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Abstract

This paper is concerned with optimal design problems with a special
assumption on the coefficients of the state equation. Namely we assume
that the variations of these coefficients have a small amplitude. Then,
making an asymptotic expansion up to second order with respect to the
aspect ratio of the coefficients allows us to greatly simplify the optimal
design problem. By using the notion of H-measures we are able to prove
general existence theorems for small amplitude optimal design and to
provide simple and efficient numerical algorithms for their computation.
A key feature of this type of problems is that the optimal microstructures
are always simple laminates.

Keywords: optimal design, H-measures, homogenization

1 Introduction

Shape or structural optimization is a very active research topic in applied math-
ematics, which has seen a burst of new ideas in the last twenty years. A common
feature of most of the recently developed methods is to try to circumvent the
inceptive ill-posedness of shape optimization problems which manifests itself,
in numerical practice, by the occurrence of many local minima, possibly far
from being global. Probably the most successful approach is the homogeniza-
tion method [1], [5], [6], [17], [21]: it allows to find a global minimizer in most
instances, at the price of introducing composite materials in the optimal shape
(a tricky penalization procedure is required for extracting a classical shape out
of it). Unfortunately, the rigorous derivation of the homogenized or relaxed
formulation of shape optimization is complete only for a few, albeit important,
choices of the objective function (mostly self-adjoint problems like compliances
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or eigenvalues optimization). This difficulty is not just a mathematical problem,
but it is also very restrictive from the point of view of numerical applications.
Indeed, there are many non-rigorous approaches to treat general objective func-
tions, usually based on some partial relaxations [2], [3], [7], or ad hoc algorithmic
ideas like the SIMP method [5]: none of them is as efficient as the original ho-
mogenization method applied to compliance minimization, in the sense that its
convergence is neither so smooth, nor so global (the resulting optimum may still
depend on the initial guess).

Therefore, many authors have tried to extend the homogenization method to
more general objective functions, and in particular to cost functions depending
on the gradient of the state (or strain or stress). Although this is a very difficult
problem, there has been some results in this direction [4], [9], [14], [15], [20]. The
objective of the present paper is also to extend the homogenization method to
new objective functions. However, our methodology is quite different: in order
to make significant progress, we use a strong simplifying assumption, namely
that the two component phases involved in the optimal design have close coef-
ficients or material properties. More precisely we consider two-phase optimal
design problems in the context of conductivity or linearized elasticity and we
make an asymptotic expansion of the coefficients in terms of the small amplitude
parameter that characterizes the variations between the two phases. Restricting
ourselves to terms up to second order greatly simplifies the situation. However,
the small amplitude optimal design problem is still ill-posed and requires relax-
ation. The nice feature of our approach is that this relaxation is quite simple
because the necessary and delicate tools of homogenization are replaced by more
basic results on so-called H-measures. These H-measures are quadratic default
measures, introduced by Gérard [8] and Tartar [19]. They can be interpreted as
two-point correlation functions of the underlying microstructure.

We have therefore rigorously derived the relaxed formulation of very gen-
eral objective functions, including ones depending on the gradient of the state.
Furthermore, due to the special “small amplitude” structure of the optimization
problem we have devised efficient and simple numerical algorithms for comput-
ing the optimal shapes. These algorithms are gradient methods relying on the
optimality conditions of the relaxed problem. A key ingredient is that optimal
microstructures in small amplitude optimization can always be found in the
class of simple or rank-one laminates. In other words, there are only two rele-
vant design parameters in our method: the local volume fraction and the angle
of lamination (which governs the anisotropy of the optimal microstructure). An-
other feature of our small amplitude method is that the coefficient of the state
or adjoint equations are uniform and independent of the design. Indeed, all the
geometric parameters appear as right hand sides in the equations. This implies
a drastic reduction of the CPU cost of the method because, once the rigidity
finite element matrix has been factorized by a Cholesky method, it is stored and
used throughout the optimization process for different right hand sides at each
iteration. We implemented our method only in two space dimensions using the
FreeFem++ package for finite elements [10]. There is no conceptual difficulty
in extending the method to three space dimensions where the gain in CPU time



is even higher.

Of course, the small amplitude approximation is not really meaningful in
the context of “standard” structural optimization which amounts to optimize
the distribution of a given material with a very weak one mimicking holes (the
so-called ersatz material approach). Indeed, the small amplitude assumption
contradicts the fact that the ersatz component is much weaker than the refer-
ence one. However, it makes sense, for example, in the context of reinforced
plane structures: a typical problem is to find the region where to reinforce the
thickness of a plate by pasting some tape on top of it. Our method can be
useful for this plane reinforcement problem and our numerical examples can be
interpreted in this sense.

The content of the paper is as follows. Section 2 is a brief review of the
necessary tools of H-measures. Section 3 is devoted to optimal design problems
in conductivity, a setting which is simple enough to explain in a clear way our
method and give full proofs of our result. Section 4 generalizes the previous
one to the linearized elasticity setting. Although the notations are slightly
more cumbersome, all the previous results extend easily from conductivity to
elasticity. Eventually Section 5 is devoted to algorithmic issues and numerical
tests.

2 A brief review of H-measures

The purpose of this section is to recall the necessary results about H-measures
which were introduced by Gérard [8] and Tartar [19]. It is a default measure
which quantifies the lack of compactness of weakly converging sequences in
L?(RY). More precisely, it indicates where in the physical space, and at which
frequency in the Fourier space, are the obstructions to strong convergence. As
recognized by Tartar [19], H-measures are the right tool for small amplitude
homogenization. All results below are due to [8] and [19], to which we refer for
complete proofs.

We denote by Sy_; the unit sphere in RN. C(Sy_1) is the space of con-
tinuous complex-valued functions on Sy_1, and Co(RY) is that of continuous
complex-valued functions decreasing to 0 at infinity in RY. As usual Z de-
notes the complex conjugate of the complex number z. The Fourier transform
operator in L2(RY), denoted by F, is defined by

(Fo) (€) = o (x)e" > Sdw Vo € L*(RY).

Theorem 2.1 Let u. = (ul)i<i<, be a sequence of functions defined in RY
with values in RP which converges weakly to 0 in L*(RN)P. There exists a
subsequence (still denoted by €) and a family of complex-valued Radon measures
(ij (@, €))1<ij<p on RN x Sy_1 such that, for any functions ¢1(z), ¢2(z) €



Co(RY) and (&) € O(Sn—_1), it satisfies
i | F (1) ()F ((bzui)(f)w (é—|> dg

/RN | o, de).

The matriz of measures v = (1ij)1<i,j<p 15 called the H-measure of the subse-
quence u.. It is hermitian and non-negative, i.e.

P
pig =Ty Y Aikjfis; > 0 VA € CP.
i,j=1

If we consider a sequence u. which converges weakly in L%(RY)P to a limit
u (instead of 0), then, applying Theorem 2.1 to (u. — u), and taking ) = 1, we
obtain a representation formula for the limit of quadratic forms of w.

213(13/ 1 pouiul da —/ b1 poutu? da:—i—/RN /SN 1 (@) iz (dx, d€) .
(1)

Therefore the H-measure appears as a default measure which gives a precise
representation of the compactness default, taking into account the directions of
the oscillation.

One of the main interest of Theorem 2.1 is its generalization to a broader
class of quadratic forms of u. in the context of pseudo-differential operators (see
section 18.1 in [11]). Recall that a standard pseudo-differential operator ¢ is
defined through its symbol (gi; (%, €))1<i,j<p € C*(RY x RY) by

(qu)i :Z ((Iw F“J())( )

j=1

for any smooth and compactly supported function u. We consider only so-called
polyhomogeneous pseudo-differential operators of order 0, i.e. whose symbol
(gij(x,€))1<i,j<p is homogeneous of degree 0 in £ and with compact support in
z. Recall that such polyhomogeneous pseudo-differential operators of order 0
are bounded operators in L*(RY)P.

Theorem 2.2 Let u. be a sequence which converges weakly to 0 in L*(RY)P.
There exist a subsequence and an H-measure . such that, for any polyhomoge-
neous pseudo-differential operator q of degree 0 with symbol (g;;(x,&))1<i,j<p,

p
tiy [ a) e = /R ) /S S i@, )iy (o, de)

N-1 =1

We now recall the particular case of characteristic functions [12], [19].



Lemma 2.3 Let x.(z) be a sequence of characteristic functions that weakly-*
converges to a limit 6(x) in L°°(Q;[0,1]). Then the corresponding H-measure
u for the sequence (x. — 0) is necessarily of the type

u(de, de) = 6(x) (1 - H(x))y(dac, d¢)

where, for given x, the measure v(dx,df) is a probability measure with respect
to &, i.e. v € P(Q,Sy_1) with

v(z,§) Radon measure on Q) X Sy_1 such that:

P(Q,Sn-1) = (2)

1/207/ v(z,£)dé =1 ae x€Q
Sn-1

Conversely, for any such probability measure v € P(S,
sequence X, which weakly-* converges to 6 in L°°(Q; [0, 1]
is the H-measure of (x. — 0).

Sn_1) there exists a
), such that 6(1 —0)v

Remark 2.4 In the periodic setting the notion of H-measure has a very simple
interpretation and it is often called two-point correlation function in the context
of composite materials [16]. Indeed, let u(x,y) be a smooth function defined on
QxY, withY = (0,1)N, such that y — u(x,y) is Y-periodic. Assuming that
Jy u(z,y)dy = 0, it is easily seen that uc(x) = u(x,x/€) converges weakly to 0
in L?(Q). By using the Fourier series decomposition in Y , the H-measure y of
ue 45 simple to compute. Introducing

u(w,y) = Yz, k)e” ™,

kezZN

= X fateiPa (e ).

k#£0€ZN

we deduce

where  is the Dirac mass.

3 A model problem in conductivity

3.1 Small amplitude asymptotic

Let us consider mixtures of two conducting phases characterized by two sym-
metric positive definite tensors A° and A'. We denote by 1 the amplitude or
contrast or aspect ratio between the two materials. In other words, we assume
that

Al = A%(1 + 7).

The range of 7 is restricted to (—1;400), but in the sequel we shall assume that
7 is a small parameter, i.e. |n| << 1. Denoting by x the characteristic function
of the region occupied by phase A', we define a conductivity tensor

A(z) = (1= x(@)A” + x(2)A" = A°(1 +nx(2)).



For a smooth bounded open set Q2 C RY, with boundary 02 = I'p U 'y, and
for given source terms f € H~1(2) and g € L?(992), we consider the following
boundary value problem

—div(AVu)=f in Q
u=0 on I'p 3)
AVu-n=g on Iy,

which admits a unique solution in H'(Q). Typically we want to minimize an
objective function of the type

) = /Q ji(w)do + / ) ds

where the boundary integral is defined only on I'y since u = 0 is fixed on
I'p. We assume that the integrands j; are of class C® with adequate growth
conditions. For example, we assume that there exists a constant C' > 0 such
that, for any v € R,

Gi(w)] < C(luf +1), |7i()| < C(lul +1), 5] ()] < C.

Of course, more subtle and less restrictive assumptions are possible.
Assuming that the two phases have prescribed volume fractions, © for A!
and 1 — © for A°, with © € (0, 1), we define a set of admissible designs

Ung = {X € 1°(0:{0,1}), such that / (@) dz = @|Q} @
Q
We are ready to define the starting point of our study.

Definition 3.1 We call “large amplitude” optimal design problem the following
optimization problem
Xlerl}(f;d J(X) (5)
Although problem (5) has been extensively studied by means of homoge-
nization theory [1], [6], [17], [21], we propose yet another approach based on
the simplifying assumption that the amplitude parameter 7 is small. The small
amplitude asymptotic of (5) will then be relaxed by using H-measures theory.
Our motivation for introducing this new method is that many simple general-
izations of (5) can not be solved by the homogenization method whereas they
are amenable to our small amplitude approach. For the sake of simplicity we
begin with the simple example (5).

Assuming that the amplitude or contrast 7 is small, we perform a second-
order expansion in the state equation and in the objective function. Since the
coefficient matrix A in (3) is an affine function of 7, the solution u € H*(f) is
analytic with respect to 7, and we can write

u=u’ +nu' +n*u?+O0@). (6)



Plugging this ansatz in (3) yields three equations for (u%, u!,u?)

_div(4° Vo) = f,
w=0 on I'p (7)

A°Vu® - n=g on Iy,

—div (A° Vul ) = div (xy A°Vu?),
u! =0 on I'p (8)
A'Vul -n=—-xA'Vu® -n on Ty,
—div (A° Vu? ) = div (xy A°Vul)
u2 =0 on FD (9)
A'Vu? . n=—xA°Vu' -n on Ty.

Remark that «u° does not depend on x and thus only u',u? depends on ¥.
Similarly, we make a Taylor expansion in the objective function to get

500 = [ )t [t de o [ (d+ it ) da

4 / jo(u) dstn / 0yl ds-+rP / (j§<u0>u2+1j;’<u0><ul>2) ds+O(P).
'y 'y I'n 2

Neglecting the remainder term we introduce a function 7, which only depends

on u®, ut, u?

Tsa(u®,ul, u?) / (uo)dx+77/]1( Nl da

J + L) 1>2) dn

/ G2 (u®) ds + 17/ 35 (u®)u' ds

N <j2<u i+ L8 <u°><u1>2) ds

Finally, we can define the typical shape optimization problem we are interested
in.

(10)

Definition 3.2 We call “small amplitude” optimal design problem the second-
order asymptotic of problem (5), namely

inf {Jsa(x) - Jsa(uo,ul,UQ)} (11)

Xeuad

where Js, is defined by (10) and u®,u',u? are solutions of the state equations
(7), (8), (9) respectively.

The rest of the paper is devoted to the study of the shape optimization
problem (11) and its various generalizations.



Remark 3.3 The asymptotic expansion (6) is actually uniform with respect to
the characteristic function (a fact that we shall use later in Remark 3.9). Indeed,

introducing

0

Ty = 7]_3 (u—u —nul —772u2) ,

it is easily seen to satisfy

—div (A Vr, ) = div(x A°Vu?)
rm=0 on I'p
AVrn-n:—xAO Vu?-n on Iy,

from which we deduce the a priori estimate

C

P
||VT"7||L2(Q)N = mln(1,1+n)

where the constant C > 0 does not depend on 1 nor on x.

3.2 Relaxation by H-measures

As most optimal design problems, the small amplitude problem (11) is ill-posed
in the sense that it does not admit a minimizer in general. Therefore we relax
it by using H-measures.

The general procedure for computing the relaxation of (11) is to consider
a sequence (minimizing or not) of characteristic functions x, and to pass to
the limit in (11) and its associated state equations. Up to a subsequence there
exists a limit density 6 such that y,, converges weakly-* to 6 in L>°(; [0, 1]).
We denote by u°, ul, u2 the solutions of (7), (8), and (9) respectively, associated
to xn (recall that (7) does not depend on x,). In a first step, it is easy to pass
to the limit in the variational formulation of (8) to obtain that u) converges
weakly to u! in H'(f) which is the solution of

—div(A°Vu') = div(0 A°Vu®) in Q
u' = 0 on I'p (12)
A'Vul n = —0AVu'-n on Ty.

The main difficulty comes from (9) where we need to pass to the limit in the
product x,Vul. Since this term is quadratic, we can use H-measures. More
precisely, for a given test function ¢ € H!(Q) which vanishes on I'p, the varia-
tional formulation of (9) is

/onui-wdx: —/ XnA'Vul - Ve da. (13)
Q Q

The sequence u? is obviously bounded in H!(Q) and, up to a subsequence, it
converges weakly to a limit u? in H'(f2). The question is to find which limit
equation is satisfied by u?. Following Tartar (see section 4.2 in [19]), we deduce



from (8) that Vul depends linearly on y,, through a pseudo-differential operator
¢, homogeneous of order 0, the symbol of which is
AW (2) - €

A€
We know from Lemma 2.3 that the H-measure of a subsequence of x,, is of the
type

Q(mvf) = €.

u(de, de) = 6(x) (1 - Q(x))y(da:, d¢)

where v is a probability measure with respect to £. Therefore, applying Theorem
2.2, we deduce that

lim xnA'Vul - Vodr = / AVl - Vo d
Q Q

n——+o00
/Q/SN1 6(1—0) A% - ¢ € AV v(dzx, dE).

Introducing a matrix M (x) defined by

~ [ e ) (14)

we obtain that the limit of (13) is

/AOVUQ-quda::—/ GAOVul-V¢dx+/ 0(1 —9)A°MA°Vu® - Vo du
Q Q Q

2

for any smooth test function ¢ which vanishes on I' . Thus u” is the unique

solution in H!(Q) of

2

A'Vu?on = —0AVul n+60(1—-0) A°MAVu®-n on Ty.
(i5)
We now can pass to the limit in the objective function Js,(xn). Since the
embeddings of H'(Q) in L?(Q2) and in L?(I'x) are compact, we easily obtain

—div (A° Vu?) div (0 A°Vu!) —div (0(1 — 0) A°MA°Vu®) in Q
u” = 0 on I'p

lim Jsa(Xn) = Js*a(97y) = jsa(uo’ul’u2)

n—-+4oo
where 4%, u!, u? are now solutions of the relaxed state equations (7), (12), (15),
respectively. It is now a standard matter to prove the following result.

Proposition 3.4 The relaxation of (11) is thus

min {J:a(ﬁ, V) = Toa(u, 0l u2)} (16)

(0.v)eus,



where Jsa(u®,ul,u?) is defined by (10), u®,u',u? are solutions of (7), (12),
(15), respectively, and U, is defined by

= {(9,@ € L®(2;[0,1]) x P(Q,Sn—1) such that /Qa(x) dz = em} :

(17)
where the set of probability measures P(Q,Sy_1) is defined in (2). More pre-
cisely,

1. there exists at least one minimizer (0,v) of (16),

2. any minimizer (0,v) of (16) is attained by a minimizing sequence Xn of
(11) in the sense that x, converges weakly-* to 6 in L>(Q)), v is the
H-measure of (xn —0), and lim,, 1 o Jsa(xn) = J5, (0, ),

3. any minimizing sequence x, of (11) converges in the previous sense to a
minimizer (0,v) of (16).
Remark 3.5 A simpler, albeit formal, method for computing the limits of u}
and u2 is to assume that the sequence X, of characteristic functions is periodi-
cally oscillating, i.e. xn(xz) = x(x,nz) where y — x(x,y) is Y-periodic. Then,
using formal two-scale asymptotic expansions it is possible to compute the limits

2 1

of ul and u?, as well as the first-order corrector term for ul, i.e.

1 1
ul(z) = ul(x) + Eull(m, nx) + O (ﬁ) )
Making a Fourier expansion of x as
X(@,y) = Y Ra,k)er ™,
kezZN
we can compute explicitly

AOVU/O -k 2i7rlc-y.

11 _ S
u (a:,y) - Z ZX(HZ‘, k) 271'140]6 . k

k#0€ZN
This allows to recover the limit problem for u®

as in Remark 2.4, by

1 . k
Vo) = gy X @k (s—m).

k£0€ZN

with the H-measure being given,

Remark 3.6 In this section, as well as in the previous one, the integrand of
the objective function was not directly depending on the characteristic function
X (but implicitly through the solutions of the state equations). Actually our
approach does not apply directly to an objective function where the integrand
depends on x as, for example,

() = / ((1 = x)ol) + X () da.

10



Indeed, after the second order expansion in the amplitude parameter n we get

Jsa(uo,ul,uz) _ / ](UO) d$_~_n/ j/(UO)ul d(E-l—'I]g/ (j/(uO)UQ + %j//(uO)(ul)2> dx
Q Q Q a8)

with j = (1—x)jo+x7J1- It is clear that the last term in (18) is cubic with respect

to x, which means that we can not use H-measures (which are merely quadratic

in x) to pass to the limit and relax such an objective function Js,. However, if

we assume that the two integrands have also a small contrast of order n, i.e.

J1(v) = jo(v) +nk(v) Vv €R,

then, the second order expansion yields
Tea (Wl ut,u?) = / Jo(u?) dx—i—n/ (jé(uo)u1 + xk(uo)) dz
Q Q

e [ (000 4 O 4 K o ) d

in which there are only at most quadratic terms in x. We can thus pass to the
limit by using H-measures as before and obtain a relaxzation result.

3.3 Relaxation before small amplitude asymptotic

In this section we proceed in reverse order compared to the previous one.
Namely, we first relax the large amplitude problem (5) by using homogeniza-
tion theory and then we make a small amplitude asymptotic. The resulting
small-amplitude relaxed problem turns out to be the same as (16) (which is not
surprising as explained below in Remark 3.9).

The relaxation of (5) is a classical result [17] that we now recall. Let us first
define the so-called G-closure set Gy C RN’ of all homogenized tensors obtained
by mixing the two phases A° and A! in proportions 1 — @ and 6 respectively.
If the phases are isotropic this set GGy of symmetric matrices has an explicit
characterization in terms of the matrix eigenvalues (see e.g. [1], [6], [16], [17],
[21]) which is not required in the sequel.

Proposition 3.7 The relazed formulation of (5) is
i J*a,Aeffz/' d+/' d} 19
(eyAgp)gusg{ .40 = [giwdo [ s (19)
where

(0, A°T) € L°°(; [0, 1] x ]RNz), such that:

Ul =

¢ / 6(z)dx = 0|Q|, A (z) € Go(z) a.e. €S
Q

11



and u is the unique solution in H'(Q) of the homogenized problem

—div(AfVu)=f in Q
u=0 on I'p (21)
Ay .- n=g on Ty.

More precisely,
1. there exists at least one minimizer (0, A°™) of (19),

2. any minimizer (0, A°T) of (19) is attained by a minimizing sequence X
of (5) in the sense that x, converges weakly-* to 6 in L>(Q), A" =
Xn A+ (1—x,) A% H-converges to A°%, and lim,, . o J(xn) = J*(0, A°%),

3. any minimizing sequence X, of (5) converges in the previous sense to a
minimizer (0, A°") of (19).

The main result of this section is that the small amplitude asymptotic of
(19) is precisely (16).

Proposition 3.8 The shape optimization problem (16) is the second-order ap-
prozimation of (19) for small amplitude 7.

Proof. For || << 1, we use the small amplitude formula devised by Tartar
[19] for the homogenized tensor A

AT = A% 4 9 A° — (1 — 0)72 A° (/SN_l jo(? ,ff d”) A’ +00P),  (22)

where v is the H-measure induced by the sequence {x,,} such that A" = x,, Al +
(1—xn)A® H-converges to A°f (remark that such a formula was already obtained
in the mechanical literature by formal arguments, for example in the case of
periodic composites). Therefore, up to second-order in 7, the homogenized
tensor A is completely characterized by the density 6 and the H-measure v.
We can thus replace YT by U,. On the other hand, writing the solution of
(21) as
u=u’+nu +n*u?+0(n*),

it is easily seen that u°, u!,u? are precisely the solutions of (7), (12), (15), re-

spectively. Finally, we make a second order asymptotic expansion of J*(6, A°)
to precisely obtain J7, (0, v). O

Remark 3.9 Proposition 3.8 is not surprising because we know from Remark
3.8 that the second-order expansion of the state u with respect to n is uniform
in x. So, if we add the following assumption about the remainder of the Taylor
expansion of the cost functions j;

1

15 () = ji(u?) = i) (w = u?) = 557 () (w = u®)?] < Clu = u®[o(1),

12



where o(1) is a uniformly bounded function which goes to 0 with |u — u°|, then
the small amplitude approximation (11) of the original large amplitude shape
optimization problem (5) is uniform with respect to the characteristic function
x- In particular, it guarantees that the minimizer of the relaxed small amplitude
problem (16) is close, up to third order in n, to minimizing sequences of (5).
This result confirms the interest of the small amplitude approzimation which is
easier to relaz.

3.4 Optimality conditions

The goal of this section is to simplify the relaxed small amplitude optimization
problem (16) by using information coming from its optimality conditions. The
main result is that optimal microstructures for (16) can always be found in the
class of simple laminates (i.e. rank-one laminates).

Proposition 3.10 The relazed small amplitude problem (16) can be equiva-
lently solved by restricting the set of probability measures P(2,Sn—1), defined
by (2), to its subset of Dirac masses. More precisely, there exists an optimal

design solution of

min J? (60,v) (23)
(G,V)eu;b

where U, C U, is defined by

(0,v) € L=(Q;]0,1]) x P(Q,Sn_1), such that:
usl — 24
ad /Qa(x)dx:@\m, v(z,€) = 6(¢ — €°(2)) ae. €Q @)

Furthermore, the optimal Dirac mass H-measure in (23) does not depend on the
density 6.

Remark 3.11 The main consequence of Proposition 3.10 is that not all possible
composite materials have to be considered in the relazed small amplitude problem
(16) but just the simple laminates of rank one. This is, of course, a drastic
simplification which is reminiscent of a similar one in the ‘large amplitude” case
due to Raitums [18]. However, we shall see that it is much more general since
it holds true for all generalizations of (16) investigated in this paper. Another
interesting consequence of Proposition 3.10 is that the optimization with respect
to v can be done once and for all at the beginning of the optimization process
since it is independent of the exact values of 0.

Proof. To simplify the formula for J7, (6, v) which is implicit in v, we introduce
an adjoint state p° solution in H'(£2) of

—div(A°Vp®) = ji(u®) in Q
p" = 0 on I'p (25)
A'Vp®n = jh(u®) on Ty.

13



Remark that, like u°, the adjoint state p° does not depend on (6,v). The goal
of this adjoint state is to eliminate u? in JZ,(6,v). Indeed multiplying (25) by
u? and integrating by parts, and doing the same for (15) multiplied by p", we
obtain

/ 1 (u®)u? de + / jo(u)u? ds = — / AVl - Vp da
Q I'n Q

+/ 0(1 —0)A°MA'Vu® - Vp° da,
Q

which is now explicitly affine in M, defined by (14), and thus in v. More precisely
we have

1
Jea(0,7) =/J'1(u0) d$+77/ji(u0)u1 d96+772/ §ji'(uo)(u1)2 dx
Q Q Q

575 (u)(u')? ds

1
+/ jg(uo)ds+n/ gh(u®)ul ds+772/
I'n I'n I'n 2

—172/ 0A°Vu! - Vp° dx + 772/ 0(1 — 0)A°M AV - Vp° da.
Q Q

(26)
Only the last term in (26) depend (linearly) on v since u” and p° are independent
of v (and 6). Minimizing JZ, (0, v) with respect to v amounts to minimize a scalar
affine function on the convex set of probability measures P(2,Sy_1). Therefore
any minimizer v* can be replaced by another minimizer which is a Dirac mass
concentrated at a direction £* which minimizes the function

oy
%AOVUO - AP0,

Remark that £* does not depend on . Furthermore, replacing a minimizer v*
by the Dirac mass concentrated at £* does not change 6, u°, u! and p°. Thus
one can restrict the minimization in v to the subset of P(£2,Sy_1) made of
Dirac masses of the type v(z,&) = 6(€ — £%(x)). a

Remark 3.12 In the case where A° is isotropic, we can compute explicitly
the optimal direction £*. If either Vu® or Vp® vanishes, then any direction is
optimal. Otherwise, the optimal direction is easily seen to be

€—e

/
&* i ife#te, €leife=¢,

- le —e
where e = Vu' /|[Vu®| and ' = Vp°/|VpO|.

After elimination of the measure v, i.e. incorporating the optimal Dirac
mass concentrated on £*(z), we obtain an objective function that depends only

14



on 6
70 = [ ado+ [ ityds e [ gt deen [t ds
Q FN Q FN
1 1
b [ O de+ 5o [ ) ds
Q I'n
—772/ GAOVul-Vpde—FnQ/ 6(1 — ) A°M* AVl - Vp° dx
Q Q

with

_ e

We can also eliminate u' in the first order term in 7. Once again we use the
adjoint p°: multiplying (25) by u! and integrating by parts, and doing the same
for (12) multiplied by p°, we obtain

M*

/ g1 (uut do + / 35 (u)ut ds = —/ A VU - Vp° da.
) I'n )
Therefore we deduce
JI(0) = / g1 (u?) dx + / G2 (u®) ds — 77/ A Vu° - Vp° dx
Q Iy Q

1 ) 1 .
gt [ R0 e 57 [ ) as

I'n

—772/ 0A'Vu! - Vp° dx + 772/ 0(1 — 0)A°M* A°Vu® - Vp° da.
Q Q

It is then a simple matter to compute the derivative of J;, with respect to 6.

Lemma 3.13 The objective function JX, (0) is Fréchet differentiable and its
derivative in the direction s € L>(Q) is given by

0 (s) = —77/ sA'Vau - Vp° dr — 772/ sA'Vaul - Vp°de
—772/ sA'Vu® - Vp! dx + 772/ s(1—20)A°M* A°Vu® - Vp° du,
Q Q

where p' is another adjoint state, defined as the solution in H'(Q) of

—div(A°Vp') = 7 (ul)ul + div(A° Vp° ) in Q
p' = 0 onTp (27)
A'Vpln = (O ul —0A°Vp®-n on Ty.
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Proof. To compute the derivative of J7, with respect to 6, we first define
the derivative of u' with respect to 6 in the direction s € L°°(2), denoted by

z = ‘96—1;;(5). It is easily seen that u! € H'(f) is Fréchet differentiable with

respect to 6 and that

—div (A°Vz) = div (sA°Vu®) in Q
z = 0 on I'p (28)
AVz.n = —sAVul.-n on Ty.
Then we have
8J:a 0 0 0 2 110, 0y, 1
—52(s) = —n | sAVu’ -Vp'dxr+n 71 (wu' zdx
00 Q Q

—|—772/ 35 (u¥)ut z ds — 172/ sA'Vul - Vp° da
Iy Q

—772/ 0A'Vz - Vp'dr + 772/ s(1—20)A°M*A°Vu® - Vp° da.
Q Q

To eliminate z in the above expression, we use the adjoint state p'. Multiplying
(27) by z and (28) by p' we get

/jf(uo)ulzda:—/ HAOVpO-Vzdx+/ jé’(uo)ulzdSZ—/ sA'Vul - Vp! d,
Q Q Iy Q

which yields the desired formula. a

Remark 3.14 In the case of compliance minimization we have that j1(u) = fu
and jo = gu. Thus, we deduce that the first adjoint is p° = u°. Then, an optimal
direction £* is a vector orthogonal to A°Vu®, which implies that M* A°Vu® = 0.
In other words, we obtain

Jr(0) = / fu® dx—!—/ gu® ds—n/ A'Vul -V dx—nQ/ 0A'Vul -Vl dx.
Q Ty Q Q

By using equation (12) we can rewrite the second order term in n such that

Jr () = / fu dﬂc—i—/ gu® ds—n/ 0A° VU0 Vi dx+772/ AVl -Vl de.
Q T'n Q Q

Since u' depends linearly on 6 we obtain that J7,(0) is a non-negative quadratic
function of 0 and thus is convex. In particular, any local minimizer is necessarily
a global minimizer.

3.5 Gradient based objective function

We now study an objective function that depends on the gradient
700 = [ 3(Vu)ds

16



where j : RN — R is a C2 function satisfying adequate growth conditions. For
example, a simple growth condition is that there exists a constant C' > 0 such
that, for any A € R,

GV < CUAP +1), < CIA+ 1), 7" < C.

The function J is associated to the state equation (3) for u. Making a small am-
plitude second-order expansion in J we obtain the objective function associated
to the state equations (7), (8), and (9)

Jsa(X) =/j(Vu0)da:+n/j'(Vu0)-vu1 da
i ° (29)
+n2/ <j’(Vu0)-Vu2 + §j'/(Vu0)Vu1-Vu1) dz.
Q

The small amplitude problem we consider is thus

inf Jsq 30

f Jsa(X) (30)

where J, is defined by (29) and u°, u', u? are solutions of the state equations
(7), (8), (9) respectively.

We now compute the relaxation of (30). Taking a sequence of characteristic

functions x, which converges weakly-* to 6 in L>°(;[0,1]), we already know

that its associated solutions ul,u2 converge weakly to u!,u? in H'(Q) which

n’ n

are the solutions of (12), (15), respectively. However, to compute the limit of
Jsa(xn) we need to pass to the limit in the quadratic function j”(Vu®)Vul-Vul.

As already said in section 3.2, we know that Vul depends linearly on x,
through a pseudo-differential operator ¢, homogeneous of order 0, the symbol

of which is A0 0( w
u-(r) -
q(z,§) = —W@

Therefore, applying a result in the spirit of Theorem 2.2, we deduce that

lim 3 (Vu)\Vul - Vul de = / 3" (Vu)Vul - Vul de
Q

n—+0o0 /o
— AV’ - 5)2 11 0

Introducing a matrix N(x) defined by

1 '//v0§_f
v [ s et ()

we finally obtain the relaxed objective function
J0,v) = / G(Vu®)dz + 17/ 3 (Vu?) - Vu' da
Q Q
1
+n? / <j’(vu°) - Vu? + 3 3" (Vu?)Vau' - Vul) dx (32)
Q

+1? / (1 —0)A°N45Vu’ - Vu' da,
Q



where u°,u', u? are solutions of the relaxed state equations (7), (12), (15),

respectively. We have thus proved the following result.
Proposition 3.15 The relazation of (30) is

in J* (0 33
e s (0,1) (33)

where U, is defined by (17). More precisely,
1. there exists at least one minimizer (0,v) of (33),

2. any minimizer (0,v) of (83) is attained by a minimizing sequence X, of
(30) in the sense that x, converges weakly-* to 6 in L>°(), v is the
H-measure of (xn —0), and lim,,_, 4 o Jsa(Xn) = J2,(0,v),

3. any minimizing sequence X, of (30) converges in the previous sense to a
minimizer (0,v) of (33).

Remark 3.16 Proposition 3.15 gives a complete relaxation of the small am-
plitude problem (30) while there is no such result for the corresponding large
amplitude problem (except in a few special cases ; see [20], [4]).

As in the previous section (see Proposition 3.10) we can simplify (33) by
considering only simple laminates instead of all possible composites.

Proposition 3.17 The relazed small amplitude problem (33) can be equiva-
lently solved by restricting the set of probability measures P(2,Sn_1), defined
by (2), to its subset of Dirac masses. More precisely, there exists an optimal

design solution of

min J> (60,v) (34)
(0,v)eus,

where U;fi C U}, is defined by (24). Furthermore, the optimal Dirac mass H-

measure in (34) does not depend on the density 6.

Proof. To eliminate u? in the previous formula for J7, we introduce a first
adjoint state p° as the solution in H'(Q) of

—div(A° Vp?) = —divj(Vu®) in Q
p° = 0 on I'p (35)
AVp®-n = §/(Vu®)-n on Ty.

We thus obtain

/j’(VuO)-VUQda::—/HAOVul-VpOda:—F/ 0(1—0)A°M AV u°-V p° du.
Q Q Q
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The objective function is thus linear with respect to the H-measure v

5 (60,0) :/Qj(VuO)daH—n/

7' (Vu®) - V'l dx — 772/ AV v -V p°da
Q Q

2
+ / 3" (Vu)Vul - Vu' da
2 Jo
+n? / 0(1—0) (A°NAVU® - Vul + A°M AV O -V p°) da.
Q

To minimize JJ, which is linear in v is it enough to take v as a Dirac mass in a
direction £* which minimizes in SV ~! the following function of &

AVl - AV -§) | L[I(Vu)E - AV - )

A% ¢ 2 (A% - )2

h(§) =
Remark that the optimal direction £*(z) depends on Vu'(z) and Vp®(z) but
not on 6(z). a

After choosing v as the optimal Dirac mass concentrated at £*(z), we obtain
an objective function that depends only on #. Using again the adjoint p° we
obtain a new formula for the objective function

Jr.(6) :/j(VuO)dgc—n/GAOVUO-Vpde—ng/HAOVul-Vpde
Q Q Q
2
—l—%/j”(VuO)Vul-Vul da:+772/0(1—0)h(§*)dx.
Q Q

To differentiate J, with respect to § we already know that u! is Fréchet differ-
entiable with respect to 8, and thus it remains simply to eliminate the derivative
of ul. Therefore we define a second adjoint state p! as the solution in H!(Q) of

—div (A° Vp') div (5”(Vu®)Vu') — div (A°V %) in Q

p' = 0 onTp (36)
AVplon = (0A°Vp® —j"(Vul)Vul) -n on Ty.
We deduce that
0J34 0,0 0 2 0,0 1
—52(s) =-n [ sA"Vu -Vp'der+n sA°Vu’ - Vp' dx
00 Q o

—772/ sA'Vul -V p°dx + 772/ s(1 —20)h(£") dx.
Q Q

Remark 3.18 In the special case j(Vu) = |Vu|? and A° = al, one can check
that p° = 2u®/a and the optimal direction of lamination is at each point per-
pendicular to Vu®, giving then h(£*) = 0.
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3.6 Flux based objective function

Results similar to those of section 3.5 hold for an objective function depending
on the flux, namely

J(X)z/Qj(AVu) dx.

Since the algebra is slightly different and we shall use it in the numerical ex-
amples, we indulge ourselves in giving some details. The corresponding small
amplitude second-order expansion is

Jsa(x) = /Qj(AOVuo) dx + 77/9]”(AOVUO) (A'Vu! 4+ x AV do

+772/ 7' (A°Vu?) - (A°Vu? 4 xA'Vaul) do
Q

+%n2 / 3" (A°Vu?)(A°Vaul + xA'Vu0) - (A°Vaul + xA V) du,
Q
(37)
where u°, ul, u? are solutions of (7), (8), and (9), respectively. The relaxation of

(37) requires the application of Theorem 2.2 to three different terms. Skipping
the details and introducing a first adjoint state p°, solution in H'(Q) of

—div(A°Vp?) = —div(A%'(A°VuP)) in Q
p° = 0 on I'p (38)
AVp®on = (A%'(A°Vul))-n on Ty,

we obtain a result similar to Proposition 3.15 with the following relaxed func-
tional

Jr0,v) = / G(A'VuO) dx + 77/ §(A°Vu?) - (A°Vul +0A°Vu) dx
Q Q

1

—7]2/ 0A°V ut -V p¥dx + 57]2/ 0 (j"(AOV u?) AV uo) - AV W0 dx
Q Q

+n2/ 05" (A°Vu?) - A°Vu! d;v+772/ 0(" (A°Vu®) A°Vu®) - AVl do
Q Q

2
+n—/(j”(AOVuo)AOVul)-AOVul d;v+772/ 9(1—9)/ hi(€) v(dz, d€),
2 Ja Q Sn_1
where u°,u!, u? are solutions of the relaxed state equations (7), (12), (15),

respectively, and

(A0 u® - §)(AV P - €)
A0 - €

_ (_j/(AOVuO) +j//(A0vu0)A0vu0) .AO€

hl(f) =

. AOVUO-£)2

(j”(AOVuO)Aof) _A()g ( AO€ y:

1
2
AV 0 - ¢

A0S €
Since J7,(0,v) depends linearly on the H-measure v, it is minimized by taking
v as a Dirac mass in a direction ¢* which minimizes h;(¢) in S¥~1. Thus, as in
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Proposition 3.17, the minimization of J, can be simplified by considering only
simple laminates instead of all possible composites. Eventually, J7, is differen-
tiable with respect to 6, and introducing a second adjoint state p', solution in
HY(Q) of
—div(A°Vp') = div (0A*(—Vp° + j/(A°Vu0) + j"(A°Vu’) A" Vu?))
+div (4" (A'Vu?)A'Vu') in Q
p1 = 0 onIp
AVplon = 0A° (Vp° -4/ (A"Vu?) — 5" (A'Vu?)AOVu®) - n
— (A" (A°Vu®)A’Vu') -n on Dy,

we obtain the derivative
aJZ,

W(s) = 17/ s5'(A°Vu®) - A°Vu® da — 77/ sA'Vu’ - Vp° da
Q

Q

—n? / sA'Vul -V p°dx + 7P / 57" (A°Vu®) - A°Vu! da
Q Q

—|—172/ 55" (A°Vu?)A'Vu®) - AOVu! da
Q

+%772/ 5(5"(A°V u) A’V u0) - AOV O dx
)

—|—7]2/ sA'Vu - Vpl dx + 772/ s(1—20)h1(£¥) dx.

Q Q

Remark 3.19 In the special case j(AVu) = |AVu|? and A° = ol, there is a
remarkably simple explicit solution, namely the optimal density 0 is constant.

Indeed, one can check that p° = 20u®, and the optimal direction of lamination
is at each point parallel to Vu®. We thus found hy(£*) = —a?|Vu®|? and

T30 (0) = o[ VU’ |72y + 02?0V u® + Vul||7:(q).

If 0(z) = 0y is a constant, then u' = —0yu® satisfies (12) and the second term in
the above formula for JZ,(0) vanishes, proving that J,(0o) is actually minimum.

3.7 Multiple loads

We consider now a so-called multiple loads problem, i.e. several state equations
are associated to a single objective function. Furthermore, we also consider the
case of a multi-physics problem, i.e. the coefficients of the different state equa-
tions can be different although they share the same geometry or microstructure
(a typical example would be thermo-elasticity where a conductivity problem
is coupled to an elasticity system). For simplicity we restrict ourselves to two
state equations in conductivity, but the same results would hold true for more
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equations. We consider an objective function that depends on two states u and
v

J(x) = / J(u,v) de,

where u is the solution of (3) with coefficients A(x) = A°(1 + nx(z)) and v is
the solution of ~
—div(BVv)=f in Q
v=0 on I'p (40)
BVv-n=g on I'y,

with a different conductivity tensor
B(z) = (1 - x(2))B° + x()B' = B(1 +nx(2)).

As before we assume that the integrand j is of class C® with adequate growth
conditions with respect to its two arguments (the objective function could as well
depend on a boundary integral without any conceptual additional difficulty). We
denote by j., j, its partial first-order derivatives, and jyu, jov, juv its second-
order derivatives.

Making a second-order asymptotic expansion with respect to n we obtain

Toalt, )i jmots = / J(, %) de + 1 / (ju (0, 00 + o (u®, o)) do
Q Q

+” / (Ju (u®, 0)u® + o (u®, 0%)0?) da
Q
1
+_772/ (juu(uoavo)(ul)Q + 2juv(u0,vo)u1v1 +jvv(UO,UO)(U1)2) dz,
Q

2
(41)

0,1 2

where u°, ut, u? are solutions of (7), (8), and (9), respectively, while v°,v!, v
are solutions of similar equations involving B° instead of A as tensor. The
relaxation of the second-order small amplitude problem is easy to compute fol-
lowing the method described in the previous sections. The objective function
becomes

J5a(0,v) = Tsa(u',v7)i j=0,1,2

where u°, u!, u? are now solutions of the relaxed state equations (7), (12), (15),
respectively, and v°, v!, v? solutions of the same relaxed equations where the
tensor A° is replaced by B°. Remark that there is a single H-measure v since
the same microstructure x appears in both equations (3) and (40).

In order to show that J7, (6, v) is explicitly linear in v we use two independent
adjoints pY, ¢°, solutions of

1

—div(A°Vp®) = j.(u% %) in Q
—div(B°V¢®) = j,(u®v°) in Q
o_ 0 _ 0 T (42)
p q on 1lp
AVp? . n=Bv¢° - n = 0 on I'y.
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These adjoint states allow us to eliminate u2,v? and to obtain
J;‘a(ﬁ, I/) = / j(uo7 UO) dx + 77/ (ju(uo7 Uo)ul + jv(uo7 Uo)vl) dx
Q Q

1
—|—§772/ (jw(uo,vo)(ul)2 + 2juv(u0, vo)ulvl —l—jw(uo, vo)(vl)z) dx
Q

—172/ A Vul - Vpdr — 772/ 9B°Vov! -V dx
Q Q
+n2/ 6(1—0) </ h(€) V(x,d§)> dz.

(9] SN*I

e = L2 Eo¢

A% - ¢ BY¢- ¢
The minimization of JZ, (0, v) with respect to v can be achieved by a Dirac mass
v* concentrated at a direction £* (independent of #) which minimizes the func-
tion h(€). Therefore, once again, simple laminates are optimal microstructures
for this multiple loads (or even multi-physics) problem.

(43)
with

AV - AOVp + BV . BV, (44)

4 Linearized Elasticity

4.1 Small amplitude asymptotic

We generalize the results of the previous section to the system of linearized
elasticity. We consider mixtures of two linear isotropic phases with elastic prop-
erties

A" = 2uly 4+ Ao ® Is, Al = 2u(l+n)Iy + M1+ 1)l @ I,

where 7 is a small parameter, i.e. |n| << 1. For a characteristic function x of
the region occupied by phase A' we introduce the mixture elasticity tensor

A(z) = A°(1 4+ nx(z)).

For a smooth bounded open set ) C RY, with boundary 0Q = I'p UT'y, and for
given loading forces f € L?(Q)N and g € L?(09)", we consider the following
boundary value problem

—div(Ae(u)) = f inQ
u = 0 on I'p (45)
Ae(u)n = g on DIy,

where e(u) =  (Vu+ (Vu)T) denotes the strain tensor. It is well known that
(45) admits a unique solution in H'(2)N. Typically we want to minimize an
objective function of the type

100 = [ e+ [ ) ds
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where the integrands j; are of class C® with adequate growth conditions.

Assuming that the two phases have prescribed volume fractions, © for A!
and 1 — © for A°, with © € (0,1), and recalling definition (4) of the admissible
set Uyq, the large amplitude optimal design problem is

inf J(x). (46)

Xeuad

We perform a second-order expansion with respect to 7 in the state equation
and in the objective function

u=1u"+nu' +n*u®+ O®n?).
Plugging this ansatz in (45) yields three equations for (u”, u', u?)

—div(A%e(u®)) = f inQ

® = 0 on Tp (47)
A%e(w®)n = g on Ty,

—div (A%e(u')) = div(x Ae(u’)) in Q
u' = 0 on I'p (48)

Ae(utyn = —xA%e(u’)n on Ty,

—div (A% e(u?)) = div(xA%e(u')) in Q
v = 0 on I'p (49)

Ae(u*)n = —xA%e(u’)n on Ty.

Similarly, we make a Taylor expansion in the objective function and neglect-
ing the remainder term we obtain the function J,,(u’, u',u?) defined by (10)
(except that now u’, u',u? are vector-valued functions). We thus obtain the

equivalent of Definition 3.1 in the elasticity context.

Definition 4.1 We call “small amplitude” optimal design problem the second-
order asymptotic of problem (46), namely

- _ 0,12
ot {70(x) = Jalu )} (50)
where Joq(u®, ul, u?) is defined by (10), and u°,u', u? are solutions of the state
equations (47), (48), (49) respectively.

4.2 Relaxation by H-measures

As usual, (50) is ill-posed because it does not admit a minimizer in general.
Therefore we relax it by using H-measures following the procedure in Section
3.2. Let x,, be a sequence (minimizing or not) of characteristic functions which,
up to a subsequence converges weakly-* to a limit density 6 in L>°(Q; [0, 1]). We

denote by u°, ul,u2 the solutions of (47), (48), and (49) respectively, associated
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to xn- Obviously we obtain that u) converges weakly to u' in H'(Q)" which
is the solution of

—div(A%e(u')) = div(@ A%¢(u’)) in Q
u'! = 0 on I'p (51)
Ae(uyn = —0A%e(u®)n on Ty.

To pass to the limit in (49) we need first to compute the limit of x,e(ul) by
means of H-measures. >From (48) we know that e(u)) depends linearly on x,
through a pseudo-differential operator ¢, homogeneous of order 0, the symbol
of which is

0% QE+ERTY  (n+A)(0%-ERE
2u[&]? p(2p + A)[EN4

with 0%(2) = A% (u®)(x).

(52)
The computation of this symbol is a classical result in the Hashin-Shtrikman
variational principle (see e.g. the proof of Theorem 2.3.11in [1]). Then, denoting
by (1 — 0)v(dx,d§) the H-measure of the sequence x,,, and applying Theorem
2.2, we deduce that

L](ﬂf,f) = -

i 0 Ly.e r = Oc(ul) - e T
Jim [ eul) @) = [ 04%(!)-e(o)d
- / / 61— 6) f a0 (€) A%(u®) - A(6) (i, d).
QJSN-1

where f40(€) is a fourth-order tensor defined, for any symmetric matrices o, o’,
by
o€ o + AN (g€ - &) (¢ -
I p(2p+ A)
Introducing a fourth-order tensor M (z) defined, for any symmetric matrix o,
by

Moo = /S Iwl© o vle ), (54)

we obtain that the weak limit in H'(Q)" of u? is u?, the unique solution in
HY Q)N of

—div(A%e(u?)) = div(h A%e(u')) —div (A(1 — ) A°MA° e(u®)) in Q
> = 0 on I'p
Ae(u®)n = —0 A% (u')n+60(1 —0) A°MA(u)n on Ty.
(55)

Since the embeddings of H!(Q2) in L?*(Q) and in L?*(T'y) are compact, we can
easily pass to the limit in the objective function

lim Jsa(Xn) = Js*a(97y) = jsa(uo’ul’UQ)

n—-+4oo
where u%, u!, u? are now solutions of the relaxed state equations (47), (51), (55),

respectively. Therefore we just have proved the following result.
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Proposition 4.2 The relazation of (50) is thus

. « _ 0,1 .2
oweu:, {JS“(H’V) = Joalusut,u )} (56)

where U, is defined by (17). More precisely,

1. there exists at least one minimizer (0,v) of (56),

2. any minimizer (0,v) of (56) is attained by a minimizing sequence X, of
(50) in the sense that x, converges weakly-* to 6 in L>(R), v is the
H-measure of (xn —0), and lim,, o Jsa(Xn) = J5,(0,v),

3. any minimizing sequence Xn of (50) converges in the previous sense to a
minimizer (0,v) of (56).

Analogously as in Section 3.3, we can prove that (56) can be obtained by
first relaxing (46) and second making the small amplitude asymptotic (instead
of the reverse order).

4.3 Optimality conditions

As in section 3.4 we simplify the relaxed small amplitude optimization problem
(56) by showing that optimal microstructures can always be found in the class
of simple or rank-one laminates.

Proposition 4.3 The relaxed small amplitude problem (56) can be simplified
by restricting the set of probability measures P(2,Sn—_1), defined by (2), to its
subset of Dirac masses. More precisely, there exists an optimal design solution
of

min J7 (6,v) (57)

(0,v)eus,

where U;fi C U}, is defined by (24). Furthermore, the optimal Dirac mass H-
measure in (57) does not depend on the density 6.

Proof. To simplify the formula for J, (6, v) which is implicit in v, we introduce
an adjoint state p° solution in H'(Q)V of

—div (A%(p°)) = ji(u®) in Q
p° = 0 on Tp (58)
A% (pn = j5(u’) on Ty.

The goal of this adjoint state is to eliminate u? in JZ, (0, v). Indeed taking the
scalar product of (58) with u? and integrating by parts, and doing the same for
(55) with p°, we obtain

/Qj{(uo)-qua:—i—/ ) - u? ds :—/QGAOe(ul)-e(pO)dx

I'n
+/ 0(1 — ) A°M A% (u®) - e(p°) dz,
Q
(59)
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which is now explicitly affine in M and thus in v. Since (59) is the only term in
the objective function J7,(#,r) which depends on v, the same argument as in
Proposition 3.10 yields that only Dirac masses in £ need to be considered and
that the optimal v does not depend on 6. The optimal Dirac mass H-measure
is supported at a direction £*(z) that can easily be computed as the minimizer
of

Fao(A%e(u) - A%6’) = (ACe(u))g - (A% ()¢
A
—m(moe(uo))f ) (A% ()€ - ©),
(60)
where f40(&) is the tensor defined in formula (53). O

After elimination of the H-measure v, i.e. replacing the tensor M by the
optimal tensor M* = f40(¢*) (corresponding to the rank-one laminate in the
direction ¢*), and using again the adjoint state p° to eliminate u' in the first
order term in 7, we obtain an objective function J*,(6)

T (0) = / () di + / ja(u) ds — 7 / B A () - e(p’) dx

1 1
[t atdo+ o [ gt utds
2 Q 2 I'n

—772/ 0A % (ul) - e(p°) dx + 772/ 0(1 — 0)M*A%(u°) - A°(p®) du.
Q Q
Lemma 4.4 The objective function J7,(0) is Fréchet differentiable and its deriva-
tive in the direction s € L>°(Q) is given by
%(s) = —17/ sA%(u®) - e(p®) dx — 772/ sA%(u') - e(p®) dx
00 Q Q

—772/ sA%(u®) - e(p') dx + 772/ s(1—20)M*A(u®) - A%(p°) dx.
Q Q

where p' is another adjoint state, defined as the solution in H'(Q)N of

—div(A%(p')) = j(u®)ul + div(0A%(p°)) in Q
p! = 0 onTp (61)
Ale(pl)n = j§(u®)u' —0A%(p°)n on Tw.

The proof is similar to that of Lemma 3.13, so we safely skip it.

Remark 4.5 It is interesting to compute explicitly the optimal direction £* of
lamination, at least in the simple case when the objective function is the com-
pliance, namely j1(u) = f-u and ja(u) = g - u, which implies p° = u°. An easy
computation (see [1]) shows that £* is an eigenvector of 0° = A%(u®) associated
with w1, the eigenvalue of o° of smallest absolute value. Then

wi

Fan(©)A%e(u) - Ae(u’) = .
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and plugging this expression into the formula for the relazed objective function,
and using equation (51), we get

Jx (6) :/f-uodx+/ g-uods—n/ 9A%e(u®) - e(u?) dx
Q Iy Q
wi

dx.
204+ A v

+772/QAOe(u1) : e(ul)dx+772/ﬂt9(1 —0)

4.4 Strain or stress based objective function

The same method works for objective functions that depend on the strain or
on the stress tensor. Since most of the needed computations are very similar to
those already performed in sections 3.5 and 3.6, we content ourselves in giving
the main results without superfluous details.

First we consider the objective function

700 = [ 3(etw) s

where j is a smooth function and w is the solution of the state equation (45).
Making a second-order small amplitude expansion we obtain

Tl = [ (etw))de+n [ 7 (etw)) s etw')da
9 y oy L., 1 1
+n /Q <] (e(uo)) ce(u®) + 5] (e(uo))e(u ) :e(u )) dz,

where u®, u!,u? are solutions of the state equations (47), (48), and (49), re-
spectively. A computation, similar to the previous ones, yields the relaxation of
(62)

JI0,v) = /Qj(e(uo)) dx — n/(ZHAOe(uO) ce(p?) de — n? /Q 9A%(u') : e(p) dx

(62)

+%2/Qj//(e(u0))e(ul):e(ul)dx+772/ﬂt9(1—0)hg(£) v(dz, dE),

where u! is the solution to (51), the first adjoint state p° is the solution in
HY Q)N of

“div (A% e(p)) = —divj'(e(uO)) in Q
p° 0 on I'p (63)
(A%e(p")n = j’(e(uo))n on I'y

and
A
1(2p+ A)

57 () e, - 4,0
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where ¢(z,€) is defined by (52). To minimize J7,, which is linear in v, it is
enough to take v as a Dirac mass in a direction £* which minimizes ho (5) in
SN=1. After elimination of v, the objective function J, () is differentiable with
respect to 6 with directional derivative given by

%(s) = —77/ sA%(u®) : e(p®) dx + 772/ sA%(u®) : e(p') da
Q Q

7]2/ sA%(u') : e(p®) dx + 772/ s(1—20)ho (&) dux,
Q Q
where p! is a second adjoint state, solution in H*(Q)" of

“div(A%(pY)) = div (j”(e(uO))e(ul)) —div (0A%(p°)) in Q
pt = 0 on I'p (64)
(A%(p"))n = (HAOe(pO) — 3" (e(uo))e(ul)) n on Iy.

Second we consider the objective function

J(x):/ﬂj(Ae(u))dx

Its corresponding second-order small amplitude expansion is
100 = [ (A% ot [ FAC) s (Ae(ut) 4 xA%e(u)) do
Q Q
—|—772/ 7' (A% (u0)) : (A°Vu? + xAe(u)) dx
Q

i [ A (A () 4 Ae())  (Ae(u) + xAe(u) d,
Q

where u%, u!,u? are solutions of (47), (48), and (49), respectively. We easily

compute its relaxed formulation J7,, defined as

Ji(0,v) :/ §(A%(u ))dﬁc+17/ "(A%(u®)) : (A% (u') + 0A%(u®)) dx
—n /0A0 )dx—|— Pl /9 " (A% (u?)) A% (u)) : A%e(u®) dx
-+ /0] (A%( : A(u 1)dx—|—772/G(j"(AOe(uO))AOe(uO)):Aoe(ul)dx
Q

o 110 A0 0 . Oeul T 2 _ vidx
[ G et s Ay oo [ 00-0) [ hal@ute. ),

N-—1

where u! is the solution to (51), we introduced an adjoint state p° solution in
HY(Q)N of

—div(A%e(p®)) = —div(4%j’(A%(u®))) in Q
p° = 0 on I'p (65)

(A%(p°))n = (A%’(A%(u®)))n on Ty,
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and with
hs() = LA%e(u0)¢ - A%e(p0)E — AL (Ae(u0)E - €)(Ae(pO)¢ - €)

+5' (A% (u?)) A%(2, &) + j" (A% (u”)) A (u") : A%(x, €)

37" (A () A% (. €) : A%%(,6).

The objective function JJ,, being linear with respect to the H-measure v, is

minimal for a Dirac mass v* in the direction £* which minimizes h3(¢) in SV =1,
Once again simple laminates are optimal for this problem. After elimination
of v, the objective function JZ, (6) is differentiable with respect to 6 and its
directional derivative is

0Jz,

W(s) = —n/QsAOe(uO) ce(p?) da —&-17/Qsj'(AOe(u0)) : A(u) dx

—? /Q sA%(u) : e(p?) d + 172 /Q 5§ (A%(u®)) : A%(ul) da
o /Q S("(A%(u®)) A%(u)) : A(u’) da

g0 [ (Al A%())  Aelu) da
+772/QsAoe(u0):e(pl)dx—&—nQ/Qs(l—29)h3(§*)dx7

where p! is a second adjoint state, solution in H!(Q)" of

“div(A%e(pY)) = div (oAO( — e(p®) + §/(A%(u)) + j”(AOe(uO))AOe(uO)))
+div (4% (A% (u?)) A €(u')) in Q

p- = 0 on I'p

(A% 0 = 4% (e(p) — §'(A%(u?)) — " (A (u®)) A%%(u®) ).

— (A% (A (u"))A%(u'))n on Ty.
(66)

5 Algorithm and numerical examples

5.1 The optimization algorithm

We describe the optimization algorithm that we implemented to solve numeri-
cally the relaxed problems obtained in the previous sections. All the examples
will be in dimension two. Recall that there are two design parameters: the lam-
ination angle and the local proportion 6. We have proved that the lamination
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direction of the optimal microstructure does not depend on 6, and that it is
explicitly given in terms of u° and p" which do not vary during the optimiza-
tion process. Therefore, the optimal lamination angle is computed once and
for all before we start a gradient-based steepest descend method for the local
proportion 6.

The resulting algorithm reads as follows.
e Initialization:

— Compute u° and p°.

— Compute the optimal direction of lamination £*.
— Set 6 = 6y a constant.

— Compute ©!? and p'°.

— Evaluate J7,(6p).

o Iterations: for k£ > 1 and k less than a maximal number of iterations:

aJ;, 0,0 ,1k-1 1,k—1
55 (0x—1) based on u°, p°, u and p .

ii) Update the local proportion with a step size t; > 0 by

i) Compute the gradient

0 = min(1, max(0, ék)) with ék =01 — g 8;51 (Or—1) + Ag

where Ay is the Lagrange multiplier for the volume constraint.
iii) Compute u"* and evaluate JZ,(6}).

iv) If J2,(0r) < J%,(0k-1): compute p** and make k = k + 1. Go to
step 1).

v) If J2,(0k) > J5,(0kx—1): reduce the step size ¢; and re-do steps ii)-v).

The volume constraint [, 0x(x)dz = © is enforced by adjusting the Lagrange
multiplier Ay by a simple dichotomy at each iteration.

The boundary value problems are solved using FreeFem++ [10] and we take
advantage of the fact that all the problems we need to solve have the same
elliptic differential operator, namely div (A°V ). Therefore the factorization
of the stiffness matrix is performed only once during the initialization and is
saved for all subsequent finite elements resolutions during the iterations. This
of course speeds up considerably the code. The computational domain € is
discretized by triangles. For all states v’ and adjoint states p’ we use P, Finite
Elements, while the local proportion 6 is discretized with Py Finite Elements (as
well as the lamination direction £*). As is well known (see [1], [5] and references
therein) we prefer the P — Py combination to the simpler P; — Py in order to
avoid the so-called checkerboard numerical instability.

The subsequent figures show the local proportion of the material with higher
conductivity or with higher stiffness, meaning higher values of both Lamé pa-
rameters. In other words, if 1 is negative (which is always the case below), we
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Figure 1: Compliance maximization: n = —0.5, volume=50%.

display (1—0). The volume, when mentioned in the caption, always refers to the
percentage of volume occupied by the better conductor or the stiffer material.
For some numerical examples we also show a plot of the values taken by the
objective function during the optimization process.

5.2 Diffusion Problem

Since the inception of the homogenization method a classical test case is the
so-called torsion problem (see [1] for further references). It amounts to solve in
the unit square Q = (0,1) x (0,1) the following problem

—div(AVu)=1 inQ
u=0 in 09,

with A(z) = (1 — x(2))A° + x(z)A! = A°(1 + nx(z)), in order to minimize
Ji(x) = — [yudz, ie. to maximize the compliance. We solve the relaxed
small amplitude version of this problem, as derived in section 3.4: the resulting
optimal design is displayed on Figure 1. Both phases have equal proportion and
their conductivities are 0.5 and 1, which yields a small amplitude n = —0.5.
This figure can be compared to Figure 5.1 in [1] (up to the inversion of the gray
scale), where the full homogenization involving the complete knowledge of the
set Gy was used: both optimal designs are very similar. Different values of 7
(namely n = —0.9 or n = —0.1) yield also similar optimal designs. Furthermore,
the obtained optimal design is convergent under mesh refinement.
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Figure 2: Convergence history of compliance maximization: n = —0.5, vol-
ume=>50%.

Figure 3: Gradient minimization. n = —0.5, Volume=40%.
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Figure 4: Convergence history of gradient minimization. n = —0.5, Vol-
ume=40%.

We now turn to the minimization of Ja(x) = [, |Vu|*dz for the same ge-
ometry and state equation. In Figure 3 we plot the resulting optimal shape for
the relaxed small amplitude problem, as described in section 3.5. The phase
conductivities are 0.5 and 1, and the proportion of the best conductor is 40%.
This resut is slightly different than that obtained by Lipton and Velo (see Figure
1:a in [13]) using a partial relaxation of the problem. Here also, different values
of n and different refinement of the mesh yield similar results.

We do not show numerical results for the minimization of Js(x) = [, |AVu|*dzx
since, as explained in Remark 3.19, the optimal solution is a constant density
0! We actually did some numerical experiences that confirm this result, i.e. we
did not find any other (local) minimizers. In all examples of this section the
square was discretized using about 8.000 triangles.

5.3 Elasticity Problem

In all the following examples we take the reference material A° with Lamé
coefficients A = 0.73 and p = 0.376. As we said in the introduction, one should
interpret the following results in the context of reinforcing a plane structure by
adding to it a layer at a location that is optimal.

Let us first consider the so-called short cantilever problem subject to com-
pliance minimization (see section 4.3). We choose Q = (0,1) x (0, 2) (discretized
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Figure 5: Compliance minimization for the short cantilever: n = —0.1 (left),
n = —0.99 (right), volume=25%.

by 8765 triangles) and the state equation is given by

where I'y1 = {(z,y) st. z € (0,1)and y € {0,2}} U{(1,y) s.t. y € (0,0.95)U
(1.05,2)} and T'no = {(1,y) s.t. y € (0.95,1.05)}.

After 50 iterations the resulting optimal designs for n = —0.1 and n = —0.99
are shown on Figure 5 (recall that dark colors correspond to the stiffer material).
The latter design is quite similar to the usual short cantilever with two bars
making a 90 degree angle at the position where the load is applied, giving
then the impression that the approach developed here for the small amplitude
case, might very well be used at least in some cases when the amplitude is not
necessarily so small.

We now turn to the long cantilever problem, for which © = (0,2) x (0,1)
(discretized by 8088 triangles) with the same state equation where T'y; =
{(z,y) st. = € (0,2)andy € {0,1}}U{(2,y) s.t. y € (0,0.45) U (0.55,1)}
and I'ye = {(2,y) st. y € (0.45,0.55)}. Figure 6 shows the optimal design
for compliance minimization with n = —0.99. Remark on Figure 7 that the
convergence is much quicker than the 50 iterations done. This design is differ-
ent from the usual truss design obtained in the large amplitude case (see e.g.
[1], [5]), whatever the choice of the volume constraint (if it is too small, the
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Figure 6: Compliance minimization of the long cantilever: n = —0.99, vol-
ume=60%.

two thin bars that link-up the two large concentrations of stiff material with
the traction load, tend simply to disappear). In this case our small amplitude
algorithm should not be used for standard structural optimization (where the
amplitude is infinite). On Figure 8 we add to the compliance a term to penalize
the presence of mixtures, in order to obtain a classical design starting from the
optimal design of Figure 6.

The design of an arch is used to test the multiple loads case for compliance
minimization presented in section 3.7. The computational domain is Q = (0, 2) x
(0,0.8) (discretized by 7514 triangles). We first apply three forces together, i.e.
we consider a single loading state equation

—div(Ae(u))=0 in Q

up =uz =0 onz € (0,0.1) and y =0
up =0 onz € (1.9,2) and y =0
(Ae(u))n =0 on I'ny
(Ae(u))n=(0,—1)T on T'no,

where I'y; = {(z,0) s.t. z € (0.1,0.45)U(0.55,0.95) U (1.05,1.45)U(1.55,1.9)} U
{(z,y) st. z € {0,2} and y € (0,0.8)} U {(2,0.8) s.t. x € (0,2)} and T'y2 =
{(z,0) s.t. z € (0.45,0.55) U (0.95,1.05) U (1.45,1.55)}. Second, we apply
separately the three loads which yield three state equations, and we minimize the
sum of the compliances. The corresponding optimal designs (after 50 iterations)
are shown in Figure 9: they are similar, on the contrary of the large amplitude
case in which the two optimal designs are different (see [1]).

Next we minimize the norm of the strain tensor, localized on a subdomain
w,ie. J(x) = [ |e(u)*dz, as presented in section 4.4. The domain is the unit
square 2 = (0,1)2, which is discretized with 8654 triangles, the subdomain is
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Figure 7: Convergence history for compliance minimization of the long can-
tilever: n = —0.99, volume=60%.

Figure 8: Compliance minimization with penalization for the long cantilever:
n = —0.99, volume=60%.

37



Figure 9: Compliance minimization of an arch with three loads: single load
(top), multiple loads (bottom). n = —0.99, volume=50%.

just w = Q, and the state equation is

—div(Ae(u))=0 in
u=0 onIp

(Ae(u))n = (0,0)T on I'ng
(Ae(u))n = (0,—1)T on I'yo,

where I'p = {(2,0) € R? st. z € (0,1)}, Tn1 = {(z,y) € R? st. x €
{0,1} and y € (0,1)} and I'ya = {(,1) € R? s.t. = € (0,1)}. The resulting
optimal design, shown in Figure 10, looks like a bridge with two pillars. The
convergence is smooth as can be checked on Figure 11.

We perform the same strain norm minimization for the short cantilever with
either w = Q, or a smaller subset w = (0.9,1.0) x (0.9,1.1) around the loading
force, see Figure 12. The same minimization is done for the long cantilever with
w = (1.8,2.0) x (0.4,0.6) and two different values of the amplitude parameter
7, see Figure 13.

Finally we minimize the norm of the stress, localized on a subdomain w,
ie. J(x) = [, |Ae(u)?dx, as discussed in section 4.4. First we consider the
same square domain, loading state and subset w = () as already considered for
the strain minimization in Figure 10. The resulting optimal design shown in
Figure 14 is totally different when we minimize the stress, which, at least to us,
is somewhat surprising.
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Figure 10: Strain minimization of a square clamped at the bottom and vertically
loaded at the top: n = —0.1 , volume=50%.
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Figure 11: Convergence history of the strain minimization for the square: n =
—0.1, volume=50%.
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Figure 12: Strain minimization for the short cantilever: over the whole domain
(left), or on a subdomain (right). n = —0.1, volume=25%.

Secondly we consider the short cantilever @ = (0,1) x (0,2) (discretized
by 8765 triangles) with = —0.1 and the same loading state as before. We
compare the minimization over the whole domain with the one over a small box
w=(0.9;1.0) x (0.9;1.1) close to the loading force on the right. Here again the
optimal designs of Figure 16 are very different from those of Figures 5 and 13.
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