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The question of pricing and hedging a given contingent claim has a unique solution in a complete market

framework. When some incompleteness is introduced, the problem becomes however more di�cult. Several

approaches have been adopted in the literature to provide a satisfactory answer to this problem, for a

particular choice criterion. Among them, Hodges and Neuberger [72] proposed in 1989 a method based on

utility maximization. The price of the contingent claim is then obtained as the smallest (resp. largest)

amount leading the agent indi�erent between selling (resp. buying) the claim and doing nothing. The price

obtained is the indi�erence seller's (resp. buyer's) price. Since then, many authors have used this approach,

the exponential utility function being most often used (see for instance, El Karoui and Rouge [51], Becherer

[11], Delbaen et al. [39] , Musiela and Zariphopoulou [93] or Mania and Schweizer [89]...).

In this chapter, we also adopt this exponential utility point of view to start with in order to �nd the optimal

hedge and price of a contingent claim based on a non-tradable risk. But soon, we notice that the right

framework to work with is not that of the exponential utility itself but that of the certainty equivalent which

is a convex functional satisfying some nice properties among which that of cash translation invariance. Hence,

the results obtained in this particular framework can be immediately extended to functionals satisfying the

same properties, in other words to convex risk measures as introduced by Föllmer and Schied [53] and [54]

or by Frittelli and Gianin [57]. Starting with a utility maximization problem, we end up with an equivalent

risk measure minimization in order to price and hedge this contingent claim.

Moreover, this hedging problem can be seen as a particular case of a more general situation of risk transfer

between di�erent agents, one of them consisting of the �nancial market. Therefore, we consider in this
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chapter the general question of optimal transfer of a non-tradable risk and specify the results obtained in

the particular situation of an optimal hedging problem.

Both static and dynamic approaches are considered in this chapter, in order to provide constructive answers

to this optimal risk transfer problem. Quite recently, many authors have studied dynamic version of static

risk measures (see for instance, among many other references, Cvitanic and Karatzas [35], Scandolo [107],

Weber [112], Artzner et al. [3], Cheridito, Delbaen and Kupper [29], Frittelli and Gianin [58], Gianin

[61], Riedel [102] or Peng [98]). When considering a dynamic framework, our main purpose is to �nd a

trade-o� between static and very abstract risk measures as we are more interested in tractability issues and

interpretations of the dynamic risk measures we obtain rather than the ultimate general results. Therefore,

after introducing a general axiomatic approach to dynamic risk measures, we relate the dynamic version of

convex risk measures to BSDEs. For the sake of a better understanding, a whole section in the second part

is dedicated to some key results and properties of BSDEs, which are essential to this de�nition of dynamic

convex risk measures.

Part I: Static Framework

In this chapter, we focus on the question of optimal hedging of a given risky position in an incomplete market

framework. However, instead of adopting a standard point of view, we look at it in terms of an optimal risk

transfer between di�erent economic agents, one of them being possibly a �nancial market.

The risk that we consider here is not (directly) traded on any �nancial market. We may think for instance of

a weather risk, a catastrophic risk (natural catastrophe, terrorist attack...) but also of any global insurance

risk that may be securitized, such as the longevity of mortality risk...

First adopting a static point of view, we proceed in several steps. In a �rst section, we relate the notion

of indi�erence pricing rule to that of transaction feasibility, capital requirement, hedging and naturally in-

troduce convex risk measures. Then, after having introduced some key operations on convex risk measures,

in particular the dilatation and the inf-convolution, we study the problem of optimal risk transfer between

two agents. We see how the risk transfer problem can be reduced to an inf-convolution problem of convex

functionals. We solve it explicitly in the dilated framework and give some necessary and su�cient conditions

in the general framework.

1 Indi�erence Pricing, Capital Requirement and Convex Risk Mea-

sures

As previously mentioned in the introduction, since 1989 and the seminal paper by Hodges and Neuberger

[72] indi�erence pricing based on a utility criterion has been a popular (academic) method to value claims

in an incomplete market. Taking the buyer point of view, the indi�erence price corresponds to the maximal

amount π, the agent having a utility function u is ready to pay for a claim X. In other words, π is determined
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as the amount the agent pays such that her expected utility remains unchanged when doing the transaction:

E[u(X − π)] = u(0).

This price is not a transaction price. It gives an upper bound (for the buyer) to the price of this claim so that

a transaction will take place. π also corresponds to the certainty equivalent of the claim payo� X. Certain

properties this indi�erence price should have are rather obvious: �rst it should be an increasing function

of X but also a convex function in order to take into account the diversi�cation aspect of considering a

portfolio of di�erent claims rather than the sum of di�erent individual portfolios. Another property which is

rather interesting is the cash translation invariance property. More precisely, it seems natural to consider the

situation where translating the payo� of the claim X by a non-risky amount m simply leads to a translation

of the price π by the same amount. It is the case, as we will see for the exponential utility in the following

subsection.

1.1 The Exponential Utility Framework

First, let us notice that exponential utility functions have been widely used in the �nancial literature. Several

facts may justify their relative importance compared to other utility functions but, in particular, the absence

of constraint on the sign of the future considered cash �ows and its relationship with probability measures

make them very convenient to use.

1.1.1 Indi�erence Pricing Rule

In this introductory subsection, we simply consider an agent, having an exponential utility function U(x) =

−γ exp
(
− 1

γ x
)
, where γ is her risk tolerance coe�cient. She evolves in an uncertain universe modelled by a

standard probability space (Ω,=, P) with time horizon T . The wealth W of the agent at this future date T

is uncertain, since W can be seen as a particular position on a given portfolio or as the book of the agent.

To reduce her risk, she can decide whether or not to buy a contingent claim with a payo� X at time T . For

the sake of simplicity, we neglect interest rate between 0 and T and assume that both random variables W

and X are bounded.

In order to decide whether or not she will buy this claim, she will �nd the maximum price she is ready to pay

for it, her indi�erence price π(X) for the claim X given by the constraint EP
[
U(W +X−π(X))

]
= EP

[
U(W )

]
.

Then,

EP
[
exp

(
− 1

γ
(W + X − π(X))

)]
= EP

[
exp

(
− 1

γ
W

)]
⇔ π(X|W ) = eγ

(
W

)
− eγ

(
W + X

)
where eγ is the opposite of the certainty equivalent, de�ned for any bounded random variable Ψ

eγ

(
Ψ

)
, γ ln EP

[
exp

(
− 1

γ
Ψ

)]
. (1)

The indi�erence pricing rule π(X|W ) has the desired property of increasing monotonicity, convexity and

translation invariance: π(X + m|W ) = π(X|W ) + m. Moreover, the functional eγ(X) = −π(X|W = 0) has
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similar properties; it is decreasing, convex and translation invariant in the following sense: eγ(Ψ + m) =

eγ(Ψ)−m.

1.1.2 Some Remarks on the "Price" π(X)

π(X) does not correspond to a transaction price but simply gives an indication of the transaction price range

since it corresponds to the maximal amount the agent is ready to pay for the claim X and bear the associated

risk given her initial exposure. This dependency seems quite intuitive: for instance, the considered agent can

be seen as a trader who wants to buy the particular derivative X without knowing its price. She determines

it by considering the contract relatively to her existing book.

For this reason and for the sake of a better understanding, we will temporarily denote it by πb(X|W ), the

upper-script "b" standing for "buyer". This heavy notation underlines the close relationship between the

pricing rule and the actual exposure of the agent. The considered framework is symmetric since there is

no particular requirement on the sign of the di�erent quantities. Hence, it is possible to de�ne by simple

analogy the indi�erence seller's price of the claim X. Let us denote it by πs(X|W ), the upper-script "s"

standing for "seller". Both seller's and buyer's indi�erence pricing rules are closely related as

πs(X|W ) = −πb(−X|W ).

Therefore, the seller's price of X is simply the opposite of the buyer's price of −X.

Such an axiomatic approach of the pricing rule is not new. This was �rst introduced in insurance under the

name of convex premium principle (see for instance the seminal paper of Deprez and Gerber [42] in 1985)

and then developed in continuous time �nance (see for instance El Karoui and Quenez [49]).

When adopting an exponential utility criterion to solve a pricing problem, the right framework to work with

seems to be that of the functional eγ and not directly that of utility. This functional, called entropic risk

measure, holds some key properties of convexity, monotonicity and cash translation invariance. It is therefore

possible to generalize the utility criterion to focus more on the notion of price keeping in mind these wished

properties. The convex risk measure provides such a criterion as we will see in the following.

1.2 Convex Risk Measures: De�nition and Basic Properties

Convex risk measures can have two possible interpretations depending on the representation which is used:

they can be considered either as a pricing rule or as a capital requirement rule. We will successively present

both of them in the following, introducing each time the vocabulary associated with this particular approach.

1.2.1 Risk Measure as an Indi�erence Price

We �rst recall the de�nition and some key properties of the convex risk measures introduced by Föllmer and

Schied [53] and [54]. The notations, de�nitions and main properties may be found in this last reference [54].

In particular, we assume that uncertainty is described through a measurable space (Ω,=), and that risky

positions belong to the linear space of bounded functions (including constant functions), denoted by X .
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De�nition 1.1 The functional ρ : X → R is a (monetary) convex risk measure if, for any Φ and Ψ in X ,

it satis�es the following properties:

a) Convexity: ∀λ ∈ [0, 1] ρ
(
λΦ + (1− λ)Ψ

)
≤ λρ(Φ) + (1− λ)ρ(Ψ);

b) Monotonicity: Φ ≤ Ψ ⇒ ρ(Φ) ≥ ρ(Ψ);

c) Translation invariance: ∀m ∈ R ρ(Φ + m) = ρ(Φ)−m.

A convex risk measure ρ is coherent if it satis�es also:

d) Homogeneity : ∀λ ∈ R+ ρ
(
λ Φ

)
= λρ

(
Φ

)
.

Note that the convexity property is essential: this translates the natural fact that diversi�cation should not

increase risk. In particular, any convex combination of �admissible� risks should be �admissible�. One of the

major drawbacks of the famous risk measure VAR (Value at Risk) is its failure to meet this criterion. This

may lead to arbitrage opportunities inside the �nancial institution using it as risk measure as observed by

Artzner, Delbaen, Eber and Heath in their seminal paper [2].

Intuitively, given the translation invariance, ρ(X) may be interpreted as the amount the agent has to hold

to completely cancel the risk associated with her risky position X since

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0. (2)

ρ(X) can be also considered as the opposite of the "buyer's indi�erence price" of this position, since when

paying the amount −ρ(X), the new exposure X − (−ρ(X)) does not carry any risk with positive measure,

i.e. the agent is somehow indi�erent using this criterion between doing nothing and having this "hedged"

exposure.

The convex risk measures appear therefore as a natural extension of utility functions as they can be seen

directly as an indi�erence pricing rule.

1.2.2 Dual Representation

In order to link more closely both notions of pricing rule and risk measure, the duality between the Banach

space X endowed with the supremum norm ‖.‖ and its dual space X ′, identi�ed with the set Mba of �nitely

additive set functions with �nite total variation on (Ω,=), can be used as it leads to a dual representation.

The properties of monotonicity and cash invariance allow to restrict the domain of the dual functional to the

set M1,f of all �nitely additive measures (Theorem 4.12 in [54]). The following theorem gives an "explicit"

formula for the risk measure (and as a consequence for the price) in terms of expected values:

Theorem 1.2 Let M1,f be the set of all �nitely additive measures on (Ω,=), and α
(
Q

)
the minimal penalty

function taking values in R ∪
{

+∞
}
:

∀Q ∈M1,f α
(
Q

)
= sup

Ψ∈X

{
EQ[−Ψ]− ρ(Ψ)

} (
≥ −ρ(0)

)
. (3)

Dom(α) = {Q ∈M1,f | α
(
Q

)
< +∞} (4)

The Fenchel duality relation holds :

∀Ψ ∈ X ρ(Ψ) = sup
Q∈M1,f

{
EQ[−Ψ]− α

(
Q

)}
(5)
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Moreover, for any Ψ ∈ X there exists an optimal additive measure QΨ ∈M1,f such that

ρ(Ψ) = EQΨ [−Ψ]− α
(
QΨ

)
= max

Q∈M1,f

{
EQ[−Ψ]− α

(
Q

)}
.

Henceforth, α(Q) is the minimal penalty function, denoted by αmin(Q) in [54].

The dual representation of ρ given in Equation (5) emphasizes the interpretation in terms of a worst case

related to the agent's (or regulator's) beliefs.

Convex Analysis Point of view We start with Remark 4.17 and the Appendices 6 and 7 in [54]. The

penalty function α de�ned in (5) corresponds to the Fenchel-Legendre transform on the Banach space X
of the convex risk-measure ρ. The dual space X ′ can be identi�ed with the set Mba of �nitely additive

set functions with �nite total variation. Then the subset M1,f of "�nite probability measure" is weak*-

compact in X ′ = Mba and the functional Q → α(Q) is weak*-lower semi-continuous (or weak*-closed) as

supremum of a�ne functionals. This terminology from convex analysis is based upon the observation that

lower semi-continuity and the closure of the level sets {φ ≤ c} are equivalent properties. Moreover ρ is

lower semi-continuous (lsc) with respect to the weak topology σ(X ,X ′) since any set {ρ ≤ c} is convex and

strongly closed given that ρ is strongly Lipschitz-continuous. Then, general duality theorem for conjugate

functional yields to

ρ(Ψ) = sup
r∈Mba

(r(Ψ)− ρ∗(r)), ρ∗(r) = sup
Ψ∈X

(r(Ψ)− ρ(Ψ))

with the convention rQ(Ψ) = EQ[−Ψ] for Q ∈ M1,f . We then use the properties of monotonicity and cash

invariance of ρ to prove that when ρ∗(r) < +∞, −r ∈ M1,f . Moreover by weak*-compacity of M1,f , the

upper semi-continuous functional EQ[−Ψ]− α(Q) attains its maximum on M1,f .

In the second part of this chapter, we will intensively used convex analysis point of view when studying

dynamic convex risk measures.

Duality and Probability Measures We are especially interested in the risk measures that admit a

representation (5) in terms of σ-additive probability measures Q. In this paper, for the sake of simplicity and

clarity, we use the notation Q ∈ M1,f when dealing with additive measures and Q ∈ M1 when considering

probability measures. So, we are looking for the following representation on X

ρ(Ψ) = sup
Q∈M1

{
EQ[−Ψ]− α

(
Q

)}
. (6)

We can no longer expected that the supremum is attained without additional assumptions. Such represen-

tation on M1 is closely related to some continuity properties of the convex functional ρ (Lemma 4.20 and

Proposition 4.21 in [54]).

Proposition 1.3 i) Any convex risk measure ρ de�ned on X and satisfying (6) is continuous from above,

in the sense that

Ψn ↘ Ψ =⇒ ρ
(
Ψn

)
↗ ρ(Ψ).

ii) The converse is not true in general, but holds under continuity from below assumption:

Ψn ↗ Ψ =⇒ ρ
(
Ψn

)
↘ ρ(Ψ).
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Then any additive measure Q such that α(Q) < +∞ is σ-additive and (6) holds true. Moreover, from i), ρ

is also continuous by above.

1.2.3 Risk Measures on L∞(P)

The representation theory on L∞(P) was developed in particular by Delbaen [38] and extended by Frittelli

and Gianin [57] and [58] and [54]. When a probability measure P is given, it is natural indeed to de�ne risk

measures ρ on L∞(P) instead of on X satisfying the compatibility condition:

ρ(Ψ) = ρ(Φ) if Ψ = Φ P− a.s. (7)

Let us introduce some new notations:M1,ac(P) is the set of �nitely additive measures absolutely continuous

w. r. to P and M1,ac(P) is the set of probability measures absolutely continuous w. r. to P.

We also de�ne natural extension of continuity from below in the space L∞(P): ( Ψn ↘ Ψ P − a.s. =⇒
ρ
(
Ψn

)
↗ ρ(Ψ)), or continuity from above in the space L∞(P): ( Ψn ↗ Ψ P− a.s. =⇒ ρ

(
Ψn

)
↘ ρ(Ψ)).

These additional results on conjugacy relations are given in [54] Theorem 4.31 and in Delbaen [38] Corollary

4.35). Sometimes, as in [38], the continuity from above is called the Fatou property.

Theorem 1.4 Let P be a given probability measure.

1. Any convex risk measure ρ on X satisfying (7) may be considered as a risk measure on L∞(P). A dual

representation holds true in terms of absolutely continuous additive measures Q ∈M1,ac(P).

2. ρ admits a dual representation on M1,ac(P):

α(Q) = sup
Ψ∈L∞(P)

{
EQ[−Ψ]− ρ(Ψ)

}
, ρ(Ψ) = sup

Q∈M1,ac(P)

{
EQ[−Ψ]− α

(
Q

)}
if and only if one of the equivalent properties holds:

a) ρ is continuous from above (Fatou property);

b) ρ is closed for the weak*-topology σ(L∞, L1);

c) the acceptance set {ρ ≤ 0} is weak*-closed in L∞(P).

3. Assume that ρ is a coherent (homogeneous) risk measure, satisfying the Fatou property. Then,

ρ(Ψ) = sup
Q∈M1,ac(P)

{
EQ[−Ψ] | α(Q) = 0

}
(8)

The supremum in (8) is a maximum i� one of the following equivalent properties holds:

a) ρ is continuous from below;

b) the convex set Q = {Q ∈M1,ac

∣∣ α(Q) = 0} is weakly compact in L1(P).

According to the Dunford-Pettis theorem, the weakly relatively compact sets of L1(P) are sets of uniformly

integrable variables and La Vallée-Poussin gives a criterion to check this property. Therefore, the subset

A of L1(P) is weakly relatively compact i� it is closed and uniformly integrable. Moreover, according to

the La Vallée-Poussin criterion, an increasing convex continuous function Φ : R+ → R, (also called Young's

function) such that:

lim
x→∞

Φ(x)
x

= +∞ and sup
Q∈A

EP

[
Φ(

dQ
dP

)
]

< +∞.
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1.3 Comments on Measures of Risk and Examples

1.3.1 About Value at Risk

Risk measures, just as utility functions, go beyond the simple problem of pricing. Both are inherently a choice

or decision criterion. More precisely, when assessing the risk related to a given position in order to de�ne the

amount of capital requirement, a �rst natural approach is based on the distribution of the risky position itself.

In this framework, the most classical measure of risk is simply the variance (or the mean-variance analysis).

However, it does not take into account the whole distribution's features (as asymmetry or skewness) and

especially it does not focus on the �real� �nancial risk which is the downside risk. Therefore di�erent methods

have been developed to focus on the risk of losses: the most widely used (as it is recommended to bankers

by many �nancial institutions) is the so-called Value at Risk (denoted by V AR), based on quantiles of the

lower tail of the distribution. More precisely, the V AR associated with the position X at a level ε is de�ned

as

V ARε

(
X

)
= inf

{
k : P(X + k < 0) ≤ ε

}
.

The V AR corresponds to the minimal amount to be added to a given position to make it acceptable. Such

a criterion satis�es the key properties of decreasing monotonicity, translation invariance since ∀m ∈ R,

V ARε

(
X + m

)
= V ARε

(
X

)
−m and �nally, the V AR is positive homogeneous as ∀λ ≥ 0, V ARε

(
λX

)
=

λV ARε

(
X

)
.

This last property re�ects the linear impact of the size of the position on the risk measure. However,

as noticed by Artzner et al. [2] this criterion fails to meet a natural consistency requirement: it is not

a convex risk measure while the convexity property translates the natural fact that diversi�cation should

not increase risk. In particular, any convex combination of �admissible� risks should be �admissible�. The

absence of convexity of the V AR may lead to arbitrage opportunities inside the �nancial institution using

such criterion as risk measure. Based on this logic, Artzner et al. [2] have adopted a more general approach

to risk measurement. Their paper is essential as it has initiated a systematic axiomatic approach to risk

measurement. A coherent measure of risk should be convex and satisfy the three key properties of the V AR

Conditional Value at Risk For instance, a coherent version of the Value at Risk is the so-called Condi-

tional Value at Risk as observed by Rockafellar and Uryasev [104]. This risk measure is denoted by CV ARε

and de�ned as

CV ARλ(X) = inf
K

E
[ 1
λ

(X −K)− −K
]
.

This coincide with the Expected Shortfall under some assumptions for the X-distribution (for more details,

see Corollary 5.3 in Acerbi and Tasche [1]). In this case, the CV AR can be written as

CV ARλ(X) = E[−X|X + V ARλ(X) < 0].

Moreover, the CV AR also coincides with another coherent version of the V AR, called Average Value at Risk

and denoted by AV AR. This risk measure is de�ned as:

AV ARλ(Ψ) =
1
λ

∫ λ

0

V ARε(Ψ)dε.
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For more details, please refer for instance to Föllmer and Schied [54] (Proposition 4.37).

More recently, the axiom of positive homogeneity has been questioned. Indeed, such a condition does not

seem to be compatible with the notion of liquidity risk existing on the market as it implies that the size of

the risky position has simply a linear impact on the risk measure. To tackle this shortcoming, Föllmer and

Schied consider, in [53] and [54], convex risk measures as previously de�ned.

1.3.2 Risk Measures and Utility Functions

Entropic Risk Measure The most famous convex risk measure on L∞(P) is certainly the entropic risk

measure de�ned as the functional eγ in the previous section when considering an exponential utility frame-

work. The dual formulation of this continuous from below functional justi�es the name of entropic risk

measure since:

∀Ψ ∈ L∞(P) eγ(Ψ) = γ ln EP

[
exp

(
− 1

γ
Ψ

)]
= sup

Q∈M1

{
EQ[−Ψ]− γh

(
Q|P

)}
where h(Q|P) is the relative entropy of Q with respect to the prior probability measure P, de�ned by

h
(
Q|P

)
= EP

[dQ
dP

ln
dQ
dP

]
if Q � P and +∞ otherwise.

Since eγ is continuous from below in L∞(P), by the previous theorem

∀Ψ ∈ L∞(P) eγ(Ψ) = γ ln EP

[
exp

(
− 1

γ
Ψ

)]
= maxQ∈M1,ac

{
EQ[−Ψ]− γh

(
Q|P

)}
As previously mentioned in Paragraph 1.1.1, this particular convex risk measure is closely related to the

exponential utility function and to the associated indi�erence price. However, the relationships between risk

measures and utility functions can be extended.

Risk Measures and Utility Functions More generally, risk measures and utility functions have close

relationships based on the hedging and super-replication problem. It is however possible to obtain a more

general connection between them using the notion of shortfall risk.

More precisely, any agent having a utility function U assesses her risk by taking the expected utility of the

considered position Ψ ∈ L∞(P): EP[U(Ψ)]. If she focuses on her "real" risk, which is the downside risk,

it is natural to consider instead the loss function L de�ned by L(x) = −U(−x) ([54] Section 4.9). As a

consequence, L is a convex and increasing function and maximizing the expected utility is equivalent to

minimize the expected loss (also called the shortfall risk ), EP[L(−Ψ)].

It is then natural to introduce the following risk measure as the opposite of the indi�erence price:

ρ(X) = inf{m ∈ R
∣∣ EP[L(−Ψ−m)] ≤ l(0)}.

Moreover, there is an explicit formula for the associated penalty function given in terms of the Fenchel-

Legendre transform L∗(y) = sup{−xy − lL(x)} of the convex function L ([54] Theorem 4.106):

α(Q) = inf
λ>0

{ 1
λ

(
L(0) + EP

[
L∗

(
λ

dQ
dP

)])}
.
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1.4 Risk Measures and Hedging

In this subsection, we come back to the possible interpretation of the risk measure ρ(X) in terms of capital

requirement. This leads also to a natural relationship between risk measure and hedging. We then extend

it to a wider perspective of super-hedging.

1.4.1 Risk Measure and Capital Requirement

Looking back at Equation (2), the risk measure ρ(X) gives an assessment of the minimal capital requirement

to be added to the position as to make it acceptable in the sense that the new position (X and the added

capital) does not carry any risk with non-negative measure any more. More formally, it is natural to introduce

the acceptance set Aρ related to ρ de�ned as the set of all acceptable positions in the sense that they do not

require any additional capital:

Aρ =
{
Ψ ∈ X , ρ(Ψ) ≤ 0

}
. (9)

Given that the epigraph of the convex risk measure ρ is epi(ρ) = {(Ψ,m) ∈ X ×R
∣∣ ρ(Ψ) ≤ m} = {(Ψ,m) ∈

X × R
∣∣ ρ(Ψ + m) ≤ 0}, the characterization of ρ in terms of Aρ is easily obtained

ρ(X) = inf
{
m ∈ R;m + X ∈ Aρ

}
.

This last formulation makes very clear the link between risk measure and capital requirement.

From the de�nition of both the convex risk measure ρ and the acceptance set Aρ and the dual representation

of the risk measure ρ, it is possible to obtain another characterization of the associated penalty function α

as:

α
(
Q

)
= sup

Ψ∈Aρ

EQ[−Ψ], if Q∈M1,f , = +∞, if not. (10)

α(Q) is the support function of −Aρ, denoted by ΣAρ(Q). When Aρ is a cone, i.e. ρ is a coherent (positive

homogeneous) risk measure, then α(Q) only takes the values 0 and +∞.

By de�nition, the set Aρ is "too large" in the following sense: even if we can write m + X ∈ Aρ as

m + X = ξ ∈ Aρ, we cannot have an explicit formulation for ξ and in particular cannot compare m + X

with 0. Therefore, it seems natural to consider a (convex) class of variables H such that m + X ≥ H ∈ H.
H appears as a natural (convex) set from which a risk measure can be generated.

1.4.2 Risk Measures Generated by a Convex Set

Risk Measures Generated by a Convex in X In this section, we study the generation of a convex risk

measure from a general convex set.

De�nition 1.5 Given a non-empty convex subset H of X such that inf{m ∈ R
∣∣ ∃ξ ∈ H,m ≥ ξ} > −∞,

the functional νH on X
νH(Ψ) = inf

{
m ∈ R; ∃ξ ∈ H,m + Ψ ≥ ξ

}
(11)

is a convex risk measure. Its minimal penalty function αH is given by: αH(Q) = supH∈H EQ[−H].

10



The main properties of this risk measure are listed or proved below:

1. The acceptance set of νH contains the convex subsets H and AH =
{
Ψ ∈ X ,∃ξ ∈ H, Ψ ≥ ξ

}
.

Moreover, AνH = AH if the last subset is closed in the following sense: For ξ ∈ AH and Ψ ∈ X , the
set {λ ∈ [0, 1] >

∣∣ λξ + (1− λ)Ψ ∈ AH} is closed in [0, 1] (see Proposition 4.6 in [54]).

2. The penalty function αH associated with νH is the support function of −AνH de�ned by αH
(
Q

)
=

ΣAνH
(
Q

)
= supX∈AνH

EQ[−X]. Let us show that αH is also nothing else but ΣH:

For any X ∈ AνH there exist ε > 0 and ξ ∈ H such that −X ≤ −ξ + ε. Taking the "expectation" with

respect to the additive measure Q ∈M1,f , it follows that EQ[−X] ≤ EQ[−ξ] + ε ≤ ΣH
(
Q

)
+ ε where

ΣH
(
Q

)
= supH∈H EQ[−H]. Taking the supremum with respect to X ∈ AνH on the left hand side, we

deduce that ΣAνH ≤ ΣH; the desired result follows from the observation that H is included in AνH .

3. WhenH is a cone, the corresponding risk measure is coherent (homogeneous). The penalty function αH

is the indicator function (in the sense of the convex analysis) of the orthogonal cone MH: lMH
(
Q

)
=

0 if Q∈MH , +∞ otherwise, where

MH =
{
Q ∈M1,f ;∀ξ ∈ H, EQ[−ξ] ≤ 0

}
.

The dual formulation of νH is simply given for Ψ ∈ X by: νH(Ψ) = supQ∈MH
EQ[−Ψ].

It is natural to associate the convex indicator lH on X with the set H, lH(X) = 0 if X ∈ H ; +∞ otherwise.

This convex functional is not translation invariant, and therefore it is not a convex risk measure. Nevertheless,

lH and νH are closely related as follows:

Corollary 1.6 Let lH be the convex indicator on X of the convex set H.
The risk measure νH, de�ned in Equation (11), is the largest convex risk measure dominated by lH and it

can be expressed as:

νH(Ψ) = inf
ξ∈X

{ρworst(Ψ− ξ) + lH(ξ)}

where ρworst(Ψ) = supω∈Ω{−Ψ(ω)} is the worst case risk measure.

Proof: Let L = {m ∈ R, ∃ξ ∈ H, m ≥ ξ}. This set is a half-line with lower bound infξ∈H supω ξ(ω).

Moreover, for any m0 /∈ L, m0 ≤ infξ∈H supω ξ(ω). Therefore, νH(0) = infξ∈H supω ξ(ω) = infξ ρworst(−ξ).

The same arguments hold for νH(Ψ). �

Therefore, νH may be interpreted as the worst case risk measure ρworst reduced by the use of (hedging)

variables in H. This point of view would be generalized in Corollary 3.6 in terms of the inf-convolution

νH = ρworst�lH.

Risk Measures Generated by a Convex Set in L∞(P) Assume now H to be a convex subset of

L∞(P). The functional νH on L∞(P) is still de�ned by the same formula (11), in which the inequality has

to be understood in L∞(P), i.e. P − a.s., with a penalty function only de�ned on M1,ac(P) and given by

αH(Q) = supH∈H EQ[−H].
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The problem is then to give condition(s) on the set H to ensure that the dual representation holds on

M1,ac(P) and not only on M1,ac(P). By Theorem 1.4, this problem is equivalent to the continuity from

above of the risk measure νH or equivalently to the weak*-closure of its acceptance set AH. Properties of

this kind are di�cult to check and in the following, we will simply give some examples where this property

holds.

1.5 Static Hedging and Calibration

In this subsection, we consider some examples motivated by �nancial risk hedging problems.

1.5.1 Hedging with a Family of Cash Flows

We start with a very simple model where it is only possible to hedge statically over a given period using

a �nite family of bounded cash �ows {C1, C2, ..., Cd}, the (forward) price of which is known at time 0 and

denoted by {π1, π2, ..., πd}. All cash �ows are assumed to be non-negative and non-redundant. Constants

may be included and then considered as assets.

We assume that the di�erent prices are coherent in the sense that

∃Q0 ∼ P, s.t. ∀i, EQ0 [Ci] = πi

Such an assumption implies in particular that any inequality on the cash �ows is preserved on the prices.

The quantities of interest are often the gain values of the basic strategies, Gi = Ci − πi.

We can naturally introduce the non-empty set Qe of equivalent "martingale measures" as

Qe = {Q| Q ∼ P, s.t. ∀i, EQ[Gi] = 0 }

The di�erent instruments we consider are very liquid; by selling or buying some quantities θi of such instru-

ments, we de�ne the family Θ of gains associated with trading strategies θ:

Θ =
{

G(θ) =
d∑

i=1

θi Gi, θ ∈ Rd, with initial value
d∑

i=1

θi πi

}
This framework is very similar to Chapter 1 in Föllmer and Schied [54] where it is shown that the assumption

of coherent prices is equivalent to the absence of arbitrage opportunity in the market de�ned as

(AAO) G(θ) ≥ 0 P a.s. ⇒ G(θ) = 0 P a.s.

These strategies can be used to hedge a risky position Y . In the classical �nancial literature, a superhedging

strategy is a par (m, θ) such that m + G(θ) ≥ Y, a.s. This leads to the notion of superhedging (super-seller)

price πsell
↑ (Y ) = inf{m | ∃ G(θ) s.t. m + G(θ) ≥ Y }. In terms of risk measure, we are concerned with the

static superhedging price of −Y . So, by setting H = −Θ, we de�ne the risk measure νH as

νH(X) = πsell
↑ (−X) = inf{m ∈ R, ∃θ ∈ Rd : m + X + G(θ) ≥ 0}

Let us observe that the no arbitrage assumption implies that EQ0 [G(θ)] = 0. Hence, νH(0) ≥ EQ0 [−X] >

−∞. Moreover, the dual representation of the risk measure νH in terms of probability measures is closely

related to the absence of arbitrage opportunity as underlined in the following proposition (Chapter 4 in [54]):

12



Proposition 1.7 i) If the market is arbitrage-free, i.e. (AAO) holds true, the convex risk measure νH can

be represented in terms of the set of equivalent "martingale" measures Qe as

νH(Ψ) = sup
Q∈Qe

EQ(−X), where Qe = {Q ∼ P, EQ(Gi) = 0, ∀i = 1...d}. (12)

By Theorem 1.2, this L∞(P)-risk measure is continuous from above.

ii) Moreover, the market is arbitrage-free if νH is sensitive in the sense that νH(Ψ) > νH(0) for all Ψ such

that P(X < 0) > 0 and P(X ≤ 0) = 1.

1.5.2 Calibration Point of View and Bid-Ask Constraint

This point of view is often used on �nancial markets when cash �ows depend on some basic assets

(S1, S2, ..., Sn), whose characteristics will be given in the next paragraph.

We can consider for instance (Ci) as payo�s of derivative instruments, su�ciently liquid to be used as calibra-

tion tools and static hedging strategies. So far, all agents having access to the market agree on the derivative

prices, and do not have any restriction on the quantity they can buy or sell.

We now take into account some restrictions on the trading. We �rst introduce a bid-ask spread on the

(forward) price of the di�erent cash �ows. We denote by πask
i (Ci) the market buying price and by πbid

i (Ci)

the market selling price. The price coherence is now written as

∃Q0 ∼ P, ∀i, πask
i (Ci) ≤ EQ0 [Ci] ≤ πbid

i (Ci)

To de�ne the gains family, we need to make a distinction between cash �ows when buying and cash �ows

when selling. To do that, we double the number of basic gains, by associating, with any given cash-�ow

Ci, both gains Gbid
i = Ci − πbid

i and Gask
i = πask

i (Ci) − Ci. Henceforth, we do not make distinction of the

notation and we still denote any gain by Gi. The price coherence is then expressed as

∃Q0 ∼ P, ∀ i = 1....2d, EQ0 [Gi] ≤ 0.

The set of such probability measures, called super-martingale measures, is denoted by Qs
e. Note that the

coherence of the prices implies that the set Qs
e is non empty.

Using this convention, a strategy is de�ned by a 2d-dimensional vector θ, the components of which are all

non-negative. More generally, we can introduce more trading restriction on the size of the transaction by

constraining θ to belong to a convex set K ⊆ R2d
+ such that 0 ∈ K. Note that we can also take into account

some limits to the resources of the investor, in such way the initial price 〈θ, π〉 has an an upper bound.

In any case, we still denote the set of admissible strategies by K and the family of associated gains by:

Θ =
{

G(θ) =
∑2d

i=1 θiGi, θ ∈ K
}
.

In this constrained framework, the relationship between price coherence and (AAO) on Θ has been studied

in details in Bion-Nadal [17] but also in Chapter 1 of [54].

More precisely, as above, the price coherence implies that the risk measure νH related to H = −Θ is not

identically −∞.

A natural question is to extend the duality relationship (12) using the subset of super-martingale measures.
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Using Paragraph 1.4.2, this question is equivalent to show that the minimal penalty function is in�nite

outside of the set of absolutely continuous probability measures and that νH is continuous from above.

When studying the risk measure νH (De�nition 1.5 and its properties), we have proved that:

∀Q ∈M1,ac(P), αH(Q) = sup
ξ∈H

EQ[−ξ] = sup
θ∈K

EQ[G(θ)].

In particular, since 0 ∈ K, if Q ∈ Qs
e, then α(Q) = 0. Moreover, if Θ is a cone, then αH is the indicator

function of Qs
e.

It remains to study the continuity from above of νH and especially to relate it with the absence of arbitrage

opportunity in the market. We summarize below the results Föllmer and Schied obtained in Theorem 4.95

and Corollary 9.30 [54].

Proposition 1.8 Let the set K be a closed subset of Rd. Then, the market is arbitrage-free if and only if the

risk measure νH is sensitive. In this case, νH is continuous from above and admits the dual representation:

νH(Ψ) = sup
Q∈M1,ac

{
EQ[−Ψ]− αH(Q)

}
.

1.5.3 Dynamic Hedging

A natural extension of the previous framework is the multi-period setting or more generally the continuous-

time setting. We brie�y present some results in the latter case. Note that we will come back to these

questions, in the second part of this chapter, under a slightly di�erent form, assuming that basic asset prices

are Itô's processes.

We now consider a time horizon T , a �ltration (Ft; t ∈ [0, T ]) on the probability space (Ω,F , P) and a

�nancial market with n basic assets, whose (non-negative) vector price process S follows a special locally

bounded semi-martingale under P. To avoid arbitrage, we assume that:

(AAO) There exists a probability measure Q0 ∼ P such that S is a Q0 − local-martingale.

Let Qac be the family of absolutely continuous martingale measures: Qac = { Q | Q �
P, S is a Q local-martingale}. (AAO) ensures that the set Qac is non empty. Then, as in Delbaen

[38], Qac is a closed convex subset of L1(P).

Let us now introduce dynamic strategies as predictable processes θ and their gain processes Gt(θ) =∫ t

0
〈θu, dSu〉 = (θ.S)t. We only consider bounded gain processes and de�ne:

ΘS
T = {GT (θ) = (θ.S)T | θ.S is bounded}

Delbaen and Schachermayer have established in [40], as in the static case, the following duality relationship,

sup{ EQ[−X] |Q ∈ Qac} = inf{m | ∃ GT (θ) ∈ ΘS
T s.t. m + X + GT (θ) ≥ 0}

Putting H = −ΘS
T , this equality shows that νH is a coherent convex risk measure continuous from above.
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Constrained portfolios When constraints are introduced on the strategies, everything becomes more

complex. Therefore, we refer to the course held by Schied [109] for more details.

We assume that hedging positions live in the following convex set:

ΘS
T = {GT (θ) = (θ.S)T | θ.S is bounded by below, θ ∈ K}

The set of constraints is closed in the following sense: the set {
∫

θdS |θ ∈ K} is closed in the semi-martingale

or Émery topology. The optional decomposition theorem of Föllmer and Kramkov [52] implies the following

dual representation for the risk measure νH:

νH(Ψ) = sup
Q∈M1,ac

{
EQ[−Ψ]− EQ[AQ

T ]
}

where AQ
. is the optional process de�ned by AQ

0 = 0 and dAQ
t = ess supξ∈K EQ[θtdSt|Ft].

The penalty function αH of the risk measure νH can be described as EQ[AQ
T ] provided that Q satis�es the

three following conditions:

• Q is equivalent to P;

• Every process θ.S with θ ∈ K is a special semi-martingale under Q;

• Q admits the upper variation process AQ for the set {θ.S | θ ∈ K}.

We can set αH(Q) = +∞ when one of these conditions does not hold.

Remark 1.9 Note that there is a fundamental di�erence between static hedging with a family of cash �ows

and dynamic hedging. In the �rst case, the initial wealth is a market data: it corresponds to the (forward)

price of the considered cash �ows. The underlying logic is based upon calibration as the probability measures

we consider have to be consistent with the observed market prices of the hedging instruments. In the dynamic

framework, the initial wealth is a given data. The agent invests it in a self-�nancing admissible portfolio

which may be rebalanced in continuous time.

The problem of dynamic hedging with calibration constraints is a classical problem for practitioners. This

will be addressed in details after the introduction of the inf-convolution operator. Some authors have been

looking at this question (see for instance Bion-Nadal [16] or Cont [33]).

2 Dilatation of Convex Risk Measures, Subdi�erential and Conser-

vative Price

2.1 Dilatation: γ-Tolerant Risk Measures

For non-coherent convex risk measures, the impact of the size of the position is not linear. It seems therefore

natural to consider the relationship between "risk tolerance" and the perception of the size of the position.

To do so, we start from a given root convex risk measure ρ. The risk tolerance coe�cient is introduced as
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a parameter describing how agents penalize compared with this root risk measure. More precisely, denoting

by γ the risk tolerance, we de�ne ργ as:

ργ(Ψ) = γρ
( 1
γ

Ψ
)
. (13)

ργ satis�es a tolerance property or a dilatation property with respect to the size of the position, therefore it

is called the γ-tolerant risk measure associated with ρ (also called the dilated risk measure associated with

ρ as in Barrieu and El Karoui [10]). A typical example is the entropic risk measure where eγ is simply the

γ-dilated of e1. These dilated risk measures satisfy the following nice property:

Proposition 2.1 Let
(
ργ , γ > 0

)
be the family of γ-tolerant risk measures issued of ρ. Then,

(i) The map γ → (ργ − γρ(0)) is non-increasing,

(ii) For any γ, γ
′
> 0, (ργ)γ′ = ργ γ′ .

(iii) The perspective functional de�ned on ]0,∞[×X by

pρ(γ, X) = γρ(
X

γ
) = ργ(X)

is a homogeneous convex functional, cash-invariant with respect to X (i.e. a coherent risk measure in X).

Proof: (i) We can take ρ(0) = 0 without loss of generality of the arguments. By applying the convexity

inequality to X
γ and 0 with the coe�cients γ

γ+h and h
γ+h (h > 0), we have, since ρ(0) = 0:

ρ(
X

γ + h
) ≤ γ

γ + h
ρ(

X

γ
) +

h

γ + h
ρ(0) ≤ γ

γ + h
ρ(

X

γ
).

(ii) is an immediate consequence of the de�nition and characterization of tolerant risk measures.

(iii) The perspective functional is clearly homogeneous. To show the convexity, let β1 ∈ [0, 1] and β2 = 1−β1

two real coe�cients, and (γ1, X1), (γ2, X2) two points in the de�nition space of pρ. Then, by the convexity

of ρ,

pρ

(
β1(γ1, X1) + β2(γ2, X2)

)
= (β1γ1 + β2γ2) ρ

(β1X1 + β2X2

β1γ1 + β2γ2

)
≤ (β1γ1 + β2γ2)

[ β1γ1

β1γ1 + β2γ2
ρ(

X1

γ1
) +

β2γ2

β1γ1 + β2γ2
ρ(

X2

γ2
)
]

≤ β1 ργ1(X1) + β2 ργ2(X2).

The other properties are obvious. �

So, we naturally are looking for the asymptotic behavior of the perspective risk measure when the risk

tolerance either tends to +∞ or tends to 0.

2.2 Marginal Risk Measures and Subdi�erential

2.2.1 Marginal Risk Measure

Let us �rst observe that ρ is a coherent risk measure if and only if ργ ≡ ρ. We then consider the behavior

of the family of γ-tolerant risk measures when the tolerance becomes in�nite.
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Proposition 2.2 Suppose that ρ(0) = 0, or equivalently α(Q) ≥ 0 ∀Q ∈M1,f .

a) The marginal risk measure ρ∞, de�ned as the non-increasing limit of ργ when γ tends to in�nity, is a

coherent risk measure with penalty function α∞ = limγ→+∞(γα) that is:

α∞(Q) := supΨ

{
EQ[−Ψ]− ρ∞(Ψ)

}
= 0 if α(Q) = 0 , +∞ if not,

ρ∞(Ψ) = supQ∈M1,f

{
EQ[−Ψ]

∣∣ α
(
Q

)
= 0

}
.

b) Assume now that ρ is a L∞(P)-risk measure such that ρ(0) = 0.

If ρ is continuous from below, the ρ∞ is continuous from below and admits a representation in terms of

absolutely continuous probability measures as:

ρ∞(Ψ) = maxQ∈M1,ac

{
EQ[−Ψ]

∣∣ α
(
Q

)
= 0

}
,

and the set
{
Q ∈M1,ac

∣∣ α
(
Q

)
= 0

}
is non empty, and weakly compact in L1(P).

Proof: a) Thanks to Theorem 2.1, for any Ψ ∈ X ργ(Ψ) ↘ ρ∞(Ψ) when γ → +∞. Given the fact that

−m ≥ ργ(Ψ) ≥ −M when m ≤ Ψ ≤ M , we also have −m ≥ ρ∞(Ψ) ≥ −M and ρ∞ is �nite.

Convexity, monotonicity and cash translation invariance properties are preserved when taking the limit.

Therefore, ρ∞ is a convex risk measure with ρ∞(0) = 0.

Moreover, given that (ρδ)γ = ρδγ = (ργ)δ, we have that (ρδ)∞ = ρ∞ = (ρ∞)δ and ρ∞ is a coherent risk

measure.

Since α ≥ 0, the minimal penalty function is:

α∞(Q) = supξ

{
EQ[−ξ]− ρ∞(ξ)

}
= supξ supγ>0

{
EQ[−ξ]− γρ( ξ

γ )
}

= supγ>0

{
γα(Q)

}
= 0 if α(Q) = 0 , +∞ if not.

Moreover, α∞ is not identically equal to +∞ since the set
{
Q ∈M1,f

∣∣ α
(
Q

)
= 0

}
is not empty given that

ρ(0) = 0 = max
{
− α(Q)

}
= −α(Q0) for some additive measure Q0 ∈M1,f , from Theorem 1.2.

Assume now that ρ is continuous from below and consider a non-decreasing sequence (ξn ∈ X ) with limit

ξ ∈ X . By monotonicity,

ρ∞(ξ) = inf
γ

ργ(ξ) = inf
γ

inf
ξn

ργ(ξn) = inf
ξn

inf
γ

ργ(ξn) = inf
ξn

ρ∞(ξn).

Then, ρ∞ is also continuous from below.

b) When ρ is a L∞(P)-risk measure, continuous from below, ρ is also continuous from above and the dual

representation holds in terms of absolutely continuous probability measures. Using the same argument as

above, we can prove that ρ∞ is a coherent L∞(P)-risk measure, continuous from below with minimal penalty

function:
α∞(Q) = 0 if α(Q) = 0 and Q ∈M1,ac

= +∞ otherwise.

Moreover, thanks to Theorem 1.4, the set
{
Q ∈ M1,ac

∣∣ α
(
Q

)
= 0

}
is non empty and weakly compact in

L1(P). �
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To have some intuition about the interpretation in terms of marginal risk measure, it is better to refer to

the risk aversion coe�cient ε = 1/γ. ρ∞(Ψ) appears as the limit of 1
ε

(
ρ(εΨ)− ρ(0)

)
, i.e. the right-derivative

at 0 in the direction of Ψ of the risk measure ρ, or equivalently, the marginal risk measure. For instance

e∞(Ψ) = EP(−Ψ).

In some cases, and in particular when the set Qα
∞ has a single element, the pricing rule ρ∞(−Ψ) is a linear

pricing rule and can be seen as an extension of the notion of marginal utility pricing and of the Davis price

(see Davis [37] or Karatzas and Kou [76]).

2.2.2 Subdi�erential and its Support Function

Subdi�erential Let us �rst recall the de�nition of the subdi�erential of a convex functional.

De�nition 2.3 Let φ be a convex functional on X . The subdi�erential of φ at X is the set

∂φ(X) =
{
q ∈ X ′ | ∀X ∈ X , φ(X + Y ) ≥ φ(X) + q(−Y )

}
The subdi�erential of a convex risk measure ρ with penalty function α(q) = supY {q(−Y )−ρ(Y )} is included
in Dom(α) since when q ∈ ∂ρ(ξ), then α(q) − (q(−ξ) − ρ(ξ)) ≤ 0. So, we always refer to �nitely additive

measure Q when working with risk measure subdi�erential. In fact, we have the well-known characterization

of the subdi�erential:

q ∈ ∂ρ(ξ) if and only if q ∈M1,f is optimal for the maximization program EQ[−ξ]−α(Q) −→ maxQ∈M1,f
.

We can also relate it with the notion of marginal risk measure, when the root risk measure is now centered

around a given element ξ ∈ X , i.e. ρξ(X) = ρ(X + ξ)− ρ(ξ), by de�ning:

ρ∞,ξ(Ψ) ≡ lim
γ→+∞

γ
(
ρ
(
ξ +

Ψ
γ

)
− ρ(ξ)

)
.

Using Proposition 2.2, since the ρξ penalty function is αξ(Q) ≡ α(Q)−EQ[−ξ] + ρ(ξ), ρ∞,ξ is coherent and

ρ∞,ξ(Ψ) = sup
Q∈M1,f

{
EQ[−Ψ]

∣∣ ρ(ξ) = EQ[−ξ]− α(Q)
}
.

Proposition 2.4 The coherent risk measure ρ∞,ξ(Ψ) ≡ limγ→+∞ γ
(
ρ
(
ξ+ Ψ

γ

)
−ρ(ξ)

)
is the support function

of the subdi�erential ∂ρ(ξ) of the convex risk measure ρ at ξ:

ρ∞,ξ(Ψ) = sup
Q∈M1,f

{
EQ[−Ψ]

∣∣ ρ(ξ) = EQ[−ξ]− α(Q)
}

= sup
Q∈∂ρ(ξ)

EQ[−Ψ]

Proof: From the de�nition of the subdi�erential,

∂ρ(ξ) =
{
q ∈ X ′ | ∀Ψ ∈ X , ρ(ξ + Ψ) ≥ ρ(ξ) + q(−Ψ)

}
=

{
q ∈ X ′ | ∀Ψ ∈ X , ρ∞,ξ(Ψ) ≥ q(−Ψ)

}
= ∂ρ∞,ξ(0).

But q ∈ ∂ρ∞,ξ(0) i� α∞,ξ(Qq) = 0. So the proof is complete. �
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The L∞(P) case: When working with L∞(P)-risk measures, following Delbaen [38] (Section 8), the natural

de�nition of the subdi�erential is the following:

∂ρ(ξ) =
{
f ∈ L1(P) | ∀Ψ ∈ L∞(P), ρ(ξ + Ψ) ≥ ρ(ξ) + EP[f(−Ψ)]

}
Using the same arguments as above, we can prove that every f ∈ ∂ρ(ξ) is non-negative with a P-expectation

equal to 1. Since ∂ρ(ξ) is also the subdi�erential of ρ∞,ξ(0), the properties of ∂ρ(ξ) may be deduced from

those of the coherent risk measure ρ∞,ξ, for which we have already shown that if ρ is continuous from below

and ρ(0) = 0 then for any ξ, the e�ective domain of α∞,ξ is non empty. Then, under this assumption, ∂ρ(ξ)

is non empty and we have the same characterization of the subdi�erential as:

Q ∈ ∂ρ(ξ) ⇐⇒ ρ(ξ) = EQ[−ξ]− α(Q).

We now summarize these results in the following proposition:

Proposition 2.5 Let ρ be a L∞(P)-risk measure, continuous from below. Then, for any ξ ∈ L∞(P), ρ∞,ξ

is the support function of the non empty subdi�erential ∂ρ(ξ), i.e.:

ρ∞,ξ(Ψ) = sup
{
EQ[−Ψ] ; Q ∈ ∂ρ(ξ)

}
.

and the supremum is attained by some Q ∈ ∂ρ(ξ).

2.3 Conservative Risk Measures and Super-Price

We now focus on the properties of the γ-tolerant risk measures when the risk tolerance coe�cient tends to 0

or equivalently when the risk aversion coe�cient goes to +∞. The conservative risk measures that are then

obtained can be reinterpreted in terms of super-pricing rules. Using vocabulary from convex analysis, these

risk measures are related to recession (or asymptotic) functions.

Proposition 2.6 (a) When γ tends to 0, the family of γ-tolerant risk measures (ργ) admits a limit ρ0+ ,

which is a coherent risk measure. This conservative risk measure ρ0+ is simply the �super-price� of −Ψ:

ρ0+(Ψ) = lim
γ↓0

↗ (ργ(Ψ)− γρ(0)) = sup
Q∈M1,f

{
EQ[−Ψ]

∣∣ α
(
Q

)
< ∞

}
.

Its minimal penalty function is

α0+(Q) = 0 if α(Q) < +∞ and = +∞ if not.

(b) If ρ is continuous from above on L∞(P), then ρ0+ is continuous from above and

ρ0+(Ψ) = sup
Q∈M1,ac

{
EQ[−Ψ]

∣∣ α
(
Q

)
< ∞

}
.

Proof: Let us �rst observe that ργ(ξ) = γ
(
ρ( ξ

γ )− ρ(0)
)

+ γρ(0) is the sum of two terms. The �rst term is

monotonic while the second one goes to 0.

The functional ρ0+ is coherent (same proof as for ρ∞) with the acceptance set Aρ0+
= {ξ, ∀λ ≥ 0, λξ ∈
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Aρ − ρ(0)}.
On the other hand, by monotonicity, the minimal penalty function α0+ ≥ γα ≥ 0 ; so, α0+(Q) = 0 on

Dom(α), and α0+(Q) = +∞ if not. In other words, α0+ is the convex indicator of Dom(α).

If ρ is continuous from above on L∞(P), then the same type of dual characterization holds for ρ0+ but in

terms of M1,ac. So, α0+(Q) = 0 on Dom(α), and α0+(Q) = +∞ if not.

We could have proved directly the continuity from above of ρ0+ , since ρ0+ is the non-decreasing limit of

continuous from above risk measures (ργ − γρ(0)). �

Remark 2.7 A nice illustration of this result can be obtained when considering the entropic risk measure

eγ . In this case, it comes immediately that e0+(Ψ) = supQ
{
EQ[−Ψ]

∣∣ h(Q |P) < +∞
}

= P− ess sup(−Ψ) =

ρmax(Ψ) where ρmax is here the L∞(P)-worst case measure. This also corresponds to the weak super-

replication price as de�ned by Biagini and Frittelli in [15].

Note that this conservative risk measure e0+(Ψ) cannot be realized as EQ0 [−Ψ] for some Q0 ∈ M1,ac. It is

a typical example where the continuity from below fails.

3 Inf-Convolution

A useful tool in convex analysis is the inf-convolution operation. While the classical convolution acts on the

Fourier transforms by addition, the inf-convolution acts on Fenchel transforms by addition as we would see

later.

3.1 De�nition and Main Properties

The inf-convolution of two convex functionals φA and φB may be viewed as the functional value of the

minimization program

φA,B(X) = inf
H∈X

{
φA(X −H) + φB(H)

}
, (14)

This program is the functional extension of the classical inf-convolution operator acting on real convex

functions f�g(x) = infy{f(x− y) + g(y)}.

Illustrative example: Let us assume that the risk measure ρA is the linear one qA(X) = EQA
[−X],

whose the penalty function is the functional αA(Q) = 0 if Q = QA, = +∞ if not. Given a convex

risk measure, ρB , with penalty functional αB , we deduce from the de�nition of the inf-convolution that

qA�ρB(X) = qA(−X)− αB(QA)

� Then, qA�ρB is identically −∞ if αB(QA) = +∞.

� If it is not the case, the minimal penalty function αA,B associated with this measure is:

αA,B(Q) = αB(QA) + αA(Q) = αB(Q) + αA(Q)
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� Moreover, the in�mum is attained in the inf-convolution program by any H∗ such that

αB(QA) = EQA
[−H∗]− ρB(H∗)

that is H∗ is optimal for the maximization program de�ning the αB .

In terms of subdi�erential, we have the �rst order condition: QA ∈ ∂ρB(H∗).

3.1.1 Inf-Convolution and Duality

In our setting, convex functionals are generally convex risk measures, but we have also been concerned by

the convex indicator of convex subset, taking in�nite values. In that follows, we already assume that convex

functionals φ we consider are proper (i.e. not identically +∞) and in general closed or lower semicontinuous

(in the sense that the level sets {X| φB(X) ≤ c}, c ∈ R are weak*-closed). To be consistent with the risk

measure notations we de�ne their Fenchel transforms on X ′ as

β(q) = sup
X∈X

{q(−X)− φ(X)}.

When the linear form q is related to an additive �nite measure Q ∈ M1,f , we use the notation qQ(X) =

EQ[X]. For a general treatment of inf-convolution of convex functionals, the interested reader may refer

to the highlighting paper of Borwein and Zhu [19]. The following theorem extends these results to the

inf-convolution of convex functionals whose one of them at least is a convex risk measure:

Theorem 3.1 Let ρA be a convex risk measure with penalty function αA and φB be a proper closed convex

functional with Fenchel transform β. Let ρA�φB be the inf-convolution of ρA and φB de�ned as

X → ρA�φB(X) = inf
H∈X

{
ρA(X −H) + φB(H)

}
(15)

and assume that ρA�φB(0) > −∞. Then,

• ρA�φB is a convex risk measure which is �nite for all X ∈ X .

• The associated penalty function αA,B takes the value +∞ for any q outside of M1,f , and

∀Q ∈M1,f αA,B

(
Q

)
= αA

(
Q

)
+ βB

(
qQ

)
,

and ∃Q ∈M1,f s.t. αA

(
Q

)
+ βB

(
qQ

)
< ∞.

• Moreover, if the risk measure ρA is continuous from below, then ρA�φB is also continuous from below.

Proof: We give here the main steps of the proof of this theorem.

� The monotonicity and translation invariance properties of ρA�φB are immediate from the de�nition, since

at least one of the both functionals have these properties.

� The convexity property simply comes from the fact that, for any XA, XB , HA and HB in X and any

λ ∈ [0, 1], the following inequalities hold as ρA and ρB are convex functionals,

ρA

(
(λXA + (1− λ)XB)− (λHA + (1− λ)HB)

)
≤ λρA

(
XA −HA

)
+ (1− λ)ρA

(
XB −HB

)
φB

(
λHA + (1− λ)HB

)
≤ λφB(HA) + (1− λ)φB

(
HB

)
.
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By adding both inequalities and taking the in�mum in HA and HB on the left-hand side and separately in

HA and in HB on the right-hand side, we obtain:

ρA�φB

(
λXA + (1− λ)XB

)
≤ λ ρA�φB(XA) + (1− λ)ρA�ρB(XB).

� Using Equation (3), the associated penalty function is given, for any Q∈M1,f , by

αA,B

(
Q

)
= supX∈X

{
EQ[−X]− ρA,B(X)

}
= supΨ∈X

{
EQ[−X]− infH∈X

{
ρA(X −H) + φB(H)

}}
= supX∈X supH∈X

{
EQ

[
− (X −H)

]
+ EQ[−H]− ρA(X −H)− φB(H)

}
by letting X̃ , X −H ∈ X

= supX̃∈X supH∈X
(
EQ[−X̃]− ρA(X̃) + EQ[−H]− φB(H)

)
= αA

(
Q

)
+ βB

(
qQ

)
.

When q 6∈ M1,f , the same equalities hold true. Since ρA is a convex risk measure, αA(q) = +∞, and since

β is a proper functional, β(q) is dominated from below; so, αA,B(q) = +∞. This equality αA,B = αA + βB

holds even when αA and βB they take in�nite values.

� The continuity from below is directly obtained upon considering an increasing sequence of (Xn) ∈ X
converging to X. Using the monotonicity property, we have

inf
n

ρA�φB (Xn) = inf
n

inf
H
{ρA (Xn −H) + φB (H)}

= inf
H

inf
n
{ρA (Xn −H) + φB (H)} = inf

H
{ρA (X −H) + φB (H)}

= ρA�φB (X) . �

We can now give an inf-convolution interpretation of the convex risk measure νH generated by a convex set

H as in Corollary 1.6 as the inf-convolution of the convex indicator function of H, and the worst-case risk

measure. This regularization may be applied at any proper convex functional.

Proposition 3.2 [Regularization by inf-convolution with ρworst] Let ρworst(X) = supω(−X(ω)) be the worst

case risk measure.

i) ρworst is a neutral element for the in�mal convolution of convex risk measures.

ii) Let H be a convex set such that inf{m | ∃ ξ ∈ H} > −∞. The convex risk measure generated by H, νH

is the inf-convolution of the convex indicator functional of H with the worst case risk measure,

νH = ρworst�lH

iii) More generally, let φ be a proper convex functional, such that for any H, φ(H) ≥ − supω H(ω)− c.

The in�mal convolution of ρworst and φ, ρφ = ρworst�φ is the largest convex risk measure dominated by φ.

iv) Let β the penalty functional associated with φ. Then, the penalty functional associated with ρφ is the

functional αφ, restriction of β at the set M1,f ,

αφ(q) = β(q) + lM1,f (q)

= β(qQ) if qQ ∈M1,f , +∞ if not.
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v) Given a general risk measure ρA such that ρA�φ(0) > −∞, then

ρA�φ = ρA�ρworst�φ = ρA�ρφ.

Proof: We start by proving that ρ�ρworst = ρ. By de�nition,

ρ�ρworst(X) = infY {supω(−Y (ω)) + ρ(X − Y )} = infY

{
ρ
(
X − (Y − supω(−Y (ω)))

)}
= infY≥0{ρ(X − Y )} = ρ(X)

To conclude, we have used the cash invariance of ρ and the fact that ρ(X − Y ) ≥ ρ(X) whenever Y ≥ 0.

ii) has been proved in Corollary 1.6.

iii) By Theorem 3.1, ρφ = ρworst�φ is a convex risk measure. Since ρworst is a neutral element for the

inf-convolution of risk measure, any risk measure ρ dominated by φ is also dominated by ρworst�φ since

ρ = ρworst�ρ ≤ ρworst�φ = ρφ. Hence the result. �

Therefore, in the following, we only consider the in�mal convolution of convex risk measures. The following

result makes more precise Theorem 3.1 and plays a key role in our analysis.

Theorem 3.3 [Sandwich Theorem] Let ρA and ρB be two convex risk measures.

Under the assumptions of Theorem 3.1 (i.e. ρA,B(0) = ρA�ρB(0) > −∞),

i) There exists Q ∈ ∂ρA,B(0) such that, for any X and any Y ,

ρA�ρB(0) ≤
(
ρA(X)− EQ[−X]

)
+

(
ρB(Y )− EQ[−Y ]

)
.

ii) Assume ρA,B(0) ≥ c. There is an a�ne function, aQ(X) = −EQ[−X] + r, with Q ∈ ∂ρA,B(0), satisfying

ρA(.) ≥ aQ ≥ −ρB(−.) + c. (16)

Moreover, for any X such that ρA(X) + ρB(−X) = ρA,B(0), Q ∈ ∂ρB(−X)∩ ∂ρA(X). The inf-convolution

is said to be exact at X.

iii) Interpretation of the Condition ρA�ρB(0) > −∞.

The following properties are equivalent:

� ρA�ρB(0) > −∞.

� The sandwich property (16) holds for some a�ne function aQ(X) = −EQ[−X] + r.

� There exists Q ∈ Dom(αA)∩Dom(αB). �Let ρA
0+ (resp. ρB

0+) be the conservative risk measure associated

with ρA (resp. ρB). Then

ρA
0+(X) + ρB

0+(−X) ≥ 0.

Before proving this Theorem, let us make the following comment: the inf-convolution risk measure ρA,B ,

given in Equation (15) may also be de�ned, for instance, as the value functional of the program

ρA,B (Ψ) = ρA�ρB(Ψ) = ρA�νAρB (Ψ) = inf {ρA (Ψ−H) ,H ∈ AρB
} ,

where νAρB is the risk measure with acceptance set AρB
. This emphasizes again the key role played the risk

measures generated by a convex set, if needed.
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Proof: i) By Theorem 3.1, the convex risk measure ρA,B is �nite; so its subdi�erential ∂ρA,B(0) is non

empty. More precisely, there exists Q0 ∈ ∂ρA,B(0) such that ρA,B(X) ≥ ρA,B(0) + EQ0(−X). In other

words,

ρA,B(0) ≤ ρA,B(X) + EQ0(X) ≤ ρA(X − Y )− EQ0 [−(X − Y )] + ρB(Y )− EQ0 [−Y ].

ii− a) Assume that ρA�ρB(0) ≥ c. Applying the previous inequality at Y = −Z, and X = U + Y = U −Z,

we have

ρA(U)− EQ0 [−U ] ≥ −ρB(−Z)− EQ0 [Z] + ρA,B(0).

Then,

−αA(Q0) := inf
U
{ρA(U)− EQ0 [−U ]} ≥ αB(Q0) + ρA,B(0) := sup

Z
{−ρB(−Z)− EQ0 [Z] + ρA,B(0)}.

By Theorem 3.1 this inequality is in fact an equality. Picking r = αA(Q0), and de�ning aQ0(X) = EQ0 [−X]+

r yield to an a�ne function that separates ρA and −ρB(−.) + c.

ii−b) Finally, when ρA(X)+ρB(−X) = ρA,B(0), by the above inequalities, we obtain−ρB(−X)−EQ0 [−X] ≥
−ρB(−Z)− EQ0 [Z]. In other words, Q0 belongs to ∂ρB(−X). By symmetry, Q0 also belongs to ∂ρA(X).

iii) � The implication (1) ⇒ (2) ⇒ (3) is clear, using the results i) and ii) of this Theorem.

� Very naturally, one obtains (3) ⇒ (2) and (3) ⇒ (1) as the existence of Q0 ∈ Dom(αA) ∩Dom(αB)

implies that for any X, ρA(X) ≥ EQ0 [−X]− αA(Q) and ρB(−X) ≥ EQ0 [X]− αB(Q). Considering

r = sup{αA(Q));αB(Q)}, one obtains (2). Moreover, ρA(X) + ρB(−X) ≥ −(αA(Q) + αB(Q)) and taking

the in�mum with respect to X, ρA�ρB(0) > −∞, i.e. the property (1).

� Let us now look at the following implication (2) ⇒ (4). We �rst observe that (2), i.e., ρA(X) ≥
−EQ0 [−X] + r implies ρA

0+(X) ≥ −EQ0 [−X], and ρB(−X) ≥ EQ0 [−X] − r implies ρB
0+(−X) ≥ EQ0 [−X].

Therefore, we obtain (4) as ρA
0+(X) + ρB

0+(−X) ≥ 0.

� The converse implication (4) ⇒ (2) is obtained by applying the sandwich property (16) to ρA
0+ and ρB

0+ .

�

Remark 3.4 (On risk measures on L∞(P)) Let us consider the inf-convolution between two risk mea-

sures ρA and ρB, where one of them, for instance ρA, is continuous from below (and consequently from

above) and therefore is de�ned on L∞(P). In this case, as the inf-convolution maintains the property of con-

tinuity from below (see Theorem 3.1), the risk measure ρA�ρB is also continuous from below and therefore

is a risk measure on L∞(P), having a dual representation on M1,ac(P).

3.1.2 γ-Tolerant Risk Measures and Inf-Convolution

In this subsection, we come back to the particular class of γ-tolerant convex risk measures ργ to give an

explicit solution to the exact inf-convolution. Recall that this family of risk measures is generated from a root

risk measure ρ by the following transformation ργ(ξT ) = γργ

(
ξT

γ

)
where γ is the risk tolerance coe�cient

with respect to the size of the exposure. These risk measures satisfy the following semi-group property for

the inf-convolution:
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Proposition 3.5 Let
(
ργ , γ > 0

)
be the family of γ-tolerant risk measures issued of ρ. Then, the following

properties hold:

i) For any γA, γB > 0, ργA
�ργB

= ργA+γB
.

ii) Moreover, F ∗ = γB

γA+γB
X is an optimal structure for the minimization program:

ργA+γB
(X) = ργA

�ργB
(X) = inf

F

{
ργA

(X − F ) + ργB
(F )

}
= ργA

(
X − F ∗

)
+ ργB

(
F ∗

)
.

The inf-convolution is said to be exact at F ∗.

iii) Let ρ and ρ′ be two convex risk measures. Then, for any γ > 0, ργ�ρ′γ = (ρ�ρ′)γ .

iv) Assume ρ(0) = 0 and ρ′(0) = 0. When γ = +∞, this relationship still holds: ρ∞�ρ′∞ = (ρ�ρ′)∞.

v) If ρ0+�ρ′0+(0) > −∞, we also have ρ0+�ρ′0+ = (ρ�ρ′)0+ .

Proof: Both i) and iii) are immediate consequences of the de�nition of in�mal convolution.

ii) We �rst study the stability property of the functional ργ by studying the optimization program ργA
(X −

F ) + ργB
(F ) → minF restricted to the family {αX,α ∈ R}. Then, given the expression of the functional ργ ,

a natural candidate becomes F ∗ = γB

γA+γB
X, since

ργA

(
X − F ∗

)
+ ργB

(
F ∗

)
= (γA + γB)ρ

( 1
γA + γB

X
)

= ργC
(X).

iv) The asymptotic properties are based on the non increase of the map γ → ργ . Then, when γ goes to

in�nity, pass to the limit is equivalent to take the in�mum w.r. of γ and change the order of minimization,

in such way that pass to the limit is justi�ed.

v) When γ goes to 0, the problem becomes a minimax problem, and we only obtain the inequality.

When the �nite assumption holds, by Theorem 3.1, the minimal penalty function of ρ0+�ρ′0+ is α0+ + α′0+ .

By the properties of conservative risk measures, α0+ is the convex indicator of Dom(α). So, α0+ + α′0+ =

lDom(α)∩Dom(α)′ . On the other hand, the minimal penalty function of (ρ�ρ′)0+ is the indicator of Dom(α+

α′). Since, α is dominated by the same minimal bound −ρ(0), Dom(α + α′) = Dom(α) ∩Dom(α′) Both

risk measures have same minimal penalty functions. This completes the proof. �

3.1.3 An Example of Inf-Convolution: the Market Modi�ed Risk Measure

We now consider a particular inf-convolution which is closely related to Subsection 1.4 as it also deals with

the question of optimal hedging.

More precisely, the following minimization problem

inf
H∈VT

ρ(X −H)

can be seen as an hedging problem, where VT corresponds to the set of hedging instruments. It somehow

consists of restricting the risk measure ρ to a particular set of admissible variables and is in fact the inf-

convolution ρ�νVT . Using Proposition 3.2, it can also be seen as the inf-convolution ρ�lVT �ρworst. The

main role of ρworst is to transform the convex indicator lVT , which is not a convex risk measure (in particular,

it is not translation invariant), into the convex risk measure νVT .
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The following corollary is an immediate extension of Theorem 3.1 as it establishes that the value functional

of the problem, denoted by ρm, is a convex risk measure, called market modi�ed risk measure.

Corollary 3.6 Let VT be a convex subset of L∞(P) and ρ be a convex risk measure with penalty function α

such that inf
{
ρ(−ξT ), ξT ∈ VT

}
> −∞. The inf-convolution of ρ and νVT , ρm ≡ ρ�νVT , also de�ned as

ρm(Ψ) ≡ inf
{
ρ(Ψ− ξT )

∣∣ ξT ∈ VT

}
= ρ�lVT (Ψ) (17)

is a convex risk measure, called market modi�ed risk measure, with minimal penalty function de�ned on

M1,ac(P), αm(Q) = α(Q) + αVT (Q).

Moreover, if ρ is continuous from below, ρm is also continuous from below.

This corollary makes precise the direct impact on the risk measure of the agent of the opportunity to invest

optimally in a �nancial market.

Remark 3.7 Note that the set VT is rather general. In most cases, additional assumptions will be added

and the framework will be similar to those described in Subsection 1.5.

Acceptability and market modi�ed risk measure: The market modi�ed risk measure has to be related

to the notion of acceptability introduced by Carr, Geman and Madan in [28]. In this paper, they relax the

strict notion of hedging in the following way: instead of imposing that the �nal outcome of an acceptable

position, suitably hedged, should always be non-negative, they simply require that it remains greater than

an acceptable position. More precisely, using the same notations as in Subsection 1.5 and denoting by A a

given acceptance set and by ρA its related risk measure, we can de�ne the convex risk measure:

ν̄H(X) = inf
{
m ∈ R, ∃θ ∈ K ∃A ∈ A : m + X + G(θ) ≥ A P a.s.

}
To have a clearer picture of what this risk measure really is, let us �rst �x G(θ). In this case, we simply

look at ρA(X + G(θ)). Then, the risk measure ν̄H is de�ned by taking the in�mum of ρA(X + G(θ)) with

respect to θ,

ν̄H(X) = inf
θ∈K

ρA(X + G(θ)) = inf
H∈H

ρA(X −H)

Therefore, the risk measure ν̄H is in fact the particular market modi�ed risk measure ρm = νH�ρA. We

obtain directly the following result of Föllmer and Schied [54] (Proposition 4.98): the minimal penalty

function of this convex risk measure ν̄H is given by

ᾱH(Q) = αH(Q) + α(Q)

where αH is the minimal penalty function of νH and α is the minimal penalty function of the convex risk

measure with acceptance set A.

4 Optimal Derivative Design

In this section, we now present our main problem, that of derivative optimal design (and pricing). The

framework we generally consider involves two economic agents, at least one of them being exposed to a
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non-tradable risk. The risk transfer between both agents takes place through a structured contract denoted

by F for an initial price π. The problem is therefore to design the transaction, in other words, to �nd the

structure F and its price π. This transaction may occur only if both agents �nd some interest in doing

this transaction. They express their satisfaction or interest in terms of the expected utility of their terminal

wealth after the transaction, or more generally in terms of risk measures.

4.1 General Modelling

4.1.1 Framework

Two economic agents, respectively denoted by A and B, are evolving in an uncertain universe modelled by

a standard measurable space (Ω,=) or, if a reference probability measure is given, by a probability space

(Ω,=, P). In the following, for the sake of simplicity in our argumentation, we will make no distinction

between both situations. More precisely, in the second case, all properties should hold P− a.s..

Both agents are taking part in trade talks to improve the distribution and management of their own risk.

The nature of both agents can be quite freely chosen. It is possible to look at them in terms of a classical

insured-insurer relationship, but from a more �nancial point of view, we may think of agent A as a market

maker or a trader managing a particular book and of agent B as a traditional investor or as another trader.

More precisely, we assume that at a future time horizon T , the value of agent A's terminal wealth, denoted

by XA
T , is sensitive to a non-tradable risk. Agent B may also have her own exposure XB

T at time T . Note

that by "terminal wealth", we mean the terminal value at the time horizon T of all capitalized cash �ows

paid or received between the initial time and T ; no particular sign constraint is imposed. Agent A wants

to issue a structured contract (�nancial derivative, insurance contract...) F with maturity T and forward

price π to reduce her exposure XA
T . Therefore, she calls on agent B. Hence, when a transaction occurs, the

terminal wealth of the agent A and B are

WA
T = XA

T − F + π, WB
T = XB

T + F − π.

As before, we assume that all the quantities we consider belong to the Banach space X , or, if a reference

probability measure is given, to L∞(P).

The problem is therefore to �nd the optimal structure of the risk transfer (F, π) according to a given choice

criterion, which is in our study a convex risk measure. More precisely, assuming that agent A (resp. agent

B) assesses her risk exposure using a convex risk measure ρA (resp. ρB), agent A's objective is to choose the

optimal structure
(
F, π

)
in order to minimize the risk measure of her �nal wealth

ρA(XA
T − F + π) → inf

F∈X ,π
.

Her constraint is then to �nd a counterpart. Hence, agent B should have an interest in doing this transaction.

At least, the F -structure should not worsen her risk measure. Consequently, agent B simply compares the

risk measures of two terminal wealth, the �rst one corresponds to the case of her initial exposure XB
T and

the second one to her new wealth if she enters the F -transaction,

ρB(XB
T + F − π) ≤ ρB(XB

T ).
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4.1.2 Transaction Feasibility and Optimization Program

The optimization program as described above as

inf
F∈X ,π

ρA(XA
T − F + π) subject to ρB(XB

T + F − π) ≤ ρB(XB
T ) (18)

can be simpli�ed using the cash translation invariance property. More precisely, binding the constraint

imposed by agent B at the optimum and using the translation invariance property of ρB , we �nd directly

the optimal pricing rule for a structure F :

πB(F ) = ρB

(
XB

T

)
− ρB

(
XB

T + F
)
. (19)

This pricing rule is an indi�erence pricing rule for agent B. It gives for any structure F the maximum amount

agent B is ready to pay in order to enter the transaction.

Note also that this optimal pricing rule together with the cash translation invariance property of the func-

tional ρA enable us to rewrite the optimization program (18) as follows, without any need for a Lagrangian

multiplier:

inf
F∈X

{
ρA

(
XA

T − F
)

+ ρB

(
XB

T + F
)
− ρB

(
XB

T

)}
or to within the constant ρB(XB

T ) as:

RAB(XA
T , XB

T ) = inf
F∈X

{ρA

(
XA

T − F
)

+ ρB

(
XB

T + F
)
}. (20)

Interpretation in Terms of Indi�erence Prices This optimization program (Program (20)) can be

reinterpreted in terms of the indi�erence prices, using the notations introduced in the exponential utility

framework in Subsection 1.1.2. To show this, we introduce the constants ρA

(
XA

T

)
and ρB

(
XB

T

)
in such a

way that Program (20) is equivalent to:

inf
F∈X

{
ρA

(
XA

T − F
)
− ρA

(
XA

T

)
+ ρB

(
XB

T + F
)
− ρB

(
XB

T

)
}.

Then, using the previous comments, it is possible to interpret ρA

(
XA

T −F
)
−ρA

(
XA

T

)
as πs

A

(
F |XA

T

)
, i.e. the

seller's indi�erence pricing rule for F given agent A's initial exposure XA
T , while ρB

(
XB

T + F
)
− ρB

(
XB

T

)
is

simply the opposite of πb
B(F |XB

T ), the buyer's indi�erence pricing rule for F given agent B's initial exposure

XB
T . For agent A, everything consists then of choosing the structure as to minimize the di�erence between

her (seller's) indi�erence price (given XA
T ) and the (buyer's) indi�erence price imposed by agent B:

inf
F∈X

{
πs

A

(
F |XA

T

)
− πb

B

(
F |XB

T

)}
≤ 0. (21)

Note that for F ≡ 0, the spread between both transaction indi�erence prices is equal to 0. Hence, the

in�mum is always non-positive. This is completely coherent with the idea that the optimal transaction

obviously reduces the risk of agent A. The transaction may occur since the minimal seller price is less than

the maximal buyer price.

For agent A, everything can also be expressed as the following maximization program

sup
F∈X

{
πb

B

(
F |XB

T

)
− πs

A

(
F |XA

T

)}
. (22)
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The interpretation becomes then more obvious since the issuer has to optimally choose the structure in order

to maximize the "ask-bid" spread associated with transaction.

Relationships with the Insurance Literature and the Principal-Agent Problem The relationship

between both agents is very similar to a Principal-Agent framework. Agent A plays an active role in the

transaction. She chooses the "payment structure" and then is the "Principal" in our framework. Agent B,

on the other hand, is the "Agent" as she simply imposes a price constraint to the Principal and in this sense

is rather passive.

Such a modelling framework is also very similar to an insurance problem: Agent A is looking for an optimal

"insurance" policy to cover her risk (extending here the simple notion of loss as previously mentioned). In

this sense, she can be seen as the "insured". On the other hand, Agent B accepts to bear some risk. She

plays the same role as an "insurer" for Agent A. In fact, this optimal risk transfer problem is closely related

to the standard issue of optimal policy design in insurance, which has been widely studied in the literature

(see for instance Borch [18], Bühlman [23], [24] and [25], Bühlman and Jewell [27], Gerber [60], Raviv [99]).

One of the fundamental characteristics of an insurance policy design problem is the sign constraint imposed

on the risk, that should represent a loss. Other speci�cations can be mentioned as moral hazard or adverse

selection problems that have to be taken into account when designing a policy (for more details, among a

wide literature, refer for instance to the two papers on the relation Principal-Agent by Rees [100] and [101]).

These are related to the potential in�uence of the insured on the considered risk.

Transferring risk in �nance is somehow di�erent. Risk is then taken in a wider sense as it represents the

uncertain outcome. The sign of the realization does not a priori matter in the design of the transfer. The

derivative market is a good illustration of this aspect: forwards, options, swaps have particular payo�s which

are not directly related to any particular loss of the contract's seller.

4.2 Optimal Transaction

This subsection aims at solving explicitly the optimization Program (20):

RAB(XA
T , XB

T ) = inf
F∈X

{ρA

(
XA

T − F
)

+ ρB

(
XB

T + F
)
}.

The value functional RAB(XA
T , XB

T ) can be seen as the residual risk measure after the F -transaction, or

equivalently as a measure of the risk remaining after the transaction. It obviously depends on both initial

exposures XA
T and XB

T since the transaction consists of an optimal redistribution of the respective risk of

both agents.

Let us denote by F̃ ≡ XB
T + F ∈ X . The program to be solved becomes

RAB

(
XA

T , XB
T

)
= inf

F̃∈X
{ρA

(
XA

T + XB
T − F̃

)
+ ρB

(
F̃

)
},

or equivalently, using Section 3, it can be written as the following inf-convolution problem

RAB

(
XA

T , XB
T

)
= ρA�ρB(XA

T + XB
T ). (23)
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As previously mentioned in Theorem 3.1, the condition ρA�ρB(0) > −∞ is required when considering this

inf-convolution problem. This condition is equivalent to ∀ξ ∈ X , ρA
0+(ξ) + ρB

0+(−ξ) ≥ 0 (Theorem 3.3 iii)).

This property has a nice economic interpretation, since it says that the inf-convolution program makes sense

if and only if for any derivative ξ, the conservative seller price of the agent A, −ρA
0+(ξ), is less than the

conservative buyer price of the agent B, ρB
0+(−ξ).

In the following, we assume such a condition to be satis�ed. The problem is not to study the residual risk

measure as previously but to characterize the optimal structure F̃ ∗ or F ∗ such that the inf-convolution is

exact at this point.

To do so, we �rst consider a particular framework where the optimal transaction can be explicitly identi�ed.

This corresponds to a well-studied situation in economics where both agents belong to the same family.

4.2.1 Optimal Transaction between Agents with Risk Measures in the Same Family

More precisely, we now assume that both agents have γ-tolerant risk measures ργA
and ργB

from the same

root risk measure ρ with risk tolerance coe�cients γA and γB , as introduced in Subsection 2.1. In this

framework, the optimization program (23) is written as follows:

RAB

(
XA

T , XB
T

)
= ργA

�ργB
(XA

T + XB
T )

In this framework, the optimal risk transfer is consistent with the so-called Borch's theorem. In this sense,

the following result can be seen as an extension of this theorem since the framework we consider here is

di�erent from that of utility functions. In his paper [18], Borch obtained indeed, in a utility framework,

optimal exchange of risk, leading in many cases to familiar linear quota-sharing of total pooled losses.

Theorem 4.1 (Borch [18]) The residual risk measure after the transaction is given by:

RAB

(
XA

T , XB
T

)
= inf

F∈X

{
ργA

(
XA

T − F
)

+ ργB

(
XB

T + F
)}

= ργC
(XA

T + XB
T ) with γC = γA + γB .

The optimal structure is given as a proportion of the initial exposures XA
T and XB

T , depending only on the

risk tolerance coe�cients of both agents:

F ∗ =
γB

γA + γB
XA

T −
γA

γA + γB
XB

T (to within a constant). (24)

The equality in the equation (24) has to be understood P a.s. if the space of structured products is L∞(P).

Proof: The optimization program (20) to be solved (with F̃ ≡ XB
T + F ∈ X ) is

RAB

(
XA

T , XB
T

)
= inf

F̃∈X

(
ργA

(
XA

T + XB
T − F̃

)
+ ργB

(
F̃

))
.

Using Proposition 3.5, the optimal structure F̃ ∗ is F̃ ∗ = γB

γA+γB
(XA

T + XB
T ). The result is then obtained by

replacing F̃ ∗ by F ∗ −XB
T . �

Comments and properties: i) Both agents are transferring a part of their initial risk according to their

relative tolerance. The optimal risk transfer underlines the symmetry of the framework for both agents.
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Moreover, even if the issuer, agent A has no exposure, a transaction will occur between both agents. The

structure F enables them to exchange a part of their respective risk. Note that if none of the agents is

initially exposed, no transaction will occur. In this sense, the transaction has a non-speculative underlying

logic.

ii) Note also that the composite parameter γC is simply equal to the sum of both risk tolerance coe�cients

γA and γB . This may justify the use of risk tolerance instead of risk aversion where harmonic mean has to

be used.

4.2.2 Individual Hedging as a Risk Transfer

In this subsection, we now focus on the individual hedging problem of agent A and see how this problem can

be interpreted as a particular risk transfer problem. The question of optimal hedging has been widely studied

in the literature under the name of �hedging in incomplete markets and pricing via utility maximization� in

some particular framework. Most of the studies have considered exponential utility functions. Among the

numerous papers, we may quote the papers by Frittelli [55], El Karoui and Rouge [51], Delbaen et al. [39],

Kabanov and Stricker [75] or Becherer [11].

We assume that agent A assesses her risk using a (L∞(P)) risk measure ρA. She can (partially) hedge her

initial exposure X using instruments from a convex subset VA
T (of L∞(P)). Her objective is to minimize the

risk measure of her terminal wealth.

inf
ξ∈VA

T

ρA

(
XA

T − ξ
)
. (25)

The L∞(P) framework has been carefully described in Subsection 1.5. In particular, to have coherent

transaction prices, we assume in the following that the market is arbitrage-free.

As already mentioned in Subsection 3.1.3, the opportunity to invest optimally in a �nancial market has a

direct impact on the risk measure of the agent and transforms her initial risk measure ρA into the market

modi�ed risk measure ρm
A = ρA�νA.

This inf-convolution problem makes sense if the condition ρm
A (0) > −∞ is satis�ed. The hedging problem of

agent A is identical to the previous risk transfer problem (20), agent B being now the �nancial market with

the associated risk measure νA.

Existence of an Optimal Hedge The question of the existence of an optimal hedge can be answered

using di�erent approaches. One of them is based on analysis techniques and we present it in this subsection.

In the following, however, when introducing dynamic risk measures, we will consider other methods leading

to a more constructive answer.

In this subsection, we are interested in studying the existence of a solution for the hedging problem of agent

A (Program (25)) or equivalently for the inf-convolution problem in L∞(P). The following of existence can

be obtained:

Theorem 4.2 Let VT be a convex subset of L∞(P) and ρ be a convex risk measure on L∞(P) continuous

from below, such that infξ∈VT
ρ(−ξ) > −∞.
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Assume the convex set VT bounded in L∞(P). The in�mum of the hedging program

ρm
(
X

)
, inf

ξ∈VT

ρ
(
X − ξ

)
is �attained� for a random variable ξ∗T in L∞(P), belonging to the closure of VT with respect to the a.s.

convergence.

Proof: First note that the proof of this theorem relies on arguments similar to those used by Kabanov and

Stricker [75]. In particular, a key argument is the Komlos Theorem (Komlos [82]):

Lemma 4.3 (Komlos) Let (φn) be a sequence in L1(P) such that supn EP(|φn|) < +∞. Then there exists

a subsequence (φn′) of (φn) and a function φ∗ ∈ L1(P) such that for every further subsequence
(
φn′′

)
of

(φn), the Cesaro-means of these subsequences converge to ϕ∗, that is

lim
N→∞

1
N

N∑
n′′=1

φn′′(ω) = φ∗(ω) for almost every ω ∈ Ω.

We �rst show that the set Sr = {ξ ∈ L∞(P)
∣∣ ρ(X − ξ) ≤ r} is closed for the weak*-topology. To do that, by

the Krein-Smulian theorem ([54] Theorem A.63), it is su�cient to show that Sr ∩ {ξ; ‖ξ‖∞ ≤ C} is closed

in L∞(P).

Let (ξn ∈ VT ) be a sequence bounded by C, converging in L∞ to ξ∗. A subsequence still denoted by ξn

converges a.s. to ξ∗. Since ρA is continuous from below, ρ is continuous w.r. to pointwise convergence of

bounded sequences and then ξ∗ belongs to Sr. Sr is weak*-closed.

Given the assumption that (ξn) is L∞-bounded, we can apply Komlos lemma: therefore, there exists a

subsequence (ξjk
∈ VA

T ) such that the Cesaro-means, ξ̃n , 1
n

n∑
k=1

ξjk
converges almost surely to ξ∗ ∈ L∞(P).

Note that ξ̃n belongs to VA
T as a convex combination of elements of VA

T . So ξ∗ belongs to the a.s. closure of

VA
T . Since ρA is continuous from below, ρ is continuous w.r. to pointwise convergence of bounded sequences.

lim
n

sup ρA

(
X − ξ̃n

)
≤ ρA

(
X − ξ∗

)
= ρA

(
lim
n

(
X − ξ̃n

))
≤ lim

n
inf ρA

(
X − ξ̃n

)
.

Then, ρm
A (X) ≤ ρA(X−ξ∗) ≤ limn inf ρA

(
1
n

n∑
k=1

(X−ξjk
)
)
≤ limn inf 1

n

n∑
k=1

ρA(X−ξjk
) by Jensen inequality.

Finally, given the convergence of ρA

(
X − ξjk

)
to ρm

A (X), the Cesaro-means also converge and ρA(X − ξ∗) =

infξ∈VA
T

ρA(X − ξ). �

4.2.3 γ-Tolerant Risk Measures: Derivatives Design with Hedging Opportunities

We now consider the situation where both agents A and B have a γ-dilated risk measure, de�ned on L∞(P)

and continuous from above. Moreover, they may reduce their risk by transferring it between themselves but

also by investing in the �nancial market, choosing optimally their �nancial investments.

The investment opportunities of both agents are described by two convex subsets VA
T and VB

T of L∞(P). In

order to have coherent transaction prices, we assume that the market is arbitrage-free. In our framework,

this can be expressed as the existence of a probability measure which is equivalent to P in both sets of
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probability measures MVi
T

=
{
Q ∈M1,e(P);∀ξ ∈ Vi

T , EQ[−ξ] ≤ 0
}
for i = A,B. Equivalently,

∃Q ∼ P s.t. Q ∈MVA
T
∩MVB

T
.

This opportunity to invest optimally in a �nancial market reduces the risk of both agents. To assess their

respective risk exposure, they now refer to market modi�ed risk measures ρm
γA

and ρm
γB

de�ned if J = A,B

as

ρm
γA

(Ψ) = ργA
�νA(Ψ) and ρm

γB
(Ψ) = ργB

�νB(Ψ).

Let us consider directly the optimal risk transfer problem with these market modi�ed risk measures, i.e.

Rm
AB

(
XA

T + XB
T

)
= inf

F∈X

{
ρm

γA

(
XA

T − F
)

+ ρm
γB

(
XB

T + F
)}

(26)

The details of this computation will be given in the next subsection, when considering the general framework.

The residual risk measure Rm
AB

(
XA

T +XB
T

)
de�ned in equation (26) may be simpli�ed using the commutativity

property of the inf-convolution and the semi-group property of γ-tolerant risk measures:

Rm
AB

(
XA

T + XB
T

)
= ρm

γA
�ρm

γB

(
XA

T + XB
T

)
= ργA

�νA�ργB
�νB

(
XA

T + XB
T

)
= ργA

�ργB
�νA�νB

(
XA

T + XB
T

)
= ργC

�νA�νB
(
XA

T + XB
T

)
.

where ργC
is the γ-tolerant risk measure associated with the risk tolerance coe�cient γC = γA + γB .

This inf-convolution program makes sense under the initial condition ρm
γA

�ρm
γB

(0) > −∞. Such an assump-

tion is made. The following theorem gives the optimal risk transfer in di�erent situations depending on the

access both agents have to the �nancial markets.

Theorem 4.4 Let both agents have γ-tolerant risk measures with respective risk tolerance coe�cients γA

and γB.

(a) If both agents have the same access to the �nancial market from a cone, VT , then an optimal structure,

solution of the minimization Program (26) is given by:

F ∗ =
γB

γA + γB
XA

T −
γA

γA + γB
XB

T .

(b) Assume that both agents have di�erent access to the �nancial market via two convex sets VA
T and VB

T .

Suppose ξ∗ = η∗A + η∗B is an optimal solution of the Program inf
ξ∈V(A+B)

T

ργC

(
XA

T +XB
T − ξ

)
with η∗A ∈ V

(A)
T ,

η∗B ∈ V
(B)
T and V(A+B)

T =
{
ξA
T + ξB

T | ξA
T ∈ V(A)

T , ξB
T ∈ V(B)

T

}
. Then

F ∗ =
γB

γA + γB
XA

T −
γA

γA + γB
XB

T − γB

γA + γB
η∗A +

γA

γA + γB
η∗B

is an optimal structure. Moreover,

i) η∗B is an optimal hedging portfolio of
(
XB

T + F ∗
)
for Agent B

1
γB

ργB

(
XB

T + F ∗ − η∗B
)

=
1

γB
inf

ξB∈V(B)
T

ργB

(
XB

T + F ∗ − ξB

)
=

1
γC

ργC

(
XA

T + XB
T − ξ∗

)
.
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ii) η∗A is an optimal hedging portfolio of
(
XA

T − F ∗
)
for Agent A

1
γA

ργA

(
XA

T −
(
F ∗ + η∗A

))
=

1
γA

inf
ξA∈V(A)

T

ργA

(
XA

T −
(
F ∗ + ξA

))
=

1
γC

ργC

(
XA

T + XB
T − ξ∗

)
.

Proof: To prove this theorem, we proceed in several steps:

Step 1:

Let us �rst observe that

Rm
AB

(
XA

T + XB
T

)
= ργC

(
XA

T + XB
T − ξ∗

)
= inf

F̃∈X

(
ργA

(
XA

T + XB
T − F̃ − ξ∗

)
+ ργB

(
F̃

))
,

where F̃ = F +XB
T −ξB . Given Proposition 3.5, we obtain directly an expression for the optimal �structure�

F̃ ∗ as: F̃ ∗ = γB

γA+γB

(
XA

T + XB
T − ξ∗

)
= γB

γC

(
XA

T + XB
T − ξ∗

)
. Moreover, ργB

(F̃ ) = γB

γC
(XA

T + XB
T − ξ∗).

Step 2:

Rewriting in the reverse order, we naturally set F ∗ = F̃ ∗ −XB
T + η∗B . We then want to prove that η∗B is an

optimal investment for agent B.

For the sake of simplicity in our notation, we consider GX (ξA, ξB , F ) , ργA

(
XA

T − F − ξA

)
+

ργB

(
XB

T + F − ξB

)
.

Given the optimality of ξ∗ = η∗A + η∗B and F̃ ∗ = F ∗ + XB
T − η∗B , we have

Rm
AB

(
XA

T + XB
T

)
= GX (η∗A, η∗B , F ∗)

= inf
F∈X ,ξA∈V(A)

T ,ξB∈V(B)
T

GX (ξA, ξB , F ) ≤ inf
ξB∈V(B)

T

GX (η∗A, ξB , F ∗) ≤ GX (η∗A, η∗B , F ∗) .

Then η∗B is optimal for the problem ργB
(F − ξB) → inf

ξB∈V(B)
T

. The optimality of η∗A can be proved using

the same arguments. �

Remark 4.5 (a) We �rst assume that both agents have the same access to the �nancial market from a

cone H. Given the fact that the risk measure generated by H is coherent and thus invariant by dilatation,

the market modi�ed risk measures of both agents are generated from the root risk measure ρ�νH = ρH as

ρHA = ργA
�νH = ργA

�νHγA
=

(
ρ�νH

)
γA

= ρHγA
and ρHB = ρHγB

.

(b) In a more general framework, when both agents have di�erent access to the �nancial market, the convex

set V(A+B)
T associated with the risk measure ν(A+B) = νA�νB plays the same role as the set H above, since

ργC
�νA�νB

(
XA

T + XB
T

)
= ργC

�ν(A+B)
(
XA

T + XB
T

)
.

Comments: Note that when both agents have the same access to the �nancial market, it is optimal to

transfer the same proportion of the initial risk as in the problem without market. This result is very

strong as it does not require any speci�c assumption either for the non-tradable risk or the �nancial market.

Moreover, the optimal structure F ∗ does not depend on the �nancial market. The impact of the �nancial

market is simply visible through the pricing rule, which depends on the market modi�ed risk measure of

agent B.

Standard diversi�cation will also occur in exchange economies as soon as agents have proportional penalty

functions. The regulator has to impose very di�erent rules on agents as to generate risk measures with
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non-proportional penalty functions if she wants to increase the diversi�cation in the market. In other words,

diversi�cation occurs when agents are very di�erent one from the other. This result supports for instance

the intervention of reinsurance companies on �nancial markets in order to increase the diversi�cation on the

reinsurance market.

4.2.4 Optimal Transaction in the General Framework

We now come back to our initial problem of optimal risk transfer between agent A and agent B, when now

they both have access to the �nancial market to hedge and diversify their respective portfolio.

General framework As in the dilated framework, we assume that both their risk measures ρA and ρB are

de�ned on L∞(P) and are continuous from above. The investment opportunities of both agents are described

by two convex subsets VA
T and VB

T of L∞(P) and the �nancial market is assumed to be arbitrage-free.

1. This opportunity to invest optimally in a �nancial market reduces the risk of both agents. To assess

their respective risk exposure, they now refer to market modi�ed risk measures ρm
A and ρm

B de�ned if

J = A,B as ρm
J (Ψ) , inf

ξJ∈V(J)
T

ρJ(Ψ− ξJ). As usual, we assume that ρm
J (0) > −∞ for the individual

hedging programs to make sense. Thanks to Corollary 3.6,

ρm
A (Ψ) = ρA�νA(Ψ) and ρm

B (Ψ) = ρB�νB(Ψ).

2. Consequently, the optimization program related to the F -transaction is simply

inf
F,π

ρm
A

(
XA

T − F + π
)

subject to ρm
B

(
XB

T + F − π
)
≤ ρm

B

(
XB

T

)
.

As previously, using the cash translation invariance property and binding the constraint at the opti-

mum, the pricing rule of the F -structure is fully determined by the buyer as

π∗(F ) = ρm
B

(
XB

T

)
− ρm

B

(
XB

T + F
)
. (27)

It corresponds to an �indi�erence� pricing rule from the agent B's market modi�ed risk measure.

3. Using again the cash translation invariance property, the optimization program simply becomes

inf
F

{
ρm

A

(
XA

T − F
)

+ ρm
B

(
XB

T + F
)}
− ρm

B

(
XB

T

)
, Rm

AB

(
XA

T + XB
T

)
− ρm

B

(
XB

T

)
.

With the functional Rm
AB , we are in the framework of Theorem 3.1.

Rm
AB

(
XA

T + XB
T

)
= inf

F

{
ρm

A

(
XA

T − F
)

+ ρm
B

(
XB

T + F
)}

(28)

= inf
F̃

{
ρm

A

(
XA

T + XB
T − F̃

)
+ ρm

B

(
F̃

)}
= ρm

A �ρm
B

(
XA

T + XB
T

)
= ρA�νA�ρB�νB

(
XA

T + XB
T

)
. (29)

The value functional Rm
AB of this program, resulting from the inf-convolution of four di�erent risk

measures, may be interpreted as the residual risk measure after all transactions. This inf-convolution

problem makes sense if the initial condition ρm
A �ρm

B (0) > −∞ is satis�ed.
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4. Using the previous Theorem 3.1 on the stability of convex risk measure, provided the initial condition

is satis�ed, Rm
AB is a convex risk measure with the penalty function αm

AB = αm
A + αm

B = αA + αB +

αV
A
T + αV

B
T .

Comments: The general risk transfer problem can be viewed as a game involving four di�erent agents if the

access to the �nancial market is di�erent for agent A and agent B (or three otherwise). As a consequence,

we end up with an inf-convolution problem involving four di�erent risk measures, two per agents.

Optimal design problem Our problem is to �nd an optimal structure F ∗ realizing the minimum of the

Program (28):

Rm
AB

(
XA

T + XB
T

)
= inf

F

{
ρm

A

(
XA

T − F
)

+ ρm
B

(
XB

T + F
)}

Let us �rst consider the following simple inf-convolution problem between a convex risk measure ρB and a

linear function qA as introduced in Subsection 3.1:

qA�ρB(X) = inf
F
{EQA

[−(X − F )] + ρB(F )}. (30)

Proposition 4.6 The necessary and su�cient condition to have an optimal solution F ∗ to the linear inf-

convolution problem (30) is expressed in terms of the subdi�erential of ρB as QA ∈ ∂ρB(F ∗).

This necessary and su�cient corresponds to the �rst order condition of the optimization problem. More

generally, the following result is obtained:

Theorem 4.7 (Characterization of the optimal) Assume that ρm
A �ρm

B (0) > −∞.

The inf-convolution program

Rm
AB

(
XA

T + XB
T

)
= inf

F

{
ρm

A

(
XA

T − F
)

+ ρm
B

(
XB

T + F
)}

is exact at F ∗ if and only if there exists QX
AB ∈ ∂Rm

AB(XA
T + XB

T ) such that QX
AB ∈ ∂ρm

A (XA
T − F ∗) ∩

∂ρm
B (XB

T + F ∗).

In other words, the necessary and su�cient condition to have an optimal solution F ∗ to the inf-convolution

program is that there exists an optimal additive measure QX
AB for

(
XA

T + XB
T , Rm

AB

)
such that XB

T + F ∗ is

optimal for
(
QX

AB , αm
B

)
and XA

T − F ∗ is optimal for
(
QX

AB , αm
A

)
.

Both notions of optimality are rather intuitive as they simply translate the fact that the dual representations

of the risk measure on the one hand, and of the penalty function on the other hand, are exact respectively

at a given additive measure and at a given exposure.

A natural interpretation of this theorem is that both agents agree on the measure QX
AB in order to value

their respective residual risk. This agreement enables the transaction.

Proof:

Let us denote by QX
AB the optimal additive measure for

(
XA

T +XB
T , Rm

AB

)
. In this case, QX

AB ∈ ∂Rm
AB(XA

T +

XB
T ). As mentioned in Subsection 1.2, the existence of such an additive measure is guaranteed as soon as the
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penalty function is de�ned by Equation (10). This justi�es the writing of the theorem in terms of additive

measures rather than in terms of probability measures.

i) In the proof, we denote by X , XA
T +XB

T and by Ψc, the centered random variable Ψ with respect to the

given additive measure QX
AB optimal for

(
X, RAB

)
: Ψc = Ψ− EQX

AB
[Ψ]. So, by de�nition,

−RAB

(
Xc

)
= αA

(
QX

AB

)
+ αB

(
QX

AB

)
= sup

F

{
− ρA

(
Xc − F c

)}
+ sup

F

{
− ρB

(
F c

)}
≥ − inf

F

{
ρA

(
Xc − F c

)
+ ρB

(
F c

)}
= −RAB

(
Xc

)
.

In particular, all inequalities are equalities and

sup
F

{
− ρA

(
Xc − F c

)}
+ sup

F

{
− ρB

(
F c

)}
= sup

F

{
− ρA

(
Xc − F c

)
− ρB

(
F c

)}
.

Hence, F ∗ is optimal for the inf-convolution problem, or equivalently for the program on the right-hand side

of this equality, if and only if F ∗ is optimal for both problems supF

{
−ρB

(
F c

)}
and supF

{
−ρA

(
Xc−F c

)}
.

The second formulation is a straightforward application of Theorem 3.3 ii), considering the problem not at

0 but at XA
T + XB

T . �

In order to obtain an explicit representation of an optimal structure F ∗, some technical methods involving

a localization of convex risk measures have to be used. This is the aim of the second part of this chapter,

which is based upon some technical results on BSDEs. Therefore, before localizing convex risk measures and

studying our optimal risk transfer in this new framework, we present in a separate section some quick recalls

on BSDEs, which is essential for a good understanding of the second part on dynamic risk measures.

Part II: Dynamic Risk Measures

We now consider dynamic convex risk measures. Quite recently, many authors have studied dynamic version

of static risk measures, focusing especially on the question of law invariance of these dynamic risk measures:

among many other references, one may quote the papers by Cvitanic and Karatzas [35], Wang [111],Scandolo

[107], Weber [112], Artzner et al. [3], Cheridito, Delbaen and Kupper [29] [30] or [31], Detlefsen and Scandolo

[43], Frittelli and Gianin [58], Frittelli and Scandolo [59], Gianin [61], Riedel [102], Roorda, Schumacher and

Engwerda [106] or the lecture notes of Peng [98]. Very recently, extending the work of El Karoui and Quenez

[49], Klöppel and Schweizer have related dynamic indi�erence pricing and BSDEs in [78].

In this second part, we extend the axiomatic approach adopted in the static framework and introduce some

additional axioms for the risk measures to be time-consistent. We then relate the dynamic version of convex

risk measures to BSDEs. The associated dynamic risk measure is called g-conditional risk measure, where

g is the BSDE coe�cient. We will see how the properties of both the risk measure and the coe�cient g are

intimately connected. In particular, one of the key axioms in the characterization of the dynamic convex risk

measure will be the translation invariance, as we will see in Section 6, and this will impose the g-coe�cient

of the related BSDE to depend only on z.
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In the last two sections, we come back to the essential point of this chapter, the optimal risk transfer problem.

We �rst derive some results on the inf-convolution of dynamic convex risk measures and obtain the optimal

structure as a solution to the inf-convolution problem.

The idea behind our approach is to �nd a trade-o� between static and very abstract risk measures as to

obtain tractable risk measures. Therefore, we are more interested in tractability issues and interpretations

of the dynamic risk measures we obtain rather than the ultimate general results in BSDEs.

5 Some recalls on Backward Stochastic Di�erential Equations

In the rest of the chapter, we take into account more information on the risk structure. In particular, we

assume the σ-�eld F generated by a d-dimensional Brownian motion between [0, T ]. Since any bounded

FT -measurable variable is an stochastic integral w.r. to the Brownian motion, the risk measures of interest

have to be robust with respect of this localization principle. To do that, we consider a family of risk measures

described by backward stochastic di�erential equations (BSDE).

In this section, we introduce general BSDEs, de�ning them, recalling some key results on existence and

uniqueness of a solution and presenting the comparison theorem. Complete proofs and additional useful

results are given in the Chapter dedicated to BSDEs.

5.1 General Framework and De�nition

Let
(
Ω,F , P

)
be a probability space on which is de�ned a d-dimensional Brownian motion W := (Wt; t ≤

TH), where TH > 0 is the time horizon of the study. Let us consider the natural Brownian �ltration

F0
t = σ

(
Ws; 0 ≤ s ≤ t; t ≥ 0

)
and (Ft; t ≤ TH) its completion with the P-null sets of F .

Denoting by E the expected value with respect to P, we introduce the following spaces which will be important

in the formal setting of BSDEs. Since the time horizon may be sometimes modi�ed, the de�nitions are

referring to a generic time T ≤ TH .

• L2
n

(
Ft

)
= {η : Ft −measurableRn − valued random variable s.t. E(|η|2) < ∞}.

• Pn(0, T ) = {(φt; 0 ≤ t ≤ T ) : progressively measurable process with values in Rn}
• S2

n(0, T ) = {(φt; 0 ≤ t ≤ T ) : φ ∈ Pn s.t. E[supt≤T |Yt|2] < ∞} .
• H2

n(0, T ) = {(φt; 0 ≤ t ≤ T ) : φ ∈ Pn s.t. E[
∫ T

0
|Zs|2ds] < ∞}.

• H1
n(0, T ) = {(φt; 0 ≤ t ≤ T ) : φ ∈ Pn s.t. E[(

∫ T

0
|Zs|2ds)1/2] < ∞}.

Let us give the de�nition of the one-dimensional BSDE; the multidimensional case is considered in the book's

chapter dedicated to BSDEs.

De�nition 5.1 Let ξT ∈ L2(Ω,FT , P) be a R-valued terminal condition and g a coe�cient P1⊗B(R)⊗B(Rd)-

measurable. A solution for the BSDE associated with (g, ξT ) is a pair of progressively measurable processes

(Yt, Zt)t≤T , with values in R× R1×d such that:

{ (Yt) ∈ S2
1 (0, T ), (Zt) ∈ H2

1×d(0, T )

Yt = ξT +
∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T .

(31)

38



The following di�erential form is also useful

−dYt = g(t, Yt, Zt)dt− ZtdWt, YT = ξT . (32)

Conventional notation: To simply the writing of the BSDE, we adopt the following notations: the

Brownian motion W is described as a column vector (d, 1) and the Z vector is described as a row vector

(1, d) such that the notation ZdW has to be understood as a matrix product with (1,1)-dimension.

Remark 5.2 If ξT and g(t, y, z) are deterministic, then Zt ≡ 0, and (Yt) is the solution of ODE

dyt

dt
= −g(t, yt, 0), yT = ξT .

If the �nal condition ξT is random, the previous solution is FT -measurable, and so non adapted. So we need

to introduce the martingale
∫ t

0
ZsdWs as a control process to obtain an adapted solution.

5.2 Some Key Results on BSDEs

Before presenting key results of BSDEs, we �rst summarize the results concerning the existence and unique-

ness of a solution. The proofs are given in the Chapter dedicated to BSDEs with some complementary

results.

5.2.1 Existence and Uniqueness Results

In the following, we always assume the necessary condition on the terminal condition ξT ∈ L2(Ω,FT , P).

1. (H1): The standard case (uniformly Lipschitz): (g(t, 0, 0); 0 ≤ t ≤ T ) belongs to H2(0, T ) and

g uniformly Lipschitz continuous with respect to (y, z), i.e. there exists a constant C ≥ 0 such that

dP× dt− a.s. ∀(y, y′, z, z′) |g(ω, t, y, z)− g(ω, t, y′, z′)| ≤ C(|y − y′|+ |z − z′|).

Under these assumptions, Pardoux and Peng [95] proved in 1990 the existence and uniqueness of a

solution.

2. (H2) The continuous case with linear growth: there exists a constant C ≥ 0 such that

dP× dt− a.s. ∀(y, z) |g(ω, t, y, z)| ≤ k(1 + |y|+ |z|).

Moreover we assume that dP× dt a.s., g(ω, t, ., .) is continuous in (y, z). Then, there exist a maximal

and a minimal solutions (for a precise de�nition, please refer to the Chapter dedicated to BSDEs), as

proved by Lepeltier and San Martin in 1998 [86].

3. (H3) The continuous case with quadratic growth in z: In this case, the assumption of square

integrability on the solution is too strong. So we only consider bounded solution and obviously terminal

condition ξT ∈ L∞. We also suppose that there exists a constant k ≥ 0 such that

dP× dt− a.s. ∀(y, z) |g(ω, t, y, z)| ≤ k(1 + |y|+ |z|2).
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Moreover we assume that dP× dt− a.s., g(ω, t, ., .) is continuous in (y, z).

Then there exist a maximal and a minimal bounded solutions as �rst proved by Kobylansky [79] in

2000 and extended by Lepeltier and San Martin [86] in 1998. The uniqueness of the solution was

proved by Kobylansky [79] under the additional conditions that the coe�cient g is di�erentiable in

(y, z) on a compact interval [−K, K]× Rd and that there exists c1 > 0 and c2 > 0 such that:

∂g

∂z
≤ c1(1 + |z|), ∂g

∂y
≤ c2(1 + |z|2) (33)

5.2.2 Comparison Theorem

We �rst present an important tool in the study of one-dimensional BSDEs: the so-called comparison theorem.

It is the equivalent of the maximum principle when working with PDEs.

Theorem 5.3 (Comparison Theorem) Let (ξ1
T , g1) and (ξ2

T , g2) be two pairs (terminal condition, coef-

�cient) satisfying one of the above conditions (H1,H2,H3) (but the same for both pairs). Let (Y 1, Z1) and

(Y 2, Z2) be the maximal associated solutions.

(i) We assume that ξ1
T ≤ ξ2

T , P − a.s. and that dP × dt − a.s. ∀(y, z) g1(ω, t, y, z) ≤ g2(ω, t, y, z).

Then we have

Y 1
t ≤ Y 2

t a.s. ∀ t ∈ [0, T ]

(ii) Strict inequality Moreover, under (H1), if in addition Y 1
t = Y 2

t on B ∈ Ft, then a strict version of

this result holds as

a.s. on B ξ1
T = ξ2

T , ∀s ≥ t, Y 1
s = Y 2

s and g1(s, Y 1
s , Z1

s ) = g2(s, Y 2
s , Z2

s ) dP× ds− a.s. on B × [t, T ]

6 Axiomatic Approach and g-Conditional Risk Measures

In this section, we give a general axiomatic approach for dynamic convex risk measures and see how they are

connected to the existing notions of consistent convex price systems and non-linear expectations, respectively

introduced by El Karoui and Quenez [50] and Peng [96]. Then, we relate the dynamic risk measures with

BSDEs and focus on the properties of the solution of some particular BSDEs associated with a convex

coe�cient g, called g-conditional risk measures.

6.1 Axiomatic Approach

Following the study of static risk measures by Föllmer and Schied [53] and [54], we now propose a common

axiomatic approach to dynamic convex risk measures, non-linear expectations and convex price systems and

non-linear.

De�nition 6.1 Let
(
Ω,F , P, (Ft; t ≥ 0)

)
be a �ltered probability space. A dynamic L2-operator (L∞-

operator) Y with respect to
(
Ft; t ≥ 0

)
is a family of continuous semi-martingales which maps, for any

bounded stopping time T , a L2(FT ) (resp. L∞(FT )) -variable ξT onto a process
(
Yt(ξT ); t ∈ [0, T ]

)
. Such

an operator is said to be
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1. (P1) Convex: For any stopping times S ≤ T , for any (ξ1
T , ξ2

T ), for any 0 ≤ λ ≤ 1,

YS(λξ1
T + (1− λ)ξ2

T ) ≤ λYS(ξ1
T ) + (1− λ)YS(ξ2

T ) P− a.s.

2. (P2) Monotonic: For any stopping times S ≤ T , for any (ξ1
T , ξ2

T ) such that ξ1
T ≥ ξ2

T a.s.,

(P2+): the operator is increasing if YS(ξ1
T ) ≥ YS(ξ2

T ) a.s.

(P2-): the operator is decreasing YS(ξ1
T ) ≤ YS(ξ2

T ) a.s.

3. (P3) Translation invariant: For any stopping times S ≤ T and any ηS ∈ FS, for any ξT ,

(P3+) YS(ξT + ηS) = YS(ξT )− ηS a.s., (P3-) YS(ξT + ηS) = YS(ξT )− ηS a.s.

4. (P4) Time-consistent: For S ≤ T ≤ U three bounded stopping times, for any ξU

(P4+) YS

(
ξU

)
= YS

(
YT

(
ξU

))
a.s., (P4-) YS

(
ξU

)
= YS

(
− YT

(
ξU

))
a.s.

5. (P5) Arbitrage-free: For any stopping times S ≤ T , and for any (ξ1
T , ξ2

T ) such that ξ1
T ≥ ξ2

T ,

YS(ξ1
T ) = YS(ξ2

T ) on AS = {S < T} =⇒ ξ1
T = ξ2

T a.s. on AS .

6. (P6) Conditionally invariant: For any stopping times S ≤ T and any B ∈ FS, for any ξT ,

YS(1B ξT ) = 1BYS(ξT ) a.s.

7. (P7) Positive homogeneous: For any stopping times S ≤ T , for any λS ≥ 0 (λS ∈ FS) and for

any ξT ,

YS(λSξT ) = λSYS(ξT ) a.s.

First, note that the property (P5) of no-arbitrage implies that the monotonicity property (P2) is strict.

Most axioms have two di�erent versions, depending on the sign involved. Making such a distinction is

completely coherent with the previous observations in the static part of this chapter about the relationship

between price and risk measure: since the opposite of a risk measure is a price, the axioms with a "+" sign

are related to the characterization of a price system, while the axioms with a "−" sign are related to that of

a dynamic risk measure.

In [50], when studying pricing problems under constraints, El Karoui and Quenez de�ned a consistent convex

(forward) price system as a convex (P1), increasing (P2+), time-consistency (P4+) dynamic operator Pt,

without arbitrage (P5). Time-consistency (P4+) may be view as a dynamic programming principle.

At the same period, Peng introduced the notion of non-linear expectation as a translation invariance

(P3+) convex price system, satisfying the conditional invariance property (P6) which is very intuitive in this

framework, (see for instance, Peng [96]). Note that (P6) of conditional invariance implies some additional

assumptions on the operator Y: in particular for any t, Yt(0) = 0. In the following, we denote the non-linear

expectation by E .
Now on, we focus on dynamic convex risk measures, where now only the properties with the "−" sign hold.
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De�nition 6.2 A dynamic operator satisfying the axioms of convexity (P1), decreasing monotonicity (P2-),

translation invariance (P3-), time-consistency (P4-) and arbitrage-free (P5) is said to be a dynamic convex

risk measure. It will be denoted by R in the following.

If R also satis�es the positive homogeneity property (P7), then it is called a dynamic coherent risk measure.

Note that a non-linear expectation de�nes a dynamic risk measure conditionally invariant and centered.

Remark 6.3 It is not obvious to �nd a negligible set N such that for any bounded stopping time S and any

bounded ξT , ∀ ω /∈ N , ξT → Rg
S(ω, ξT ) is a static convex risk measure. The negligible sets may depend on

the variable ξT itself.

Dynamic Entropic Risk Measure A typical example is the dynamic entropic risk measure , obtained

by conditioning the static entropic risk measure. For any ξT bounded:

eγ(ξT ) = γ ln E
[
exp(− 1

γ
ξT )

]
⇒ eγ,t(ξT ) = γ ln E

[
exp(− 1

γ
ξT )|Ft

]
.

Since, ξT is bounded, eγ,t(ξT ) is bounded for any t. Therefore, this dynamic operator de�ned on L∞ satis�es

the properties of dynamic convex risk measures. Convexity, decreasing monotonicity, translation invariance,

no-arbitrage are obvious; the time-consistency property (P4−) results from the transitivity of conditional

expectation:

∀t ≥ 0 , ∀h > 0, eγ,t

(
ξT

)
= eγ,t

(
− eγ,t+h

(
ξT

))
a.s.

We give the easy proof of this identity to help the reader to understand the (−) sign in the formula.

Proof:

Yt+h ≡ eγ,t+h

(
ξT

)
= γ ln E

[
exp(− 1

γ ξT )|Ft+h

]
eγ,t

(
− eγ,t+h

(
ξT

))
= γ ln E

[
exp(− 1

γ (−Yt+h))|Ft

]
= γ ln E

[
exp( 1

γ γ ln E
[
exp(− 1

γ ξT )|Ft+h

]
)|Ft

]
= γ ln E

[
E

[
exp(− 1

γ ξT )|Ft

]]
. �

Moreover, it is possible to relate the dynamic entropic risk measure eγ,t with the solution of a BSDE, as

follows:

Proposition 6.4 The dynamic entropic measure
(
eγ,t(ξT ); t ∈ [0, T ]

)
is solution of the following BSDE with

the quadratic coe�cient g
(
t, z

)
= 1

2γ

∥∥z
∥∥2

and terminal bounded condition ξT .

−deγ,t

(
ξT

)
=

1
2γ

∥∥Zt

∥∥2
dt− ZtdWt eγ,T

(
ξT

)
= −ξT . (34)

Proof: Let us denote by Mt(ξT ) = E
[
exp

(
− 1

γ ξT

)
|Ft

]
. As M is a positive and bounded continuous

martingale, one can use the multiplicative decomposition to get dMt = 1
γ Mt

(
Zt dWt

)
where

(
Zt; t ≥ 0

)
is a

1× d dimensional square-integrable process. By Itô's formula applied to the function γ ln(x), we obtain the

Equation (34).

Note that the conditional expectation of the quadratic variation E
[ ∫ T

t
|Zs|2ds|Ft] = E

[
eγ,t(ξT ) − ξT |Ft

]
is

bounded and conversely if the Equation (34) has the solution (Y,Z) such that YT and E
[ ∫ T

t
|Zs|2ds|Ft] are
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bounded, then Y is bounded. This point will be detailed in Theorem 7.4. �

This relationship between the dynamic entropic risk measure and BSDE can be extended to general dynamic

convex risk measures as we will see in the rest of this section.

6.2 Dynamic Convex Risk Measures and BSDEs

This section is about the relationship between dynamic convex risk measures and BSDEs. More precisely,

we are interested in the correspondence between the properties of the "BSDE" operator and that of the

coe�cient.

We consider the dynamic operator generated by the maximal solution of a BSDE:

De�nition 6.5 Let g be a standard coe�cient. The g-dynamic operator, denoted by Yg, is such that Yg
t (ξT )

is the maximal solution of the BSDE(g, ξT ).

As a consequence, the adopted point of view is di�erent from that of the section dedicated to recalls on

BSDEs where the terminal condition of the BSDE was �xed.

It is easy to deduce properties of the g-dynamic operator from those of the coe�cient g. The converse

is more complex and this study has been initiated by Peng when considering g-expectations ([96]). Our

characterization is based upon the following lemma:

Lemma 6.6 (Coe�cient Uniqueness) Let g1 and g2 be two regular coe�cients, such that uniqueness of

solution for the BSDE(g1) holds. Let Ygi

be gi-dynamic operator(i = 1, 2). Assume that

∀(T, ξT ), dP× dt− a.s. Yg1

t (ξT ) = Yg2

t (ξT ).

a) If the coe�cients g1 and g2 simply depend on t and z, then dP× dt − a.s. ∀z g1(t, z) = g2(t, z).

b) In the general case, the same identity holds provided the coe�cients are continuous w.r. to t.

dP× dt − a.s. ∀(y, z) g1(t, y, z) = g2(t, y, z).

Proof: Suppose that both coe�cients g1 and g2 generate the same solution Y (but a priori di�erent processes

Z1 and Z2) for the BSDEs (g1, ξT ) and (g2, ξT ), for any ξT in the appropriate space (L2 or L∞). Given

the uniqueness of the decomposition of the semimartingale Y , the martingale parts and the �nite variation

processes of the both decompositions of Y are indistinguishable. In particular,
∫ t

0
Z1

s dWs =
∫ t

0
Z2

s dWs =∫ t

0
ZsdWs, a.s. and

∫ t

0
g1(s, Ys, Z

1
s )ds =

∫ t

0
g2(s, Ys, Z

2
s )ds. Therefore,

∫ t

0
g1(s, Ys, Zs)ds =

∫ t

0
g2(s, Ys, Zs)ds.

A priori, these equalities only hold for processes (Y, Z) obtained through BSDEs.

a) Assume that g1 and g2 do not depend on y. Given a bounded adapted process Z, we consider the

following locally bounded semimartingale U as dUt = g1(t, Zt)dt − ZtdWt; U0 = u0. (U,Z) is the solution

of the BSDE(g1, UT∧τ ) where τ is a stopping time s.t. UT∧τ is bounded. By uniqueness,
∫ t∧τ

0
g1(s, Zs)ds =∫ t∧τ

0
g2(s, Zs)ds. As shown in b) below, this equality implies that g1(s, Zs) = g2(s, Zs), a.s. ds×dP. Thanks

to the continuity of g1 and g2 w.r. to z, we can only consider denumerable rational z to show that, with

dt× dP probability one, for any z, g1(s, z) = g2(s, z).
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b1) In the general case, given a bounded process Z, we consider a solution of the following forward stochastic

di�erential equation Y as dYt = g1(t, Yt, Zt)dt − ZtdWt; Y0 = y0 and the stopping time τN de�ned as the

�rst time, when |Y | crosses the level N .

The pair of processes (YτN∧t, Zt1]0,τN ](t)) is solution of the BSDE with bounded terminal condition ξT =

YτN∧T . Thanks to the previous observation, the pair of processes (YτN∧t, Zt1]0,τN ](t)) is also solution of

the BSDE(g2, YτN∧T ). Hence, both processes
∫ t

0
g1(s, Ys, Zs)ds =

∫ t

0
g2(s, Ys, Zs)ds are indistinguishable on

]0, τN ∧ T ]. Since τN goes to in�nity with N , the equality holds at any time, for any bounded process Z.

b2) Assume g1(s, y, z) and g2(s, y, z) continuous w.r. to s. Let z be a given vector. Let Y z
t+h be a forward

perturbation of a general solution Y , at the level z between t and t + h,

Y z
u = Yt +

∫ u

t

g1(s, Y z
s , z)ds−

∫ u

t

zdWs ∀u ∈ [t, t + h].

By assumption, (Y z
u , z) is also solution of the BSDE(g2, Y z

t+h), for u ∈ [t, t + h], and
∫ u

t
g1(s, Y z

s , z)ds =∫ t

t
g2(s, Y z

s , z)ds. Hence, by continuity, 1
hE

[
Y z,i

t+h − Yt|Ft

]
goes in L1 to gi(t, Yt, z) (i = 1, 2) with h → 0.

Then g1(t, Yt, z) = g2(t, Yt, z) for any solution Yt of the BSDE, i.e. for any v.a Ft-measurable. �

Comments Peng ([96] and [98]) and Briand et al. [21] have been among the �rst to look at the dynamic

operators to deduce local properties through the coe�cient g of the associated BSDE, when considering

non-linear expectations. More recently, Jiang has considered the applications of g-expectations in �nance in

his PhD thesis [74].

ii) In [21], Briand et al. proved a more accurate result for g Lipschitz. More precisely, let g be a standard

coe�cient such that P-a.s., t 7−→ g(t, y, z) is continuous and g(t, 0, 0) ∈ S2. Let us �x (t, y, z) ∈ [0, T ]×R×Rd

and consider for each n ∈ N∗, {(Y n
s , Zn

s ); s ∈ [t, tn = t+ 1
n ]} solution of the BSDE (g,Xn) where the terminal

condition Xtn is given by Xtn = y + z
(
Wtn −Wt

)
. Then for each (t, y, z) ∈ [0, T ]× R× Rd, we have

L2 − lim
n→∞

n
(
Y n

t − y
)

= g(t, y, z).

Some properties automatically hold for the dynamic operator Yg simply because it is the maximal solution

of a BSDE. Some others can be obtained by imposing conditions on the coe�cient g:

Theorem 6.7 Let Yg be the g-dynamic operator.

a) Then, Yg is increasing monotonic (P2+), time-consistent (P4+) and arbitrage-free (P5).

b) Moreover, under the assumptions of Lemma 6.6,

1. Yg is conditionally invariant (P6) if and only if for any t ∈ [0, T ], z ∈ Rn, g(t, 0, 0) = 0.

2. Yg is translation invariant (P3+) if and only if g does not depend on y.

3. Yg is homogeneous if and only if g is homogeneous;

c) For properties related to the order, the following implications simply hold:

1. If g is convex, then Yg is convex (P1).

2. If g1 ≤ g2 , then Yg1 ≤ Yg2
.
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Therefore, if g is a convex coe�cient depending only on z, Rg(ξT ) ≡ Yg(−ξT ) is a dynamic convex risk

measure, called g-conditional risk measure.

Note that Yg is a consistent convex price system and moreover, if for any t ∈ [0, T ], g(t, 0) = 0, then Yg is

a non-linear expectation, called g-expectation.

Proof : a) • The strict version of the comparison Theorem 5.3 leads immediately to both properties (P2+)

and (P5).

• Up to now, we have de�ned and considered BSDEs with a terminal condition at a �xed given time T . It is

always possible to consider it as a BSDE with a time horizon TH ≥ T , even if TH is a bounded stopping time.

Obviously, the coe�cient g has to be extended as g1[0,T ] and the terminal condition ξTH
= ξT . Therefore

the solution Yt is constant on [T, TH ].

To obtain the time-consistency property (P4), also called the �ow property, we consider three bounded

stopping times S ≤ T ≤ U and write the solution of the BSDEs as function of the terminal date. With

obvious notations, we want to prove that YS(T, YT (U, ξU )) = YS(U, ξU ) a.s..

By simply noticing that:

YS(T, YT (U, ξU )) = YT (U, ξU )+
∫ T

S
g(t, Zt)dt−

∫ T

S
ZtdWt

= ξU +
∫ U

T
g(t, Zt)dt−

∫ U

T
ZtdWt +

∫ T

S
g(t, Zt)dt−

∫ T

S
ZtdWt,

the process which is de�ned as Yt(T, YT (U, ξU )) on [0, T ] and by Yt(U, ξU ) on ]T,U ] is the maximal solution

of the BSDE (g, ξU , U). Uniqueness of the maximal solution implies (P4).

b) The three properties b1), b2) and b3) involve the same type of arguments to be proved, so we simply

present the proof for b2).

Let gm(t, y, z) = g(t, y + m, z). We simply note that Y m
. = Y.(ξT + m) − m is the maximal solution of

the BSDE (gm, ξT ). The translation invariance property is equivalent to the indistinguishability of both

processes Y and Y m; by the uniqueness Lemma 6.6, this property is equivalent to the identity

g(t, y, z) = gm(t, y, z) = g(t, y + m, z) a.s.

This implies that g does not depend on y.

c) • c1) For the convexity property, we consider di�erent BSDEs: (Y 1
t , Z1

t ) is the (maximal) solution of

(g, ξ1
T ) and (Y 2

t , Z2
t ) is the (maximal) solution of (g, ξ2

T ). Then, we look at Ỹt = λY 1
t + (1 − λ)Y 2

t , with

λ ∈ [0, 1]. We have:

−dỸt = (λg(t, Y 1
t , Z1

t ) + (1− λ)g(t, Y 2
t , Z2

t ))dt− (λZ1
t + (1− λ)Z2

t )dWt ; ỸT = λξ1
T + (1− λ)ξ2

T .

Since g is convex, we can rewrite this BSDE as:

−dỸt = (g(t, Ỹt, Z̃t) + α(t, Y 1
t , Y 2

t , Z1
t , Z2

t , λ))dt− Z̃tdWt

where α is a a.s. non-negative process. Hence, using the comparison theorem, the solution Ỹt of this BSDE

is for any t ∈ [0, T ] a.s. greater than the solution Yt of the BSDE (g, λξ1
T + (1− λ)ξ2

T ). It is a super-solution
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in the sense of De�nition 2.1 of El Karoui, Peng and Quenez [47].

• c2) is a direct consequence of the comparison Theorem 5.3. �

Some additional comments on the relationship between BSDE and dynamic operators Since

1995, Peng has focused on �nding conditions on dynamic operators so that they are linear growth g-

expectations. This di�cult problem is solved in particular for dynamic operators satisfying a domination

assumption introduced by Peng [96] in 1997 where bk(z) = k|z|. For more details, please refer to his lecture

notes on BSDEs and dynamic operators [98].

Theorem 6.8 Let (Et; 0 ≤ t ≤ T ) be a non-linear expectation such that:

There exists |λ| ∈ H2 and a su�ciently large real number k > 0 such that for any t ∈ [0, T ] and any

ξT ∈ L2(FT ):

E−bk+|λ|
t (ξT ) ≤ Et(ξT ) ≤ Ebk+|λ|

t (ξT ) a.s.

and for any (ξ1
T , ξ2

T ) ∈ L2(FT ): Et(ξ1
T ) − Et(ξ2

T ) ≤ Ebk
t (ξ1

T − ξ2
T ) Then, there exists a function g(t, y, z)

satisfying assumption (H1) such that for any t ∈ [0, T ],

∀ ξT ∈ L2(FT ), a.s., ∀t, Et(ξT ) = Eg
t (ξT )

For a proof of this theorem, please refer to Peng [97].

In�nitesimal Risk Management The coe�cient of any g-conditional risk measure Rg can be naturally

interpreted as the in�nitesimal risk measure over a time interval [t, t + dt] as:

EP[dRg
t |Ft] = −g(t, Zt)dt,

where Zt is the local volatility of the gconditional risk measure.

Therefore, choosing carefully the coe�cient g enables to generate g-conditional risk measures that are locally

compatible with the views and practice of the di�erent agents in the market. In other words, knowing

the in�nitesimal measure of risk used by the agents is enough to generate a dynamic risk measure, locally

compatible. In this sense, the g-conditional risk measure may appear more tractable than static risk measures.

The following example gives a good intuition of this idea: the g-conditional risk measure corresponding to

the mean-variance paradigm has a g-coe�cient of the type g(t, z) = −λtz + 1
2z2. The process λt can be

interpreted as the correlation with the market numéraire.

Therefore, g-Conditional risk measures are a way to construct a wide family of convex risk measures on a

probability space with Brownian �ltration, taking into account the ability to decompose the risk through

inter-temporal local risk measures g(t, Zt).

In the following, to study g-conditional risk measures, we adopt the same methodology as in the static

framework. In particular, we start by developing a dual representation for these dynamic risk measures,

in terms of the "dual function" of their coe�cient. This study requires some general properties of convex

functions on Rn.
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7 Dual Representation of g-Conditional Risk Measures

Following the approach adopted in the �rst part of this chapter when studying static risk measures, we

now focus on a dual representation for g-conditional risk measures. The main tool is the Legendre-Fenchel

transform G of the coe�cient g, de�ned by:

G(t, µ) = sup
z∈Qn

rational

{〈µ,−z〉 − g(t, z)} . (35)

The convex function G is also called the polar function or the conjugate of g. Provided that g is continuous,

g(t, z) = sup
µQn

rational

(
〈µ,−z〉 −G(t, µ)

)
. (36)

More precisely,

De�nition 7.1 A g-conditional risk Rg measure is said to have a dual representation if there exists a set

A of admissible controls such that for any bounded stopping time S ≤ T and any ξT in the appropriate space

Rg
S(ξT ) = ess supµ∈AEQµ

[
− ξT −

∫ T

S

G(t, µt)dt
∣∣FS

]
(37)

where Qµ is a probability measure absolutely continuous with respect to P.

The dual representation is said to be exact at µ̄ if the ess sup is reached for µ̄.

In order to obtain this representation, several intermediate steps are needed:

1. Re�ne results on Girsanov theorem and the integrability properties of martingales with respect to

change of probability measures.

2. Re�ne results from convex analysis on the Legendre-Fenchel transform and the existence of an optimal

control in both Formulae (35) and (36), including measurability properties,

The next paragraph gives a summary of the main results that are needed.

7.1 Girsanov Theorem and BMO-Martingales

Our main reference on Girsanov theorem and BMO-martingales is the book by Kazamaki [77]. The

exponential martingale associated with the d-dimensional Brownian motion W , E(
∫ t

0
µsdWs) = Γµ

t =

exp
( ∫ t

0
µsdWs − 1

2 |µs|2ds
)
, solution of the forward stochastic equation

dΓµ
t = Γµ

t µ∗t dWt , Γµ
0 = 1 (38)

is a positive local martingale, if µ is an adapted process such that
∫ T

0
|µs|2ds < ∞.

When Γµ is a uniformly integrable (u.i.) martingale, Γµ
T is the density (w.r. to P) of a new probability

measure denoted by Qµ. Moreover, if W is a P-Brownian motion, then Wµ
t = Wt −

∫ t

0
µsds is a Qµ-

Brownian motion.

Questions around Girsanov theorem are of two main types. They mainly consist of:
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• �rst, �nding conditions on µ so that Γµ is a u.i. martingale.

• second, giving so;e precision on the integrability properties that are preserved under the new probability

measure.

The bounded case, that is recalled below, is well-known. The BMO case is less standard, so we give more

details.

7.1.1 Change of Probability Measures with Bounded Coe�cient

When µ is bounded, it is well-known that the exponential martingale belongs to all Hp-spaces.

Moreover, if a process is in H2(P), it is in H1+ε(Qµ). In particular, if MZ
t =

∫ t

0
ZsdWs is a H2(P)-martingale,

then M̂Z
t =

∫ t

0
ZsdWµ

s is a u.i. martingale under Qµ, with null Qµ-expectation.

7.1.2 Change of Probability Measures with BMO-Martingale

The right extension of the space of bounded processes is the space of BMO processes de�ned as:

BMO(P) = {ϕ ∈ H2 s.t ∃C ∀t E
[ ∫ T

t

|ϕs|2ds|Ft

]
≤ C a.s.}

The smallest constant C such that the previous inequality holds is denoted by C∗ = ||ϕ||2BMO.

In terms of martingale, the stochastic integral
∫ t

0
ϕsdWs is said to be a BMO(P)-martingale if and only if

the process ϕ belongs to BMO(P). The following deep result is proved in Kazamaki [77] (Section 3.3).

Theorem 7.2 Let the adapted process µ be in BMO(P). Then

1. The exponential martingale Γµ is a u.i. martingale and de�nes a new equivalent probability measure

Qµ. Moreover, Wµ
t = Wt −

∫ t

0
µsds is a Qµ-Brownian motion.

2. Mµ
t =

∫ t

0
µ∗sdWs, and more generally any BMO(P)-martingale MZ

t =
∫ t

0
ZsdWs, are transformed into

continuous processes M̂µ
t =

∫ t

0
µ∗sdWµ

s and M̂Z
t =

∫ t

0
ZsdWµ

s that are BMO(Qµ)-martingales.

3. The BMO-norms with respect to P and Qµ are equivalent:

k||Z||BMO(Qµ) ≤ ||Z||BMO(P) ≤ K||Z||BMO(Qµ).

The constants k and K only depend on the BMO-norm of µ.

Hu, Imkeller and Müller [73] were amongst the �rst to use the property that the martingale dMZ
t = ZtdWt

which naturally appears in BSDEs associated with exponential hedging problems, is BMO. Since then, such

a property has been used in di�erent papers, mostly dealing with the question of dynamic hedging in an

exponential utility framework (see for instance the recent papers by Mania, Santacroce and Tevzadze [88]

and Mania and Schweizer [89]).

In the proposition below, we extend their results to general quadratic BSDEs.
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Proposition 7.3 Let (Y,Z) be the maximal solution of the quadratic (H3) BSDE with coe�cient g, and

MZ =
∫ .

0
ZsdWs the stochastic integral Z.W

dYt = g(t, Zt)dt− dMZ
t , YT = ξT .

Given that by assumption Y is bounded, and |g(t, 0)|1/2 ∈ BMO(P), MZ is a BMO(P)-martingale

Proof: Let k be the constant such that |g(t, z)| ≤ |g(t, 0)|+ k|z|2.
Thanks to Itô's formula applied to the solution (Y, Z) and to the exponential function:

exp(β Yt) = exp(β YT ) + β

∫ T

t

exp(β Ys)g(s, Zs)ds− β2

2

∫ T

t

exp(β Ys)|Zs|2ds

− β

∫ T

t

exp(β Ys)ZsdWs

= exp(β YT ) + β

∫ T

t

exp(β Ys)
(
g(s, Zs)−

β

2
|Zs|2

)
ds− β

∫ T

t

exp(β Ys)ZsdWs.

Given that β
2 |Zs|2 − g(s, Zs) ≥ (β

2 − k)|Zs|2 − |g(s, 0)| ≥ ε|Zs|2 − |g(s, 0)| for β ≥ (k + ε) and taking the

conditional expected value, we obtain:

β ε E
[ ∫ T

t

exp(β Ys)|Zs|2ds|Ft

]
≤ C + βE

[ ∫ T

t

exp(β Ys)|g(s, 0)|ds|Ft

]
≤ C

where C is a universal constant that may change from place to place. Since exp(β Ys) is bounded both from

below and from above, the property holds. �

7.2 Some Results in Convex Analysis

Some key results in convex analysis are needed to obtain the dual representation of g-conditional risk mea-

sures. They are presented in the Appendix 9 to preserve the continuity of the arguments in this part. More

details or proofs may be found in Aubin [4], Hiriart-Urruty and Lemaréchal [70] or Rockafellar [103].

7.3 Dual Representation of Risk Measures

We now study the dual representation of g-conditional risk measures. The space of admissible controls

depends on the assumption imposed on the coe�cient g. We consider successively both situations (H1) and

(H3). There is no need to look separately at (H2), as, under our assumptions, the condition (H2) implies

the condition (H1) (for more details, please refer to the Appendix 9.2.1). The (H1) case has been solved in

[47] but the (H3) case is new.

Theorem 7.4 Let g be a convex coe�cient satisfying (H1) or (H3) and G be the associated polar process,

G(t, µ) = supz∈Qn
rational

{〈µ,−z〉 − g(t, z)}.
i) For almost all (ω, t), the program g(ω, t, z) = supµ∈Qn

rational

[〈µ,−z〉−G(ω, t, µ) ] has an optimal progressively

measurable solution µ̄(ω, t) in the subdi�erential of g at z, ∂g(ω, t, z).

ii) Then Rg has the following dual representation, exact at µ̄,

Rg
t (ξT ) = esssupµ∈AEQµ

[
− ξT −

∫ T

t

G(s, µs)ds
∣∣Ft

]
= EQµ̄

[
− ξT −

∫ T

t

G(s, µ̄s)ds
∣∣Ft

]
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where:

1. Under (H1) (|g(t, z)| ≤ |g(t, 0)||+ k|z|), A is the space of adapted processes µ bounded by k, and Qµ is

the associated equivalent probability measure with density Γµ
T where Γµ is the exponential martingale

de�ned in (38).

2. Under (H3), (|g(t, z)| ≤ |g(t, 0)|+ k|z|2), A is the space of BMO(P)-processes µ and Qµ is de�ned as

above.

iii) Let g(t, .) be a strongly convex function (i.e. g(t, z) − 1
2C|z|2 is a convex function). Then the Fenchel-

Legendre transform G(t, µ) has a quadratic growth in µ and the following dual representation holds true:

EQµ

[ ∫ T

t

G(s, µs)ds
∣∣∣Ft

]
= esssupξT

EQµ

[
ξT

∣∣Ft

]
−Rg

t (ξT ) = EQµ

[
ξ̄T

∣∣Ft

]
−Rg

t (ξ̄T )

Proof: i) Since g is a proper function, the dual representation of g with its polar function G is exact at

µ̄ ∈ ∂g(z):

g(t, z) = sup
µ∈Qn

rational

[〈µ,−z〉 −G(t, µ) ] = 〈µ̄,−z〉 −G(t, µ̄),

using classical results of convex analysis, recalled in the Appendix 9.

The measurability of µ̄ is separately studied in Lemma 7.5 just after this proof.

ii) a) Let us �rst consider a coe�cient g with linear growth (H1); so, g(t, 0) is in H2. By de�nition, −G(t, µt)

is dominated from above by the square integrable process g(t, 0). Then, let Rg
t (ξT ) := Yt be the solution of

the BSDE (g,−ξT ),

−dYt = g(t, Zt)dt− ZtdWt = (g(t, Zt)− 〈µt,−Zt〉)dt− ZtdWµ
t , YT = −ξT . (39)

By Girsanov Theorem (Theorem 7.2), for µ ∈ A the exponential martingale Γµ is u.i. and de�nes a

probability measure Qµ on FT such that the process Wµ = W−
∫ .

0
µsds is a Qµ-Brownian motion. Moreover,

since MZ =
∫ .

0
ZsdWs is in H2(P), M̂Z =

∫ .

0
ZsdWµ

s is a u.i. Qµ-martingale. Moreover, since µ is bounded

and g uniformly Lipschitz, the process (g(t, Zt)− Ztµt) belongs to H2(P) but also to H1+ε(Qµ). So we can

use an integral representation of the BSDE (39) in terms of

Yt = EQµ

[
− ξT +

∫ T

t

(g(s, Zs)− 〈µs,−Zs〉)ds
∣∣Ft

]
≥ EQµ

[
− ξT −

∫ T

t

G(s, µs)ds
∣∣Ft

]
. (40)

We do not need to prove that the last term is �nite. It is enough to recall that (−G(s, µs))+ is dominated

from above by the dQ× ds integrable process (g(s, 0))+.

b) Let µ̄ be an optimal control, bounded by k, such that g(t, Zt) = 〈µ̄t,−Zt〉 −G(t, µ̄t) (see Lemma 7.5 for

measurability results). Then the process −G(t, µ̄t) belongs to H2(P) and so to H1+ε(Qµ̄). By the previous

result, Yt = EQµ̄

[
− ξT −

∫ T

t
G(s, µ̄s)ds

∣∣Ft

]
. So the process Y is the value function of the maximization dual

problem Yt = esssupµ∈AEQµ

[
− ξT −

∫ T

t
G(s, µs)ds

∣∣Ft

]
.

c) We now consider a coe�cient g with quadratic growth (H3) and bounded solution Yt. Using the same

notation, we know by Girsanov Theorem 7.2 that if µ ∈ BMO(P), Γµ is a u.i. martingale and the probability
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measure Qµ is well-de�ned. The proof of the dual representation is very similar to that of the previous case,

after solving some integrability questions. It is enough to notice that

• by assumption, |g(., 0)| 12 is BMO(P),

• by Proposition 7.3, Z is BMO(P),

• by Girsanov Theorem 7.2, for any µ ∈ BMO(P), the processes µ, Z and |g(., 0)| 12 are in BMO(Qµ).

So |g(t, Zt)|
1
2 and |µtZt|

1
2 are in BMO(Qµ). Moreover, the process (−G(t, µ))+ which is dominated from

above by |g(t, 0)| is a Qµ × dt-integrable process. Then the inequality (40) holds.

d) Let µ̄ be an optimal control, such that g(t, Zt) = 〈µ̄t,−Zt〉 − G(t, µ̄t). Given that g(t, .) has quadratic

growth, the polar function G(t, .) satis�es the following inequality, G(t, µ̄t) ≥ −|g(t, 0)| + 1
4k |µ̄t|2. Then,

for small ε < 1
4k , ( 1

4k − ε)|µ̄t|2 ≤ G(t, µ̄t) + |g(t, 0)| − ε|µ̄t|2 ≤ |g(t, 0)| − g(t, Zt) + 〈µ̄t,−Zt〉 − ε|µ̄t|2 ≤
|g(t, 0)| − g(t, Zt) + 1

4ε |Zt|2 . Since both processes |g(t, Zt)|1/2 and Z are BMO(P), µ̄ is also BMO(P), and

the other processes hold nice integrability properties with respect to both probability measures P and Qµ

and the integral representation follows.

iii) Let h(t, z) = g(t, z)− 1
2C|z|2 be the convex function associated with g. Since g is the sum of two convex

functions h and 1
2C|.|2, its Fenchel-Legendre transform G is the inf-convolution of the Fenchel-Legendre

transforms of both h and 1
2C|.|2. But the Fenchel-Legendre transform of the quadratic function 1

2C|.|2 is

still a quadratic function, 1
2C |µ|

2 and G has a quadratic growth (as the inf-convolution of a convex function

H with a quadratic function). Therefore, for a given µ ∈ BMO(P), there exists Z̄ ∈ BMO(P) such that

G(t, µt) = 〈µt,−Z̄t〉 − g(t, Z̄t) (in other words, µ ∈ ∂(Z̄)).

We now introduce the penalty function αµ de�ned by αµ
t = EQµ

[ ∫ T

t
G(s, µs)ds

∣∣∣Ft

]
. Using the above duality

result, we have:

αµ
t = EQµ [

∫ T

t

(〈µs,−Z̄s〉 − g(s, Z̄s))ds
∣∣∣Ft

]
.

Since ξ̄T =
∫ T

0
(〈µs,−Z̄s〉 − g(s, Z̄s))ds +

∫ T

0
Z̄sdWµ

s and Rg
t (ξ̄T ) =

∫ t

0
(〈µs,−Z̄s〉 − g(s, Z̄s))ds +

∫ t

0
Z̄sdWµ

s ,

we �nally deduce that:

αµ
t = EQµ

[
ξ̄T

∣∣Ft

]
−Rg

t (ξ̄T ).

Moreover, using Equation (40), we have:

αµ
S ≥ ess sup

ξT

EQµ

[
ξT

∣∣FS

]
−Rg(ξT ).

Hence, the result. �

The question of the measurability of the optimal solution(s) µ̄ is considered in the following lemma.

Lemma 7.5 Let g be a convex coe�cient satisfying (H1) or (H3) and G be the associated polar function.

There exists an progressively measurable optimal solution µ̄ such that g(t, Zt) = 〈µ̄t,−Zt〉−G(t, µ̄t) a.s.dP×
dt.
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Proof: For each (ω, t) ∈ Ω× [0, T ], the sets given by: {µ ∈ Rn : g(ω, t, Zt) = Ztµ−G(ω, t, µ)} are nonempty.

Hence, by a measurable selection theorem (see for instance Dellacherie and Meyer [41] or Benes [14]), there

exists a Rn-valued progressively measurable process µ̄ such that: g(ω, t, Zt) = 〈µ̄t,−Zt〉 −G(ω, t, µ̄t) dP×
dt− a.s.. �

7.4 g-Conditional γ-Tolerant Risk Measures and Asymptotics

In this subsection, we pursue our presentation and study of g-conditional risk measures using an approach

similar to that we have adopted in the static framework.

7.4.1 g-Conditional γ-Tolerant Risk Measures

As in the static framework, we can de�ne dynamic versions for both coherent and γ-tolerant risk measures

based on the properties of their coe�cients using the uniqueness Lemma 6.6.

More precisely, let γ > 0 be a risk-tolerance coe�cient. As in the static framework, where the γ-dilated

of any static convex risk measure ρ is de�ned by ργ(ξT ) = γρ
(

1
γ ξT

)
we can de�ne the g-conditional risk

measure, Rg
γ , γ-tolerant of Rg, as the risk measure associated with the coe�cient gγ , which is the γ-dilated

of g: gγ(t, z) = γg( 1
t,γ z).

Note that if g is Lipschitz continuous (H1), gγ also satis�es (H1), and if g is continuous with quadratic

growth (H3) with parameter k, then g also satis�es (H3), but with parameter k
γ . Note also that the dual

function of gγ , Gγ , can be expressed in terms of G, the dual function of g as Gγ(µ) = γG(µ).

A standard example of g-conditional γ-tolerant risk measure is certainly the dynamic entropic risk measure

eγ,t(ξT ) = γ ln E
[
exp(− 1

γ ξT )|Ft

]
, which is the γ-tolerant of e1,t.

Asymptotic behaviour of entropic risk measure Let us look more closely at the dynamic entropic

risk measure. Letting γ go to +∞, the BSDE-coe�cient qγ(z) = 1
2γ |z|

2 tends to 0 and we directly obtain

the natural extension of the static case, e∞,t(ξT ) = EP[−ξT |Ft].

Letting γ tend to 0, the BSDE coe�cient explodes if |z| 6= 0 and intuitively the martingale of this BSDE has to

be equal to 0. More precisely, since by de�nition exp(eγ,t(ξT )) = E
[
exp(− 1

γ ξT )|Ft

]γ , limγ→0 exp(eγ,t(ξT )) =

|| exp(−ξT )||∞t = inf {Y ∈ Ft : Yt ≥ exp(−ξT )}. So we have e0+,t(ξT ) = || − ξT ||∞t . This conditional risk

measure is a g-conditional risk measure associated with the indicator function of {0}. Let us also observe

that e0+,t(ξT ) is an adapted non-increasing process without martingale part.

7.4.2 Marginal Risk Measure

In the general γ-tolerant case, assuming that the g-conditional risk measures are centered (equivalently

g(t, 0) = 0 equivalently G(t, .) ≥ 0), the same type of results can be obtained concerning the asymptotic

behavior of the γ-dilated coe�cient and the duality. Then, the limit of gγ when γ → +∞ is the derivative

of g at the origin in the direction of z.

Rg
∞ is the non-increasing limit of Rg

γ de�ned by its dual representation Rg
∞,t(ξT ) = ess supµ∈A{EQµ

[
−

ξT

∣∣Ft

]∣∣ G(u, µu) = 0, ∀u ≥ t, −a.s.} ; in some cases (in particular, in the quadratic case when the polar
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function G has a unique 0, i.e. G(u, 0) = 0 is unique), −Rg
∞ is a linear pricing rule and can be seen as an

extension of the Davis price (see Davis [37]).

7.4.3 Conservative Risk Measures and Super Pricing

We now focus on the properties of the g-conditional γ-tolerant risk measures when the risk tolerance co-

e�cient goes to zero. To do so, we need some results in convex analysis regarding the so-called recession

function, de�ned for any z ∈ Dom(g) by g0+(z) := limγ↓0 γg
(

1
γ z

)
= limγ↓0 γ

(
g(y + 1

γ z) − g(y)
)
. The key

properties of this function are recalled in the Appendix 9.2.1.

Conservative Risk Measure • Under assumption (H1), we may assume that g(t, 0) = 0. Therefore,

the polar function G is non negative. Since g(t, .) has a linear growth with constant k, the recession function

g0+(t, .) is �nite everywhere with linear growth, and the domain of the dual function G is bounded by k.

The BSDE(g0+ , ξT ) has a unique solution Y 0
t (ξT ) ≥ Rgγ

t (ξT ). Using their dual representation through their

polar functions lDom(G) and γG,

Y 0
t (ξT ) = ess supµ∈Ak

EQµ

[
− ξT −

∫ T

t
lDom(G)(u, µu)du

∣∣Ft

]
,

Rg
γ,t(ξT ) = ess supµ∈Ak

EQµ

[
− ξT − γ

∫ T

t
G(u, µu)du

∣∣Ft

]
.

we can take the non decreasing limit in the second line and show that

Rg
0+,t(ξT ) = limγ↓0Rg

γ,t(ξT ) = Y 0
t (ξT )

= ess supµ∈Ak

{
EQµ

[
− ξT

∣∣Ft

]∣∣ G(u, µu) < ∞∀u ≥ t, du − a.s..
}

= ess supµ∈Ak∩Dom(G)EQµ

[
− ξT

∣∣Ft

]
.

• When the coe�cient g has a quadratic growth (H3), the recession function may be in�nite on a set with

positive measure and the BSDE(g0+ , ξT ) is not well-de�ned. However, we can still take the limit in the dual

representation of Rg
γ,t, obtain the same characterization of Rg

0+,t, and consider Rg
0+ as a generalized solution

of BSDE whose the coe�cient g0+ may be take in�nite values. In particular if, as in the entropic case,

g0+ = l{0}, G is �nite everywhere and any equivalent probability measure associated with BMO coe�cient,

said to be in Q(BMO), is admissible. Then,

Rl{0}
0+,t(ξT ) = ess supQ∈Q(BMO)EQ

[
− ξT

∣∣Ft

]
= || − ξT ||∞t = e0+,t(ξT ).

Super Price System Note that the conservative risk-measure Rg
0+,t(ξT ) = ess supµ∈A∩Dom(G)EQµ

[
−

ξT

∣∣Ft

]
is the equivalent of the super-pricing rule of −ξT (this notion was �rst introduced by El Karoui and

Quenez [49] under the name "upper hedging price"). When the λt-translated of Dom(G)t is a vector space,

the recession function g0+(t, z) is the indicator function of the orthogonal vector space Dom(G)>t plus a linear

function 〈z,−λt〉. Then, Rg
0+,t(−ξT ) is exactly the upper-hedging price associated with hedging portfolios

constrained to live in Dom(G)>.

The conservative measure is the smallest of coherent risk measure such that Rg
t (−ξT ) − Rg

t (−ηT ) ≤
Rcoh

t (−ξT + ηT ) for any (ξT , ηT ) in the appropriate space.
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Volume Perspective Risk Measure It is also possible to associate a coherent risk measure Rg̃ with

any convex risk measure Rg, using the perspective function g̃ of the coe�cient g, which is assumed to be

normalized for the sake of simplicity (g(t, 0) = 0). The perspective function g̃ is de�ned as:

g̃(t, γ, z) =

 γg(t, z
γ ) if γ > 0

limγ→0 γg(t, z
γ ) = g0+(t, z) if γ = 0

More details about g̃ can be found in the Appendix 9.2.2. As a direct consequence, the g̃-conditional risk

measure Rg̃ is a coherent risk measure.

8 Inf-Convolution of g-Conditional Risk Measures

In this section, we come back to inf-convolution of risk measures, when they are g-conditional risk measures.

This study is based upon the inf-convolution of their respective coe�cients.

More precisely, we will study for any t the inf-convolution of the g-conditional risk measures RA
t and RB

t

de�ned as (
RA�RB

)
t

(
ξT

)
= ess infFT

{
RA

t

(
ξT − FT

)
+RB

t

(
FT

)}
(41)

where both ξT and FT are taken in the appropriate space and show that this new dynamic risk measure is

under mild assumptions the (maximal solution) RA,B of the BSDE (gA�gB ,−ξT ) where (gA�gB)(., t, z) =

ess infz(g(., t, x − z) + g(., t, z)). Then, the next step is to characterize the optimal transfer of risk between

both agents A and B, agent A being exposed to ξT at time T . Some key results on the inf-convolution of

convex functions are recalled in the Appendix 9.3, the main argument being summarized in the proposition

below:

Proposition 8.1 Let gA and gB be two convex functions of z. Under the following condition

gA
0+(t, z) + gB

0+(t,−z) > 0, ∀z 6= 0

then gA�gB is exact for any z as the in�mum is attained by some x∗:

gA�gB(z) = inf
x
{gA(z − x) + gB(x)} = gA(z − x∗) + gB(x∗).

8.1 Inf-convolution and Optima

We now focus on our main problem of inf-convolution of g-conditional risk measures as expressed in Equation

(41). The following theorem gives us an explicit characterization of an optimum for the inf-convolution

problem provided such an optimum exists:

Theorem 8.2 Let gA and gB be two convex coe�cients depending only on z and satisfying the condition of

Proposition 8.1. For a given ξT in the appropriate space (either L2 or L∞), let (RA,B
t (ξT ), Zt) be the maximal

solution of the BSDE (gA�gB ,−ξT ) and ẐB
t be a measurable process such that ẐB

t = arg minx

{
gA

(
t, Zt−

x
)

+ gB
(
t, x

)}
dt× dP − a.s..
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Then, the following results hold:

(1) For any t ∈ [0, T ] and for any FT such that both RA
t (ξT − FT ) and RB

t (FT ) are well de�ned:

RA,B
t

(
ξT

)
≤ RA

t (ξT − FT ) +RB
t (FT ) P − a.s.

(2) If the process ẐB is admissible, then for any t ∈ [0, T ]

RA,B
t

(
ξT

)
= (RA�RB

)
t

(
ξT

)
P− a.s.

and the structure F ∗T de�ned by the forward equation

F ∗T =

T∫
0

gB
(
t, ẐB

t

)
dt−

T∫
0

ẐB
t dWt

is an optimal solution for the inf-convolution problem:

(RA�RB
)
t

(
ξT

)
= RA

t (ξT − F ∗T ) +RB
t (F ∗T ).

Proof: (1) First, note that the existence of such a measurable process ẐB
t is guaranteed by Theorem 8.1.

In the following, we consider any FT such that both RA
t (ξT − FT ) and RB

t (FT ) are well de�ned.

Let us now focus on RA
t (ξT − FT ) +RB

t (FT ). It satis�es

−d
(
RA

t (ξT − FT ) +RB
t (FT )

)
=

(
gA(t, ZA

t ) + gB(t, ZB
t )

)
dt−

(
ZA

t + ZB
t

)
dWt

=
(
gA(t, Zt − ZB

t ) + gB(t, ZB
t )

)
dt− ZtdWt,

and at time T , RA
T (ξT − FT ) +RB

T (FT ) = −ξT .

Therefore, (RA
t (ξT −FT ) +RB

t (FT ), Zt) is solution of the BSDE with terminal condition −ξT , which is also

the terminal condition of the BSDE (gA�gB ,−ξT ), and a coe�cient g written in terms of the solution ZB
t

of the BSDE (gB , FT ) as: g(t, z) = gA(t, z − ZB
t ) + gB(t, ZB

t ). Using the de�nition of the inf-convolution,

this coe�cient is then always greater than gA�gB . Thus, we can compare RA
t (ξT −FT ) +RB

t (FT ) with the

solution of the BSDEs (gA�gB ,−ξT ) using the comparison Theorem (5.3) and obtain the desired inequality.

(2) Let now assume that the process ẐB
t is admissible, using di�erent notions of admissibility when either

(H1) or (H3) (square integrability or BMO).

Thanks to Theorem 8.1, we can show that both dynamic risk measures coincide.

We now introduce the structure F ∗T de�ned by the forward equation F ∗t =
t∫
0

gB
(
s, ẐB

s

)
ds−

t∫
0

ẐB
s dWs.

Note �rst that thanks to the admissibility of the process ẐB
t , such a structure is well-de�ned and belongs to

the appropriate space (either L2(FT ) or L∞(FT )).

Let us also observe that −F ∗t is also solution of the BSDE (gB ,−F ∗T ) since −F ∗t = −F ∗T +
T∫
t

gB
(
u, ẐB

u

)
dt−

T∫
t

ẐB
u dWu. By uniqueness, this process is RB

t (F ∗T ).

Since RA
t (ξT −F ∗T )+RB

t (F ∗T ) is solution of the BSDE with coe�cient written as gA(t, Zt− ẐB
t )+ gB(t, ẐB

t )

and terminal condition −ξT and given that
(
gA�gB

)(
t, Zt

)
= gA

(
t, Zt − ẐB

t

)
+ gB

(
t, ẐB

t

)
, by uniqueness,
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we also have ∀t ≥ 0, RA,B
t

(
ξT

)
=

(
RA�RB

)
t

(
ξT

)
P a.s.

The proof also gives the optimality for the Problem (41) of the structure F ∗T =
T∫
0

gB
(
t, ẐB

t

)
dt −

T∫
0

ẐB
t dWt.

�

Remark 8.3 (On uniqueness on the optimum) Note that the optimal structure F ∗T is determined to

within a constant because of the translation invariance property (P3-) satis�ed by both risk measures RA
t and

RB
t since:

ess infFT

{
RA

t

(
ξT − (FT + m)

)
+RB

t

(
FT + m

)}
= ess infFT

{
RA

t

(
ξT − FT

)
+ m +RB

t

(
FT

)
−m

}
=

(
RA�RB

)
t

(
ξT

)
.

Note also that F ∗T is optimal for all the optimal structure problems for all stopping times S such that 0 ≤
S ≤ T a.s..

The following Theorem gives some su�cient conditions ensuring the admissibility of the process ẐB
t :

Theorem 8.4 [Exact Inf-convolution] Let gB be a strongly convex coe�cient. For any convex function gA,

the inf-convolution gA�gB is convex with quadratic growth (H3), so in particular, if gA satis�es (H3).

In this case, the process ẐB
t , de�ned in Theorem 8.2, is in BMO(P).

Note that in this case, the optimal structure F ∗T , de�ned in Theorem 8.2, is quasi-bounded as it belongs to

the BMO-closure of L∞ as de�ned by Kazamaki [77] (chapter 3).

Proof: From the duality Theorem 7.4, the optimal control µ∗ of GA,B , the polar function of gA�gB , is in

BMO(P). From the inf-convolution, we deduce that this is also the optimal control for GA and GB in the

following sense:
gA(t, Zt − ẐB

t ) = 〈µ∗t ,−(Zt − ẐB
t )〉 −GA(t, µ∗t ),

gB(t, ẐB
t ) = 〈µ∗t ,−ẐB

t 〉 −GB(t, µ∗t ).

Therefore, both Zt − ẐB
t and ẐB

t are in BMO(P) (from Proposition 7.3) and the process ẐB
t is admissible.

�

Comments:

(i) Just as in the static framework, we obtain the same result when considering g-conditional γ-tolerant risk

measures. The Borch theorem is therefore extremely robust since the quota sharing of the initial exposure

remains an optimal way of transferring the risk between di�erent agents.

(ii) Under some particular assumptions, the underlying logic of the transaction is non-speculative since

there is no interest for the �rst agent to transfer some risk or equivalently to issue a structure if she is not

initially exposed. This result is completely consistent with the result we have already obtained in the static

framework.

8.2 Hedging Problem

As in subsection 4.2.2, we consider the hedging problem of a single agent. She wants to hedge her terminal

wealth XT by optimally investing on �nancial market and assesses her risk using a general g-conditional risk
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measure Rg.

8.2.1 Framework

We consider the same framework as that introduced in Subsection 1.5.3 when looking at the question of

dynamic hedging in the static part. More precisely, we assume that d basic securities are traded on the

market. Their forward (non-negative) vector price process S follows an Itô semi-martingale with a uniformly

bounded drift coe�cient and an invertible and bounded volatility matrix σt. Under P,

dSt

St
= σt(dWt + λtdt) ; S0 given. (42)

To avoid arbitrage, we assume (AAO): there exists a probability measure Q, equivalent to P, such that S is

a Q-local martingale. From the completeness of this basic arbitrage-free market, we deduce the uniqueness

of Q, which is usually called the risk-neutral probability measure.

The agent can invest in dynamic strategies θ, i.e. d-predictable processes and (Gt(θ) = (θ.S)t) denotes the

associated gain process.

We assume that not all strategies are admissible and that, for instance, the agent has some restriction im-

posed on the transaction size. These constraints create some market incompleteness in the framework we

consider. ΘS
T = {GT (θ) | θ.S is bounded by below , θ ∈ K} is the set of admissible hedging gain processes. K

is a convex subset of BMO(P) such that any admissible strategies θ is in K (equivalently, ∀ t, θt ∈ Kt).

8.2.2 Hedging Problem

At time 0, the hedging problem of the agent can be expressed as the determination of an optimal admissible

strategy θ as to minimize the initial g-conditional risk measure of her terminal wealth

inf
θ∈K

R0

(
XT −GT (θ)

)
. (43)

The value functional of this program is the dynamic market modi�ed risk measure of agent A, denoted by

Rm. Using the previous results, we can obtain the following proposition:

Proposition 8.5 i) Let lσ∗t (Kt) = lK̂t
be the indicator function of the convex set K̂t = σ∗tKt. Provided

that the inf-convolution g�lσ∗t (Kt)(Zt) is well-de�ned, the residual risk measure Rm is given as the maximal

solution of the following BSDE:

−dRm
t (X) = gm(t, Zt)dt− ZT dWt ; Rm

T (X) = −XT

where gm is the restriction of the coe�cient g to the admissible set: gm(t, Zt) = g�lσ∗t (Kt)(Zt).

ii) If g is strongly convex, then this hedging problem has a solution.

In particular, in the entropic case, gm(t, z) = 1
2γ d 1

γ
(z, K̂t)2 where γ is the risk tolerance coe�cient and

d 1
γ
(z,K) is the distance function to K. The optimal investment strategy θ? is the projection on K of Zt,
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solution of the BSDE (gm,−XT ).

The terminal value GT (θ?) of the associated portfolio is given by:

GT (θ?) = x +
∫ T

0

(θ?
t )∗σtλtdt +

∫ T

0

(θ?
t )∗σtdWt.

8.2.3 Comments

Generalized BSDEs: In the static framework, we expressed the hedging problem as an inf-convolution

between the seminal risk measure of the agent and the risk measure νH generated by H, the convex set of

constrained terminal gains, or more generally the inf-convolution between the seminal risk measure of the

agent and the convex indicator of H (Proposition 3.2).

From a dynamic point of view, the set H can be seen as the set of all dynamic terminal values of portfolios

with some constraint on the strategies. Everything can be formulated in the same way. Note that the natural

candidate for RH would be the inf-convolution between the dynamic worst case risk measure and the convex

indicator of H: lH� limγ→∞( 1
2γ |z|

2). This in�mum is always strictly positive. Moreover, it is an increasing

process at the limit. To model this "limit BSDE", an increasing process has to be introduced (for more

details, please refer to El Karoui and Quenez [50] and Cvitanic and Karatzas [35]). As a consequence, the

dynamic version of the risk measure generated by H cannot be seen exactly as the solution of a standard

BSDE, as previously de�ned, in the sense that the coe�cient can take in�nite values.

This is however not such a problem here as we really focus on the inf-convolution. Therefore, we can simply

consider the restriction of the seminal risk measure to a particular set. The powerful regularization impact

of the inf-convolution is again visible here.

Hedging problem at any time t: Solving the hedging problem at time 0 leads to the characterization

of a particular probability measure, which can be called calibration probability measure as the prices of any

hedging instruments made with respect to this measure coincide with the observed market prices on which

all agents agree.

Solving the hedging problem at any time t is equivalent to solving the same problem at time 0 as soon as the

prices of these hedging instruments at this time t are given as the expected value of their discounted future

cash �ows under the optimal calibration probability measure determined at time 0. This optimal probability

measure is very robust as it remains the pricing measure for hedging instruments between 0 and T .

Therefore, we can introduce the same problem at any time t:

ess inf
θ∈K

Rt

(
XT −GT (θ)

)
= Rm

t (XT ).

BSDEs time-consistency and uniqueness are key arguments to show that if θ is optimal for the problem at

time 0, then θ is optimal for the optimization program at any time t.

Dynamic Entropic Framework The entropic hedging problem, lying at the core of this book, has been

intensively studied in the literature. But only a few papers are using a BSDEs framework. After the seminal

paper by El Karoui and Rouge [51], di�erent authors have used BSDEs to solve this problem under various

assumptions (see in particular Sekine [110], Mania et al. [88] and more recently Hu, Imkeller and Müller [73]
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or Mania and Schweizer [89]).

Another approach, di�erent from what we have mentioned above, has been used to solve the hedging problem

involves the dual representation for the dynamic entropic risk measure as given by Theorem 7.4:

eγ,t(Ψ) = sup
µ∈Aq

EQµ

[
−Ψ− γ

∫ T

t

|µs|2

2
ds|Ft

]
.

Therefore, the hedging problem at any time t can be rewritten as:

ess inf
θ∈K

ess supµ∈Aq

{
EQµ [−XT + GT (θ)|Ft]− γh(Qµ|P)

}
and it may be solved by using dynamic programming arguments.

9 Appendix: Some Results in Convex Analysis

We now present some key results in convex analysis that will be useful to obtain the dual representation of g-

conditional risk measures. More details or proofs may be found in Aubin [4], Hiriart-Urruty and Lemaréchal

[70] or Rockafellar [103].

All the notations and de�nitions we introduce are consistent with the notations of risk measures. They may

di�er from the standard framework of convex analysis (especially regaring the sign).

Even if the coe�cient of the BSDE is �nite, we are also interested in convex functions taking in�nite values.

The main motivation is the de�nition of its convex polar function G. In that follows, as in [70], we always

assume that the considered functions are not identically +∞ and are bounded from below by a a�ne function

(note that this assumption is rather general and does not necessarily require that the functions are convex).

The domain of a function g is de�ned as the nonempty set Dom(g) = {z : g(z) < +∞}. The epigraph of

convex function is the subset of Rn ×R as: epi g = {(x, λ) | g(x) ≤ λ}. When the convex functions are lower

semicontinuous (lsc), epig is closed, and they are said to be closed.

9.1 Duality

9.1.1 Legendre-Fenchel Transformation

Let g be a convex function. The polar function G is de�ned on Rn by

G(µ) = sup
z

(〈µ, z〉 − g(z)) = sup
z∈Dom(g)

(〈µ,−z〉 − g(z)). (44)

The function G is a closed convex function, which can take in�nite values. The conjugacy operation induces

a symmetric one-to-one correspondence in the class of all closed convex functions on Rn :

g(z) = sup
µ

(〈µ,−z〉 −G(µ)), G(µ) = sup
z

(〈µ,−z〉 − g(z)).
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Convex set and duality Given a nonempty subset S ⊂ Rn, the indicator function (in the convex

analysis terminology) of S, lS : Rn → R+ ∪ {+∞}, is de�ned by:

lS(z) = 0 if z ∈ S and +∞ if not.

lS is convex (closed), i� S is convex (closed) since epi lS = S × R+.

The polar function of lS is the support function of −S:

σS(z) := sup
s∈S

〈s,−z〉 = sup
s
{〈s,−z〉 − lS(s)}.

The support function is closed, convex, homgeneous function: σS(λz) = λσS(z) for all λ > 0. Its epigraph

and its domain are convex cones.

9.1.2 Subdi�erential and Optimization

The sub-di�erential of the convex function g in z, whose the elements are called subgradient of g at z, is the

set ∂g(z) de�ned as:

∂g(z) = { µ | g(x) ≥ g(z)− 〈µ, x− z〉, ∀x} = { µ |g(z)− 〈µ,−z〉 ≥ G(µ)}. (45)

If z /∈ Dom(g), ∂g(z) = ∅. But if z is in the interior of Dom(g), the subgradient ∂g(z) is non-empty (see

Section E in [70] or Chapter 23 in [103]); in fact, it is enough that z belongs to the relative interior of Dom(g),

where ridom(g) is de�ned in Section A in [70] and in Chapter 6 in [103]. In particular, if g is �nite, then

∂g(z) is nonempty for any z. When ∂g(z) is reduced to a single point, the function is said to be di�erentiable

in z. Note that when the function g is the indicator function of the convex set C, the sub-di�erential of g in

z ∈ C is the positive normal cone N+
C (z) to C at z, N+

C (z) = {s ∈ Rn | ∀y ∈ C − 〈s, y − z〉} ≤ 0}.

Subgradients are solutions of minimization programs as infz (g(z)− 〈µ,−z〉) (= −G(µ)), or its dual program,

infµ (G(µ)− 〈µ,−z〉) (= −g(z)). The precise result is the following (see Section E in [70]): Let g be a closed

convex function and G its polar function.

• µ̂ ∈ ∂g(ẑ) ⇐⇒ µ̂ is the optimal for the following minimization program, that is −g(z) =

infµ (G(µ)− 〈µ,−z〉) = G(µ̂)− 〈µ̂,−z〉.

• ẑ ∈ ∂G(µ̂) ⇐⇒ ẑ is optimal for the following minimization program, that is in −G(µ) =

infz (g(z)− 〈µ,−z〉) = g(ẑ)− 〈µ,−ẑ〉.

In the following, when working with BSDEs, we will denote by zµ the scalar product between the line vector

z and the column vector µ.

9.2 Recession function

9.2.1 Recession Function

The recession function associated with a closed convex function g is the homogeneous convex function de�ned

for z ∈ Dom(g) by g0+(z) := limγ↓0 γg
(

1
γ z

)
= limγ↓0 γ

(
g(y + 1

γ z)− g(y)
)
. This function g0+ is the smallest
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homogeneous function h such that for any z, y ∈ Dom(g), g(z) − g(y) ≤ h(z − y). When g(z) ≤ c + k|z|,
g0+(z) ≤ k|z| is a �nite convex function, and the function g is Lipschitz-continuous function with Lipschitz

coe�cient k since g(z)− g(y) ≤ k|z − y|.
This property explains why any convex coe�cient of BSDE satisfying the assumption (H2) in fact satis�es

(H1).

Let G be the polar function of g. Using obvious notations, for any µ ∈ Dom(g), polar g0+(µ) =

limγ↓0(γG(µ)) = 0. So, polar g0+ = ldom G. By the conjugacy relationship applied to closed functions,

g0+ is the support function of Dom(G); so g0+ is �nite everywhere i� Dom(G) is bounded, or i� g is uni-

formly Lipschitz, or �nally i� g has linear growth.

The recession function of the quadratic function qk(z) = c + k|z|2 is in�nite except in z = 0, and its po-

lar function is the null function. More generally, convex functions such that g0+ = l{0} admit �nite polar

function G and this condition is su�cient.

9.2.2 Perspective Function

Let us consider a closed convex function g such that g(0) = 0. The perspective function associated with g is

the function g̃ de�ned on R+ × Rn as:

g̃(γ, z) =

 γg( z
γ ) if γ > 0

limγ→0 γg( z
γ ) = g0+(z) if γ = 0

Note �rst that the perspective function of g corresponds to the γ-dilated of g, seen as a function of both

variables z and γ, when γ > 0. It is prorogated for γ = 0 by the recession function g0+ . Note that the risk

tolerance coe�cient is considered as a risk factor itself. g̃ is a positive homogeneous convex function (for

more details, please refer to Part B [70]).

The dual function of g̃, de�ned on R× Rn, is given by:

G̃(θ, µ) = 0 if G(µ) ≤ −θ , and +∞ otherwise.

If g(0) < ∞, note that G(µ) is bounded.

9.3 In�mal Convolution of Convex Functions and Minimization Programs

Addition and inf-convolution of closed convex functions are two dual operations with respect to the conjugacy

relation.

Let gA and gB be two closed convex functions from Rn ∪ {+∞}. By de�nition, the in�mal convolution of

gA and gB is the function gA�gB de�ned as:(
gA�gB

)
(z) = inf

yA+yB=z
(gA(yA) + gB(yB)) = inf

y
(gA(z − y) + gB(y)). (46)

If gA�gB 6≡ ∞, then its polar function, denoted by GAB , is simply the sum of the polar functions of gA and

gB :

GAB(µ) = GA(µ) + GB(µ)
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9.3.1 Inf-Convolution as a Proper Convex Function

The function gA�gB may take the value −∞, which is contrary to the assumption made in Subsection 7.2. To

avoid this di�culty, we assume that both functions gA and gB have a common a�ne minorant 〈s, .〉−b. This

assumption may be expressed in terms of their recession functions, both of them being also bounded from

below by 〈s, .〉. Therefore, gA
0+(z) + gB

0+(−z) ≥ 0 for any z and consequently
(
gA
0+�gB

0+

)
(0) ≥ 0. Note that

this condition can also be expressed in terms of the polar functions of gA and gB as dom(GA)∩dom(GB) 6= ∅.

9.3.2 Existence of Exact Inf-Convolution

We are interested in the existence of a solution to the inf-convolution problem (46). When a solution exists,

the in�mal convolution is said to be exact.

The previous conditions are almost su�cient, as proved in Rockafellar [103] since, if we assume

gA
0+(z) + gB

0+(−z) > 0, ∀z 6= 0 (47)

then gA�gB is a closed convex function, and for any z, the in�mum is attained by some x∗:

gA�gB(z) = inf
x
{gA(z − x) + gB(x)} = gA(z − x∗) + gB(x∗).

The condition (47) is satis�ed if intdom(GA)∩ intdom(GB) 6= ∅ (in fact, the true interior corresponds to the

relative interior de�ned in Section A by Hiriart-Urruty and Lemaréchal [70]).

Examples of exact inf-convolution: We now mention di�erent cases where the inf-convolution has a

solution.

• First, when both convex functions gA and gB are dilated, then their inf-convolution is exact without

having to impose any particular assumption, as we have already noticed when working with static risk

measures in the �rst part (see Proposition 3.5). More precisely, assume that gA and gB are dilated

from a given convex function g such that gA = gγA
and gB = gγB

, then gA � gB = gγA+γB
and for any

z, an optimal solution x∗ to the inf-convolution problem is given by x∗ = γB

γA+γB
.

• More generally, if gA is bounded from below and if gB satis�es the quali�cation constraint ensuring

that infz gB(z) is reached for some z (in other words, gB has a strictly positive recession function gB
0+),

then the condition (47) is satis�ed and the inf-convolution gA�gB has a non-empty compact set of

solutions.

9.3.3 Characterization of Optima

We are now interested on the characterization of optima in the case of exact inf-convolution. This can

be done in terms of the subdi�erentials of the di�erent convex functions involved. More precisely, let us

consider zA and zB respectively in dom(gA) and in dom(gB) and z = zA + zB in dom(gA�gB). Then,

∂gA(zA) ∩ ∂gB(zB) ⊂ ∂(gA�gB)(z).

Moreover, if ∂gA(zA)∩∂gB(zB) 6= ∅, then the inf-convolution gA�gB is exact at z = zA +zB and ∂gA(zA)∩
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∂gB(zB) = ∂(gA�gB)(z). (For more details, please refer to [70]).

In particular, as 0 belongs to the domain of gA and gB , if ∂gA(0) ∩ ∂gB(0) 6= ∅, then ∂(gA�gB)(0) =

∂gA(0) ∩ ∂gB(0) and the inf-convolution is exact at 0.

Moreover, if both functions are centered, i.e. gA(0) = gB(0) = 0, then the inf-convolution is also centered

as (gA�gB)(0) = gA(0) + gB(0) = 0.

9.3.4 Regularization by Inf-Convolution

As convolution, the in�mal convolution is used in regularization procedures. The most famous regularizations

are certainly, on the one hand, the Lipschitz regularization g(k) of g using the inf-convolution with the kernel

bk(z) = k|z| and on the other hand, the di�erentiable regularization, also calledMoreau-Yosida regularization,

g[k] of g using the inf-convolution with the kernel qk(z) = k
2 |z|

2. Both regularizations do not have however

the same "e�ciency".

Lipschitz Regularization We �rst consider the inf-convolution g(k) of g using the kernel bk(z) = k|z|
or more generally using functions whose polar's domain is bounded (or equivalently with a �nite recession

function).

The function g(k) is �nite, convex, non decreasing w.r. to k. Moreover, its inf-convolution g(k) is Lipschitz-

continuous, with Lipschitz constant k. More generally, the inf-convolution of two convex functions, one of

them satisfying (H1), also satis�es (H1) without any condition on the other function.

If z0 ∈ int domg, then g(k)(z0) = g(z0) for k large enough. When g = lC is the indicator function of a closed

convex set C, gk = kdist(., C).

This regularization is used in the book's chapter dedicated to BSDEs to show the existence of BSDE with

continuous coe�cient.

Moreau-Yosida Regularization We now consider the inf-convolution g[k] of g using the kernel qk(z) =
k
2 |z|

2. The function g[k] is �nite, convex, non decreasing w.r. to k. Moreover, g[k] is di�erentiable and

its gradient is Lipschitz-continuous with Lipschitz constant k. In other words, the polar function of g[k] is

strongly convex with module k, equivalently G[k](.)− k
2 |.|

2 is still a convex function (for more details, please

refer to Cohen [32]).

There exists a point Jk(z) that attains the minimum in the inf-convolution problem with qk. The maps

z → Jk(z) are Lipschitz continuous with a constant 1, independent of k and monotonic in the following sense

(Jk(z)− Jk(y)) (z − y)∗ ≥ ||Jk(z)− Jk(y)||2. Moreover,∇g[k] = k(z − Jk(z)).

More generally, the inf-convolution of two convex functions, one of them being strongly convex, satis�es (H3)

without any condition on the other function.
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