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Abstract

We present a new approach for pricing and making decisions of investment
in incomplete markets. This we do without fixing in advance any probability
measure. The key concept that we introduce is a notion of pricing function
compatible with a family of bid and ask prices observed in the market.

This method links the theory of asset pricing and the theory of risk mea-
suring. Furthermore we prove a first fundamental theorem of asset pricing
in this new context.
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1 Introduction

We present a new approach for pricing and making decisions of investment
in incomplete markets. This method establishes a link between the theory of
asset pricing and the theory of risk measuring.



The problem of pricing is perfectly solved by the arbitrage pricing theory
in complete markets. However real markets connot be assumed complete.
The question of pricing in incomplete market has therefore become a funda-
mental question in finance.

To address this question, different kind of approches have been proposed
in the litterature.

Most of them assume that a probability P is given and that the processes
of the assets used in order to define prices are well known, even their joint
stochastic processes. Among these approches are two important families:
pricing using maximisation of utility and pricing using Backward Stochastic
Differential Equations (BSDE). For pricing using maximisation of utility in
a context of no arbitrage we can refer to works by Schachermeyer, among
them [Schachermayer(2001)] and [Schachermayer(2004)], and also to [Biagini
et al.(2005)]. In the case of pricing via BSDE a probability P is fixed as well as
a Brownian motion and a filtration (F;),<r adapted to the Brownian motion
and one can price square integrable (Fr, P) measurable variables. For this
we refer to [El Karoui et al. (1995)] and [El Karoui et al. (1997)].

Another very interesting approach is that of Avellaneda and Paras [Avel-
laneda et al. (1995)] and [Avellaneda et al.(1996)]. In these two papers the
authors point out the importance of the risk of volatility in pricing theory
and the fact that the option prices provide informations about the market’s
volatility expectations. Within this approach, a pricing theory has to take
into account the prices of options available in the market. In addition, in
order to modelize the risk of volatility, [Avellaneda et al. (1995)] consider
a diffusion model with uncertain volatility varying inside a band, and this
leads to probability measures which cannot be all equivalent.

Taking a different point of view for pricing in incomplete markets, Carr,
Geman and Madan [Carr et al. (2001)] introduce a new fondamental notion,
that of No Strictly Arbitrage Opportunity (N.S.A.O).

Another very important theory in finance is that of risk measuring. The
notion of coherent risk measure was first defined by [Artzner et al.(1999)].
This notion was generalized into the notion of convex risk measure and stud-
ied in detail by [Follmer et al. (2002)] and [F6llmer et al. (2002 b)]. In the
theory of risk measuring, another notion, that of model uncertainty has been
introduced in [Cont (2005)].

The present work takes advantage of both the theory of risk measuring,
and the notion of N.S.A.O.

The aim of our paper is the following: introduce in the context of incom-
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plete markets the notion of pricing function which assigns to each financial
instrument (stock, bond, derivative, portfolio, basket, index..) a bid price
and an ask price in such a way that it is compatible with the observed prices
in the market. We do it without fixing in advance any reference probability
measure. And then we prove a first fundamental theorem of asset pricing in
this new context.

We consider a family (X;);e; of financial instruments for which either a
price or a bid price and an ask price are available in the market. Among those
with a price that we take into account, there is a non risky asset. We will
make use of these financial instruments in order to give a bid price and an
ask price for any financial position. We say that these financial instruments
are the assets used to calibrate the pricing function, or the reference assets.

In section 2, we introduce the notion of pricing function which assigns
to each financial position (stock, derivative, portfolio..) a bid price II(X)
and an ask price —II(—X). Taking into account the diversification of risk
and the lack of liquidity of some financial instruments, we conclude that the
bid price II(X) has to be a concave function. We then define the notion of
admissible pricing function i.e. a pricing function compatible with a family
of bid and ask prices observed in the market. Rewritting the pricing function
in terms of risk measures, we express the condition of admissibility in terms
of necessary and sufficiant conditions on the penalty functions. This gives a
new comprehension and interpretation of the penalty functions for monetary
risk measures. In section 3 we study the perfectly liquid assets. We prove
that the set of perfectly liquid assets is a vector space and that the restriction
of any pricing function to this set is linear. The set of perfectly liquid assets
can be used for superhedging and subhedging. We study also the set of
hedgeable financial positions.

As a pricing function is represented by a family of probability measures
and penalty functions, a natural question arises. How can we choose the fam-
ily of probability measures in order to construct a pricing function (subordi-
nated to this family of probability measures)? The second part of this paper
is devoted to giving an answer to this question by proving an equivalent, in
that context, to the first fundamental theorem of asset pricing [Harrison et
al.(1979)].

For this second part, as in [Carr et al.(2001)] the key notions are that of
acceptability corresponding to the fact that enough persons would accept a
given position, and that of N.S.A.O. In [Carr et al.(2001)], the authors define
the new notion of N.S.A.O., assuming that for each asset used for calibration,



a price is available in the market. They prove a first fundamental theorem,
assuming either that the space state (2 is finite or that a probability measure
P is given a priori and that the set Qg of valuation probability measures
is finite and composed of probability measures absolutely continuous with
respect to P.

In our paper there is no restrictive hypothesis on €2, and the set Qy can
be any set of probability measures on (£2,G), closed for the weak* topology
(G is a fixed o-algebra and there is no reference probability on it). We define
here a notion of N.S.A.O., for that general case, taking into account the fact
that for some assets used for calibration only bid and ask prices are available
in the market. This definition extends the definition of N.S.A.O. introduced
in [Carr et al.(2001)].

The first fundamental theorem of pricing that we prove is the following:
If there is no strictly acceptable opportunity for a closed family Qg of prob-
abilities, there is an admissible pricing function in the convex hull of Q.
In section 4 this is done in the case where there is a price available in the
market for each one of the reference assets. In section 5 we give the proof
in the general case, that is assuming only that there are bid and ask prices
available in the market for the reference assets.

The fundamental mathematical tools for the proof are the following: the-
orems of separation of convexes; compacity of the unit ball of the dual of
a Banach space for the weak™ topology (Banach Alaoglu theorem); Riesz
representation theorem in measure theory.

Sections 6 and 7 discuss applications of the previous sections. In section 6
we study the set of all admissible pricing functions subordinated to a family
of probability measures. Section 7 concerns the implications of our work for
pricing derivatives and making decisions of investment.

2 Pricing function in an incomplete market

2.1 The economic model

We consider that the set of financial positions is the linear space X of all
bounded measurable functions on a measurable space (£2,G). (€ can be the
product of the state space and the time space). We assume that in the market
a finite number of financial instruments (X;);c; are priced and among them
a non risky asset Xy = 1. We assume that for some of them a price C; is



available in the market and that for some others only bid and ask prices are
available; we denote them C? and C?** (when C; is uniquely defined we put
Chd = Cek = ;). Among the (X;);c; there may be some derivatives. We
say that the (X;);c; are the financial instruments used for calibration, and
we call them the reference financial instruments.

In that context we want to define for each financial position a bid price
and an ask price. Selling X can be considered as buying —X. Therefore we
will model the bid price of X as II(X) and the ask price as —II(—X).

Which properties should satisfy the pricing function II on the space X7

First of all, we assume that the price of the non risky asset is constant.
(This doesn’t restrict the generality as we can choose the non risky asset as
numeraire). This leads to the translation invariance property. The market
is not, perfectly liquid so we don’t assume linearity of the pricing function.
If X\ is big the price of AX should be less than the price of X muliplied by
A. On the other end we have to take into account the diversification of risk.
Avellaneda and Paras said that therefore the portfolio value has to be super-
additive for the buy side [Avellaneda et al. (1996)]. Taking also into account
the illiquidity of some products, we conclude that the porfolio value for the
buy side i.e. the bid price II(X) has to be a concave function.

So we give the following definition:

Definition 2.1 A pricing function Il on the space X is a map Il : X — IR
satisfying the following properties:
i) monotonicity: VX, Y € X if X <Y then II(X) <II(Y)
it) translation invariance: Vm € R VX € X II(X +m) =II(X) + m
ii) concavity: VXY € X VA € [0,1]

I(AX + (1 — A)Y) > AI(X) + (1 — VII(Y)
iv) normalization: T1(0) =0

Remark: II defined on X is a pricing function if and only if —II is a
normalized monetary convex risk measure in the sense of Follmer and Schied
[Follmer et al.(2002)].

Definition 2.2 A pricing function Il is admissible if for all 1 € I,

CP* <T(X;) < CF* and CP < —TI(—X;) < Cf**



Definition 2.3 A pricing function I is strongly admissible if Vi € I,
I(X;) = CY and T(—X;) = —C*

Definition 2.4 A pricing function I1 is continuous from below if for every
increasing sequence X, of elements of X such that X = limX,,, the increasing
sequence 11(X,,) has the limit II(X).

2.2 Representation of an admissible pricing function.
Interpretation of the penalty functions

Theorem 2.1 A pricing function I continuous from below admits a repre-
sentation of the kind:
VX € X T1(X) = min(Fo(X) +a(Q) &

where Q is a set of probability measures on (£, G) and for each Q € Q a(Q)
s a real number called penalty.

The pricing function Il is admissible if and only if any representation of
IT of the kind (1) satisfies the two following conditions:

i) VQ € Q, a(Q) > sup(0,sup;(CY* — Eg(Xi), Eq(Xi) — Cf*F))

i) Qo ={Q € 9 / a(Q) = 0} is non empty and for every Qy € Qy,
Viel, CM < Eg,(X;) < Cosk

Proof:

Let IT be a pricing function continuous from below. Put p(X) = —II(X).
It is a monetary convex risk measure continuous from below so we can apply
the Theorem 4.12 and the Proposition 4.17 of [Féllmer et al.(2002)].

We get a set Q of probability measures on € such that (1) is satisfied.
Furthermore P(0) = 0 so there is a probability measure )y in Q such that
P(0) = Eg,(0) 4+ a(Qy) so a(Qo) = 01i.e.Qy # 0 and for all Q € Q, a(Q) >0

Assume now that II is admissible.

From the inequality II(X;) > CP (resp. —II(—X;) < C#¥) it follows
that for all @, a(Q) > CM — Eq(X;) (resp. a(Q) > Eq(X;) — C**) so we
get i).

Let Qo € Qo. It follows from i) that CY < Eq (X;) < C%F; ie. ii) is
satisfied.



Conversely, assume that a family Q of probabilities with penalty functions
a(Q) satisfy the conditions i) and ii). Define

I1(X) = min(Eq(X) + a(@))

Then II(0) = mingeg((®)) = 0 and II is a pricing function. Let Qg € Qo

gleig(EQ(Xi) +a(Q)) < Eq,(X;) < Cf*

and for all Q € Q
Eo(Xi) + Q) > Eg(Xi) + O — Eo(X;) = G

So for all 4, C¥? < TI(X;) < C**. In the same way, we prove that

Chid < —TI(—X;) < C8; so I1 is admissible.

q.e.d.

In the case where prices (and not only bid and ask prices) are observed
in the market for every financial instrument X;, the Theorem 2.1 takes the
following form:

Corollary 2.2 :

Assume that for every financial instrument © € I, a price C; is available
in the market and not only bid and ask prices.

The pricing function 11 continuous from below is admissible if and only
if any representation of I1 of the kind (1) (as in Theorem 2.1 ) satisfies the
two following conditions:

i) VQ € Q, a(Q) = sup,(|C; — Eq(X;)])

i) Qo ={Q € Q / a(Q) = 0} is non empty and VQy € Qq, Vi € I,
Ci = EQO (XZ)

It follows also from Theorem 2.1 that a pricing function gives also the bid
ask spread of every financial instrument, indeed:

Corollary 2.3 :

Let 11 be a pricing function continuous from below (non necessarily ad-
missible). Then VX € X,—II(—X) > II(X).



Proof:
As in the proof of Theorem 2.1 , let )y € Qy,

—M(—X) = — glelg(EQ(—X) +a(Q))

= max(Ho(X) — a(Q))

> EQO(X)
> min(Eq(X) + (Q)) = I1(X)

q.e.d.
This leads to the following definition of bid and ask prices and of uncer-
tainty:

Definition 2.5 i) II(X) is called the bid price of X and —II(—X) is called
the ask price of X.

ii) The uncertainty function associated to the pricing function Il on X is
the real function pn defined on X by pn(X) = —(I1(X) + II(—X)).

This definition of uncertainty generalizes the notion of uncertainty intro-
duced in [Cont (2005)]. The uncertainty satisfies the following properties:

Proposition 2.4 i) The uncertainty function associated to any pricing func-
tion I1 is convere and positive.
ii) If the pricing function 11 is admissible, then for all i,

0 < un(X;) < Cosk — ghid

Proof: i) As un(X) = —(II(X) + II(—X)), the convexity of py is an easy
consequence of the concavity of II.

For all X € X, we know from Corollary (2.3) that II(X) < —II(—X), so
we get the positivity of ur.

ii) If TT is admissible, for all : € I, C” < P(X;) < C#* and —C** <
[(-X;) < -Cld

And so, p(X;) = —(I1(X;) + [I(= X,)) < Cook — Cbid.

In all the following, we will always consider pricing functions which admit a
representation of the kind (1), as defined in Theorem (2.1).
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2.3 Exemples of pricing functions

2.3.1 Linear and homogeneous pricing functions

Consider first a probability measure @y on (£2,G). Then II(X) = Eg,(X)
defines a linear pricing function continuous from below.
It follows from Theorem2.1 that II is an admissible pricing function if and
only if
Viel CF < Egy(X;) < Ok (2)

We will see in the next section that any linear admissible pricing function is
of this kind.

Consider now a family Q of probability measures on (€2, G).

II(X) = maxgeo Fg(X) defines a pricing function such that:
VA >0, II(AX) = AII(X). We say that such a pricing function is a homo-
geneous pricing function. This pricing function is admissible if and only if
every probability measure in Q satisfies (2).

Remark: A pricing function II is homogeneous if and only if the corre-
sponding risk measure —II is a coherent risk measure.

2.3.2 Exemples of non homogeneous admissible pricing functions

We will give two more exemples of admissible pricing functions which are not
homogeneous.

In both cases we consider a family Q of probability measures and we as-
sume that in this family there is at least one probability measure @) satisfying
the condition (2). (We will prove in sections 4 and 5 that there exists such
a probability measure Qg in the convex hull of a given family of probability
measures as soon as the condition of No Strictly Arbitrage Opportunity is
satisfied).

i) In the first case we consider for every probability measure Q € Q the
penalty function a,,(Q) = sup(0, sup,;(CY® — Eq(X;), Eq(X;) — C#*)).

Then II(X) = mingeg(Fg(X) + a4, (Q)) defines an admissible pricing
function.

ii) We can also consider the penalty function introduced in [Cont (2005)],
in the case where CY¢ = C2* for all i in [

a(Q) =) |Ci — Bq(Xi)

el



Clearly in view of Theorem2.1, this exemple can be extended to the case
of bid and ask prices by

a(Q) =Y max(0,C}" — Eq(X;), Eg(X;) — Cf*%)
icl
In both cases the associated pricing function II(X) = mingeo(Eg(X)+a(Q))
is admissible.

2.3.3 Pricing functions defined from BSDE

For this exemple, we refer to [El Karoui et al. (1995)], [El Karoui et al.
(1997)] and [Coquet et al. (2002)].

This exemple is in the following specific context:

A probability space (92, F, P) is given.

A multidimensional Brownian motion is given on this probability space.
Denote (F;; 0 <t < T) the augmented filtration generated by the Brownian
motion.

Consider the backward stochastic differential equation

—dY; = f(ta Yi, Zt) - Z;dBt Yr=-X

Assume that X is in L*°(Q, Fr, P). Assume that the driver

g: (2 xR xIR") — IR is convex, satisfies the usual assumptions and
that Vt € IR ¢(¢,0,0) =0 P a.s.

Then TI(X) = —Y,(—X) defines a pricing function.

2.3.4 Pricing function associated to a utility function

Consider a loss function /() = —u(—z). Consider a probability measure P
on (£2,G).

Follmer and Schied [Fo6llmer et al. (2002)] introduced the convex risk
measure defined from the set of acceptable positions

AIO = {X € LOO(Q’Q,P) | EP(Z(_X)) < .7)0}.

p(X)=inf{m e R; X +m € Ay}

then p(X) = mazgem((Eg(—X) — a(Q)) where M is the set of all prob-
ability measures on (£2,G) absolutely continuous with respect to P. They
have computed the penalty function:

dQ

o(Q) = il (0 + Ep(I* A\ G2))]
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where [* is the conjugate function of the convex function /.

Then TI(X) = —p(X) defines a pricing function considered also in [El
Karoui et al.(2005)].

This pricing function is admissible iff for all Q, (@) > am(Q).

For exemple with the exponential utility function a(x) = —e **; this
gives the necessary condition

20 < Jf (50 (> H(QIP) = 0 (Q) = i

So there is a maximal level of expectated utility .., such that there
exits an admissible pricing function satisfying: every financial position of
positive price is acceptable. More precisely ¢ < ZTmay, if and only if there
exists an admissible pricing function II,, such that II,,(X) > 0 implies that
the expectation of the utility of X is greater that xy.

3 Perfectly liquid assets and hedgeable assets

In all this section, we assume that a pricing function II is given on the set of
financial positions.

Definition 3.1 An asset X € X is perfectly liquid if for all A € R, II(AX) =
MI(X). We denote L the set of perfectly liquid assets.

We want now to characterize the set of perfectly liquid assets and the restric-
tion of the pricing function to it.

Remark:

None of the financial instruments X; for which C?? # C%%* can be per-
fectly liquid. Among the X; for which C#* = C%¢, some are perfectly liquid
(at least the non risky asset Xj) but it is possible that others are not.

Proposition 3.1 1) The set L of perfectly liquid assets is a linear space.
The restriction of the pricing function to this linear space L is a linear form
equal to Eq for all Q € Q (the set of probability measures associated to the
pricing function I1).

2) LetY € X. 'Y € L if and only if

VX € X II(X +Y) = II(X) + II(Y)
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In particular if every financial instrument in the market is perfectly liquid,
the pricing function II is linear and is of the form II(X) = Eg,(X) for some
probability measure @y on (€2, G).

Proof:
Let Y e L

VAe R, VQ e Q, Eq(\Y)+ a(Q) > AIL(Y)

So a(Q) > AMII(Y) — Eg(Y)]. Let A tends to 400 or to —oo. The previous
inequality is possible only if for all Q € Q, II(Y) = Eg(Y). It follows then
that for all X € X', forall Y € L,

(X +¥) = min(Eg(X + ¥) + a(Q)) = min(Eq(X) +a(Q) + IL(Y)

=II(X) + II(Y)
Endly, for all Y € L, for all § € IR, Y is obviously in £ and then
V(Y,Z) € L2 VA e R, TIANY + Z)) = H\Y) +I(\Z) = MIL(Y) + [1(Z))

So L is a linear subspace of X and the restriction of Il to £ is linear and
equal to Eq for every @ € Q.

Conversely Let Y € X such that for all X € X I[I(X+Y) = [I(X)+II(Y).

First by an obvious recursion, we prove that for all n € IN, II(nY) =
nIl(Y).

Then for all @ € Q, Ey (nY) a(Q)

It follows then that II(Y) — Eg(Y) <

Moreover, 0 = I1(0) = II(—Y) +TI(Y). And then by an obvious recursion
we get that for all n € IN, II(—nY’) = —nII(Y).

And it follows that II(Y) — Eg(Y) > 0 for all Q@ € Q

We have thus proved that VQ € Q II(Y) = Eg(Y).

And so for all A € IR,

() = min(Fo(\Y) + a(@)) = ATI(Y) + min(a(Q)) = ATI(Y)

> nII(Y).
0

q.e.d.

We define now the set of acceptable financial positions associated to a price
function II.
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Definition 3.2 The set A of acceptable financial positions associated to
the price function 11 1s:

An ={X € &; II(X) > 0} (3)

Remark: This set is also the acceptance set associated to the risk measure
p(X) = —II(X) [Féllmer and Schied (2002)].

We prove now that the pricing function can be recovered from Ay and L.
Proposition 3.2 For all X in X,

1) II(X) = Iy
) I(X) {YEL‘/H)I(HLXYEAH} (¥)

Qe TMX) = {vec /n)l(a_XyeAn} EQ(Y)

Any Yy, € L such that II(X) = TI(Y) and X — Y € Ay can be considered as
a subhedge for X.

2) —II(-X) = min I(Y)

- {YeL£ /Y-XeAn}
V@ € —I(-X) = i
@eQ ( ) {vec /H}}l—nXeAn}

Any Y, € L such that TI(X) =II(Y) and Y — X € Ap can be considered as
a superhedge for X.

Eq(Y)

Proof:

Let X € X. Let Y € £ such that X — Y € Ap.

From Proposition 3.1, II(X) — II(Y) = II(X — Y) so II(X) > II(Y)
Moreover the restriction of II to £ is onto so there is Y € L such that
II(X) =TII(Y). Then X —Y € Ay and we get 1), as the restriction of II to
L is equal to Eq for every Q. We apply now 1) to —X and use the fact that
L is a linear space to get 2).

q.e.d.

Definition 3.3 A financial position X € X is called hedgeable if there is a
perfectly liquid asset Y € L such that X —Y and —X +Y are both acceptable.
Such a'Y is then called a hedge fo X and satisfies II(Y) = II(X).
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Proposition 3.3 Let X € X. The bid price II(X) of X is equal to the ask
price of X (i.e. there is no uncertainty on X ) if and only if X is hedgeable.

Proof:

i) Assume that X is hedgeable. There is Y € £ such that X — Y and
—X +Y are acceptable. II(X —Y) > 0 and II(—X +Y') > 0 It follows that
—II(-X) <II(Y) < II(X) and so —II(—X) = II(Y).

ii) Conversely assume that II(X) = —II(—-X).

Let Y € £ such that II(Y) = II(X)

From Proposition 3.1, I(X - Y) =II(X) - II(Y) =0,s0 X — Y € Ap.

AsTI(—X) = —II(X). It follows that II(-X +Y) =II(-X) +II(Y) =0
and - X +Y € Ay

g.e.d.

Remark: In general, when II is an admissible pricing function not homo-
geneous, the set of perfectly liquid assets is strictly contained in the set of
hedgeable positions. In the case where II is homogeneous, Ay is a cone, and
in such case every hedgeable position is perfectly liquid.

4 First fundamental theorem when a price is
available for each reference financial instru-
ment

As we have seen in section 2, every admissible pricing function is expressed
in terms of a family of probability measures on (€2, G) and of penalties. So a
natural question arises: How can we choose a family of probability measures
in order to be able to construct an admissible pricing function from this
family of probabilities?

Assume in all this section as in [Carr et al. (2001)], that two families of
probability measures, Qp and Q;, are given on (2,G). For each of them a
penalty function § is defined. We assume that it is equal to 0 on Qy and that
it is strictly positive on Q;. Following [Carr et al. (2001), we call valuation
test measures the measures in the first set and stress tests measures the
mesures of the second set.

We denote Q@ = QU Q;.

In all this section we assume that the prices of the financial instruments
(X;)ier (Iis finite) are available in the market and that among them is the
non risky asset Xo = 1. We denote C; the price of X; (Cy =1).
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The aim of this section is to prove a first fundamental therem of pricing
in that context.

Carr Geman and Madan [Carr et al. (2001)] have proved it in the case
where the space (2 is finite, and also in the case where (2 is infinite but where
a reference probability is fixed, and under the assumption that the set O
of valuation measures is finite and that all these measures are absolutely
continuous with respect to this reference probability.

In the present paper no reference probability is fixed, and there is no restric-
tion on the set €.

We assume in a first step (Theorem 4.3) that the set of valuation measures
Q, is finite.

After that we prove the first fundamental theorem in the general case
(Theorem 4.4). This last proof involves more topological arguments.

Definition 4.1 i) The set of acceptable positions associated to the family Qq
18
Ag, ={X €X /VQ € Qy, Eg(X) >0}

ii) The set of strictly acceptable positions associated to the family Qq is
A, ={X € Ag, / 3Qo € Qo Eg,(X) > 0}
iii) Denote also:
Ao ={X € X /VQ € Q Eo(X) +46(Q) > 0}
i) and:

Aoz =X € A / 3Q0 € Qo Egy(X) > 0}

We want to give a meaning to the notion of admissible pricing function
subordinated to the families of measures Qy and ;.

The first idea is to consider the function II(X) = —p4(X) where A = Ag
as in Definition 4.1 and p 4 is the risk measure defined in [F6llmer et al.(2002)]
associated to the acceptance set A. We can remark that II is a pricing
function as soon as )y is non empty.
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This pricing function is admissible if and only if Qg U Q; satisfies the
conditions i ) and ii) of Theorem 2.1. The condition i) implies conditions on
the penalty function and the condition ii) implies that there is a probability
measure @)y in the set Qg such that Eg (X;) = C; for all ¢ € I. This is a
very restrictive condition which will be often not satisfied.

We will soften this condition replacing it by the existence of a probability
measure in the closed convex hull of Q, (for the weak* topology) such that
Eq,(X;) =C; foralli e I.

Recall that the weak™ topology on the dual space E* of a Banach space E is

the o(E*, E) topology and that from Banach Alaoglu theorem the unit ball

of the dual space is compact for the weak* topology [Dunford et al. (1958)].
We give then the following definition:

Definition 4.2 We say that a pricing function I1 is subordinated to (Qy, Q1)
if there is a family Q of probability measures contained in the closed conves
hull of Qo U Q1 (for the weak* topology) such that the intersection of Q with
the closed convex hull of Qg is non empty; and a penalty function o defined
on Q with values in IR+ such that a(Q) = 0 for all Q in the closed convex
hull of Qg such that

VX e X TI(X) = gleig(EQ(X) +a(Q))

In case where Q; = (), a pricing function subordinated to (Qy, ) will be
called a pricing function subordinated to Q.

Remark: We impose that the penalty function is equal to 0 on the ele-
ments of Q belonging to the closed convex hull of Qy because we want that
these measures are valuation measures. Now we want to study the existence
of an admissible pricing function subordinated to (Qg, Q1).

Following [Carr et al. (2001)], we define the notion of No Strictly Ac-
ceptable Opportunity (N.S.A.O.). Our definition is not exactly the same -
it refers only to Qp and not to Q;. In the case considered in [Carr et al.
(2001)], the set Q; is finite, and as we will see with the next lemma, the two
definitions are equivalent in that particular case.

Definition 4.3 We say that there is No Strictly Acceptable Opportunity
(N.S.A.O.) with respect to the family of probability measures Qq if there is
no family (ou)ier such that Y., 0,Cy = 0 and Y7, ou X; € Af .
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The next lemma will prove that our definition coincides with that of [Carr
et al. (2001)] in many cases and in particular in the context of their study.

Lemma 4.1 Assume that the penalty function 0 is bounded from below on
Q1 by a strictly positive constant a (this is for exemple the case when Q is
finite or when the function 0 is strictly positive and continuous on the weak*
closure of Q1).

There ws N.S.A.Q. with respect to Qg if and only if there is no family
(e)icr such that >’ ;=0 and >, ;. X; € AZLQ,E)

zEI i€l

Proof:

i) As Al 5 is a subset of AS . it is obvious that if there is N.S.A.O.
with respect to QO, there is no famlly (ci)icr such that ) =0 and
Y oier X € .A 0.6

ii) Conversely assume that there is no family (5;)ier such that Y., 5;C;
0and 3, BiXi € Ag -

Assume that there is a family (o;);er such that >
YieriX; € A§,

Denote Q; the weak* closure of Qi. {Eo(} ,c;X;); @ € Qi} is
compact. So it has a minimum m.

Either m > 0; then Eg (> ,.; 2 X;) > —0(Q) for all Q € Q.

Or m < 0; then there is A > 0, such that Am > —a.

Then Eg(A(D_,c; i Xi)) > —6(Q) for all Q € Q.

Hence ), ; Aa;C; = 0 and ), ., A X; € A(Q 5)-

Contradiction.

q.e.d.

We want now to prove an equivalent of the first fundamental theorem
of pricing theory [Harrison et al. (1979)]. More precisely we want to prove
the equivalence between N.S.A.O. and the existence of an admissible pricing
function subordinated to the closed convex hull of Q.

First of all notice that if there exists an admissible pricing function, then
there is N.S.A.O. with respect to the family of probability measures whose
penalty function is equal to zero. More precisely:

ZEI

= 0 and

'LGI

i€l

Lemma 4.2 Let I1 an admissible pricing function. Consider its representa-
tion: TI(X) = mingeg(Eg(X) + a(Q)).

Denote Qo = {Q € Q / a(Q) = 0}. There is N.S.A.O. with respect to
Q-
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Proof:

Consider a family (o;)ier such that )., 0;X; € AEO. There is Qq €
Qo such that ) .., & Eg,(X;) > 0. On the other end Eq,(X;) = C;. So
ZiEI o;C; > 0.

q.e.d.

4.1 First fundamental theorem in case of a finite num-
ber of valuation measures

In this subsection, we prove the first fundamental theorem under the hypoth-
esis that the set Qy of valuation measures is finite and without restriction on
2. It generalizes the first fundamental theorem proved in [Carr et al.(2001)].

Theorem 4.3 Assume that Qg s a finite set. The economy satisfies N.S.A.O.
if and only if there is a probability measure Qg which is a strictly convexr com-
bination of the elements of Qq such that for all i in I, Eq,(X;) = C;.

Proof:
i) Assume first that such a probability measure Qg exists. @y = ZQE 0, Q@
for some Aq > 0 such that > 5.5 Aq = 1. Let (a;)ier be such that

+
Y ier iXi € Aj

Y aiCi = Egy(Y_aiXi) = Y (MeEo(d_ X))

1€l i€l QeQo el

Each term of this sum is non negative and at least one of them is strictly
positive it follows that ), ; a;C; > 0.

And N.S.A.O. is satisfied.

ii) Conversely:

Denote
€ ={(D_ Eq(Xi)geq, / Y ciCi =0}

el i€l
and

Co ={(1Q)qeas / 10 > 0VQ € Qo and > 1o =1}
QeQo

As Q is finite, Cs is a convex compact subset of IR90. Let L : IR — IR<°
be the linear map defined by L((c)icr) = (D _;c; 2iFq(Xi)))geo-
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C; is the image by L of the hyperplane H = {(®)iecr / D ;c; 2Ci = 0}
and therefore C; is a linear subspace of IR2° and so it is closed (because it is
of finite dimension).

By hypothesis C; NC, = (). Hence from Hahn Banach theorem, there is a
linear form F defined on IR<° such that C; is contained into KerF and such
that Vu € C; F(u) > 0.

F is a linear form so there are (8¢)geg, such that

F((Yg)gee) = Y, BoYo

QeQo
Za,Ci =0 (i.e.(ag)ier € H) implies Z Bao ZaiEQ(Xi) =0
iel QeQo i€l
1.e. Z Odi( Z ﬂQEQ(X

i€l QREQo

But H is the Kernel of a linear form unique up to a scalar. It follows that
there is a real number v such that

Viel, vCi= ) BoEq(X;) (4)
QREQo

Furthermore for every u € Cy, F'(u) > 0. So for every Q € Qp with v =1
and v = 0 for Q # @', we get: fg > 0VQ € Q.

Applying now the equality (4) for the non risky asset X;,, we get v =
>_0co, P It follows that v > 0 and that if we put VQ S = ’BQ , then

Ba >0 > peo, B = 1 and the probability measure @y = EQEQO BoQ
satisfies all the required conditions.

q.e.d.

Remark: When @, is not finite but when the closed convex hull of Q, has
a finite number of extremal points, we can do the same replacing Qy by the
set, of these extremal points.

In the next subsection, we study the general case.
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4.2 First fundamental theorem for any closed set of
valuation measures

In all this subsection, the set of valuation measures is any set of probability
measures on (€2, G) closed for the weak* topology.

Theorem 4.4 Assume that Qg is a set of probability measures on (€, G)
closed for the weak™* topology. Assume that there is N.S.A. Q. with respect to
Q-

There is a probability measure Qg in the convex hull of Qq such that for
alli € I, Eqg,(X;) = C;. Eq, is thus a linear admissible pricing function.

Proof:

In all this proof we consider the weak * topology on the dual of the Banach
space E of all bounded (£2,G) measurable functions.

Denote Cy the convex hull of Qq for the weak* topology. Cy is compact
and is a subset of the set of probability measures on (2,G)

We adapt the proof of Theorem 4.3 to the fact that Qg is no more finite.
For this we replace IR by the set C(Cy, IR) of continuous maps from Cj to IR.
We replace also the linear map L of the previous proof by L : IR" — C(Cy, IR)
defined by L((a:)ier)(Q) = Eq( ;e i Xi)-

As in the previous proof C; is the image by L of the hyperplane H =
{(@i)ier / > ;er 2iCi = 0}. Therefore C, is a linear subspace of C(Cy, IR).

Denote now Cs the set of continuous maps from Cj into IR, which are
non equal to 0. By N.S.A.O. C; N Cy = (. The interior of C, is non empty.
It follows that the linear space C is not dense in C(Cy, IR) and therefore from
Hahn Banach theorem, it is contained in a closed hyperplane= KerF' for a
continuous linear form F' on C(Cy, IR) such that Vu € Cy, F(u) > 0.

Now from the Riesz representation theorem [Rudin W. (1987)], there is a
bounded measure p on Cy such that FI(X) = [ X(Q)du(Q) VX € C(Cy, R).

Co

VX € Cy, F(X) > 0. So p is positive. Furthermore FoL is a linear form
null on the hyperplane H. As there is a unique non zero linear form on IR!
up to a scalar which is equal to zero on H, we get the existence of v € IR
such that

[ Ba(xau(@ = vier
Co

i # 0 so vy # 0 (considering the non risky asset Xy = 1).
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Consider now Qg defined on G by: Qy(4) = [ Q(A)d"EY—Q). (o belongs to
Co

the convex hull of Cj i.e. to Cy. Q) is then a probability measure on (£, G)
which satisfies the required properties.

q.e.d.

Remark: As we will see in the following lemma, the condition that Qy is
a set of probability measures on (£2,G) closed for the weak™ topology is not
restrictive if we want to define a price function on a separable closed subal-
gebra A of the algebra of bounded (€2, G) measurable functions. Furthermore
A is separable as soon as it is generated by a numerable family of functions,
and this is always the case if A is the algebra of continuous functions in the

(Xi)z'EI-

Lemma 4.5 Assume that A is a closed subalgebra of the Banach algebra E
of bounded (2, G) measurable functions. Assume that A is separable. The
closure of {(Eg)la; Q € Qo} for the weak™ topology in the dual of A is
always contained in {(Ep)|a; P probability measure on (Q,G)}.

Proof:

From [Dunford et al.(1958)],, the unit sphere S* of the dual A* of A is
metrisable (as A is separable) and compact.

Each element ¢ in the closure of {(Eg)|4; Q € Qo} is then limit of a
sequence {(Eq,)|4; Qn € Qo}. Qn is a sequence in the unit ball of the dual
space E*. This unit ball is a compact set for the weak* topology. Therefore
we can extract from the sequence @), a converging subsequence Qy(,). From
Vitali Hahn Saks Theorem [Dellacherie et al.(1975)] its limit is a probability
measure Q on (€, G) and from unicity of the limit it follows that ¢ = (Eg)|A.

q.e.d.

We have proved, when N.S.A.O. is satisfied with respect to Qg, the ex-
istence of linear admissible pricing functions subordinated to Qg(and then
also the existence of admissible pricing functions subordinated to (Qy, Q1)
for every Q7). We will study in the section 6 the general admissible pricing
functions subordinated to (Qg, Q1).
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5 First fundamental theorem in the general
case of incomplete markets

As in the preceding section we consider two families of probability measures
Qy and Q7 with a penalty function § equal to 0 on Q.

The difference with the preceding section is that we assume now that the
market gives for some financial instruments (X;);c; bid and ask prices C?
and C2%% (if for some of the X; a price C; is given we simply put C¢ =
C#* = ;). We assume also that in the market there is a non risky asset Xj.

We denote Iy = {i € I | CPd = Co*}.

We keep the same definitions of acceptable and strictly acceptable posi-
tions as in section 4.

We extend to that context the notion of no strictly acceptable opportu-
nity:

Definition 5.1 We say that there is No Strictly Acceptable Opportunity
(N.S.A.0.) with respect to the family of probability measures Qq if there is
no family (s, Bi)ier € (IRT)* such that Y, ; c;CP — 3. B;C* > 0 and
Sier(Bi — i) Xi € AG,.

Remark: this notion of N.S.A.O. generalizes the notion of N.S.A.O. given
in the previous section. That is, if N.S.A.O. is satisfied (in the new sense)
then the economy restricted to the financial instruments (X;);c;, satisfies
N.S.A.O. in the sense of the previous definition.

As in the preceding section we want now to prove an equivalent of the first
fundamental theorem of Harrison and Kreps [Harrison et al.(1979)]. More
precisely we want to prove that N.S.A.O. implies the existence of an admis-
sible pricing function which belongs to the closed convex hull of (Eg)geg,-

As in the previous case we begin with a lemma:

el

Lemma 5.1 Assume that the penalty function 0 is bounded from below on
Q1 by a strictly positive constant a.

There is N.S.A.O. with respect to Qg if and only if there is no family
(a4, Bi)ier € (RY)*" such that Y., 0, CY = 3., B;C¥* >0 and Y, (6; —
az)Xz S A?_Q,d)'

The proof of this lemma is exactly the same as the proof of Lemma 4.1.
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As in the preceding section we prove that if I is an admissible pricing func-
tion, there is N.S.A.O. with respect to the family of probability measures
whose penalty function is equal to zero.

Lemma 5.2 Let I an admissible pricing function. Consider the represen-
Denote Qy = {Q € Q / a(Q) = 0}. There is N.S.A.O. with respect to
Q.-

Proof:

Consider a family ((a;, 8)icr such that Y., (8 — a;) X; € AS,. There
is Qo € Qo such that Y, (8 — a;)Eg,(X;) > 0. On the other end Cchd <
Eqy(Xi) < CFF. So 3 0,c; BiCE*E > 30 ai O

g.e.d.

Now we will prove the equivalent of the first fundamental theorem:

As in the previous section we prove it first in the case where the set of
valuation measures is finite.

5.1 Case of a finite number of valuation measures

Theorem 5.3 Assume that Qy is a finite set. Assume that there is N.S.A.Q.
with respect to Qq. There is a probability measure @y which is a convex

combination of elements of Qg such that Eq, is an admissible pricing function
(i.e. for alli € I, CY < Eg,(X;) < CF).

Proof:

We have to adapt the proof of theorem4.3 to that new context.

There is no family (o, 8i)ier € (IRT)*" such that >, ; o, Cl* =", B;CHF >
0 and Ziel(ﬁi - a’z’)Xi c AEO

Denote

C= {(aiaﬁi)iel € (R+)2I / Zaiczbm _ Zﬁiolqsk Z O}

i€l el

C is convex.
Consider the linear map L : IR¥ — IR0 defined by

L( auﬁz zEI ZﬁzEQ ZazEQ QGQO

el i€l
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L is linear and C is convex, it follows that L(C) is convex. Consider

Co = {(70)qecs / 19 > 0VQ € Qo and Y ~q > 0}
QEQo

C, is a convex subset of IR<0.

C, has an interior point because it contains the ball B(1, 1) = {(aq)geq, / |ag—
1] < 3 VQ € Qo}; and C, is disjoint from L(C) as N.S.A.O. is assumed.

So from the theorem of separation of convexes, there is an hyperplane
separating L(C) and Cy; i.e. there is a non zero continuous linear form F' on
IR and « € IR such that for all X € Cy, F(X) > « and for all X € L(C),
FX)<a).

As Cy and L(C) are cones, it follows that o = 0 There are (8g)geo, such
that F((Yg)eoo) = 2 _gea, BaYe-

Consider now Iy = {i € I / CP = C#**}. We already know that I, is
non empty because we have assumed that there is a non risky asset.

We continue the proof as in theorem4.3, restricting first our attention to
the set of indices Ij.

Let (G;)ier, a family such that 7, &C; =0 Let I, = {i € I / &; > 0}
and Iy = {i € Iy / & < 0}. Now put for alli € I oy = &; if i € I; and
«; = 0 otherwise; and 3; = —@; if i € I, and 5; = 0 otherwise. So for all 7,
(a;, B;) € IR+? and furthermore («y, 3;)ier € C and (B;, a;)ier € C. It follows
that

FoL((v, Bi)ier) <0

In the same way FoL((8;, a;)icr) < 0. So it is equal to 0 (indeed,
FoL((B;, i)ier) = —FoL((cv, Bi)ier)-

We have proved that -, ; & C; = 0implies Y, ; & (Dogcq, BoE(Xi)) =
0. This means that the kernel of the first linear form (on IR™) is contained
in the kernel of the second linear form and then the second linear form is
proportional to the first one; i.e. there is A € IR such that for all i € I,
AC; = ZQGQO BQEQ(XZ')-

The interior of Cy is non empty and F' is a non zero linear form positive
on Cy so there is an element X in C, such that F(X) > 0. Considering for
each P € Q the element (§(p,g))gca,, We get that for all P € Qy Sp > 0 and
that there is at least one P € Qy such that Sp > 0. Applying the equality
ACi =) e, BaEq(Xi) to the non risky asset, we get A > 0.

So if we put Qo = %ZQEQO BoQ then for all i € Iy, Eqg,(X;) = C; and
Qo is a convex combination of the elements of Q.
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Now it only remains to prove that for all i € I, C? < Eq (X;) < C%*.
. ~ Cgid
Choose iy € Iy. Let ¢ € I. Let p; = =

CiO -

Define o; = 1 if i = 7 and ¢; = 0 otherwise. Define ; = w; if 1 = 79 and
B; = 0 otherwise.
(aiaﬁi)iEI € C So FOL((a/iaBi)ieI) <0 i.e.

:uiEQo(Xio) - EQO(X%) <0
Now Eq,(Xi,) = C;, and from definition of y; we get

Eqg,(X;) > C¥ viel

7

The other inequality

Eqg)(X;) < C#* Viel

3

is obtained in the same way.

q.e.d.

As in the previous section we can generalize this theorem without assum-
ing that @) is a finite set. This is the object of the next subsection.

5.2 First fundamental theorem in incomplete markets

In this subsection, as in section 4.2, Q, is any set of probability measures
closed for the weak* topology.

The proof of the first fundamental theorem of pricing in this general case
involves topological arguments.

Theorem 5.4 Assume that Qqy is a set of probability measures on (€, G)
closed for the weak™® topology. Assume that there is N.S.A.Q. with respect
to Qy. There is a probability measure Qg belonging to the convex hull of Qy
such that Eq, is an admissible pricing function (i.e. for all i € I, CY¢ <
Eq(X;) < Cf°F).

Proof:

Denote Cj the convex hull of Q for the weak* topology as in the proof of
Theorem 4.4. The proof of this theorem follows the proof of the Theorem 5.3
and uses also parts of the proof of Theorem 4.4.

The changes are the following ones:
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The linear map L in the proof of Theorem 5.3 is now defined from IR?!
to C(Cy, IR) (the set of continuous maps from Cj to IR) by

L((ci, Bi)ier) (@) = EQ(Z(@' — i) Xi)

el

and now C = ({(a,,ﬁ,) € Ril / ZieI(ainid — &Cfs’“) > 0} L(C) is a
convex cone (as the image of a convex cone by a linear map).

C, is the set of continuous maps from Cj into IR, which are non equal
to zero as in the proof of Theorem 4.4. C, is convex ; its interior is non
empty and L(C)NCy = (. So from the theorem of separation of convexes,
there is a continuous linear form F on C(Cy, IR) and « € IR such that VX €
LC)F(X)<aand VX €C, F(X) > a.

L(C) and C, are cones so a = 0.

Consider now as in the proof of Theorem 5.3. Iy = {i € I / C¢ = C#F}.
Exactly as in that proof, we get that ), , &C; = 0 implies F(fs,) = 0
where f5, is the continuous map on Cj defined by fs,(Q) = EQ(D_;¢;, @iXi)-

We come back to the proof of Theorem 4.4. and using the Riesz represen-
tation theorem, we get a probability measure )y belonging to Cy such that
for all 7 € IO EQO(XZ) = Cz

Endly we prove that for all i € I, C/ < Eg,(X;) < C#*, exactly as in
the proof of Theorem 5.3.

q.e.d.

The preceding theorem can also be expressed in the following way:

Corollary 5.5 Assume that Cy is a conver set of probability measures on
(Q,G) closed for the weak™* topology. There is N.S.A.O. with respect to a
closed subset of Cy if and only if there is a probability measure Qg belonging
Co such that Eq, is an admissible pricing function (i.e. for alli € I, C? <
Eq,(X;) < CfF).

Proof:
This is a consequence of Theorem 5.4 and of the fact that if Eg, is an ad-
missible pricing function, there is N.S.A.O. with respect to {Qo} (lemma 5.2).
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5.3 Extension of the first fundamental theorem to the
case of calibration on infinitely many financial in-
struments

In this subsection we extend the first fundamental theorem to the case where

we assume that the market gives bid and ask prices for infinitely many finan-

cial instruments i.e. [ is infinite numerable and even Iy can be an infinite

set.
We denote

Ri(I) = {(a, Bi)ier / (i, Bi) # (0,0) only for a finite number of indices i € I}

The definition of No Strictly Acceptable Opportunity becomes the following
one:

Definition 5.2 There is No Strictly Acceptable Opportunity (N.S.A.O.) with
respect to Qg if there is no family (o, Bi)ier € (IR+)*") such that Y- ,.; ;Cré—
Dier BiCi**F > 0 and Yoicr(Bi— )X € AJQFO.

We prove also in that case the first fundamental theorem of pricing.

Theorem 5.6 Assume that Qg is a set of probability measures closed for the
weak* topology. Assume that there is N.S.A.O. with respect to Qy. There is
a probability measure Qo belonging to the convex hull of Qy such that Eg, s
an admissible price function (i.e. for alli € I, C? < Eg,(X;) < C#F).

The proof of Theorem 5.4 can be extended to the case where [ is an
infinite set replacing everywhere IR* by IR0,

6 Maximal bid ask spread for the pricing func-
tions subordinated to the family (Qg, Q;) of
probability measures

As in the two previous sections we assume that for a family of financial
instruments (X;);cs either a price or bid and ask prices are available in the

market. Assume that I is finite. We assume that two families of probabilities
Qp and Q; are given.

27



Assuming that there is N.S.A.O. with respect to Qy, we have proved in
sections 4 and 5 the existence of an admissible pricing function subordinated
to (Qp, Q1) which is linear.

Now we want to study all the admissible pricing functions subordinated
to (Qo, Q1).

We denote here I; a subset of I corresponding to assets considered as
liquid. Necessarily I is a subset of {7 € I / C?® = C#*} (But the inclusion
can be strict).

We then obtain the following characterization:

Denote C the closed convex hull of Qy U 9,

Proposition 6.1 Every pricing function I subordinated to (Qo, Q1) has a
representation of the kind

VX € X TI(X) = ggg(EQ(X> + a(Q))

where Q is a subset of C. It is admissible if and only if it satisfies the
conditions i) and ii) of Theorem 2.1. Furthermore the pricing function II is
perfectly liquid on (X;)ier, if and only if Eqg(X;) = C; for all Q € Q and all
1 € .

_ Denote now Q={Q eC/ EyX;) =C; Vi€ I} and Qy = {Q €
Q / Ch < Fo(X;) < C#F Vi eI}
Proposition 6.2 Assume that N.S.A. Q. is satisfied with respect to Qy. There

exist admissible pricing functions subordinated to (Qy, Q1) perfectly liquid on
(Xi)icr,- Among these pricing functions there is a minimal one denoted I1,,.

Il = min(Eq(X) + am(Q))
Qe

where o, (Q) = max(0, max; (CY — Eg(X;), Eq(X;) — C&F))

Every pricing function is less than

Pu = max(Eq(X))
Qeo

The bid ask spread [I1(X); —I1(—X)] is always contained in [I1,,(X); —I1,,(—X)]

Proof:

This is an easy consequence of Theorem 5.4 and of the preceding propo-
sition.

We define now the notion of admissible completeness of the market:
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Definition 6.1 We say that the market is admissibly complete if there is
only one element in Q i.e. if the map ® : C — IR defined by ®(Q) =
(Eq(X3))ier, is injective.

Proposition 6.3 If the market is admissibly complete there is at most one
admissible pricing function II subordinated to (Qo, Q1) perfectly liquid on
(Xa)ier,

If the market s admussibly complete and satisfies N.S.A.O.there is exactly
one admissible pricing function I1 subordinated to (Qo, Q1) perfectly liquid
on (Xi)icr,- The unique pricing function is linear. For all X € X, II(X) =
—II(—X)

Remark: In many cases, in an incomplete market, when there is no ar-
bitrage, it is possible to find a family of probabilities Qg such that there is
N.S.A.O. with respect to Qg and such that the market is admissibly complete.

7 Choice of investments

This section concerns some implications of our work for a market-maker or
an investor who has to price derivatives and to make decisions of investment.

7.1 Constructing a pricing function

As in the previous sections, we assume that the bid and ask prices of some
financial instruments (X;);c; are available in the market. These financial
instruments are considered as the reference financial instruments or the in-
struments used for calibration. An investor wants to price other financial
instruments and has to make decisions of investment.

Assume now that the investor has his own preferred reference family of
probabilities.

- This family may have been obtained by choosing models for the (X;);c;-
For exemple in a case of a diffusion model where the uncertain volatility
is allowed to vary inside a band as in [Avellaneda et al. (1995)], the cor-
responding set of probability measures is infinite and the probabilities are
not all equivalent. This requires to consider the case of an infinite set of
probability measures, as we have done in sections 4.2 and 5.2.

- In the case where the financial instruments considered are partitionned
into two subsets (X;)icr, and (X;)icr,, and the (X;);cs, are derivatives on the
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(Xi)icr,, a natural family is the set of probability measures for which the
(Xi)ier, are martingales.

We denote Cj a reference family of probability measures. We assume
that Cy is convex and closed for the weak® topology. Assume that there is
N.S.A.O. with respect to a subset of Cy. We know from the theorems of
sections 4 and 5 the existence of probability measures () € Cj such that
Eq is a pricing function (i.e. such that Vi € I CY < FEgo(X;) < C%F).
Denote M, the set of such probabilities. From Theorem 2.1, the choice of
an admissible pricing function II is then the choice of:

- a subset Qp of M,

- another set of probabilities Q, and for each @ € Q; of a penalty a(Q)
such that a(Q) > sup(0, sup,;(CY — Eq(X;), Eq(X;) — CF)).

Then

L(X)= min (Eg(X)+a(Q))
QEQoU1
Denote Iy = {i € I / II(A\X) = MI(X) V) € IR}.
Recall that from Proposition 3.2,

[(X) = max Z a;C,

{(X EleI azXz EAH}

—II(-X) = min Zﬁz

{(21610 ﬂlX X EAH}

where A = {V /VQ € Qy Eo(Y) > 0and VQ € Q) Eo(Y) > a(Q)}.

7.2 What to do when the preferred reference family
doesn’t satisfy N.S.A.O.?

In some cases, the investor has his preferred reference family of probability
measures, which may not satisfy the property N.S.A.O. In such case, the
investor has two main choices in order to construct a pricing function.

Either the investor considers a bigger family satisfying N.S.A.O. This is
always possible if there is no arbitrage in the following sense: There is no
family (v, Bi)ier € (IR')*' such that Y, , osCP — 3., 3,C#* > 0 and
> icr(Bi — ;) X; is a non negative function non equal to zero.

Or the investor prefers to keep his reference family of probability mea-
sures, but considers that the prices (or the bid and ask prices) of some of
the reference financial instruments are not enough significant. Then he can
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remove some assets from the set of assets used for calibration. He can also
consider that the bid ask spread observed in the market for some financial
instruments 4 are too small and he can replace C?@ (resp.C#*) by CPd — ¢,
(resp.C#* + ¢;) (this is even possible for some 4 for which a price is observed
in the market). These changes have to be done in such a way that for the re-
stricted set of calibration and the new bid and ask prices N.S.A.Q. is satisfied
with respect to the reference family.

When the investor has constructed and choosen his admissible pricing
function II, he can assign a bid price and an ask price to every financial
instrument. He will accept to sell (resp. buy) a position X only at a price
greater or equal to II(X) (resp less or equal to —IT(—X).

8 Conclusion

In this paper we have two main parts. In the first one, we have defined in the
context of incomplete markets a general notion of pricing function II which
assigns to every financial position X a bid price II(X) and an ask price
—II(—X). We say that a pricing function is admissible if it is compatible
with the prices (or bid and ask prices) observed in the market for some
family of financial instruments (X;);c;. Taking into account conditions of
illiquidity and of diversification of risk in incomplete market we have derived
the condition that II is concave.

Using then the theory of convex risk measures [Follmer et al.(2002)(b)],
we have proved the main result of this first part: each admissible pricing
function has a representation of the kind

[I{X) = min(Eq(X) + a(Q))

where Q is a set of probability measures, and the set of probability mea-
sures and of penalty functions have to satisfy the two fundamental following
properties:

Qy ={Q € Q / a(Q) = 0} is non empty;

VQ € 9, a(Q) > sup(0,sup,(CY — Eq(X;), Eg(X;) — C#*)).

In the second part of the paper we have addressed the question of char-
acterizing the families of probability measures for which it is possible to
construct an admissible pricing function.
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Our main result of this second part is the proof, in that context of in-
complete markets, of a fundamental theorem of asset pricing. Generalizing
the notion of N.S.A.O. introduced in [Carr et al (2001)] to the case where for
some financial instruments used for calibration only bid and ask prices are
available in the market, we have proved the following result:

Assume that Cj is a closed (for the weak™ topology) convex set of proba-
bilities. There is N.S.A.O. with respect to a subset of Cj if and only if there
exists an admissible pricing function (on the algebra generated by the X;)
defined from the set of probability measures Cj.

Hence there are constraints on the set of valuation probability measures
that one can use in order to construct an admissible pricing function defined
on the algebra generated by the (X;);c;-

The extension of the second part of the paper (condition of N.S.A.O.
and first fundamental theorem of pricing) to a dynamic setting will be the

subject of future work, using the notion of conditional risk measure [Bion-
Nadal (2004)].
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