

A]]
Ar

A22
Ar;

where we have set

Ur=L,V s+ DrV . (3.13)
Since the matrix A is infinite, equation (3.5) allows to express V_, in terms of V_1, as
V_o=-T Ui V_y,
Uir = (Dir — LTy ., Uv) V_i.
So far, we can express the block V_; in terms of the block Uir, as
Vo= (Dir— LT LU U
Ar1A;1]A1r: [ 0 L]"] ] \/72 :Ll"l Vfl-
V.,
- _ -1
AriA'Air =Lry (Dir — LiT; LU  Unr.
It is not difficult to see that a similar argument within €2, completes the proof. O
A]r w'{“ — .fl
M, wih! fr+ (M, — Drr) wr , — Arpw}
(3.14)
Aop wS_H _ I
M, ’w{i;l fF + (M] — Drr) ’wlfﬂ,l — Ar‘]’w-lzC
_ —1
M; = Drr — Urs (Dar — UQTQ’;OLQ) Lor. (3.15)

_ —1
M; = Drr — Lri (Dir — LTy 3 U1)~ Uir

4 An algebraic non-overlapping Schwarz method

The optimal Schwarz algorithm (3.14) cannot be used in practice, due to the lack of sparsity of the matrices
M; and M; in (3.15). Let thus M{?? and M3?? be suitable approximations of M; and M, respectively,
and consider the following algorithm.

The method is defined directly at the

A—ll
Ar

A—22
Ar;

Air
app
M,

Aor
app
M;

)

) (:

We can prove the following result.

Lemma 4.1 Assume that the matriz (M7P? + M3PP — Drr) is invertible. Then, if the Schwarz algorithm
(4.1) converges, it does to the solution to problem (3.8).

algebraic level, and reads

k41
’l)+

1
k41
Ur1

)< Covonr

k41
Uy

k41
I,2

)= (v

£
—Drr) v, — Arovh
(4.1)

Iy
—Drr)vf, —Anvs )



Proof We have to prove that, at convergence
v = wj (for 7 #0) vr,1 = Ur,2 = Wr.

It is easy to see that, once converegnce is achieved, we have

Lrivl, + MPPvry = —=Up vy + M3PPvr o+ fr— Drrors

Urzvf + M vry = —Lrivl; + M3? vr1 + fr — Drror,
Summing up the two equations above we get
(M{P? + M3PP — Drr)vr = (M$P? + M3P? — Drr) vr 2,
which entails the continuity of the block variable vr := vr;;1 = vr,2. A simple algebra provides
Lriv_1 +Drror +Ur2 v = fr.

Thus, v and w satisfy the same equations, and this concludes the proof. O

4.1 Substructuring

The iterative method can be substructured in order to use a Krylov type method and speed up the conver-
gence. We introduce the auxiliary variables

h, = (NI;Lpp —Drr) vr2 — Ara vo, hy = (1\/15{Lpp —Drr) vr;1 — Ari vy,

and we define the interface operator K

h, —Arivi + (M3 — Drr) vr 1
K: hs —
f (M5P? — Drr) vr,2 — Arovs

where f = (fy, fr, f2)", whereas (v1,vr,1) and (v2,vr2) are the solutions of

A Ar V1 _ .fl
(& e ) (o) = (lin ) =

Ay A, V2 _ fg
<Ar2 M?£p><’vr,2>7<fp+h2>' (4.3)

So far, the substructuring operator is obtained simply by matching the conditions on the interface, and reads

and

( Z; ) — TIK(h1, ks, 0) = TIK(0,0, f) (4.4)

where IT is the swap operator on the interface, having the block form

0 Id
II =
Id 0
Problem (4.4) can be rewritten in the matrix form
<Id - HK) (hi,hs)" = F, (4.5)

where F = IIT} (0,0, f), and where the matrix K is given in the following lemma.



Lemma 4.2 The matriz K in (4.5) is given by

(M{PP — M) (M + M3*P — Drr) ! 0
K —
0 (M3PP — Ms) (Ms + M$?” — Drp) ™!

Proof We have to express K(hi, ha,0) for arbitrary vectors hi, hy € RV *N= Qwing to (4.2) we have
within Q1:
hi =M vr1+ Arivi = [M;’”p - Ar1Af11A1r] vr,1

= [M3"” — Dyr + My] vr
the last equality being justified by Lemma 3.2 and formula (3.15). We thus have
vr,1 = (M; + M5*” — Drr) th,

v = —AﬁlAlr(Ml + M5PP — Drr) ' h,
and we easily get
[K(h1,h2,0)i = —Arivi + (M?”” — Drr) vr,

= [ANAﬂlAlr + M7PP — Drr] (M + M3PP — Drr)71h1

= (M} — M,) (M + M3** — Drr) ' hy.
A similar argument within Q, provides
[K(h1, hs,0)]5 = (M5 — M) (M2 + M{?” — Drr) ' hs.
O

The convergence properties of the Schwarz algorithm depend clearly on the choice of the approximated
matrices T{"" and T35%" in the interface condition. The following sections are dedicated to their choice.

5 Approximation of the exact interface conditions

In this section we design interface conditions depending on real parameters, and we look for sparse approxi-
mations of the exact interface conditions given in (3.15). At the cost of enlarging the interface problem, we
approximate M; and M; by

M{"" = Drr — L1 [Dir — Ly (Tla,l;g)il U1]71 Uir (5.1)
and

M5P? = Drr — Ury [Dor — Uz (T;’Zg)fl L] " Lor (5.2)
where Tﬁf’;’ and T;ﬂg are suitable sparse approximations of T ~, and Ts o respectively, which are optimized

to concentrate at maximum around 1 the spatial distribution of the spectrum of the substructured matrix.
The optimization procedure is carried out in the case where the underlying differential operator is the same
in both subdomains, and the decomposition has a minimal overlap of one cell. In this case there is no need to
introduce the interface variables wr, the unknowns of the cell in the overlap are duplicated and the matrix
of the coupled problem is

D U 0 0
B L T |-m+D U
M= L -T1+ D T, U ’ (53)
0 0 L D U




where 77 and T are suitable approximations of 71 o and T5 ~, respectively.
A direct computation similar to that of Section 4.1 yield the substructured matrix M = Id — IIK, the
matrix K being given by

(Th 7T1,oo)(T2+Tl,oo)71 0
K= . (5.4)
0 (To — T2,00)(T1 + To00) ™!

One may argue that the optimization of the parameters has been done for a different problem with respect
to (4.5): however, owing to (5.1) and (5.2), we optimize the approximation of the inner operators T}
(j = 1,2), rather than that of M; and M. Since they are the only matrices not sparse in (5.1) and (5.2), a
good approximation of Tj o (j = 1,2) entails a good approximation of the exact interface conditions. The
numerical tests of the next section validate this approach. The main feature is that the so designed interface
conditions are built directly at the algebraic level and are easy to implement. Clearly, they rely on the
approximation of the Schur complement and, if on one hand the extension to a decomposition into stripes
appears quite straightforward, on the other hand further work needs to be done in order to analyse their
scalability to an arbitrary decomposition of the computational domain.

In the following we firstly give an explicit formula for the computation of T} «, in both the cases of a sym-
metric and, relying on a commutativity assumption, a non-symmetric operator. Then we designe optimized
interface conditions depending on one or two real parameters.

The symmetric case
If the elliptic operator is symmetric, L; = L]-T = Uj, we have
Tjo = Dj — LiT; o Lj,

and we can prove the following result.

Lemma 5.1 Assume that —L; = fL.? and K; = L; D; L; are symmetric positive

definite (SPD) matrices. Then,

1
Tioo = 5Dj + 4 (5.5)

where

1
Aj= (L)' \/Z(*LJ‘)’I/QDJ‘(*L.i)’le(*Lj)’”z ~1Id(-L)'? (5.6)
is a SPD matriz.
Proof First of all, since K; is a SPD, both D; and D; 4+ 2L; are SPD matrices. Let

Ty = (~Lj) *Tjoo(~L;)""/* and D; = (~L;) " D;(~L;) /2.
We have that D; > 2 Id and then Df > 4 Id. With these notations, we have

1 —1/2 —1 —1/2 1 2

7 ("Li) T Di(=L;) " Di(=Ly)" " —Id= _D; —Id

D; — Id is a SPD matrix and formula (5.5) makes sense. From (5.5), we have

- 1 - 1 -
Ty = 5D; +4/ D} - 1d

Therefore, %

Therefore, we get



Using that D; and T; commute, we have

17 - DTy = —1d

or equivalently, ~ B ~

It means that T} « is a solution to the matrix equation

Dj =Tjo+L; Tj 1 L

The unsymmetric case

In the unsymmetric case, L; # U;, and an explicit formula for T} (j = 1,2) cannot be derived unless the
matrices L;, D;, and U; commute. In this case, we can prove the following result

Lemma 5.2 Assume that, for j = 1,2, L;D; =D;L;, U;D; = D;U;, and LjU; = U;L;. Then

1
Tjoc = §D]‘ + A]' (5.7)
where
Ay = (=L)'? \/%(_Ll)ﬂ”Dl(—U1)’1/2(—L1)’1/2D1(—U1)’1/2 —1d (-Uh)"?, (5.8)
and
Ay = (=Us)"? \/%(_UQ)A/QDQ(_L2)71/2(_U2)71/2D2(—L2)’1/2 —Id (—L»)"*. (5.9)

Proof By multiplying the first equation in (3.12) on the left by (—L:)~'/? and on the right by (~U;)~'/?
we get

(L) T (=U0) ™ = (=L0) T2 Di (= U0) P = (= L) T (<UL
So far, we set X = (—L1) V2T oo (=U1) "2, A = (=L1)" V2D, (—U1)~"/2, and, relying on the commuta-
tivity assumption, we can rewrite the above equation as X + X ' = A. Multiplying by X once on the left
and once on the right, and summing up we obtain the equation

whose positive solution provides

Tie = 5 (00" 4 L) 2D (U)oL DU 0 = 1 (-0 60

By a similar argument on the second equation in (3.12), it can be easily seen that the following formula
holds for T», 0

D: 1
Troo =5 + (=02 \/Z(—U2)’1/2D2(—L2)’1/2(—U2)”/2D2(—Lz)*‘/Q —1d (=)',

10



5.1 One parameter interface conditions
Owing to the results of the previous section, we choose to approximate T}, (j = 1,2) as

D D
T] = 71 +A?pp T2 = 72 +A3pp.

A first opportunity consists in choosing a diagonal approximation of A; and As. We take
AIPP =afP Dy ARPP = as®' Dy (5.11)

where D; (j = 1,2) are diagonal matrices and the parameters al‘;pt ( = 1,2) are optimized in the following.

5.1.1 The symmetric case
If the differential operator is symmetric, we have T o0 = 12,00 = g + A. Choosing

D
TIZTQZE'F/BD,

where 5 € R and D is a diagonal matrix, we get

(8D — A) (8D + A)~! 0
Kg =
0 (BD — A) (BD+A)™!
We can prove the following result.

Lemma 5.3 Let A and D be symmetric positive definite matriz, let 8 € R, and let Mg = Id —IIKpg. Then

min Fepf(Mg) = Fepf(Mgopt) = hicsp (D' A)/?

where
B = Amin (D™ A)Amaa (D™1A))V2, (5.12)

and where kes5(M) denotes the ratio of the largest eigenvalue of a matriz M over its smallest one.

Proof Let o(M) denote the spectrum of a matrix M, and let p(M) be its spectral radius. We have

1-A

/\efr(l(%%))(*lA) 1+X

1~ Amin((BD)"'A)

L4 Amin ((BD)~1A)

p(Kg) =

= max(

‘1 — Amaa((BD)"'A) )
T+ Amaa ((BD)71A)

This expression is minimized by taking 8 = Bop: as defined in (5.12). In that case, we get

11—
K =——1
p( Bopt) 1+’7

where

7 1= vV Amin (D~ TA) [ Amaz (D-TA) = k(D 'A) /2
Thus, we have
min ey f(Mg) = ey s (Mgep) = 1/7 = Keps(DTHA)Y?

If the operator is symmetric, owing to the following result by Van der Sluis, (see [30, 19])

Theorem 5.1 (van der Sluis) If F is symmetric positive definite matriz, then

. —12pp-1/2y © : —1/2 g -1/2y < . —1/2 2 y—1/2
min k(D FD ) < k(diag(F) Fdiag(F) ) <m. min k(D FD )

where D = {positive definite diagonal matrices} and m is the mazimum number of nonzeros in any row
of F.

11



we choose in the interface operators (5.11)
Dj = diag(A;),

for j = 1,2, and

A" = (Amin(diag(A;)) " Aj) Amaa (diag(A;)) " A5)) /2.

5.1.2 The unsymmetric case

If the differential operator is not symmetric, we have

D D

Tico = =— + A1, Tr.00 = — + A,

2 2

and choosing
D

=T = 5 + 8D,

we obtain the matrix
(BD — A1) (BD + A1)~ 0
Kpg =

0 (BD — A2) (BD 4+ As) !
Let £1 = (BD— A1) (BD+ A1) 7!, and By = (8D — As) (BD+ As)™'. Then, the following result can be easily
proved (see [18]).
Lemma 5.4 Let Mg =1d —II1 Kg. Then

vy Eo(Mg) = (1—7)> €a(T:1%s) pE o(S13:) = (1 +/p) € o(Mp)

d

The previous Lemma states that the eigevalues of the substructured problem are located in a disc of the
complex plane centered in 1 and with radius at most p(3:1X2), the spectral radius of the product ¥1%,. We
then minimize at once the spectral radii of both ¥; and ¥,. We set, for § € R,

A-8
X+B

2

(B) = max

a
A€a (A1 D—1)Us(AsD—1) ’

and we minimize it with respect to 3. The solution is given in the following Lemma (for proof see [18]).
Lemma 5.5 Let

r.= min Re A R := max Re A I:= max Im .
Aer:]g”(Ajvil) Aer:],Q”(A]“Dil)

The solution B°Pt to problem

¢(8°™) = min¢(B)

BER
is given by

ﬁODt:max{\/rz—kIZ, \/TR—IQ}. (5.13)
Thus, if the differential operator is nonsymmetric, we choose in the interface operators (5.11)
D; = diag(A;),

for j = 1,2, and

t P P .
aj® zmax{\/r]?—i-lf , \/r]-R]-—I].Z}, (5.14)
where we have set, for j = 1,2,
rji= min ~ ReA R; := max ReA I; := max ImA. (5.15)
Aea(/\jvj”) AEU(AJ-’D;1) Aea(/\jvj”)
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5.2 Two parameters interface conditions

We can improve the approximate interface conditions by blending together two diagonal approximations of
Ay and A, and using an algebraic counterpart of Higdon’s trick for absorbing boundary conditions (see
[20]).

5.2.1 The symmetric case

Using a standard stencil notation, consider now two interface conditions for the Schwarz algorithm as
D D
|:L ? + ﬁ]D:| and |:L ? + 62D:|

where (31 and (32 are two parameters to be chosen, and consider their product

o[t Deso]afr Duna]

The product is a three column stencil:

o=[r 12 o)+ (2 po)L (5 +BD)(5 + D)

The three column stencil may be reduced to a two column stencil using the interior equations, given by the
three column stencil

[L D L]
Left multiplying this last stencil by L and subtracting it to Q, we get

(M1 Mo]

where ) D D
(DL = LD) + ;LD + B DL MO:(?+ﬁ1D)(?+,82D)fL2
We assume that M_; is invertible and we left multiply by LM~} to get an equivalent interface condition

M., =

[L  LMZ| M)

This amounts to approximate A by
D

A" = LM~ My — R (5.16)
The optimization is carried out under a commutativity assumption. In this case, infact, we have
D? +
M.\ = (81 + )DL My=Z 4 2 Bpp g gigp 1

and, owing to (5.16)

ap_# -1 D_Q, 2 )
=gk (0 [ -+ o),

Owing to (5.6), we have [DT2 — LQ} = A?, and the substructured problem uses the matrix

_ D*1A2+Blﬁﬂ) ( D*1A2+Blﬂgv)”
(A Bit5a A =377, 0

Kpip, = X
_ D71A2+B1ﬂ29) ( ’D*1A2+ﬂ1ﬂ29)7
0 (A B1+B2 A+ B1+B2

The optimal parameters 51 and B2 are thus the ones that minimize the norm of the nonzero entries in the
matrix Kg, 3,. Each nonzero entry in the matrix Kg, g, can be easily seen to admit the factorization

(A_ D”AM&MJ) (A+ D‘A2+ﬁ1ﬁzD>l B (A—ﬁm) (A—62D>
Bi+ B2 Bi + B “\A+4D) \A+5D
and the following result holds (for proof see ([13, 11])

13



Lemma 5.6 Let Mg, g, = Id —II Kpg, g,. Then, the solution to the minimization problem

; M . o = i ; M
Feff (Mgopt gort) BIERT}BHQGW%N( 61,62

is given by (81, B2) such that
BB = )
(5.17)

4 B3 = (20 + M)V A

where we have set
An = min{A € o(D'A)} Av = max{\ € o(D"'A)}.

We therefore choose the approximate interface conditions (5.16), where D; = diag(A;), and B and B2 are
defined in (5.17).
5.2.2 The unsymmetric case

A similar procedure to the one of the previous section can be carried out in the unsymmetric case. By using
standard stencil notations, the coefficients in the approximate interface conditions can be rewritten as

D7 ' Dy

_ D,;'D _
{DllLl +a1d] { 22 > 4+ BId DleQ],
in Q; and Qs respectively.
Let us focus on €21, and consider two interface conditions based on two different real parameters «; and .
The product of such interface conditions yields a three column stencil

0, D7Dy

_ DD _
[D11L1 12 1+a11d}X[D11L1 +a21d]

[ c2 ot (51 n azld) n (51 n alld) o (51 n mld) (131 + agld) ] .

—1

where we have set, for sake of simplicity in notations, D, = D 3 D ,and £, = Df1L1.

So far, we can use the interior equation to reduce Qi to a two column stencil. This can be obtained by
multiplying the stencil of the interior equation,

[ L1 D, U ]

on the left by D 'L,D ! and subtracting it to Q.
We therefore get
[ A Ao ],

where _ _ _
A_1 =[D1,L1] + (a1 + a2) Ly Ao = D} + (a1 4+ a2)Di + arasld — Lilh

[.,.] being the Lie bracket, and U; = D; 'Us.
Assuming that A_; is invertible, we multiply on the left by Li.A”1 and we get the equivalent stencil

[ L, LiA” 1 Ao ] .
This amounts to approximate 71, . by
~ —1 -
T =L ([D1,£1] + (a1 + a2)£1) ('D% + (1 + @2)D1 + a1 ld — E1U1)

where we take D1 = diag(A1), and, following the choice done in the symmetric case,

Q102 =11 Rl (X1+(¥2 = \/2 (1"1+R1)\/1"1 Rl, (518)
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r1 and R; being defined as

ry = min Re ) R = max Re .

A€o (A1D—1) A€o (MDD

It is then easy to see that, in a similar way, we get for 2, the approximate interface condition

[ U2B7'Bo U ],
. ~ ’D71D2 1 1
where, letting D> = —25—=, L5 =D, " L», and U> = D, "U>, we have
By = 55 + (,31 + ,32)52 + B1B2ld — Us Lo B = [5271/[2] + (:81 + /BZ)Z’[?'

We therefore approximate 15 « by
- 1/~ -
T, =Us ([DZ,UZ] + (81 + ,32)“2) (Dz + (B1+ B2)D2 + B1821d — Uzﬁz) ,

where D> = diag(A2), and

B1B2 = T2 R B1+ B2 = \/2 (ra + R2) VT2 Ro, (5.19)
ro and R» being again defined as
ro i= min Re ) Ry = max Re .
A€o (AD—1) A€o (AyD—1)

6 Numerical Results

In this section we test the proposed interface conditions: we deal with an infinite tube in 2D, Q = Rx (0, 1),
and consider the operator

D= (et g+ o) 5 ) + )5 +al) o + 1)

with Dirichlet boundary conditions at the bottom and a Neumann boundary condition on the top. We use
a finite volume discretization of the operator with an upwind scheme for the advective term. We build the
matrices of the substructured problem for various interface conditions and we study their spectra. We give
in the tables the iteration counts corresponding to the solution of the substructured problem by a GMRES
algorithm with a random right hand side G, and the ratio of the largest modulus of the eigenvalues over
the smallest real part. The stopping criterion for the GMRES algorithm is a reduction of the residual by a
factor 107 '°. We consider both advection dominated and diffusion dominated flows, and different kind of
heterogeneities, in both the coefficients and the mesh parameters.

We consider a constant reaction term n = 1 and two different velocity fields:

e p =g = 10: the velocity is diagonal with respect to the interface and is constant.
e p=sin(8wy), ¢ = 10(1 + y?): the velocity is variable and changes sign along the interface.

The numerical tests are performed with MATLAB® 6.5, and the interface conditions use the operators MiPP
and MiPP defined in (5.1) and (5.2). We list hereafter the different choices of ATP? and ASPP used in the
numerical tests.

One parameter interface conditions

e A; : we choose D1 = diag(A1), Dy = diag(A2), and the optimal parameters are the ones given in (5.14).
This choice can be seen as an utopical one parameter approximation, since the computation of A; and
A5 is too costly to be performed in practical problems.
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e Robin: in order to have a usable condition, we avoid the computation of both A; and A,. Observing
that, if D;, L;, and U; (j = 1, 2) were all diagonal matrices the same would hold also for T} «, let d;,
l;, and u; be their diagonals, respectively. We choose

\d2 -4l \/d2 — 4l
D1 = diag (17”“) Dy = diag (272@) .

2 2

We can then calculate the square of the optimal parameter a‘fpt from formula (5.14) where, owing to
(5.10) we replace A1D; ' with

<(_L1)1/2D1 (_Uv])—1/2(_L1)—1/2D1 (—U1)1/2

1 fLﬂh>Dﬁ. (6.1)

In a similar way, we can calculate the square of the optimal parameter a;pt from formula (5.14) where
we replace A2D; ' with

((*Uﬂ”?DA*Lﬂfuszﬂ7N?DA7L”U2AJALQ>D5? (6.2)

Two parameters interface conditions

e 02U: we choose D1 = diag(A1), D2 = diag(A2), and the optimal parameters are the ones given in
(5.18) and (5.19). Also this choice can be seen as an utopical two parameters approximation, as in the
case of the A1 approximation.

e Order 2: we choose again

P4 74

2 2

and the squares of the optimal parameters are given by (5.18) and (5.19), where we have replaced the
matrices Ay Dy ' and A»D; ' by the expressions in (6.1) and (6.2), respectively.

6.1 Advection dominated flows

In this first series of tests we consider advection dominated flows, which are characterized by a large ratio
between the velocity and the diffusion coefficients. The grid is uniform (hz = hy), and the subdomains are
heterogeneous in the y direction, but they are symmetric with respect to the interface.

Test 1: Symmetric Subdomains

The domain © = R x (0,1) is divided into ten slabs of height hy = .1, where the viscosity coefficients
are constant. The ratio of the viscosities in two neighboring slabs can be of order 10*. The viscosity
coefficients in the i-th slab is given by ¢ = d = v(i), the latter being the i-th component of the vector
v=|a,B,7,8,8, 0 o« a], where a = 1.e0, f = 1l.e—4, and v = 1.e—2. We report the results in Table 1:
all the interface conditions appear robust with respect to both the mesh size and the velocity field, in terms
of iteration counts and conditioning of the problem. The best results are obtained with the two parameter
interface conditions O2U and Order2, which appear almost insensitive to the mesh refinement and to the
advective field.

6.2 Diffusion dominated flows

In this series of tests we consider diffusion dominated flows, which are characterized by a small ratio between
the velocity and the diffusion coefficients. The grid is uniform (hz = hy).
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[ Velocity | 1/hy [ 10 | 20 | 40 | 80 [ 160 [ 320

p=q=10 iter A;j 4 6 8 9 13 19
Robin 4 6 8 11 16 23

02U 4 5 6 7 9 10

Order 2 4 5 6 8 9 10

cond A; 1.05 | 1.25 | 1.67 | 2.25 | 4.14 | 8.88

Robin 1.05 | 1.25 | 1.68 | 3.27 | 6.57 | 13.51
02U 1.01 102|111 | 130 | 1.54| 1.83
Order 2 || 1.01 | 1.02 | 1.14 | 1.34 | 1.61 | 1.92

p = sin(8my) iter Aj 3 4 6 8 12 16
q=10(1 + y?) Robin 3 4 6 10 13 18
02U 5 4 6 7 8 9
Order 2 ) 4 6 6 8 9
cond A 1.01 | 1.18 | 1.48 | 2.04 | 3.75 | 7.08

i
Robin 1.01 | 1.18 | 1.61 | 2.67 | 4.70 | 8.63
02U 1.01 ] 1.03 | 1.13 | 1.33 | 1.63 | 1.97
Order 2 || 1.01 | 1.04 | 1.14 | 1.35 | 1.67 | 2.01

Table 1: Test 1: Advection dominated flows, symmetric subdomains

Test 2: Unsymmetric Subdomains

In this test the viscosity coefficients are heterogeneous in both the z and the y direction. The subdomains Q;
and 2 are again divided into ten slabs of height hy = .1, where the viscosity coefficients are constant. Let
a =1l.e4, B =1.e2, and v = 1.e0. The viscosity coefficients in the i-th slab of Q; is given by ¢1 = d1 = v1 (i),
the latter being the i-th component of the vector 11 = [, o, B, ¢, @, @, @, 3,7, ], whereas the viscosity
coefficients in the i-th slab of Q» is given by ca = d» = v2(i), the latter being the i-th component of the
vector v2 = [y, @, @, a, 8,7, a, a,a, a]. We report the results in Table 2. The interface conditions are robust
in terms of both iteration counts and conditioning with respect to the mesh refinement. Moreover, they are
almost insensitive to the velocity field in terms of iteration counts. The one parameter interface conditions
A; and Robin are a little sensitive to the velocity field in terms of conditioning but this latter remains
reasonable. The best performances are again obtained with the two parameters interface conditions O2U
and Order2.

Test 3: Anisotropic Coefficients

In this test the viscosity coefficients show strong discontinuities in the = and y direction, and are also
anisotropic. The subdomains €; and Q2 are again divided into ten slabs of height hy = .1, where the
viscosity coefficients are constant. Let @ = 1.e4, 8 = 1.e0, and v = 1.e2. The viscosity coefficients in the
i-th slab of Q are given, in the z direction, by ¢1 = v1(i), and in the y direction by di = p1(7) the latter
being the i-th components of the vectors v1 = [8, @, 8, a, 7y, a, 8, 8,7, 8], and p1 = [y, @, v, &, B, a7y, 7, B, 7],
respectively. Similarly, the viscosity coefficients in the i-th slab of s are given, in the z direction, by
c2 = va(i), and in the y direction by d2 = p2(i) the latter being the i-th components of the vectors
vy = [y,a,8,a,v, 0,0, 8,7], and p2 = [B, o, B,,7,, B, 8,7, 5], respectively. We report the results in
Table 3. The interface conditions appear very little sensitive to the velocity fields and the mesh refinement
in terms of iteration counts. In terms of condition number the Robin interface condition shows an incerase
with the mesh refinement, differently from the other interface conditions. Again, the best results are obtained
with the two parameters interface conditions O2U and Order2.
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[ Velocity | 1/hy | 10 [ 20 | 40 | 80 [ 160 | 320 |

p=q=10 | iter A; 7 ] 10| 13 ] 15 15 15
Robin 7 | 10 | 13 | 16 19 21
02U 6 6 g i1 5 19
Order 2 || 6 6 g 11 15 19
cond A; 1.71 | 1.95 | 2.89 | 3.61 | 3.94 | 16.02

Robin 1.61 | 1.83 | 259 | 3.52 | 3.94 | 4.12
02U 1.19 | 1.25 | 1.28 | 1.79 | 2.69 | 3.65
Order 2 || 1.21 | 1.26 | 1.30 | 1.83 | 2.76 | 3.68

p = sin(87y) iter A;j 7 10 12 14 14 16
g =10(1 + ) Robin | 7 | 10 | 13 | 15 | 17 | 19
02U 6 6 8 10 14 17
Order 2 6 6 8 10 18 17

cond A 4.31 | 890 | 4.77 | 10.46 | 20.62 | 29.26

J
Robin 413 | 7.21 | 3.24 | 4.27 | 838 | 13.12
02U 1.71 1198 | 1.16 | 1.99 | 3.27 | 4.13
Order 2 || 1.72 | 2.01 | 1.27 | 2.08 | 3.37 | 4.18

Table 2: Test 2: Diffusion dominated flows, unsymmetric subdomains

[ Velocity | 1/hy [ 10 | 20 | 40 [ 80 | 160 | 320 |
p=qg=10 | iter A; 10 ] 17 | 26 | 29 | 31 | 33
Robin |[ 9 | 17 | 27 | 35 | 42 | 47
02U 7 | 10 | 14 | 17 | 20 | 21
Order2 |7 | 10 | 14 | 16 | 19 | 21

cond | A; 5.24 | 13.50 | 17.03 | 1872 | 20.1 | 21.45

J
Robin 5.42 | 18.27 | 24.75 | 31.04 | 38.32 | 47.29
02U 1.76 | 297 | 462 | 635 | 695 | 6.64
Order 2 || 1.54 | 2.75 | 448 | 592 | 6.32 | 6.86

p =sin(8ry) | iter A; 7 12 14 18 22 24
q =10(1 + y?) Robin 7 12 14 19 26 31
02U 8 12 13 15 18 19
Order 2 | 7 11 12 15 17 19

cond A; 1.79 | 12.53 [ 15.09 | 18.11 | 19.94 | 21.42

Robin 1.93 | 17.46 | 22.88 | 28.32 | 36.31 | 46.17
02U 393 | 234 | 3.56 | 431 | 444 | 5.19
Order 2 | 1.33 | 2.27 | 334 | 3.75 | 4.01 5.21

Table 3: Test 3: Diffusion dominated flows, anisotropic coefficients

6.3 Influence of the mesh anisotropy

In this last series of tests we study the robustness of the proposed interface conditions with respect to the mesh
anisotropy, for both advection and diffusion dominated flows. We consider the velocity field p = sin(8wy),
g = 10(1 + y?), and the viscosity coefficients as described in Test 2, where a = 1.e0, § = l.e — 4, and
v = l.e — 2 in the advection dominated case, whereas o = l.ed, 8 = 1.e2, and v = 1.e0 in the ediffusion
dominated one. We take hy = 1/80 (thus the size of the interface problem remains unchanged), and we
either coarsen or refine the mesh step in the z direction, allowing different levels of refinement in the two
different subdomains. We report the results in Table 4. We observe that when the mesh is coarsened in
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the = direction all the inteface conditions perform better for both flows, in terms of both iteration counts
and conditioning of the problem. This is not surprising, since the underlying finite volume scheme seeks
for information at the center of adjacent cells; thus it introduces a virtual overlap: the coarsening of the
mesh in the z direction can be interpreted as an incerase of the overlap size. In general, however, the
interface conditions appear quite robust with respect to the refinement in the z direction. The efficiency
of the Robin interface condition decays more remarkably for diffusion dominated flows, nevertheless both
the iteration counts and the conditioning remain reasonable. The best results are again obtained with the
two parameters interface conditions O2U and Order2; moreover, there is no appreciable difference between
their performances.

| Velocity [hal/hy  ha2/hy 10 10]1 1].1 1].01 .01]1 .01]

p = sin(8my) iter Aj 4 8 10 15 12
g =10(1+y?) Robin 1 10 2 15 2
02U 4 7 9 9 9
Order 2 4 7 9 9 9

cond A 1.04 2.04 2.02 3.86 377

Robin 1.04 2.67 4.18 4.11 4.33

02U 1.02 1.33 1.57 1.63 1.72

Order 2 1.02 1.36 1.66 1.71 1.83
p = sin(8my) iter Aj 6 13 18 22 17
q =10(1 + y?) Robin 7 15 25 26 20
02U 7 11 15 12 13
Order 2 7 11 15 12 13

cond A; 12.58 10.46 21.21 8.88 14.49

Robin 9.80 4.27 11.67 31.61 11.65

02U 2.33 1.99 2.78 2.25 2.20

Order 2 2.33 2.08 2.93 2.46 2.21

Table 4: Influence of the mesh anisotropy for advection (top) and diffusion (bottom) dominated flows

7 Conclusions

We proposed here a way to build optimized interface conditions in a domain decomposition method for
advection-diffusion-reaction problems based only on algebraic considerations on the discrete problem. Nu-
merical experiments show that the proposed interface conditions appear to be robust with respect to the
velocity field and the mesh size, also in the presence of highly discontinuous coefficients both inside the sub-
domains and across the interfaces, and anisotropies in both the viscosity coefficients and the discretization
grid.
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