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Optimized Algebrai Shwarz Methods for strongly heterogeneousand anisotropi layered problemsLua Gerardo-Giorda � and Fr�ed�eri Nataf yJune 8, 2005AbstratIn this paper we onsider unsymmetri ellipti problems of advetion-di�usion reation type, with stronglyheterogeneous visosity oeÆients. We build Optimized Shwarz Methods (OSM) on non-overlapping do-main deompositions, diretly at the algebrai level, in order to guarantee robustness with respet to theheterogeneities in the oeÆients. We study new interfae onditions where only one or two real parametershave to be hosen along the entire interfae. Using one real parameter it is possible to design interfaeonditions of Robin type, whereas the use of two real parameters and of more general interfae onditionsallows to better take into aount the heterogeneities of the medium. Numerial results validate the proposedinterfae onditions.1 IntrodutionHigh uid pressures within the rok layers of the subsurfae are among the biggest problems an oil ompanyhas to deal with when drilling. A mathematial model for the predition of uid pressures on a geologialtime sale is based on onservation of mass and Dary's law (see for instane [6℄). This an be generalized toa time-dependent advetion-di�usion equation, where the region also hanges in time as roks are depositedor eroded. An Euler bakward method is used for the time integration, and a numerial method suh as �nitevolumes or �nite di�erenes is applied at any time step in order to solve the advetion-di�usion equation,yielding a linear system of equations.A further ompliation of the physial problem is given by the heterogeneities of the underground: thepresene of layers with very large di�erenes in permeability yields ontrasts up to seven orders of magnitudein the di�erent regions of the omputational domain. The widespread availability of parallel omputers makesdomain deomposition methods a natural andidate to take into aount suh problems. Suh methods arebased on the subdivision of the omputational domain into several subdomains (whih may or may notoverlap) and the parallel solution of the loal problems. This proedure leads to an iterative method thatonverges to the solution of the original problem if the solutions in the subdomains are related by meansof suitable boundary onditions at the interfae. The performane of the method depends drastially onthe design of interfae onditions, whih has been the subjet of several works (see e.g. [24, 25, 29℄ andreferenes therein).We onsider here ellipti problems of advetion-di�usion reation type, with strongly heterogeneous visosityoeÆients. Suh problems arise naturally also in several other appliations of pratial interest, wheredi�erent materials with di�erent physial properties are present in the omputational domain, as in themodeling eletrial power networks, semiondutor devies and eletromagnetis. These di�erenes may berather signi�ant and this would reet into large disontinuities in the oeÆients of the problem.We use here an Optimized Shwarz Method (OSM) with a non-overlapping deomposition. The original�Dipartimento di Matematia, Universit�a di Trento - Italy. This author's work has been supported by a Marie Curie IndustryFellowship (Contrat nr. HPMI-GH-99-00012-05) at the Institut Fran�ais du Petrole, Rueil Malmaison - FraneyCNRS, UMR 7641, CMAP, �Eole Polytehnique, 91128 Palaiseau Cedex - Frane1



Shwarz Algorithm uses Dirihlet interfae onditions, and overlapping is neessary to ensure onvergene. In[23℄ Robin interfae onditions are introdued, ensuring onvergene without resorting to overlap. OptimizedShwarz Methods are beoming quite popular and have been introdued at the ontinuous level in [14, 21, 26℄for advetion-di�usion problems and then applied to other problems suh Helmholtz and Maxwell equations(see for instane [9, 15, 5℄), and are based on Fourier analysis. Reently, suh methods have been studieddiretly at the disrete level in [28, 12, 24℄. In this paper we design the interfae onditions diretly at thealgebrai level, in order to guarantee robustness with respet to heterogeneities in the oeÆients.The paper is organized as follows. In Setion 2 we enlighten the link between an LDU fatorization of amatrixM and the onstrution of absorbing boundary onditions (ABC) to restrit the underlying di�erentialproblem to a part of the omputational domain. In Setion 3, optimal algebrai interfae onditions indomain deomposition are derived for the linear system arising from the disretization of a problem withlayered oeÆients set on an in�nite strip. In Setion 4 we desribe the Algebrai Shwarz algorithm, andin Setion 5 we derive two families of interfae onditions depending on one or two real parameters: weaddress both the ases of the underlying di�erential operator being symmetri and unsymmetri. Finally, inSetion 6 some numerial results are given to validate the proposed interfae onditions, in both the asesof adetion dominated ows and di�usion dominated ows, with strongly heterogeneous and anisotropivisosity oeÆients. Some numerial tests intended to show the robustness of the interfae onditions withrespet to the mesh re�nement and the mesh heterogeneities onlude the setion.2 LDU fatorization and absorbing boundary onditionsIn this setion we enlighten the link between an LDU fatorization of a matrix and the onstrution ofabsorbing onditions on the boundary of a domain. As it is well known in domain deomposition literature,suh onditions provide optimal interfae transmission operators.Let e
 2 R3 be a bounded polyedral domain. After a �nite element, �nite di�erenes or �nite volumedisretization of a PDE boundary value problem, we obtain a large sparse system of linear equations, givenby Bw = g: (2.1)Assume that the underlying grid is obtained as a deformation of a Cartesian grid on the unit ube, so thatfor suitable integers Nx, Ny, and Nz , w 2 RNx�Ny�Nz . If the unknowns are numbered lexiographially,the vetor w is a olletion of Nx sub-vetors wi 2 RNy�Nz , i.e.w = (wT1 ; : : : ; wTNx)T ; (2.2)we have g = (g1; ::; gNx)T , eah gi being a Ny �Nz vetor, and the matrix B of the disrete problem has ablok tri-diagonal struture B = 0BBBB� D1 U1L1 D2 . . .. . . . . . UNx�1LNx�1 DNx 1CCCCA ; (2.3)where eah blok is a matrix of order Ny �Nz.An exat blok fatorization of the matrix B de�ned in (2.3) is given byB = (L+T)T�1(U+T); (2.4)whereL = 0BBBB� 0L1 . . .. . . . . .LNx�1 0 1CCCCA U = 0BBBB� 0 U1. . . . . .. . . UNx�10 1CCCCA T = 0BBBB� T1 . . . . . . TNx 1CCCCA ;
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the bloks Ti being matries de�ned reursively asTi = 8<: D1 for i = 1Di � Li�1T�1i�1Ui�1 for 1 � i � Nx:So far, we an give here the algebrai ounterpart of absorbing boundary onditions to trunate a part ofthe omputational domain. Assume g = (0; ::; 0; gp+1; ::; gNx), and let Np = Nx � p+ 1. To redue the sizeof the problem, we look for a blok matrix K 2 (RNy�Nz )Np , eah entry of whih is a Ny�Nz matrix, suhthat the solution of Kv = ~g = (0; gp+1; ::; gNx)T satis�es vk = wk+p�1 for k = 1; ::; Np. The rows 2 throughNp in the matrix K oinide with the last Np � 1 rows of the original matrix B. To identify the �rst row,whih orresponds to the absorbing boundary ondition, we take as a right hand side in (2.1) the vetorg = (0; ::; 0; gp+1; ::; gNx), and, owing to (2.4), we onsider the �rst p rows of the fatorized problem0BBB� T1L1 T2. . . . . .Lp�1 Tp 1CCCA0BBB� T�11 T�12 . . . T�1p 1CCCA0BBB� T1 U1T2 U2. . . . . .Tp Up 1CCCA0BBB� w1...wpwp+1 1CCCA = 0B� 0...0 1CA :The �rst two are p� p square invertible matries, so we need to onsider only the third one, a retangularp� (p+ 1) matrix: from the last row we getTpwp + Upwp+1 = 0; (2.5)whih, identifying v1 = wp and v2 = wp+1, provides the �rst row in matrix K.Assume then g = (g1; ::; gq�1; 0; ::; 0)T . A similar proedure an be developed to redue the size of theproblem, by starting the reurrene in the fatorization (2.4) from DNx , aseTi = 8<: Di � Ui eT�1i+1Li for 1 � i < NxDNx for i = Nx;and we an easily obtain the equation for the last row in the redued equation asLqwq�1 + eTqwq = 0: (2.6)3 Optimal interfae onditions in domain deomposition foran in�nite layered domainLet 
 = R�Q, where Q is a bounded domain of R2, and onsider the ellipti PDE of advetion-di�usion-reation type given by �div (ru) + div (bu) + �u = f in 
Bu = g on R� �Q; (3.1)with the additional requirement on the solutions to be bounded at in�nity, where the oeÆients are layered(i.e. they do not depend on the x variable), where B is a suitable boundary operator. This an be forinstane the ase of a strati�ed material, where disontinuities in the oeÆients are onentrated in they and z diretions. After a �nite element, �nite di�erenes or �nite volume disretization, we obtain anin�nite sparse system of linear equations, given byAw = f : (3.2)Under lassial assumtpions on the oeÆients of the problem (e.g. � � 12divb > 0 a.e. in 
) the matrix Ain (3.2) is de�nite positive.We onsider a disretization on a uniform grid via a �nite volume sheme (see for instane [10℄) with anupwind treatment of the advetive ux, and a lexiographi numbering of the unknowns. We solve problem3



(3.2) by means of an Optimized Shwarz Method: suh methods have been introdued at the ontinuous levelin [23℄, and at the disrete level in [28℄. In the following, we design optimized interfae onditions diretlyat the algebrai level, in order to guarantee robustness with respet to heterogeneities in the oeÆients. Inthis order, we �rstly extend the absorbing boundary onditions (ABC) of the previous setion to the ase ofin�nite domain. Then we introdue optimal interfae onditions for a Shwarz method, expressed in termsof ABC.3.1 Absorbing boundary onditions for an in�nite layered domainThe lexiographi numbering of the degrees of freedom entails that the matrix of the disrete problem (3.2)is given by A = 0BBBBBB� . . . . . . . . .L D UL D UL D U. . . . . . . . .
1CCCCCCA : (3.3)As the number of olumns in (3.3) is in�nite, we an de�ne the blokT1 := D � LT�11 U: (3.4)Assuming f = (::; 0; fp+1; fp+2; ::), the absorbing boundary ondition for the restrition v = fwk j k � pg, isthus given by T1wp + Uwp+1 = 0: (3.5)Assuming then f = (::; fq�2; fq�1; 0; ::), the absorbing boundary ondition for the restrition v = fwk j k �q + 1g, an be obtained, by de�ning the blokeT1 := D � U eT�11 L; (3.6)as Lwq�1 + eT1wq = 0: (3.7)3.2 Optimal interfae onditions in domain deompositionSo far, we onsider a two domain deomposition �
 = �
1 [ �
2, 
1 \ 
2 = ;, where
1 = R� �Q; 
2 = R+ �Q;and we denote with � = �
1 \ �
2 the ommon interfae of the two subdomains.The resulting linear system is given by0� A11 A1� 0A�1 A�� A�20 A2� A22 1A 0� w1w�w2 1A = 0� f1f�f2 1A (3.8)where wi is the vetor of the internal unknowns in domain 
i (i = 1; 2), and w� is the vetor of interfaeunknowns. In order to guarantee the onservativity of the �nite volume sheme, the vetor of interfaeunknown onsists of two sets of variables, w� = (w�; w�)T , the �rst one to express the ontinuity of thedi�usive ux, the seond to express the ontinuity of the advetive one.At the ost of dupliating the interfae variables w� into w�;1 and w�;2, we an write a Shwarz methodby introduing two square matries B1 and B2 (ating on the interfae variables), in the following way:� A11 A1�A�1 A�� + B1 �� wk+11wk+1�;1 � = � f1f� + B1wk�;2 �A�2wk2 � (3.9)� A22 A2�A�2 A�� + B2 �� wk+12wk+1�;2 � = � f2f� + B2wk�;1 �A�1wk2 � (3.10)4



Lemma 3.1 Assume A11 and A22 are invertible. Then, hoosingB1 = �A�2A�122 A2� B2 = �A�1A�111 A1�in (3.9)-(3.10) yields onvergene in two steps.Proof The result is well-known in the domain deomposition literature. We report here the proof forsake of ompleteness. First of all, notie that with this hoie of B1 and B2, the bottom right bloks in(3.9) and (3.10) are Shur omplements. It is lassial that the subproblems in (3.9) and (3.10) are well-posed. To prove onvergene it is enough, by linearity, to onsider onvergene to the zero solution when(f1;f2;f�)T = 0. At step 1 we have from (3.9)A11w11 +A1�w1�;1 = 0;whih is equivalent (applying A�1A�111 ) toA�1w11 +A�1A�111 A1�w1�;1 = 0:The right hand side in (3.10) thus vanishes at step 2 and we have onvergene to zero in two steps. Thesame proof holds also for 
1. �The matrix A of the oupled problem in (3.8) is given byA = 0BBBBBBBBBBB�
. . . . . . . . .L1 D1 U1L1 D1� ...0U1� 0� � � � � � 0 L�1 D�� U�2 0 � � � � � �0 L2�0... D2� U2L2 D2 U2. . . . . . . . .

1CCCCCCCCCCCA ; (3.11)where the blok D�� is square D�� = � D�� 00 D� � ;and the bloks Li�, and Ui� (i = 1; 2) are retangular and are given byL�1 = � L�1L�1 � L2� = � L2� L1� � U1� = � U1� U1� � U�2 = � U�2U�2 � :So far, we an prove the following result.Lemma 3.2 Let A be the matrix de�ned in (3.11), and let T1;1 and T21 be suh thatT1;1 = D1 � L1T�11;1U1 T2;1 = D2 � U2T�12;1L2: (3.12)We then haveA�1A�111 A1� = L�1 �D1� � L1 T�11;1 U1��1U1� A�2A�122 A2� = U�2 �D2� � U2 T�12;1 L2��1 L2�:Proof Let us onsider 
1 and let V be a blok vetor de�ned as264 ...V�2V�1 375 := A�111 A1� = A�111 � 264 ...0U1� 375 ;whih an be rewritten as 264 ...0U1� 375 = 264 . . . . . . . . .L1 D1 U1L1 D1� 375 � 264 ...V�2V�1 375 :5



The last row reads U1� = L1V�2 +D1�V�1: (3.13)Sine the matrix A11 is in�nite, equation (3.5) allows to express V�2 in terms of V�1, asV�2 = �T�11;1U1V�1;where T1;1 = D1 � L1T�11;1U1. Substituting into (3.13), we getU1� = �D1� � L1T�11;1U1� V�1:So far, we an express the blok V�1 in terms of the blok U1�, asV�1 = �D1� � L1T�11;1U1��1 U1�:Now, multiplying A�111 A1� on the left by A�1 we obtainA�1A�111 A1� = � � � � 0 L�1 � � 264 ...V�2V�1 375 = L�1V�1:It is therefore immediate to see thatA�1A�111 A1� = L�1 �D1� � L1T�11;1U1��1 U1�:It is not diÆult to see that a similar argument within 
2 ompletes the proof. �We an thus rewrite the optimal Shwarz algorithm (3.9)-(3.10) as� A11 A1�A�1 M2 �� wk+11wk+1�;1 � = � f1f� + (M2 �D��)wk�;2 �A�2wk2 �� A22 A2�A�2 M1 �� wk+12wk+1�;2 � = � f2f� + (M1 �D��)wk�;1 �A�1wk2 � (3.14)where we have setM1 = D�� � L�1 �D1� � L1T�11;1U1��1U1� M2 = D�� �U�2 �D2� � U2T�12;1L2��1 L2�: (3.15)4 An algebrai non-overlapping Shwarz methodThe optimal Shwarz algorithm (3.14) annot be used in pratie, due to the lak of sparsity of the matriesM1 and M2 in (3.15). Let thus Mapp1 and Mapp2 be suitable approximations of M1 and M2, respetively,and onsider the following algorithm.The method is de�ned diretly at the algebrai level, and reads� A11 A1�A�1 Mapp2 �� vk+11vk+1�;1 � = � f1f� + (Mapp2 �D��)vk�;2 �A�2vk2 �� A22 A2�A�2 Mapp1 �� vk+12vk+1�;2 � = � f2f� + (Mapp1 �D��)vk�;1 �A�1vk2 � : (4.1)We an prove the following result.Lemma 4.1 Assume that the matrix (Mapp1 +Mapp2 �D��) is invertible. Then, if the Shwarz algorithm(4.1) onverges, it does to the solution to problem (3.8).6



Proof We have to prove that, at onvergenevi = wi (for i 6= 0) v�;1 = v�;2 = w�:It is easy to see that, one onveregne is ahieved, we have8<: L�1 v1�1 +Mapp2 v�;1 = �U�2 v21 +Mapp2 v�;2 + f� �D�� v�;2U�2 v21 +Mapp1 v�;2 = �L�1 v1�1 +Mapp2 v�;1 + f� �D�� v�;1Summing up the two equations above we get(Mapp1 +Mapp2 �D��)v�;1 = (Mapp1 +Mapp2 �D��)v�;2;whih entails the ontinuity of the blok variable v� := v�;1 = v�;2. A simple algebra providesL�1 v�1 +D�� v� +U�2 v1 = f�:Thus, v and w satisfy the same equations, and this onludes the proof. �4.1 SubstruturingThe iterative method an be substrutured in order to use a Krylov type method and speed up the onver-gene. We introdue the auxiliary variablesh1 = (Mapp2 �D��) v�;2 �A�2 v2; h2 = (Mapp1 �D��) v�;1 �A�1 v1;and we de�ne the interfae operator KK : 0� h1h2f 1A 7�! 0� �A�1v1 + (Mapp1 �D��)v�;1(Mapp2 �D��)v�;2 �A�2v2 1Awhere f = (f1;f�;f2)T , whereas (v1;v�;1) and (v2;v�;2) are the solutions of� A11 A1�A�1 Mapp2 �� v1v�;1 � = � f1f� + h1 � (4.2)and � A22 A2�A�2 Mapp1 �� v2v�;2 � = � f2f� + h2 � : (4.3)So far, the substruturing operator is obtained simply by mathing the onditions on the interfae, and reads� h1h2 ���K(h1;h2; 0) = �K(0; 0; f) (4.4)where � is the swap operator on the interfae, having the blok form� = 0� 0 IdId 0 1A :Problem (4.4) an be rewritten in the matrix form�Id��K� (h1;h2)T = F; (4.5)where F = �Th(0; 0; f), and where the matrix K is given in the following lemma.7



Lemma 4.2 The matrix K in (4.5) is given byK = 0� (Mapp1 �M1) (M1 +Mapp2 �D��)�1 00 (Mapp2 �M2) (M2 +Mapp1 �D��)�1 1AProof We have to express K(h1;h2; 0) for arbitrary vetors h1;h2 2 RNy�Nz . Owing to (4.2) we havewithin 
1: h1 =Mapp2 v�;1 +A�1 v1 = �Mapp2 �A�1A�111 A1�� v�;1= [Mapp2 �D�� +M1℄ v�;1the last equality being justi�ed by Lemma 3.2 and formula (3.15). We thus have8<: v�;1 = (M1 +Mapp2 �D��)�1h1v1 = �A�111 A1�(M1 +Mapp2 �D��)�1h1;and we easily get[K(h1;h2; 0)℄1 = �A�1 v1 + (Mapp1 �D��) v�;1= �A�1A�111 A1� +Mapp1 �D��� (M1 +Mapp2 �D��)�1h1= (Mapp1 �M1) (M1 +Mapp2 �D��)�1h1:A similar argument within 
2 provides[K(h1;h2; 0)℄2 = (Mapp2 �M2) (M2 +Mapp1 �D��)�1h2: �The onvergene properties of the Shwarz algorithm depend learly on the hoie of the approximatedmatries Tapp1;� and Tapp2;� in the interfae ondition. The following setions are dediated to their hoie.5 Approximation of the exat interfae onditionsIn this setion we design interfae onditions depending on real parameters, and we look for sparse approxi-mations of the exat interfae onditions given in (3.15). At the ost of enlarging the interfae problem, weapproximate M1 and M2 byMapp1 = D�� � L�1 �D1� � L1 (T app1;1)�1 U1��1U1� (5.1)and Mapp2 = D�� �U�2 �D2� � U2 (T app2;1)�1 L2��1 L2� (5.2)where T app1;1 and T app2;1 are suitable sparse approximations of T1;1 and T2;1 respetively, whih are optimizedto onentrate at maximum around 1 the spatial distribution of the spetrum of the substrutured matrix.The optimization proedure is arried out in the ase where the underlying di�erential operator is the samein both subdomains, and the deomposition has a minimal overlap of one ell. In this ase there is no need tointrodue the interfae variables w�, the unknowns of the ell in the overlap are dupliated and the matrixof the oupled problem isM = 0BBBBBBBBB� . . . . . . . . . ... ...L D U 0 0 � � �L T2 �T2 +D UL �T1 +D T1 U� � � 0 0 L D U... ... . . . . . . . . .
1CCCCCCCCCA ; (5.3)
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where T1 and T2 are suitable approximations of T1;1 and T2;1, respetively.A diret omputation similar to that of Setion 4.1 yield the substrutured matrix M = Id � �K, thematrix K being given byK = 0� (T1 � T1;1)(T2 + T1;1)�1 00 (T2 � T2;1)(T1 + T2;1)�1 1A : (5.4)One may argue that the optimization of the parameters has been done for a di�erent problem with respetto (4.5): however, owing to (5.1) and (5.2), we optimize the approximation of the inner operators Tj;1(j = 1; 2), rather than that of M1 and M2. Sine they are the only matries not sparse in (5.1) and (5.2), agood approximation of Tj;1 (j = 1; 2) entails a good approximation of the exat interfae onditions. Thenumerial tests of the next setion validate this approah. The main feature is that the so designed interfaeonditions are built diretly at the algebrai level and are easy to implement. Clearly, they rely on theapproximation of the Shur omplement and, if on one hand the extension to a deomposition into stripesappears quite straightforward, on the other hand further work needs to be done in order to analyse theirsalability to an arbitrary deomposition of the omputational domain.In the following we �rstly give an expliit formula for the omputation of Tj;1, in both the ases of a sym-metri and, relying on a ommutativity assumption, a non-symmetri operator. Then we designe optimizedinterfae onditions depending on one or two real parameters.The symmetri aseIf the ellipti operator is symmetri, Lj = LTj = Uj , we haveTj;1 := Dj � LjT�1j;1Lj ;and we an prove the following result.Lemma 5.1 Assume that �Lj = �LTj and Kj = 2664 . . . . . . . . .Lj Dj Lj. . . . . . . . . 3775 are symmetri positivede�nite (SPD) matries. Then, Tj;1 = 12Dj + �j (5.5)where �j = (�Lj)1=2r14 (�Lj)�1=2Dj(�Lj)�1Dj(�Lj)�1=2 � Id (�L)1=2 (5.6)is a SPD matrix.Proof First of all, sine Kj is a SPD, both Dj and Dj + 2Lj are SPD matries. Let~Tj = (�Lj)�1=2Tj;1(�Lj)�1=2 and ~Dj = (�Lj)�1=2Dj(�Lj)�1=2:We have that ~Dj � 2 Id and then ~D2j � 4 Id. With these notations, we have14(�Lj)�1=2Dj(�Lj)�1Dj(�Lj)�1=2 � Id = 14 ~D2j � IdTherefore, 14 ~D2j � Id is a SPD matrix and formula (5.5) makes sense. From (5.5), we have~Tj = 12 ~Dj +r14 ~D2j � IdTherefore, we get ~T 2j � 12( ~Dj ~Tj + ~Tj ~Dj) + 14 ~D2j = 14 ~D2j � Id9



Using that ~Dj and ~Tj ommute, we have ~T 2j � ~Dj ~Tj = �Idor equivalently, ~Dj = ~Tj + ~T�1jIt means that Tj;1 is a solution to the matrix equationDj = Tj;1 + Lj T�1j;1 Lj �The unsymmetri aseIn the unsymmetri ase, Lj 6= Uj , and an expliit formula for Tj;1 (j = 1; 2) annot be derived unless thematries Lj , Dj , and Uj ommute. In this ase, we an prove the following resultLemma 5.2 Assume that, for j = 1; 2, LjDj = DjLj , UjDj = DjUj , and LjUj = UjLj . ThenTj;1 = 12Dj + �j (5.7)where �1 = (�L1)1=2 r14(�L1)�1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)�1=2 � Id (�U1)1=2; (5.8)and �2 = (�U2)1=2 r14(�U2)�1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)�1=2 � Id (�L2)1=2: (5.9)Proof By multiplying the �rst equation in (3.12) on the left by (�L1)�1=2 and on the right by (�U1)�1=2we get (�L1)�1=2T1;1(�U1)�1=2 = (�L1)�1=2D1(�U1)�1=2 � (�L1)1=2T�11;1(�U1)1=2:So far, we set X = (�L1)�1=2T1;1(�U1)�1=2, A = (�L1)�1=2D1(�U1)�1=2, and, relying on the ommuta-tivity assumption, we an rewrite the above equation as X +X�1 = A. Multiplying by X one on the leftand one on the right, and summing up we obtain the equation�X � A2 �2 = A24 � Id;whose positive solution providesT1;1 = D12 + (�L1)1=2 r14(�L1)�1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)�1=2 � Id (�U1)1=2: (5.10)By a similar argument on the seond equation in (3.12), it an be easily seen that the following formulaholds for T2;1T2;1 = D22 + (�U2)1=2 r14 (�U2)�1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)�1=2 � Id (�L2)1=2: �
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5.1 One parameter interfae onditionsOwing to the results of the previous setion, we hoose to approximate Tj;1 (j = 1; 2) asT1 = D12 + �app1 T2 = D22 + �app2 :A �rst opportunity onsists in hoosing a diagonal approximation of �1 and �2. We take�app1 = �opt1 D1 �app2 = �opt2 D2 (5.11)where Dj (j = 1; 2) are diagonal matries and the parameters �optj (j = 1; 2) are optimized in the following.5.1.1 The symmetri aseIf the di�erential operator is symmetri, we have T1;1 = T2;1 = D2 +�. ChoosingT1 = T2 = D2 + �D;where � 2 R and D is a diagonal matrix, we getK� = 0� (�D � �) (�D + �)�1 00 (�D � �) (�D + �)�1 1A :We an prove the following result.Lemma 5.3 Let � and D be symmetri positive de�nite matrix, let � 2 R, and let M� = Id��K�. Thenmin�2R�eff (M�) = �eff (M�opt) = �eff (D�1�)1=2where �opt = (�min(D�1�)�max(D�1�))1=2; (5.12)and where �eff (M) denotes the ratio of the largest eigenvalue of a matrix M over its smallest one.Proof Let �(M) denote the spetrum of a matrix M , and let �(M) be its spetral radius. We have�(K�) = max�2�((�D)�1�) ����1� �1 + � ����= max(����1� �min((�D)�1�)1 + �min((�D)�1�) ���� ; ����1� �max((�D)�1�)1 + �max((�D)�1�) ����)This expression is minimized by taking � = �opt as de�ned in (5.12). In that ase, we get�(K�opt) = 1� 1 + where  :=p�min(D�1�)=�max(D�1�) = �(D�1�)�1=2Thus, we have min�2R�eff (M�) = �eff (M�opt) = 1= = �eff (D�1�)1=2 �If the operator is symmetri, owing to the following result by Van der Sluis, (see [30, 19℄)Theorem 5.1 (van der Sluis) If F is symmetri positive de�nite matrix, thenminD2D�(D�1=2FD�1=2) � �(diag(F )�1=2Fdiag(F )�1=2) � m: minD2D�(D�1=2FD�1=2)where D = fpositive definite diagonal matriesg and m is the maximum number of nonzeros in any rowof F . 11



we hoose in the interfae operators (5.11) Dj = diag(�j);for j = 1; 2, and �optj = (�min(diag(�j))�1�j)�max(diag(�j))�1�j))1=2:5.1.2 The unsymmetri aseIf the di�erential operator is not symmetri, we haveT1;1 = D2 + �1; T2;1 = D2 + �2;and hoosing T1 = T2 = D2 + �D;we obtain the matrixK� = 0� (�D � �1) (�D + �1)�1 00 (�D � �2) (�D + �2)�1 1A :Let �1 = (�D��1) (�D+�1)�1, and �2 = (�D��2) (�D+�2)�1. Then, the following result an be easilyproved (see [18℄).Lemma 5.4 Let M� = Id��K�. Then 2 �(M�) =) (1� )2 2 �(�1�2) � 2 �(�1�2) =) (1�p�) 2 �(M�) �The previous Lemma states that the eigevalues of the substrutured problem are loated in a dis of theomplex plane entered in 1 and with radius at most �(�1�2), the spetral radius of the produt �1�2. Wethen minimize at one the spetral radii of both �1 and �2. We set, for � 2 R,�(�) := max�2�(�1D�1)[�(�2D�1) ������ ��+ � ����2 ;and we minimize it with respet to �. The solution is given in the following Lemma (for proof see [18℄).Lemma 5.5 Letr := min�2Sj=1;2 �(�jD�1)Re� R := max�2Sj=1;2 �(�jD�1)Re� I := max�2Sj=1;2 �(�jD�1) Im�:The solution �opt to problem �(�opt) = min�2R�(�)is given by �opt = maxnpr2 + I2 ; prR� I2o : (5.13)Thus, if the di�erential operator is nonsymmetri, we hoose in the interfae operators (5.11)Dj = diag(�j);for j = 1; 2, and �optj = maxnqr2j + I2j ; qrjRj � I2jo ; (5.14)where we have set, for j = 1; 2,rj := min�2�(�jD�1j )Re� Rj := max�2�(�jD�1j )Re� Ij := max�2�(�jD�1j ) Im�: (5.15)12



5.2 Two parameters interfae onditionsWe an improve the approximate interfae onditions by blending together two diagonal approximations of�1 and �2, and using an algebrai ounterpart of Higdon's trik for absorbing boundary onditions (see[20℄).5.2.1 The symmetri aseUsing a standard stenil notation, onsider now two interfae onditions for the Shwarz algorithm as�L D2 + �1D� and �L D2 + �2D�where �1 and �2 are two parameters to be hosen, and onsider their produtQ = �L D2 + �1D�� �L D2 + �2D� :The produt is a three olumn stenil:Q = �L2 L(D2 + �2D) + (D2 + �1D)L (D2 + �1D)(D2 + �2D)�The three olumn stenil may be redued to a two olumn stenil using the interior equations, given by thethree olumn stenil [L D L℄Left multiplying this last stenil by L and subtrating it to Q, we get[M�1 M0℄where M�1 = 12(DL� LD) + �2LD + �1DL M0 = (D2 + �1D)(D2 + �2D)� L2We assume that M�1 is invertible and we left multiply by LM�1�1 to get an equivalent interfae ondition[L LM�1�1M0℄This amounts to approximate � by �ap = LM�1�1M0 � D2 : (5.16)The optimization is arried out under a ommutativity assumption. In this ase, infat, we haveM�1 = (�1 + �2)DL M0 = D24 + �1 + �22 DD + �1�2D � L2and, owing to (5.16) �ap = 1�1 + �2 �D�1 �D24 � L2�+ �1�2D� :Owing to (5.6), we have hD24 � L2i = �2, and the substrutured problem uses the matrixK�1;�2 = 0BB� ��� D�1�2+�1�2D�1+�2 ��� + D�1�2+�1�2D�1+�2 ��1 00 ��� D�1�2+�1�2D�1+�2 ��� + D�1�2+�1�2D�1+�2 ��1 1CCA :The optimal parameters �1 and �2 are thus the ones that minimize the norm of the nonzero entries in thematrix K�1;�2 . Eah nonzero entry in the matrix K�1;�2 an be easily seen to admit the fatorization��� D�1�2 + �1�2D�1 + �2 ��� + D�1�2 + �1�2D�1 + �2 ��1 = ��� �1D� + �1D� ��� �2D� + �2D�and the following result holds (for proof see ([13, 11℄)13



Lemma 5.6 Let M�1;�2 = Id��K�1;�2 . Then, the solution to the minimization problem�eff (M�opt1 ;�opt2 ) = min�12R+;�22R+�eff (M�1;�2);is given by (�1; �2) suh that �opt1 �opt2 = (�m�M)1=2�opt1 + �opt2 =q2(�m + �M)p�m�M (5.17)where we have set �m = minf� 2 �(D�1�)g �M = maxf� 2 �(D�1�)g:We therefore hoose the approximate interfae onditions (5.16), where Dj = diag(�j), and �1 and �2 arede�ned in (5.17).5.2.2 The unsymmetri aseA similar proedure to the one of the previous setion an be arried out in the unsymmetri ase. By usingstandard stenil notations, the oeÆients in the approximate interfae onditions an be rewritten as� D�11 L1 D�11 D12 + �Id � � D�12 D22 + �Id D�12 U2 � ;in 
1 and 
2 respetively.Let us fous on 
1, and onsider two interfae onditions based on two di�erent real parameters �1 and �2.The produt of suh interfae onditions yields a three olumn stenilQ1 = � D�11 L1 D�11 D12 + �1Id �� � D�11 L1 D�11 D12 + �2Id �= h L21 L�11 � eD1 + �2Id�+ � eD1 + �1Id�L�11 � eD1 + �1Id�� eD1 + �2Id� i :where we have set, for sake of simpliity in notations, eD1 = D�11 D12 , and L1 = D�11 L1.So far, we an use the interior equation to redue Q1 to a two olumn stenil. This an be obtained bymultiplying the stenil of the interior equation,� L1 D1 U1 �on the left by D�1L1D�1 and subtrating it to Q1.We therefore get � A�1 A0 � ;where A�1 = [ eD1;L1℄ + (�1 + �2)L1 A0 = eD21 + (�1 + �2) eD1 + �1�2Id� L1U1[:; :℄ being the Lie braket, and U1 = D�11 U1.Assuming that A�1 is invertible, we multiply on the left by L1A�1�1 and we get the equivalent stenil� L1 L1A�1�1A0 � :This amounts to approximate T1;1 byT1 = L1 �[ eD1;L1℄ + (�1 + �2)L1��1 � eD21 + (�1 + �2) eD1 + �1�2Id� L1U1�where we take D1 = diag(�1), and, following the hoie done in the symmetri ase,�1�2 = r1R1 �1 + �2 =q2 (r1 +R1)pr1R1; (5.18)14



r1 and R1 being de�ned asr1 := min�2�(�1D�1)Re� R1 := max�2�(�1D�1)Re�:It is then easy to see that, in a similar way, we get for 
2 the approximate interfae ondition� U2B�11 B0 U1 � ;where, letting eD2 = D�12 D22 , L2 = D�12 L2, and U2 = D�12 U2, we haveB0 = eD22 + (�1 + �2) eD2 + �1�2Id� U2L2 B1 = [ eD2;U2℄ + (�1 + �2)U2:We therefore approximate T2;1 byT2 = U2 �[ eD2;U2℄ + (�1 + �2)U2��1 � eD22 + (�1 + �2) eD2 + �1�2Id�U2L2� ;where D2 = diag(�2), and �1�2 = r2R2 �1 + �2 =q2 (r2 +R2)pr2R2; (5.19)r2 and R2 being again de�ned asr2 := min�2�(�2D�1)Re� R2 := max�2�(�2D�1)Re�:6 Numerial ResultsIn this setion we test the proposed interfae onditions: we deal with an in�nite tube in 2D, 
 = R� (0; 1),and onsider the operatorL := �� ��x(y) ��x + ��y d(y) ��y�+ p(y) ��x + q(y) ��y + �(y)with Dirihlet boundary onditions at the bottom and a Neumann boundary ondition on the top. We usea �nite volume disretization of the operator with an upwind sheme for the advetive term. We build thematries of the substrutured problem for various interfae onditions and we study their spetra. We givein the tables the iteration ounts orresponding to the solution of the substrutured problem by a GMRESalgorithm with a random right hand side G, and the ratio of the largest modulus of the eigenvalues overthe smallest real part. The stopping riterion for the GMRES algorithm is a redution of the residual by afator 10�10. We onsider both advetion dominated and di�usion dominated ows, and di�erent kind ofheterogeneities, in both the oeÆients and the mesh parameters.We onsider a onstant reation term � = 1 and two di�erent veloity �elds:� p = q = 10: the veloity is diagonal with respet to the interfae and is onstant.� p = sin(8�y), q = 10(1 + y2): the veloity is variable and hanges sign along the interfae.The numerial tests are performed with MATLAB r 6.5, and the interfae onditions use the operatorsMapp1and Mapp2 de�ned in (5.1) and (5.2). We list hereafter the di�erent hoies of �app1 and �app2 used in thenumerial tests.One parameter interfae onditions� �j : we hoose D1 = diag(�1), D2 = diag(�2), and the optimal parameters are the ones given in (5.14).This hoie an be seen as an utopial one parameter approximation, sine the omputation of �1 and�2 is too ostly to be performed in pratial problems.
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� Robin: in order to have a usable ondition, we avoid the omputation of both �1 and �2. Observingthat, if Dj , Lj , and Uj (j = 1; 2) were all diagonal matries the same would hold also for Tj;1, let dj ,lj , and uj be their diagonals, respetively. We hooseD1 = diag pd21 � 4l1u12 ! D2 = diag pd22 � 4l2u22 ! :We an then alulate the square of the optimal parameter �opt1 from formula (5.14) where, owing to(5.10) we replae �1D�11 with� (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1�D�21 : (6.1)In a similar way, we an alulate the square of the optimal parameter �opt2 from formula (5.14) wherewe replae �2D�12 with� (�U2)1=2D2(�L2)�1=2(�U2)�1=2D2(�L2)1=24 � U2L2�D�22 : (6.2)Two parameters interfae onditions� O2U: we hoose D1 = diag(�1), D2 = diag(�2), and the optimal parameters are the ones given in(5.18) and (5.19). Also this hoie an be seen as an utopial two parameters approximation, as in thease of the �1 approximation.� Order 2: we hoose againD1 = diag pd21 � 4l1u12 ! D2 = diag pd22 � 4l2u22 ! ;and the squares of the optimal parameters are given by (5.18) and (5.19), where we have replaed thematries �1D�11 and �2D�12 by the expressions in (6.1) and (6.2), respetively.6.1 Advetion dominated owsIn this �rst series of tests we onsider advetion dominated ows, whih are haraterized by a large ratiobetween the veloity and the di�usion oeÆients. The grid is uniform (hx = hy), and the subdomains areheterogeneous in the y diretion, but they are symmetri with respet to the interfae.Test 1: Symmetri SubdomainsThe domain 
 = R � (0; 1) is divided into ten slabs of height hy = :1, where the visosity oeÆientsare onstant. The ratio of the visosities in two neighboring slabs an be of order 104. The visosityoeÆients in the i-th slab is given by  = d = �(i), the latter being the i-th omponent of the vetor� = [�; �; ; �; �; �; �; �; ; �℄, where � = 1:e0, � = 1:e�4, and  = 1:e�2. We report the results in Table 1:all the interfae onditions appear robust with respet to both the mesh size and the veloity �eld, in termsof iteration ounts and onditioning of the problem. The best results are obtained with the two parameterinterfae onditions O2U and Order2, whih appear almost insensitive to the mesh re�nement and to theadvetive �eld.6.2 Di�usion dominated owsIn this series of tests we onsider di�usion dominated ows, whih are haraterized by a small ratio betweenthe veloity and the di�usion oeÆients. The grid is uniform (hx = hy).16



Veloity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 4 6 8 9 13 19Robin 4 6 8 11 16 23O2U 4 5 6 7 9 10Order 2 4 5 6 8 9 10ond �j 1.05 1.25 1.67 2.25 4.14 8.88Robin 1.05 1.25 1.68 3.27 6.57 13.51O2U 1.01 1.02 1.11 1.30 1.54 1.83Order 2 1.01 1.02 1.14 1.34 1.61 1.92p = sin(8�y) iter �j 3 4 6 8 12 16q = 10(1 + y2) Robin 3 4 6 10 13 18O2U 5 4 6 7 8 9Order 2 5 4 6 6 8 9ond �j 1.01 1.18 1.48 2.04 3.75 7.08Robin 1.01 1.18 1.61 2.67 4.70 8.63O2U 1.01 1.03 1.13 1.33 1.63 1.97Order 2 1.01 1.04 1.14 1.35 1.67 2.01Table 1: Test 1: Advetion dominated ows, symmetri subdomainsTest 2: Unsymmetri SubdomainsIn this test the visosity oeÆients are heterogeneous in both the x and the y diretion. The subdomains 
1and 
2 are again divided into ten slabs of height hy = :1, where the visosity oeÆients are onstant. Let� = 1:e4, � = 1:e2, and  = 1:e0. The visosity oeÆients in the i-th slab of 
1 is given by 1 = d1 = �1(i),the latter being the i-th omponent of the vetor �1 = [�; �; �; �; �; �; �; �; ; �℄, whereas the visosityoeÆients in the i-th slab of 
2 is given by 2 = d2 = �2(i), the latter being the i-th omponent of thevetor �2 = [; �; �; �; �; ; �; �; �; �℄. We report the results in Table 2. The interfae onditions are robustin terms of both iteration ounts and onditioning with respet to the mesh re�nement. Moreover, they arealmost insensitive to the veloity �eld in terms of iteration ounts. The one parameter interfae onditions�j and Robin are a little sensitive to the veloity �eld in terms of onditioning but this latter remainsreasonable. The best performanes are again obtained with the two parameters interfae onditions O2Uand Order2.Test 3: Anisotropi CoeÆientsIn this test the visosity oeÆients show strong disontinuities in the x and y diretion, and are alsoanisotropi. The subdomains 
1 and 
2 are again divided into ten slabs of height hy = :1, where thevisosity oeÆients are onstant. Let � = 1:e4, � = 1:e0, and  = 1:e2. The visosity oeÆients in thei-th slab of 
1 are given, in the x diretion, by 1 = �1(i), and in the y diretion by d1 = �1(i) the latterbeing the i-th omponents of the vetors �1 = [�; �; �; �; ; �; �; �; ; �℄, and �1 = [; �; ; �; �; �; ; ; �; ℄,respetively. Similarly, the visosity oeÆients in the i-th slab of 
2 are given, in the x diretion, by2 = �2(i), and in the y diretion by d2 = �2(i) the latter being the i-th omponents of the vetors�2 = [; �; �; �; ; �; �; �; �; ℄, and �2 = [�; �; �; �; ; �; �; �; ; �℄, respetively. We report the results inTable 3. The interfae onditions appear very little sensitive to the veloity �elds and the mesh re�nementin terms of iteration ounts. In terms of ondition number the Robin interfae ondition shows an inerasewith the mesh re�nement, di�erently from the other interfae onditions. Again, the best results are obtainedwith the two parameters interfae onditions O2U and Order2.
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Veloity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 7 10 13 15 15 15Robin 7 10 13 16 19 21O2U 6 6 8 11 15 19Order 2 6 6 8 11 15 19ond �j 1.71 1.95 2.89 3.61 3.94 16.02Robin 1.61 1.83 2.59 3.52 3.94 4.12O2U 1.19 1.25 1.28 1.79 2.69 3.65Order 2 1.21 1.26 1.30 1.83 2.76 3.68p = sin(8�y) iter �j 7 10 12 14 14 16q = 10(1 + y2) Robin 7 10 13 15 17 19O2U 6 6 8 10 14 17Order 2 6 6 8 10 18 17ond �j 4.31 8.90 4.77 10.46 20.62 29.26Robin 4.13 7.21 3.24 4.27 8.38 13.12O2U 1.71 1.98 1.16 1.99 3.27 4.13Order 2 1.72 2.01 1.27 2.08 3.37 4.18Table 2: Test 2: Di�usion dominated ows, unsymmetri subdomainsVeloity 1=hy 10 20 40 80 160 320p = q = 10 iter �j 10 17 26 29 31 33Robin 9 17 27 35 42 47O2U 7 10 14 17 20 21Order 2 7 10 14 16 19 21ond �j 5.24 13.50 17.03 18.72 20.1 21.45Robin 5.42 18.27 24.75 31.04 38.32 47.29O2U 1.76 2.97 4.62 6.35 6.95 6.64Order 2 1.54 2.75 4.48 5.92 6.32 6.86p = sin(8�y) iter �j 7 12 14 18 22 24q = 10(1 + y2) Robin 7 12 14 19 26 31O2U 8 12 13 15 18 19Order 2 7 11 12 15 17 19ond �j 1.79 12.53 15.09 18.11 19.94 21.42Robin 1.93 17.46 22.88 28.32 36.31 46.17O2U 3.93 2.34 3.56 4.31 4.44 5.19Order 2 1.33 2.27 3.34 3.75 4.01 5.21Table 3: Test 3: Di�usion dominated ows, anisotropi oeÆients6.3 Inuene of the mesh anisotropyIn this last series of tests we study the robustness of the proposed interfae onditions with respet to the meshanisotropy, for both advetion and di�usion dominated ows. We onsider the veloity �eld p = sin(8�y),q = 10(1 + y2), and the visosity oeÆients as desribed in Test 2, where � = 1:e0, � = 1:e � 4, and = 1:e � 2 in the advetion dominated ase, whereas � = 1:e4, � = 1:e2, and  = 1:e0 in the edi�usiondominated one. We take hy = 1=80 (thus the size of the interfae problem remains unhanged), and weeither oarsen or re�ne the mesh step in the x diretion, allowing di�erent levels of re�nement in the twodi�erent subdomains. We report the results in Table 4. We observe that when the mesh is oarsened in18



the x diretion all the intefae onditions perform better for both ows, in terms of both iteration ountsand onditioning of the problem. This is not surprising, sine the underlying �nite volume sheme seeksfor information at the enter of adjaent ells, thus it introdues a virtual overlap: the oarsening of themesh in the x diretion an be interpreted as an inerase of the overlap size. In general, however, theinterfae onditions appear quite robust with respet to the re�nement in the x diretion. The eÆienyof the Robin interfae ondition deays more remarkably for di�usion dominated ows, nevertheless boththe iteration ounts and the onditioning remain reasonable. The best results are again obtained with thetwo parameters interfae onditions O2U and Order2; moreover, there is no appreiable di�erene betweentheir performanes.Veloity hx1=hy hx2=hy 10 10 1 1 :1 :1 :01 :01 :1 :01p = sin(8�y) iter �j 4 8 10 15 12q = 10(1 + y2) Robin 4 10 12 15 12O2U 4 7 9 9 9Order 2 4 7 9 9 9ond �j 1.04 2.04 2.92 3.86 3.77Robin 1.04 2.67 4.18 4.11 4.33O2U 1.02 1.33 1.57 1.63 1.72Order 2 1.02 1.36 1.66 1.71 1.83p = sin(8�y) iter �j 6 13 18 22 17q = 10(1 + y2) Robin 7 15 25 26 20O2U 7 11 15 12 13Order 2 7 11 15 12 13ond �j 12.58 10.46 21.21 8.88 14.49Robin 9.80 4.27 11.67 31.61 11.65O2U 2.33 1.99 2.78 2.25 2.20Order 2 2.33 2.08 2.93 2.46 2.21Table 4: Inuene of the mesh anisotropy for advetion (top) and di�usion (bottom) dominated ows7 ConlusionsWe proposed here a way to build optimized interfae onditions in a domain deomposition method foradvetion-di�usion-reation problems based only on algebrai onsiderations on the disrete problem. Nu-merial experiments show that the proposed interfae onditions appear to be robust with respet to theveloity �eld and the mesh size, also in the presene of highly disontinuous oeÆients both inside the sub-domains and aross the interfaes, and anisotropies in both the visosity oeÆients and the disretizationgrid.Referenes[1℄ Y. Ahdou, P. Le Talle, F. Nataf, and M. Vidrasu. A domain deoposition preonditioner for anadvetion-di�usion problem. Comp. Meth. Appl. Meh. Engng, 184:145{170, 2000.[2℄ Y. Ahdou and F. Nataf. A Robin-Robin preonditioner for an advetion-di�usion problem. C. R.Aad. Si. Paris, 325, S�erie I:1211{1216, 1997.[3℄ Y. Ahdou and F. Nataf. An iterated tangential �ltering deomposition. Numer. Linear Algebra Appl.,10:511{539, 2003.[4℄ A. Alonso, R. L. Trotta, and A. Valli. Coerive domain deomposition algorithms for advetion-di�usionequations and systems. J. Comput. Appl. Math., 96 (1):51{76, 1998.19
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