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Abstract

This study is an attempt to generalize in dimension higher than two the
mathematical results in [8] (Computing the equilibrium con�guration of epi-
taxially strained crystalline �lms, SIAM J. Appl. Math. 62 (2002), no. 4,
1093�1121) by E. Bonnetier and the �rst author. It is the study of a physical
system whose equilibrium is the result of a competition between an elastic
energy inside a domain and a surface tension, proportional to the perimeter
of the domain. The domain is constrained to remain a subgraph. It is shown
in [8] that several phenomenon appear at various scales as a result of this
competition. In this paper, we focus on establishing a sound mathematical
framework for this problem in higher dimension. We also provide an approx-
imation, based on a phase-�eld representation of the domain.

1 Introduction

In this paper, we seek to extend to higher dimension the results of the �rst author

and Eric Bonnetier in [8]. There, the authors modelize the physical system which

consists in a thin �lm of atoms deposited on a substrate, made of a di�erent crystal.

Such systems are common in the engineering of devices such as electronic chips,

which are obtained by growing epitaxial �lms on �at surfaces.

In such a situation, the mis�t between the crystalline lattices of the substrate and

the �lm induces strains in the �lm. To release the elastic energy due to these strains,

the atoms of the free surface of the �lm may di�use and a reorganization occurs in

the �lm. The result of this mechanism is a competition between the surface energy

of the crystal, and the bulk elastic energy. The former is roughly proportional to the

free surface of the crystal, and therefore favors �at con�gurations. The bulk energy,

on the contrary, is best released if oscillatory patterns develop. We refer to [8]

and the former study [9] for a more complete explanation of the phenomenon, and

for references on �stress driven rearrangement instabilities� (SDRI) and epitaxial

growth.

∗CMAP (CNRS UMR 7641), Ecole Polytechnique, 91128 Palaiseau cedex, France.
†DAP, Università di Sassari, Palazzo Pou Salit, 07041 Alghero, Italia.
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Here, we restrict our study to the mathematical model which is proposed in [8]

in dimension two. We extend to higher dimension the relaxation result (implic-

itly contained in Lemma 2.1 and Theorem 2.2 in [8]), and show the correctness

of the phase-�eld approximation, extending [8, Thm 3.1]. Observe however that

in that paper, the bulk energy is a linearized elasticity energy that involves the

symmetrized gradient of the displacement. It seems that up to now, the theory

of �special bounded deformation� functions [5, 7] is not well-enough developped to

make possible the generalization of our results to that case, so that we only work

with W 1,p-coercive bulk energies. Alternatively, we could have decided to impose

an additional (arti�cial) L∞ constraint to the displacements, in which case the

extension to linearized elasticity energies would have been relatively easy (see for

instance [13]).

Numerical experiments conducted by François Jouve and Eric Bonnetier (at

CMAP, Ecole Polytechnique, France, and LMC/Imag, Grenoble, France) show that

the phase-�eld energy introduced in Section 5, in dimension 3, yield results similar

to the 2D plots in [8]. See Figure 1 which shows how an island is formed, as a result

of the competition between the surface energy and the strains in the material.

Here the stretch (the lattice mis�t) along the x-direction in stronger than in the

y-direction, explaining the shape of the island. (In this example, the bulk energy is

a linearized elasticity energy.)

Figure 1: Example of an �island�.

To be precise, we consider in this paper a displacement in a material domain

which is the subgraph of an unknown nonnegative function h. Assuming h is de�ned

on an open Lipschitz set ω ⊂ Rn−1, the displacement u will be de�ned on the

subgraph Ωh := {x = (x′, xN ) ∈ ω × (0,+∞) : xN < h(x′)} of h. We will consider
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energies of the form:

F (u, h) =
∫

Ωh

W (∇u) dx+
∫

ω

√
1 + |∇h|2 dx′

where u sastis�es a prescribed boundary condition on the boundary ω × {0}. In

this paper, ω will be the (N − 1)-dimensional torus and the boundary condition of

u on �∂ω� will be of periodic type, as in [8] (however, adaption to other situations

will not be di�cult as long as ∂ω is Lipschitz).

The goal of our paper is to show that the relaxed functional of F can be written

F (u, h) =
∫

Ωh

W (∇u) dx+HN−1(∂∗Ωh) + 2HN−1(Σ),

where Σ, the �internal� discontinuity set of u, �inside� the subgraph Ωh of h (which

is now a BV function), will be a �vertical� recti�able set, so that Ωh ∪ Σ can be

viewed as a generalized subgraph.

In an article written almost simultaneously by Andrea Braides and the authors

of the present paper [10], a similar problem is studied, without the constraint that

the domain is the subgraph of a function. Although this may seem more gen-

eral, showing that �recovery� sequences can be built, so that F is not only a lower

bound, but also an upper bound for the lower semicontinuous envelope of F , is

considerably more di�cult in our setting, since the sequence which is found must

satisfy the constraint, and therefore has to be built in a constructive way (and

not using some general existence result). This construction follows the discretiza-

tion/reinterpolation technique introduced in [12, 13]. On the other hand, the lower

bound in this work is almost a straightforward consequence of [10].

Eventually, the last section in this paper deals with the phase-�eld approxima-

tion of F , using the same approach as in [8].

2 Setting of the problem and statement of the result

2.1 Functions of bounded variation

We start by recalling some de�nition and results, useful in this paper, concerning

spaces of function of bounded variation; for this topic, we refer essentially to [6].

Let Ω be an open subset of RN . Given u ∈ L1(Ω), its total variation is de�ned

as

sup
{∫

Ω

u divψ dx : ψ ∈ C∞c (Ω; RN ), |ψ(x)| ≤ 1 ∀x ∈ Ω
}
.

One may check that it is �nite if and only if the distributional derivative Du of u

is a bounded Radon measure in Ω. In this case, the total variation of u is equal to

the total variation of the measure Du, and is classically denoted by |Du|(Ω).

At each x ∈ Ω, one can de�ne upper and lower values of u as follows: the upper

value is

u+(ξ) = inf
{
t ∈ [−∞,+∞] : lim sup

ρ→0

|{y ∈ Ω : u(y) > t}| ∩Bρ(x)
|Bρ(x)|

= 0
}
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where Bρ(x) is the ball of radius ρ, centered at x. The lower value is simply −(−u)+.
De�ning the �jump set� of u as Su := {x ∈ Ω : u−(x) < u+(x)}, one can show that

if u ∈ BV (Ω), Su is a (HN−1, N − 1)-recti�able set (in the sense of Federer [16]),

so that it admits a normal νu(x) at HN−1-a.e. x ∈ Su, and Du decomposes as

Du = ∇u(x) dx + (u+(x)− u−(x))νu(x) dHN−1 Su(x) + Dcu

where Dcu, the �Cantor part�, is singular with respect to the Lebesgue measure and

vanishes on any set with �nite (N−1)-dimensional Hausdor� measure. The Radon-

Nikodym derivative of Du with respect to the Lebesgue measure dx, denoted by

∇u(x), is a.e. the �approximate gradient� of u at x, see [6]. Of course, if u ∈W 1,1(Ω),

it coincides with the weak gradient.

Up to now, we have considered real-valued functions. If u : Ω → Rd is vector-

valued, Su will be the union of the jumps sets of the d components of u. One

shows, then, that when two of these jumps sets intersect, the corresponding normals

coincide HN−1-everywhere in the intersection up to a change of sign. The jump part

of the derivative Du is given by (u+−u−)⊗νu dHN−1 Su, where now, u+ and u−

are not the �upper� and �lower� values (since there is no natural order in Rd) but

the orientation depends on the choice of the direction of the normal νu (the triple

(u−, u+, ν) being equivalent to (u+, u−,−νu)).

The space SBV (Ω) is de�ned as the subset of BV (Ω) of functions u such that

Dcu = 0, that is, Du is absolutely continuous with respect to dx + HN−1 Su.

Then, for p > 1, we say that a function u : Ω → R belongs to the space SBVp(Ω) if

u ∈ SBV (Ω), ∇u ∈ Lp(Ω; RN ) and HN−1(Su) < +∞.

We say that a function u ∈ L1(Ω) is a generalized function of bounded varia-

tion (u ∈ GBV (Ω)) if uT := (−T ) ∨ u ∧ T belongs to BV (Ω) for every T ≥ 0.

If u ∈ GBV (Ω), setting Su =
⋃

T>0 SuT , a truncation argument allows to de�ne

the traces u−(x) and u+(x) for a.e. x ∈ Su. De�ning, for u ∈ GBV (Ω), the

Cantor part of the derivative as |Dcu| = supT>0 |DcuT |, we say that a function u in

GBV (Ω) belongs to GSBV (Ω) if |Dcu| = 0, and moreover u in GSBV (Ω) belongs

to GSBVp(Ω), for p > 1, if ∇u ∈ Lp(Ω; RN ) and HN−1(Su) < +∞.

The following compactness result for SBV is proven in [3, 4] (see also [6, Thm.

4.8]).

Theorem 2.1 (Compactness in SBV ) Let (un)n ⊂ SBV (Ω) satisfy

sup
n

{∫
Ω

|∇un|p dx + HN−1(Sun)
}

< +∞,

with un uniformly bounded in L∞(Ω). Then, there exists a subsequence (unk
)k and

u ∈ SBVp(Ω) such that unk
→ u a.e. in Ω, ∇uk ⇀ ∇u in Lp(Ω; RN ), and

HN−1(Su) ≤ lim inf
k→∞

HN−1(Suk
) .

If un is bounded only in L1(Ω), one shows easily by truncation that the results still

holds, with u ∈ GSBVp(Ω).
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2.2 Subgraphs of �nite perimeter

In this paper, to simplify, ω is the torus (R/Z)N−1; however, the extension of our

results to the case of a Lipschitz bounded open subset of RN−1 does not raise

any di�culties. A generic point x ∈ ω × R will be denoted by (x′, xN ), x′ =

(x1, . . . , xN−1) ∈ ω, xN ∈ R. For h : ω → R+ measurable, we consider:

Ωh = {x ∈ ω × (−1,+∞) : xN < h(x′)} and

Ω+
h = {x ∈ ω × (0,+∞) : xN < h(x′)} = Ωh ∩ (ω × (0,+∞)) .

If h ∈ BV (ω; R+), the set Ωh has �nite perimeter in the sense of Caccioppoli in

ω × (−1,+∞) (i.e., |DχΩh
|(ω × (−1,+∞)) ≤ |ω|+ |Dh|(ω) < +∞, so that χΩh

∈
BV (ω × (−1,+∞))). At each point ξ ∈ ω one can de�ne the upper and lower values

h+(ξ) and h−(ξ) as in the previous section. As before, it is known that h+ = h− a.e.

in ω and the set of points where h− < h+, called the jump set of h, is denoted by Sh.

Then, if x = (x′, xN ) ∈ ω × (−1,+∞), xN < h−(x′) ⇒ x ∈ Ω1
h (the set of points

where Ωh has Lebesgue density 1), xN > h+(x′) ⇒ x ∈ Ω0
h (the set of points where

it has density 0), and ∂∗Ωh = ω × (−1,+∞) \ (Ω0
h ∪ Ω1

h), the measure-theoretical

boundary, is a subset of (and HN−1-a.e. equal to)
⋃

ξ∈ω{ξ} × [h−(ξ), h+(ξ)]. It is

known that the measure-theoretical boundary is HN−1-a.e. equal to a subset ∂∗Ωh

called the �reduced boundary� of De Giorgi, that contains only points x where the

blow-ups (Ωh−x)/ρ converge as ρ→ 0 (in L1
loc

(RN )) to a half-space of outer normal

νΩh
(x) (hence, Ωh has density exactly 1/2 at x).

Let us emphasize the fact that the boundaries ∂Ωf , ∂∗Ωh will always, in this

paper, be intended as boundaries inside ω × (−1,+∞), that is, they do not contain

ω × {−1}.

2.3 The relaxation result

Let W : Md×N → [0,+∞), with d ≥ 1, be a continuous and quasi-convex function

satisfying a p-growth condition. Let u0 ∈W 1,p(ω × (−1, 0); Rd).

For h ∈ C1(ω; [0,+∞)), and u ∈W 1,p(Ω+
h ; Rd), with u = u0 in ω × {0}, we set:

F (u, h) =
∫

Ω+
h

W (∇u) dx+
∫

ω

√
1 + |∇h|2 dx′;

clearly, the same de�nition can be done for u ∈ L1(ω × (0,+∞); Rd) such that the

restriction to Ω+
h satis�es the previous properties; moreover, we de�ne F (u, h) =

+∞ otherwise in L1(ω × (0,+∞); Rd)×BV (ω; [0,+∞)).

It is clear that equivalently one can write that u ∈ W 1,p(Ωh; Rd), with u = u0

in ω × (−1, 0).

The main result of this paper is the proof of the following relaxation result for

the functional F , here written in the case d = 1 (for the general case, see the 4th

remark in Section 2.4).
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Theorem 2.2 The lower-semicontinuous envelope of the functional F with respect

to the L1(ω × (0,+∞)) × L1(ω) topology, is the functional F : L1(ω × (0,+∞)) ×
L1(ω) → [0,+∞] de�ned as:

F (u, h) =



∫
Ω+

h

W (∇u) dx+HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1
h)

if h ∈ BV (ω; [0,+∞)) and uχΩ+
h
∈ GSBV (ω × (0,+∞))

+∞ otherwise,

where

S′u = {(x′, xN + t) : x ∈ Su , t ≥ 0} .

Observe that, denoting Σ = S′u ∩Ω1
h, Σ is a �vertical� recti�able set, and we will

sometimes write Γ = ∂∗Ωh ∪ Σ, the �generalized� interface.

The proof of Theorem 2.2 will be given by showing a lower and an upper bound,

respectively in Section 3 (Prop. 3.1) and in Section 4 (Prop. 4.1); the thesis of

Theorem 2.2 immediately follows from these results.

2.4 Some remarks

1. In [10], a similar result is shown, with mainly two di�erences, that both follow

from the constraint that the set where u is de�ned is a subgraph: in the lim inf

inequality, we have to keep the track of vertical parts of the boundary (S′u) that

might not be in the jump set of u (that is, one might have (S′u \Su)∩Ω1
h 6= ∅).

In the lim sup inequality, one needs to build a recovery sequence which remains

a subgraph, leading to a much more complex proof than in [10].

2. In [8], one also considers the case where the surface tension for the substrate

(of boundary ω × {0}), σS , can be di�erent from the surface tension σC of

the crystal (of boundary ∂Ωh ∩ (ω × (0,+∞)), if h is smooth). In this case,

two di�erent phenomena occur, depending on the fact σS ≤ σC or σC < σS .

In the latter case, it is always energetically convenient to cover (or �wet�) all

the surface of the substrate with an in�nitesimal layer of crystal, so that the

global surface tension in the relaxed energy is σC . In case σS is less than σC ,

then parts of the substrate might remain uncovered by the crystal, and the

surface energy in the relaxed functional will be given by

σC(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(S′u ∩ Ω1
h))

+ σSHN−1({x′ ∈ ω : h(x′) = 0}) .

We do not prove this result here: we fear it would make the paper harder to

read, mostly because of the notation. See also Remark 4.4.

3. Still in [8], the (2D) functional F is minimized with an additional volume

constraint (
∫

ω
h dx = 1). It is easy to show that the relaxed functional F does

not change under this constraint � see Remark 4.2 below.
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4. In the sequel, we will assume that d = 1, u is scalar, hence W is convex.

Adapting the proofs to the vectorial case (and W quasiconvex) is straightfor-

ward (and would just make the notation more tedious).

5. In [8] and the problem mentionned in the introduction, it is not u but u −
x1 which is 1-periodic in the �rst variable. Here, to simplify, everything is

written with u ∈ GSBVp(ω × (−1,+∞)): that is, u is periodic in the (N − 1)

�rst directions (we recall ω is the (N − 1)-dimensional torus). Adapting the

results to extend them to the case where (for instance) u − α(x1, 0, . . . , 0) ∈
GSBVp(ω × (−1,+∞)), α > 0, would not be di�cult.

3 A lower bound for the relaxed envelope of F

In this section we obtain a lower bound for the relaxed functional F by proving the

following proposition.

Proposition 3.1 For every sequence (un, hn) ∈W 1,p(Ωhn
)×C1(ω; [0,+∞)), with

un = u0 in ω × (−1, 0), such that

sup
n
F (un, hn) < +∞,

there exist h ∈ BV (ω; [0,+∞)) and u ∈ GSBV (ω × (0,+∞)) (with u = 0 out of

Ωh) such that χΩhn
un → u in L1(ω × (0,+∞)), hn → h in L1(ω), and∫
Ω+

h

|∇u(x)|p dx ≤ lim inf
n→∞

∫
Ω+

hn

|∇un(x)|p dx , (1)

and

HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1
h) ≤ lim inf

n→∞

∫
ω

√
1 + |∇hn(x′)|2 dx′ (2)

This Proposition implies immediately the lower bound for the relaxed envelope

of F, that is the �rst part of the proof of Theorem 2.2. Indeed, we obtain in the

proof that the sequence (un)n converges in fact weakly in the W 1,p-topology, and

since the function W is lower semicontinuous and quasi-convex, with growth p, the

functional G(u) =
∫
Ω+

h
W (∇u) dx is weakly lower semicontinuous in W 1,p; then, in

the same hypotheses, we get the inequality:∫
Ω+

h

W (∇u(x)) dx+HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1
h)

≤ lim inf
n→∞

∫
Ω+

hn

W (∇un(x)) dx +
∫

ω

√
1 + |∇hn(x′)|2 dx′,

(3)

Let us consider a sequence (un, hn) such that

sup
n≥1

F (un, hn) < +∞ ;
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we show that, up to a subsequence, un → u in L1(ω × (0,+∞)) and hn → h in

L1(ω), with

F (u, h) ≤ lim inf
n→∞

F (un, hn). (4)

To prove the lower inequality, it is su�cient to consider sequences (un, hn) with

hn ∈ C∞(ω; [0,+∞)) and un ∈ W 1,p(Ω+
hn

), and u = u0 on ω × {0}; however, this
compactness property, as well as inequality (4), will still hold if we just assume that

hn ∈W 1,1(ω) and un ∈ SBVp(ω × (−1,+∞)) with un = u0 in ω×(−1, 0), u(x) = 0

a.e. in {xN > h(x′)}, and Su⊂̃∂∗Ωhn (where A⊂̃B means HN−1(A \B) = 0).

Let us consider �rst the compactness and lower semicontinuity of the jump

term, and for this we will use a special notion of convergence for jump set of SBVp

functions.

3.1 Jump set convegence

The following notion of jump set convergence is introduced by Dal Maso, Francfort

and Toader [14, Def. 4.1] and [15, Def. 3.1]. It is called �σp-convergence�. A variant,

which is independent on the exponent p > 1, has been introduced more recently by

Giacomini and Ponsiglione, see [18].

In the sequel, we denote respectively equality and inclusion up to a HN−1-

negligible set by the symbols =̃ and ⊂̃.

De�nition 3.2 Let Ω be an open set in RN , and p ∈ (1,+∞). We say that a se-

quence (Γn)n∈N of subsets of Ω σp�converges to Γ if and only if supn∈NHN−1(Γn) <

+∞ and:

(i) For any sequence (vn)n of functions in SBVp(Ω), with Svn⊂̃Γn, if the subse-

quence vnk
goes to v weakly in SBVp(Ω) as k →∞ then Sv⊂̃Γ;

(ii) There exists a function v ∈ SBVp(Ω) and sequence (vn)n of functions in

SBVp(Ω) converging to v, such that Svn⊂̃Γn for each n and Sv = Γ.

The following compactness theorem is proven in [14, Thm. 4.7]

Theorem 3.3 Every sequence Γn ⊂ Ω, with HN−1(Γn) uniformly bounded, has a

σp-convergent subsequence.

The proof of this theorem is based on the following lemma (cf [14, Lemma 4.5])

Lemma 3.4 Let (vi)∞i=1 be a sequence in SBVp(Ω) ∩ L∞(Ω) and let us assume

HN−1(
⋃∞

i=1 Svi) < +∞. Then there exist real numbers ci > 0 with
∑∞

i=1 ci < +∞
such that v :=

∑∞
i=1 civi ∈ SBVp(Ω) ∩ L∞(Ω) and Sv=̃

⋃∞
i=1 Svi .

Let us mention the following variant of the proof of Theorem 3.3, still based on

Lemma 3.4: given Γ ⊂ Ω, we introduce

X(Γ) =
{
v ∈ SBVp(Ω; [−1, 1]) : Sv⊂̃Γ ,

∫
Ω

|∇v|p dx ≤ 1
}
.
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Then, ifHN−1(Γ) < +∞, by Ambrosio's compactness theorem 2.1, X(Γ) is compact

in L1
loc

(Ω) (which is metrizable). If (Γn)n is a sequence of jumps sets with L =

supnHN−1(Γn) < +∞, then the sets X(Γn) all belong to

XL =
{
v ∈ SBVp(Ω; [−1, 1]) : HN−1(Sv) ≤ L,

∫
Ω

|∇v|p dx ≤ 1
}
.

which is also compact in L1
loc

(Ω). Hence, a subsequence (X(Γnk
))k converges in the

Hausdor� sense (with the Hausdor� distance in L1
loc

(Ω) induced by a distance in

L1
loc

(Ω)) to a compact K ⊂ XL. We show that K ⊆ X(Γ) for some Γ.

Let (vi)∞i=1 be a dense sequence in the compact set K. We �rst observe that

since K is convex, given any v, v′ in K there exists w (given by θv + (1 − θ)v′

for an appropriate choice of θ, see for instance [17]) such that Sw=̃Sv ∪ Sv′ , hence

HN−1(Sv ∪ Sv′) ≤ L. In particular, we deduce that HN−1(
⋃k

i=1 Svi
) ≤ L for

any k ≥ 1, and passing to the limit, that HN−1(Γ) ≤ L < +∞, where we have

let Γ =
⋃∞

i=1 Svi . Using Lemma 3.4, we deduce that there exists v ∈ K with

Γ=̃Sv. Hence Γ satis�es axiom (ii) in De�nition 3.2. On the other hand, any

v ∈ K is the limit of an appropriate subsequence vi(k), k ≥ 1, with Svi(k)⊂̃Γ,

and a consequence of Ambrosio's compactness theorem is that Sv⊂̃Γ, so that also

axiom (i) in De�nition 3.2 is satis�ed. Hence Γnk
σp-converges to Γ.

We observe that an obvious consequence of Ambrosio's theorem is that if Γn

σp-converges to Γ,

HN−1(Γ) ≤ lim inf
n→∞

HN−1(Γn) . (5)

3.2 Proof of the lower inequality

Let Γn = ∂Ωhn
= {x ∈ ω × (−1,+∞) : xN = hn(x′)} be the graph of the function

hn. Up to a subsequence, we know by Theorem 3.3 that Γn σ
p�converges to some Γ

as n→∞. Since hn is uniformly bounded in W 1,1(ω), possibly extracting another

subsequence, hn → h in L1(ω). Equivalently, the sets Ωhn converge to Ωh in the

L1(ω × (0,+∞)) topology for the characteristic functions.

Clearly, ∂∗Ωh ⊆ Γ, indeed, if we take in De�nition 3.2 the sequence vn = χΩhn
,

we �nd that vn → χΩh
whose jump set is ∂∗Ωh.

Let us decompose Γ in the three parts ∂∗Ωh, Σ = Γ ∩ Ω1
h, and Σ0 = Γ ∩ Ω0

h.

The part Σ0 is irrelevant in our study, since the functions u, limits of converging

subsequences of (un), will all vanish outside of Ωh.

We show that Σ is �vertical�: that is, for any x = (x′, xN ) ∈ Σ, (x′, xN + t) ∈
Σ ∪ (RN \ Ω1

h) for any t ≥ 0. Indeed, let v ∈ SBVp(ω × (−1,+∞)) be such that

Sv=̃Γ, and let vn be a sequence weakly converging to v in SBVp(ω × (−1,+∞))

with Svn
⊂̃Γn. Consider the functions x 7→ vn(x′, xN − t)χΩhn

(x), with t < 1,

extended in an appropriate way in ω × (−1,−1 + t). These functions will converge

to x 7→ v(x′, xN − t)χΩh
(x), showing that (Sv + teN ) ∩ Ω1

h ⊂ Γ, which shows our

claim. In particular, we deduce that HN−1-a.e. in Σ, νΣ · eN = 0.
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By (5), we have HN−1(∂∗Ωh) + HN−1(Σ) ≤ lim infn→∞HN−1(Γn). We claim

that, in addition,

HN−1(∂∗Ωh) + 2HN−1(Σ) ≤ lim inf
n→∞

HN−1(Γn).

This follows from [10] and the de�nition of σp-convergence. Indeed, it is a conse-

quence of the lim inf-inequality in [10], applied to a sequence (vn)n≥1 with Svn⊂̃Γn,

weakly converging in SBVp(ω × (−1,+∞)) to a v such that Σ⊂̃Sv.

Let us now conclude. If F (un, hn) is uniformly bounded, then by integra-

tion along vertical segments we easily check that (un) is uniformly bounded in

Lp
loc

(ω × (−1,+∞)). Then, it is a consequence of Ambrosio's Theorem 2.1 that

there exists u ∈ GSBVp(ω × (−1,+∞)) such that un(x) → u(x) a.e., and ∇un ⇀

∇u in Lp(ω × (−1,+∞); RN ), so that the inequality (1) holds. Clearly, u vanishes

out of Ωh. By point (i) in De�nition 3.2, which is easily generalized to GSBVp

functions (see [14, Prop. 4.6]), we have that Su⊂̃Σ ∪ ∂∗Ωh. In particular since Σ is

�vertical�, S′u ∩Ω1
h ⊂ Σ. We deduce (2). Clearly, the inequality (4) follows from (1)

and (2).

4 An upper bound for the relaxed envelope of F

We now get the upper bound for the relaxed envelope of the functional F by proving

the following proposition.

Proposition 4.1 For any u, h with F (u, h) < +∞, there exist hn ∈ C1(ω; [0,+∞))

and un ∈ W 1,p(Ωhn) with un = u0 in ω × (−1, 0), such that hn → h in L1(ω),

unχΩ+
hn

→ uχΩ+
h
in L1(ω × (0,+∞)), and:

lim sup
n→∞

∫
Ω+

hn

|∇un(x)|p dx =
∫

Ω+
h

|∇u(x)|p dx (6)

and

lim sup
n→∞

∫
ω

√
1 + |∇hn(x′)|2 dx′ ≤ HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1

h). (7)

We note that the proposition completes the proof of Theorem 2.2. Indeed,

if we �nd a sequence (un)n satisfying the equation (6), we can deduce the strong

convergence ∇unχΩ+
hn

→ ∇uχΩ+
h
in Lp; the continuity ofW gives the general result

lim sup
n→∞

∫
Ω+

hn

W (∇un(x)) dx+
∫

ω

√
1 + |∇hn(x′)|2 dx′

≤
∫

Ω+
h

W (∇u(x)) dx+HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1
h),

(8)

which is the lim sup inequality for the functional F .
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Remark 4.2 In case one adds in the de�nition of functional F a volume constraint

(that is, F (u, h) = +∞ if
∫

ω
h dx 6= V where V > 0 is a �xed volume), then it is easy

to show that Proposition 4.1 still holds, with the sequence (hn) satisfying the same

volume constraint as the limit h. Indeed, given the sequence (hn) provided by the

proposition (without volume constraint), one clearly has rn =
∫

ω
hn dx/

∫
ω
h dx→ 1

as n→∞, and an appropriate scaling (of the form x 7→ (x′, xN/rn)) of the functions

and the domain will provide new sequences (un, hn) with
∫

ω
hn dx =

∫
ω
h dx, and

still satisfying (6) and (7).

Proof of the proposition. Let us consider, now, u and h such that F (u, h) < +∞.

First step: approximation of (most of) the graph. We show that we can

approximate a �generalized graph� (∂∗Ωh,Σ), where Σ ⊂ Ω1
h ∩ (ω × (0,+∞)) is

�vertical� in the sense that x ∈ Σ ⇒ (x′, xN + t) ∈ Σ for any t ≥ 0 as long

as (x′, xN + t) ∈ Ω1
h, with the graph of a smooth function f : ω → R+, with

Ωf ⊂ Ωh\Σ up to a small part, and a good approximation of the total surface energy

HN−1(∂∗Ωh) + 2HN−1(Σ) (by the surface of the smooth graph
∫

ω

√
1 + |∇f |2 dx).

Let us �rst state the following lemma, which will be useful in the sequel:

Lemma 4.3 Let g ∈ BV (ω; R+) and assume ∂∗Ωg is essentially closed, that is,

HN−1(∂∗Ωg \ ∂∗Ωg) = 0. Then, for any ε > 0, there exists f ∈ C∞(ω; R+) such

that 0 ≤ f ≤ g a.e. in ω, ‖f − g‖L1(ω) ≤ ε and∣∣∣∣∫
ω

√
1 + |∇f |2 dx − HN−1(∂∗Ωg)

∣∣∣∣ ≤ ε .

We do not give the proof of this lemma, which is obtained by regularizing (at a

scale smaller than δ ∈ (0, 1)) the function g+
δ = gδ ∨ 0, where gδ is de�ned by

{x = (x′, xN ) ∈ ω × (−1,+∞) : xN ≤ gδ(x′)}

= {x ∈ ω × (−1,+∞) : dist(x, (ω × (0,+∞)) \ Ωg) > δ} .

The (N − 1)�dimensional measure of the boundary of this set goes to HN−1(∂∗Ωg)

as δ → 0 (along well chosen subsequences) because of the assumption that ∂∗Ωg is

closed.

Now, let us �rst assume that Σ = ∅: we claim that for any h ∈ BV (ω; R+) and

ε > 0, there exists f ∈ C∞(ω; R+) such that

‖f − h‖L1(ω) + HN−1(∂∗Ωh ∩ Ωf ) ≤ ε . (9)

and ∣∣∣∣∫
ω

√
1 + |∇f(x)|2 dx − HN−1(∂∗Ωh)

∣∣∣∣ ≤ ε . (10)

We �x ε > 0. Let us consider a mollifying kernel ρ ∈ C∞c (RN ), with support in

the unit ball, and for any η > 0 let ρη(x) = (1/η)Nρ(x/η). For n ≥ 1 we consider the
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function wn = ρ1/n ∗χΩh
: ω×R → [0, 1]. It is well known that not only wn → χΩh

strongly in L1, but also that
∫

ω×(−1,+∞)
|∇wn(x)| dx → |DχΩh

|(ω × (−1,+∞)) =

HN−1(∂∗Ωh) as n→ +∞.

One has, for every x ∈ Ω1
h ∪ ∂∗Ωh ∪ Ω0

h (hence, HN−1-a.e. x ∈ ω × (−1,+∞)):

lim
n→∞

wn(x) =


1 if x ∈ Ω1

h

1
2 if x ∈ ∂∗Ωh

0 if x ∈ Ω0
h

(11)

The same properties are true for the sequence of (l.s.c.) functions (w̃n)n≥1 de-

�ned by

w̃n(x) =

wn(x) if x ∈ ω × [0,+∞)

1 if x ∈ ω × (−1, 0) .

Indeed, using the coarea formula, one sees that

|Dw̃n|(ω × (−1,+∞)) =
∫ 1

0

HN−1(∂{w̃n > s}) ds

≤
∫ 1

0

HN−1(∂{wn > s}) ds =
∫

ω×(0,+∞)

|∇wn(x)| dx ,

since HN−1(∂{wn > s} ∩ (ω × (−1, 0))) ≥ HN−1({x′ ∈ ω : wn(x′, 0) ≤ s}) =

HN−1(∂{w̃n > s}∩ (ω× (−1, 0))), the second set being the projection onto ω×{0}
of the �rst one. We deduce that lim supn→∞ |Dw̃n|(ω × (−1,+∞)) ≤ HN−1(∂∗Ωh),

but since w̃n → χΩh
, it yields limn→∞ |Dw̃n|(ω × (−1,+∞)) = HN−1(∂∗Ωh).

Clearly, (11) is also true for w̃, since Ω1
h ⊃ ω × (−1, 0). We drop the tilde in

the sequel and just write wn instead of w̃n.

For a.e. s ∈ (0, 1), one also checks that limn→∞ |{wn > s}4Ωh| = 0, and using

Fatou's lemma and the co-area formula, that for a.e. s ∈ (0, 1), {wn > s} is an

open set such that lim infn→∞HN−1(∂{wn > s}) = HN−1(∂∗Ωh). Thus, up to

a subsequence (possibly depending on s), we may assume limn→∞HN−1(∂{wn >

s}) = HN−1(∂∗Ωh). Let us consider s∗ ∈ (2/3, 3/4) and an appropriate subsequence

such that this property is true, and we consider the corresponding sequence of sets

{x ∈ ω × (−1,+∞) : wn(x) > s∗}. We have that HN−1(∂∗Ωh ∩ {wn > s∗}) =∫
∂∗Ωh

χ{wn>s∗}(x) dHN−1(x), and since by (11), χ{wn>s∗}(x) → 0 HN−1�a.e. in

∂∗Ωh, we �nd HN−1(∂∗Ωh ∩ {wn > s∗}) → 0 as n→∞. We �x n large, such that

|{wn > s∗}4Ωh| + HN−1(∂∗Ωh ∩ {wn > s∗}) ≤ ε

2
,∣∣HN−1(∂{wn > s∗}) − HN−1(∂∗Ωh)

∣∣ ≤ ε

2
.

It is clear that there exists g : ω → [0,+∞) a BV function such that {wn > s∗} =

{xN < g(x′)}. By Lemma 4.3 applied to g, we �nd a smooth function f ≤ g, f ≥ 0,

satisfying both (9) and (10).

Now, assume Σ 6= ∅. First, possibly replacing h by h∧(M−1) = min{h,M−1},
M > 1 large, we may assume without loss of generality that h is bounded byM−1.
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Let us then de�ne Σ′ by Σ′ =
⋃

x∈Σ{x′} ∪ [xN ,M ] and recall that by assumption,

Σ′ ∩Ω1
h = Σ. We may also assume without loss of generality that HN−1(Σ′ ∩ (ω ×

[0,M ])) < +∞, possibly replacing (in a preliminary step) h with hδ = (h − δ)+,

δ > 0 small, and Σ with Σδ = Σ ∩ Ωhδ
: indeed, one will have that Σ′δ ∩ {hδ(x′) ≤

xN ≤ hδ(x′) + δ} ⊆ Σ so that HN−1(Σ′δ ∩ (ω × [0,M ])) ≤ (M/δ)HN−1(Σ) < +∞.

Now, let K ⊆ Σ′ be a compact set such that HN−1(Σ′ \K) ≤ ε/10. Observe that,

if K ′ is de�ned as Σ′, also HN−1(Σ′ \K ′) ≤ ε/10, and K ′ is compact.

Let us build the sequence of l.s.c. functions (wn)n≥1, and �nd a level s∗ ∈
(2/3, 3/4), as previously. By (11), we have that χ{wn>s∗} converges to 1 in Ω1

h,

while it tends to 0 HN−1-a.e. outside. In particular, HN−1(K ′ ∩ {wn > s∗}) →
HN−1(K ′ ∩ Ω1

h) as n → ∞, and this limit sati�es HN−1(Σ) − ε/10 ≤ HN−1(K ′ ∩
Ω1

h) ≤ HN−1(Σ). We can hence choose n such that

|{wn > s∗}4Ωh| + HN−1(∂∗Ωh ∩ {wn ≥ s∗}) ≤ ε

4
,

∣∣HN−1(∂{wn > s∗}) − HN−1(∂∗Ωh)
∣∣ ≤ ε

4
,

and ∣∣HN−1(K ′ ∩ {wn > s∗}) − HN−1(Σ)
∣∣ ≤ ε

8
.

Observe now that since the set K ′ is compact, then its Minkowski content

|{dist(·,K ′) < s}|/(2s) converges to HN−1(K ′) as s → 0 (see [16]). Since by

the coarea formula,

|{dist(·,K ′) < s}|
2s

=
1
2s

∫ s

0

HN−1(∂{dist(·,K ′) > t}) dt ,

we can deduce (for instance with arguments similar as in Section 3.2) that there

exists a sequence (sk)k≥1 such that HN−1 ∂{dist(·,K ′) > sk}⇀ 2HN−1 K ′ as

measures. In particular, if k is large enough, and provided we have chosen s∗ such

that HN−1(K ′ ∩ ∂{wn > s∗}) = 0 (almost any choice suits, since HN−1(K ′ ∩ (ω ×
{0})) = 0 �otherwise HN−1(Σ′) would be in�nite), we have∣∣HN−1(∂{dist(·,K ′) > sk} ∩ {wn > s∗}) − 2HN−1(Σ)

∣∣ ≤ ε

2
,

while |{dist(·,K ′) ≤ sk}| ≤ ε/4 and HN−1(∂{wn > s∗} ∩ {dist(·,K ′) ≤ sk}) ≤ ε/8.

For such values of k, the open set {dist(·,K ′) > sk}∩{wn > s∗}∩(ω × (−1,+∞))

(with piecewise Lipschitz boundary, if sk was properly chosen) is the subgraph Ωg

of a nonnegative BV function g with ‖g − h‖L1(ω) ≤ ε/2, HN−1(∂Ωg \ ∂∗Ωg) = 0,

HN−1((∂∗Ωh ∪ Σ) ∩ Ωg) ≤ ε

2

and ∂Ωg = (∂{dist(·,K ′) > sk} ∩ {wn > s∗}) ∪ (∂{wn > s∗} ∩ {dist(·,K ′) > sk}),
so that ∣∣HN−1(∂Ωg) − (HN−1(∂∗Ωh) + 2HN−1(Σ))

∣∣ ≤ 3ε
4
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Then, invoking again Lemma 4.3, we �nd a smooth function f ≤ g, f ≥ 0, with

‖f − h‖L1(ω) ≤ ε,

HN−1((∂∗Ωh ∪ Σ) ∩ Ωf ) ≤ ε (12)

and ∣∣∣∣∫
ω

√
1 + |∇f(x)|2 dx − (HN−1(∂∗Ωh) + 2HN−1(Σ))

∣∣∣∣ ≤ ε . (13)

Remark 4.4 We have, in addition,

lim
ε→0

HN−1({x′ ∈ ω : fε(x′) = 0}) = HN−1({x′ ∈ ω : h(x′) = 0}) ,

(fε denoting the f obtained for a particular ε > 0). Indeed, for η > 0, there

exists k > 1 such that HN−1({h < 1/k}) ≤ HN−1({h = 0}) + η and K ⊂ ω

with HN−1(K) ≤ η such that fε → h uniformly in ω \ K. Then, if ε is small

enough, h(x′) ≥ 1/k and x′ 6∈ K will yield fε(x′) ≥ 1/(2k), hence {fε = 0} ⊂
K ∪ {h < 1/k} so that HN−1({fε = 0}) ≤ HN−1({h = 0}) + 2η. We de-

duce that lim supε→0HN−1({fε = 0}) ≤ HN−1({h = 0}). On the other hand,

since HN−1(∂∗Ωh ∩ Ωfε
) → 0, we see that HN−1({h = 0} ∩ {fε > 0}) → 0 so

that HN−1({h = 0} ∩ {fε = 0}) → HN−1({h = 0}), hence HN−1({h = 0}) ≤
lim infε→0HN−1({fε = 0}).

A consequence is that in case (as in [8]) the �substrate� {xN ≤ 0} has a super�cial
tension σs less than the super�cial tension σc of the crystal, that is, the surface

energy of (∂∗Ωh,Σ) is

σsHN−1({h = 0}) + σc(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(Σ)) ,

then f can ful�ll the additional requirement∣∣∣σsHN−1({f = 0}) + σc

∫
{f>0}

√
1 + |∇f |2 dx

−
(
σsHN−1({h = 0}) + σc(HN−1(∂∗Ωh ∩ (ω × (0,+∞))) + 2HN−1(Σ))

) ∣∣∣ ≤ ε

If on the other hand σc < σs, this is not optimal (in terms of relaxation: approxi-

mating (h,Σ) with (h+ δ,Σ + δeN ), δ small, will reduce the energy).

Second step: approximation of both the graph and displacement. We

now show that if u ∈ GSBVp(ω × (−1,+∞)) is given, with Su ⊆ ∂∗Ωh ∪ Σ, u = 0

out of Ωh, and u = u0 on ω × (−1, 0) (where u0 ∈ W 1,p(ω × (−1, 0))), Σ ⊂
Ω1

h ∩ (ω × (0,+∞)) �vertical�, then there exists (un, hn)n≥1, with hn ∈ C∞(ω; R+),

un ∈W 1,p(Ωhn
), un = u0 in ω× (−1, 0), such that as n→∞, hn → h in L1(ω) and

(extending both un and ∇un with zero out of Ωhn), un → u in L1(ω × (−1,+∞)),

∇un → ∇u strongly in Lp(ω × (−1,+∞); RN ),

lim
n→∞

∫
ω

√
1 + |∇hn(x)|2 dx = HN−1(∂∗Ωh) + 2HN−1(Σ) .
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Let us �x ε > 0. First, by the previous step, there exists f ∈ C∞(ω) with

‖f − h‖L1(ω) ≤ ε, and such that both (12) and (13) hold. We denote by v the

function that is equal to u in Ωf , to 0 in (ω × (0,+∞))\Ωf , and to u0 in ω×(−1, 0).

Possibly choosing f closer to h, we may assume, also, that ‖v−u‖L1(ω×(−1,+∞)) ≤ ε.

Eventually, we also extend v (by symmetry) slightly below ω × {−1}, to the set

ω × (−1− δ,−1), 0 < δ < 1.

Let us de�ne, for ξ ∈ RN , the anisotropic potential

Wp(ξ) :=
N∑

i=1

|ξi|p .

Clearly, v ∈ GSBVp(ω × (−1− δ,+∞)), and one has, if δ is small enough,∫
Ωδ

f

Wp(∇v(x)) dx =
∫

ω×(−1−δ,+∞)

Wp(∇v(x)) dx

≤
∫

ω×(−1,+∞)

Wp(∇u(x)) dx+ ε, (14)

where Ωδ
f = {x ∈ ω × (−1 − δ,+∞) : xN < f(x′)}. The jump set of v satis�es

Sv ⊂ ∂Ωf ∪ ((∂∗Ωh ∪ Σ) ∩ Ωf ), its surface energy is estimated by (12) and (13).

For n ≥ 1 let η = 1/n be a discretization step. Given y ∈ (0, 1)N , we denote by

vy,η
k = (v(yη + kη)), (k1, . . . , kN−1) ∈ (Z/nZ)N−1, kN ≥ −(1 + δ)/η − y (so that

only point in ω × (−1− δ,+∞) are considered) a discretization of v.

Let us also de�ne a �discrete jump� of vy,η. We let, for i = 1, . . . , N , and y, k as

above, li,y,η
k = 0 if (∂∗Ωh ∪ Σ) ∩ [yη + kη, yη + (k + ei)η] = ∅, and 1 otherwise. We

have that li,y,η = χSi
η
(yη + kη) where the set Si

η is given by

Si
η = (∂∗Ωh ∪ Σ) + [−ηei, 0]

where (e1, . . . , eN ) is the canonical basis of RN and as usual the sum of two sets

A,B is A+B = {a+ b : a ∈ A, b ∈ B}.
The discrete energy of (vy,η

k , (li,y,η
k )N

i=1)k is de�ned by

Dy
η =

N∑
i=1

Di,y
η with Di,y

η = (η)N
∑

k

(1− li,y,η
k )

|vy,η
k+ei

− vy,η
k |

(η)p

p

+ α
li,y,η
k

η
,

where the sum is taken on all k such that the segment [yη + kη, yη + (k+ ei)η] lies

inside open set Ωδ
f . The parameter α > 0 will be �xed later on.

Let us compute the average
∫

y∈(0,1)N Dη
y . For each i, one has (using the change

of variable (y, k) 7→ x = (y + k)η∫
(0,1)N

Di,y
η =

∫
Oi

η

(1− χSi
η
)(x)

|v(x+ ηei)− v(x)|
(η)p

p

+ α
χSi

η
(x)

η
dx

where the domain of integration is

Oi
η =

{
x ∈ ω × (−1− δ,+∞) : xN < min

0≤t≤1
f(x′ + tηei)

}
if i ≤ N − 1, and

ON
η = {x ∈ ω × (−1− δ,+∞) : xN < f(x′)− η}

15



Now, using the slicing technique of Gobbino [19], used in a similar setting in [12,

13] (see also [2]), we �nd that this integral is less than∫
Ωδ

f

∣∣∣∣ ∂v∂xi
(x)
∣∣∣∣p dx + α

∫
Sv∩Ωf

|ei · νv(x)| dHN−1(x) .

Since by construction, using (12), HN−1(Sv ∩ Ωf ) ≤ ε, we deduce∫
(0,1)N

Di,y
η ≤

∫
Ωδ

f

Wp(∇v(x)) dx + α
√
Nε . (15)

On the other hand, if for any y and η > 0 (small) we de�ne the interpolate of (vy,η
k )k

as

vy,η(x) =
∑

k∈(Z/nZ)N−1×Z

vy,η
k ∆

(
x

η
− (k + y)

)
, x ∈ ω × R ,

where

∆(x) =
N∏

i=1

(1− |xi|)+ , (16)

then it is classical [2, 11] that there exists a sequence (ηl)l≥1 such that vy,η → v in

L1(ω × (−1,+∞); Rd) as l → ∞ for a.e. y ∈ (0, 1)N . Then, possibly extracting a

subsequence, we deduce from (15) that there exist y ∈ (0, 1)N such that both

lim
l→∞

Dy
ηl
≤
∫

ω×(−1−δ,+∞)

Wp(∇v) dx + α
√
Nε , (17)

and ‖vy,ηl − v‖L1 → 0 as l→∞.

In the sequel, we �x y to this value and drop the corresponding superscript.

Consider now a cube Ck = (y + k)ηl + (0, ηl)N such that Ck ⊂ Ωδ
f .

If ∂∗Ωh ∪ Σ does not cross any edge of Ck, then li,ηl

k̂
= 0 for any i and k̂ ∈

k + {0, 1}N with k̂i = ki. The sum

(ηl)N 1
2N−1

N∑
i=1

∑
k̂∈k+{0,1}N

k̂i=ki

∣∣∣vηl

k̂+ei
− vηl

k̂

∣∣∣
(ηl)p

p

can be interpreted as the contribution of the cube Ck to the energy Dηl
, since

each edge [(y + k̂)ηl, (y + k̂ + ei)ηl] is shared by 2N−1 cubes. By inequality (30) in

Lemma A.1, this sum is larger or equal to
∫

Ck
Wp(∇vηl(x)) dx.

On the other hand, if ∂∗Ωh ∪ Σ crosses one of the edges of Ck, then the con-

tribution of Ck to the energy Dηl is at least α(ηl/2)N−1 = αHN−1(∂Ck)/(N2N )

(since at least one li,ηl

k̂
is 1). By (17), the total number of cubes Ck such that this

happens is bounded by c/(ηl)N−1, hence their total volume by cηl Notice that, in

this case, ∂∗Ωh ∪Σ must cross an edge of every other cube C ′ = Ck′,kN+m, m ≥ 1,

as long as C ′ ⊂ Ωδ
f , or unless v = 0 a.e. in C ′ (which may happen if C ′ ⊂ Ωf \Ω1

h).

We call a �jump cube� a cube Ck ⊂ Ωδ
f such that either Ck ⊂ Ωf \ Ω1

h, or

∂∗Ωh ∪ Σ crosses an edge of Ck; the other cubes lying in Ωδ
f are called �regular�

cubes. Let J be the union of all jump cubes, and R be the union of all regular
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cubes (so that Cf = R ∪ J is the union of all cubes Ck contained in Ωδ
f ). Then,

x ∈ J implies (x′, xN + t) ∈ J for any t ≥ 0 as long as (x′, xN + t) ∈ Cf . The above

discussion shows that HN−1(∂J ∩∂R) is controlled by (N2N/α)× the contribution

of the cubes of J to the energy Dηl , while
∫
RWp(∇vηl(x)) dx is controlled by the

contributions of the cubes of R to the same energy.

Let now κ = 1 +
√
N maxξ∈ω |∇f(ξ)|, this constant is such that

Cf + κηleN ⊃ Ωf

as soon as l is large enough (so that xN > −1 yields xN − κηl > −1− δ + ηl which

clearly holds as soon as ηl ≤ δ/(1 + κ)).

We now de�ne, for any l (large enough), the function fl ∈ BV (ω) by fl(x′) =

sup{xN < f(x′) : (x′, xN − κηl) ∈ R}, and for any x ∈ ω × (−1,+∞), we also

de�ne vl(x) by

vl(x) =

vηl(x′, xN − κηl) if − 1 < xN < fl(x′)

0 otherwise.

By construction, the boundary of Ωfl
(in ω × (−1,+∞)) is a piecewise smooth

compact set made of two parts: one part is contained in the (smooth) graph of f ,

∂Ωf , and the rest, ∂Ωfl
∩ Ωf , is a subset of (∂J ∩ ∂R) + κηleN , which is a �nite

union of facets of hypercubes. On the other hand, vl ∈W 1,p(Ωfl
), with∫

Ωfl

Wp(∇vl(x)) dx +
α

N2N
HN−1(∂Ωfl

∩ Ωf ) ≤ Dηl . (18)

We �x α = N2N . We now make the observation that vl = vηl(·−κηleN ) except on a

set of measure O(ηl) (the union of the cubes of J such that ∂∗Ωh∪Σ crosses an edge

of the cube). Therefore, vl → v as l→∞, in L1(ω × (−1,+∞)) (and, as well, fl →
f). We can now �x l large enough so that ‖fl−f‖L1(ω) +‖vl−v‖L1(ω×(−1,+∞)) < ε,

and∫
Ωfl

Wp(∇vl(x)) dx + HN−1(∂Ωfl
) ≤ Dηl + HN−1(∂Ωf )

≤
∫

ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) + (3 + 2NN
√
N)ε

where we have used (13), (14), (17) and (18). Observe eventually that if l is large

enough, we also have (since lim inf l→∞HN−1(∂Ωfl
) ≥ HN−1(∂Ωf ) and using (13))

HN−1(∂Ωfl
) ≥ HN−1(∂∗Ωh) + 2HN−1(Σ)) − 2ε .

Using now Lemma 4.3, we can �nd a smooth f ′ ∈ C∞(ω; RN ) with f ′ ≤ fl,

close enough to fl, in such a way that if v′ = vl in Ω′f and 0 in (ω × (−1,+∞))\Ω′f ,

one has ‖f ′ − f‖L1(ω) + ‖v′ − v‖L1(ω×(−1,+∞)) < 2ε, hence both ‖f ′ − h‖L1(ω) < 3ε
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and ‖v′ − u‖L1(ω×(−1,+∞)) < 3ε, and∫
Ωf′

Wp(∇v′)) dx + HN−1(∂Ωf ′)

≤
∫

ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) + βε,

where β = 4 + 2NN
√
N is a constant, and, as well,

HN−1(∂Ωf ′) ≥ HN−1(∂∗Ωh) + 2HN−1(Σ)) − 3ε .

Performing this construction for ε = 1/n, n ≥ 1, yields the existence of two

sequences (fn)n≥1, (un)n≥1, with fn ∈ C∞(ω), un ∈ W 1,p(Ωfn
), fn → h in L1(ω),

un → u in L1(ω × (−1,+∞)),

lim sup
n→∞

∫
Ωfn

Wp(∇un(x))) dx +
∫

ω

√
1 + |∇fn(x)|2 dx

≤
∫

ω×(−1,+∞)

Wp(∇u(x)) dx + HN−1(∂∗Ωh) + 2HN−1(Σ) (19)

and

HN−1(∂∗Ωh) + 2HN−1(Σ)) ≤ lim inf
n→∞

∫
ω

√
1 + |∇fn(x)|2 dx . (20)

The function un, extended with 0 out of Ωfn
, is in GSBV (ω × (−1,+∞)), and

its gradient is ∇un in Ωfn
and 0 outside. Invoking now Ambrosio's compactness

theorem for GSBV functions, we �nd that ∇un ⇀ ∇u in Lp(ω × (−1,+∞); RN ),

so that ∫
ω×(−1,+∞)

Wp(∇u(x)) dx ≤ lim inf
n→∞

∫
ω×(−1,+∞)

Wp(∇un(x)) dx ,

which, combined with (19) and (20), yields that

lim
n→∞

∫
ω×(−1,+∞)

Wp(∇un(x)) dx =
∫

ω×(−1,+∞)

Wp(∇u(x)) dx , (21)

lim
n→∞

∫
ω

√
1 + |∇fn(x)|2 dx = HN−1(∂∗Ωh) + 2HN−1(Σ)) . (22)

In particular, we deduce from (21) (since 1 < p < +∞) that ∇un goes strongly

to ∇u in Lp(ω × (−1,+∞); RN ). We also �nd that un → u0 strongly in W 1,p(ω ×
(−1, 0)). Modifying un in order to ensure that un ≡ u0 in ω × (−1, 0) is now not

di�cult. A simple way is as follows: we choose a continuous extension operator from

W 1,p(ω×(−1, 0)) toW 1,p(ω × (−1,+∞)), and de�ne, for all n, a function wn as the

extension of (un|ω×(−1,0) − u0). Clearly, wn → 0 strongly in W 1,p(ω × (−1,+∞)).

The sequence un is then modi�ed in the following way: we replace un with un−wn

in Ωfn , letting it keep the value 0 outside. This new un satis�es the same properties

as before, but, additionally, un = u0 a.e. in ω × (−1, 1). This shows the thesis.
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5 An approximation result

We introduce in this section, as in [8], a phase-�eld approximation of the functional

F . The idea is to represent the subgraph Ωh \ Σ by a �eld v that will be an

approximation of the characteristic function of this set, at a scale of order ε. Then,

numerically, the minimization of our new functional will provide an approximation

of (u, h) minimizing F . Our approximated functional is the following:

Fε(u, v) =
∫

ω×(0,+∞)

(ηε + v2(x))W (∇u(x)) dx

+ cV

(
ε

2

∫
ω×(0,+∞)

|∇v(x)|2 dx +
1
ε

∫
ω×(0,+∞)

V (v(x)) dx

)
(23)

if u ∈ W 1,p(ω × (0,+∞)) with u = u0 on ω × {0}, and v ∈ H1(ω × (−1,+∞)),

with v = 1 on ω × {0} and ∂Nv ≤ 0 a.e. in ω × (0,+∞). Otherwise, for all

other u, v ∈ L1(ω × (0,+∞)), we let Fε(u, v) = +∞. Here the potential V is a

two-wells potentials with V (t) > 0 except if t ∈ {0, 1}, V (0) = V (1) = 0, and

c−1
V =

∫ 1

0

√
2V (t) dt. The parameter ηε is any function of ε with ηε/(εp−1) → 0 as

ε→ 0. The function u0 is assumed to be the trace of a function inW 1,p(ω×(−1, 0)),

still denoted by u0, and for technical reasons we also have to assume that it is

bounded: u0 ∈ L∞(ω × (−1, 0)). The following results generalizes in arbitrary

dimension Theorem 3.1 in [8]. However, its proof also owes a lot to [10, Sec. 5.2],

where a similar approximation is studied.

Theorem 5.1 Let (εj)j≥1 be a decreasing sequence of positive numbers, going to

0. Then

(i) For any (uj , vj), if lim supj→∞ Fεj
(uj , vj) < +∞, then up to a subsequence

there exist u, v such that vj → v in L1(ω × (0,+∞)), uj(x) → u(x) a.e. in

{v = 1}, and there exists h ∈ BV (ω; R+) such that {v = 1} = Ωh, and

F (u, h) ≤ lim inf
j→∞

Fεj (uj , vj) . (24)

(ii) For any h ∈ BV (ω; R+) and u ∈ GSBVp(ω × (−1,+∞)) with u = u0 in

ω × (−1, 0) and u(x) = 0 a.e. in {xN > h(x′)}, there exists (uj , vj) such that

uj → u and vj → χΩh
in L1(ω × (0,+∞)), and

lim sup
j→∞

Fεj (uj , vj) ≤ F (u, h) . (25)

This is almost a Γ�convergence result. We deduce in particular that if for all j,

(uj , vj) is a minimizer of Fεj , then, up to a subsequence, vj → χΩh
and uj → u a.e.

in Ωh, where (u, h) minimize the relaxed functional F .

Remark 5.2 The thesis of the theorem is still valid if (as in [8, Thm 3.1]) the

set Ωh must satisfy a volume constraint |Ωh| = V > 0 (which is imposed in the

approximation by a constraint on vj :
∫

ω
vj(x) dx = V ). The adaption of the proofs

is easy, see Remark 4.2 above.
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Proof of Theorem 5.1. We �rst show the �rst point. Let (uj , vj) be as in (i).

Since Fεj
(uj , vj) is �nite, vj must be nondecreasing in xN . Now, if we replace vj

by ṽj(x) = 0 ∨ ((vj(x) − δjxN ) ∧ 1), if δj is small enough one can ensure that

Fεj (uj , vj) = Fεj (uj , ṽj) +O(1/j), and ṽj is strictly decreasing.

Assume �rst that vj is smooth, so that ṽj is smooth in {0 < ṽj < 1}. For any
s ∈ (0, 1), let hs

j : ω → R+ be the function such that ṽj(x′, hs
j(x

′)) = s for any

x′ ∈ ω, then clearly, hs
j is in C1(ω), with

|∇′hs
j(x

′)| =
|∇′ṽj(x′, hs

j(x
′))|

|∂N ṽj(x′, hs
j(x′))|

≤ 1
δj
|∇′ṽj(x′, hs

j(x
′))|

for any x′ ∈ ω. Now, we deduce that∫
ω

|∇′hs
j(x

′)|2 dx′ ≤ 1
δj

∫
ω

|∇′ṽj(x′, hs
j(x

′))|2

|∂N ṽj(x′, hs
j(x′))|

dx′

1
δj

∫
ω

|∇′ṽj(x′, hs
j(x

′))|2

√

1 + |∇′hs
j(x′)|2

|∇ṽj(x′, hs
j(x′))|

 dx′

=
1
δj

∫
∂{ṽj>s}

|∇′ṽj(x)|2

|∇ṽj(x)|
dHN−1(x) .

Using the coarea formula, we �nd that∫ 1

0

(∫
ω

|∇′hs
j(x

′)|2 dx′
)
ds ≤ 1

δj

∫
{1>ṽj>0}

|∇′ṽj(x)|2 dx < +∞ .

By approximation, we easily deduce that this remains true when vj is just in

H1(ω × (0,+∞)): we get that for a.e. level s ∈ (0, 1), the set {ṽj > s} can be

represented as the subgraph of a function hs
j ∈ H1(ω). We may also assume that

this is true for all j ≥ 1.

Now, we notice that (using a2 + b2 ≥ 2ab and the co-area formula)

εj

2

∫
ω×(0,+∞)

|∇ṽj(x)|2 dx +
1
εj

∫
ω×(0,+∞)

V (ṽj(x)) dx

≥
∫

ω×(0,+∞)

√
2V (ṽj(x))|∇ṽj(x)| dx

≥
∫ 1

0

√
2V (s)

(∫
ω

√
1 + |∇′hs

j(x′)|2 dx
′
)

(26)

and in particular, using Fatou's lemma, we see that∫ 1

0

√
2V (s)

(
lim inf
j→∞

∫
ω

√
1 + |∇′hs

j(x′)|2 dx
′
)

≤ lim inf
j→∞

(
εj

2

∫
ω×(0,+∞)

|∇ṽj(x)|2 dx +
1
εj

∫
ω×(0,+∞)

V (ṽj(x)) dx

)

In particular, for a.e. s ∈ (0, 1), hs
j ∈ H1(ω) for all j ≥ 1 and in addition,

lim infj→∞

√
1 + |∇′hs

j |2 is �nite.
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By a diagonal argument, we can �nd a subsequence (still denoted by (εj)) and

a decreasing sequence (sn)n≥1 of real numbers in (0, 1) with limn→∞ sn = 0, and

such that for each n,

lim
j→∞

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′ = lim inf
j→∞

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′ < +∞ .

We can also assume that for each n, hsn
j converges in L1(ω) to some function hsn ,

and since it is then clear (since V (ṽj(x)) → 0 a.e. in ω × (0,+∞)) that ṽj(x) → 0

for a.e. x with xN > hsn(x′) and ṽj(x) → 1 for a.e. x with xN < hsn(x′), this

function is independent on n and will be denoted simply by h.

For any n ≥ 1, let us denote by un
j the function given by uj(x) if xN < hsn

j (x′)

and by 0 otherwise: let us show that (un
j )j≥1 is compact in GSBV (ω × (−1,+∞)).

One has un
j ∈W 1,p({x : −1 < xN < hsn

j (x′)}), hence un
j ∈ GSBV (ω × (−1,+∞))

with Sun
j
⊆ {(x′, hsn

j (x′)) : x′ ∈ ω}. In particular,

HN−1(un
j
) ≤

∫
ω

√
1 + |∇′hsn

j (x′)|2 dx′

is uniformly bounded (in j). On the other hand,

Fεj
(uj , ṽj) ≥ (ηεj

+ s2n)
∫

ω×(0,+∞)

W (∇un
j (x)) dx

showing that ∇un
j is uniformly bounded in Lp(ω × (−1,+∞); RN ).

Now, for any x′ ∈ ω, if we denote by ûn
j the function un

j − u0 (where u0 is

appropriately extended to a function inW 1,p(ω × (−1,+∞)) that vanishes for xN ≥
1), one sees that for any x with xN < hsn

j (x′),

|ûn
j (x)| ≤

∫ xN

0

|∂N û
n
j (x′, s)| ds ≤ x

1−1/p
N

(∫ xN

0

|∂N û
n
j (x′, s)|p ds

)1/p

,

so that for any M > 0 and a.e. x′ ∈ ω,

∫ M∧hsn
j (x′)

0

|ûn
j (x′, s)| ds ≤ M2−1/p

21−1/p

(∫ hsn
j (x′)

0

|∂N û
n
j (x′, s)|p ds

)1/p

.

We get

‖ûn
j ‖L1(ω×(−1,M)) ≤ C(M)‖∂N û

n
j ‖Lp(ω×(−1,+∞)).

Therefore, un
j = ûn

j + u0 is uniformly bounded in L1
loc

(ω × (−1,+∞)). By Ambro-

sio's compactness theorem we deduce that there exists un ∈ GSBVp(ω × (−1,+∞))

such that un
j (x) → un(x) a.e. in ω × (−1,+∞), up to a subsequence.

By a diagonal argument, we can extract a subsequence (still denoted by (εj)j≥1)

such that as εj → 0, for each n ≥ 0, un
j (x) → un(x) almost everywhere. Now, by

construction we have that if n′ ≥ n, then un′

j (x) = un
j (x) a.e. in {xN < hn

j (x′)}:
from this we deduce that un′(x) = un(x) a.e. in {xN < h(x′)}, and since moreover

one checks easily that both functions vanish a.e. in {xN > h(x′)} one deduces that
un, which is simply denoted by u in the sequel, is independent on n.
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We have shown the �rst assertion of point (i) of the Theorem: indeed, if we let

v = χΩh
, one sees that ṽj(x) → v(x) a.e., and by construction also vj(x) → v(x) a.e.

in ω × (0,+∞). Moreover, uj(x) → u(x) a.e. in {x ∈ ω × (−1,+∞) : xN < h(x)},
with u = u0 in ω×(−1, 0). The function u is in GSBVp(ω × (−1,+∞)) and vanishes

above the graph of h.

Let us now show (24). We follow a similar proof in [10]. We have

∫
ω×(0,+∞)

(ηεj + ṽ2
j (x))W (∇uj(x)) dx ≥

∫
ω×(0,+∞)

(
2
∫ ṽj(x)

0

s ds
)
W (∇uj(x)) dx

≥
∫ 1

0

2s

(∫
{ṽj(x)>s}

W (∇uj(x)) dx

)
ds .

This inequality, together with (26), yields

Fεj
(uj , ṽj) ≥∫ 1

0

(
2s
∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

j(x′)|2 dx
′

)
ds .

By Fatou's lemma, we deduce that

∫ 1

0

lim inf
j→∞

(
2s
∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

j(x′)|2 dx
′

)
ds

≤ lim inf
j→∞

Fεj
(uj , ṽj) < +∞ . (27)

Therefore for a.e. s ∈ (0, 1),

lim inf
j→∞

2s
∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

j(x′)|2 dx
′ < +∞ .

Let us choose such a s, with additionnally hs
j ∈ H1(ω) for all j ≥ 1, and let us

consider a subsequence (jk)k≥1 such that

lim
k→∞

2s
∫
{ṽjk

(x)>s}
W (∇ujk

(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

jk
(x′)|2 dx′

= lim inf
j→∞

2s
∫
{ṽj(x)>s}

W (∇uj(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

j(x′)|2 dx
′ .

As above, let us introduce the sequence of functions us
jk
∈ GSBVp(ω × (−1,+∞))

such that us
jk

(x) = ujk
(x) if xN < hs

jk
(x′) and 0 otherwise. By compactness, we

easily check that ujk
(x) → u(x) a.e. in ω × (−1,+∞), while hs

jk
→ h in L1(ω). By

the lower semicontinuity property (P1), we deduce

2s
∫

Ω+
h

W (∇u) + cV
√

2V (s)(HN−1(∂∗Ωh) + 2HN−1(S′u ∩ Ω1
h))

≤ lim
k→∞

2s
∫
{ṽjk

(x)>s}
W (∇ujk

(x)) dx + cV
√

2V (s)
∫

ω

√
1 + |∇′hs

jk
(x′)|2 dx′ .
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Integrating then (27) on (0, 1) and recalling that by construction, Fεj
(uj , ṽj) =

Fεj
(uj , vj) + o(1), we deduce (24).

Let us now show point (ii) of Theorem 5.1. The proof follows the lines in [8],

where the same inequality is shown in the 2D case, and we will only sketch it.

Let h ∈ BV (ω; R+) and let u ∈ GSBVp(ω × (−1,+∞)), with u = u0 in ω ×
(−1, 0) and u(x) = 0 a.e. in {xN > h(x′)}, with F (u, h) < +∞. By Theorem 2.2,

there exists hn in C1(ω; R+) and un ∈ W 1,p(Ωh; R), with un = u0 in ω × (−1, 0),

hn → h in L1(ω) and un → u a.e.in ω × (0,+∞), with

lim sup
n→∞

F (un, hn) = F (u, h) .

By construction (since we have assumed u0 ∈ L∞(ω × (−1, 0))), one also has that

un ∈ L∞(ω×(0,+∞)). Now, we construct sequences (un
j )j and (vn

j )j with un
j → un

in L1(ω × (0,+∞)) vn
j → χωhn in L1(ω × (0,+∞)) such that

lim sup
j→∞

Fεj (u
n
j , v

n
j ) ≤ F (un, hn). (28)

Let us condider the sequence of functionals

Hε(v) =
ε

2

∫
ω×(0,+∞)

|∇v(x)|2 dx+
1
ε

∫
ω×(0,+∞)

V (v(x)) dx;

the Γ-convergence result of Modica and Mortola for such functionals (see [1]) allows

us to �nd, for each n, a sequence (vn
j )j converging to the characteristic function

χΩhn
such that

lim sup
j→∞

Hεj (v
n
j ) =

∫ 1

0

√
2V (s) ds HN−1(Sχωhn

∩ ω × (0,+∞))

= c−1
V HN−1(∂Ωhn

).

We recall that the explicit construction of the recovery sequence (vn
j )j can be

obtained in the following way: one considers γj solution of the Euler's equation of

the functional with appropriate boundary conditions, namely: −γ′′j + V ′(γj) = 0

γj(0) = 1, γj

( 1
√
εj

)
= 0 .

This function is extended by 0 beyond 1/√εj . One then lets:

vn
j (x) = γj

(dist(x,Ω+
hn

)
εj

)
.

Then, the sequence (un
j )j is constructed by translating un, and multiplying by

an appropriate cut-o� function, as in [8]. We �rst choose cn ≥ max{1, ‖∇hn‖L∞(ω)}
and let wn

j (x) := vn
j (x′, xN − cn

√
2εj). This function is 1 on the support of vn

j , and

vanishes shortly beyond. Then, we let un
j (x) = un(x′, xN − 2cn

√
2εj)wn

j (x). (As
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in the end of the proof of Proposition 4.1, we have to modify slightly un
j in order

to ensure un
j = u0 in ω × (−1, 0), however, this is easily done, and one checks that

this modi�ed un
j satis�es a uniform (in j) L∞ bound.) In order to show that (28)

holds, we just need to check

lim sup
j→∞

∫
ω×(0,+∞)

(ηεj + (vn
j (x))2)W (∇un

j (x)) dx ≤
∫

Ω+
hn

W (∇un(x)) dx . (29)

Since ∇un
j (x) = wn

j (x)∇un(x′, xN −2cn
√

2εj)+un(x′, xN −2cn
√

2εj)∇wn
j (x), this

inequality is clear as soon as we have established that

lim sup
j→∞

ηεj

∫
ω×(0,+∞)

|un(x′, xN − 2cn
√

2εj)∇wn
j (x)|p dx = 0

and since un is bounded in L∞, we need to show

lim sup
j→∞

ηεj

∫
ω×(0,+∞)

|∇wn
j (x)|p dx = 0 .

This integral is bounded by∫
{0<dist(x,Ω+

hn
)<
√

εj}

|γ′j |p
(
dist(x,Ω+

hn
)/εj

)
εp

j

dx

=
∫ √

εj

0

|γ′j |p(s/εj)
εp

j

HN−1({dist(·,Ω+
hn

) = s}) ds

=
1

εp−1
j

∫ 1/
√

εj

0

|γ′j |p(s)HN−1({dist(·,Ω+
hn

) = εjs}) ds .

Now, one can show that∫ 1/
√

εj

0

|γ′j |p(s)HN−1({dist(·,Ω+
hn

) = εjs}) ds→ HN−1(∂Ω+
hn

)
∫ 1

0

√
2V (t)

p−1
dt

as j → ∞, hence since we have assumed ηε/ε
p−1 → 0 as ε → 0, we deduce (29)

and (28).

Since (28) holds, a standard diagonal extraction argument allows to �nd subse-

quences (unk
jk

)k, (vnk
jk

)k satisfying point (ii) of Theorem 5.1, and this complete the

proof of the theorem.

A A simple inequality

Lemma A.1 Let w ∈ C1([0, 1]N ) satisfy for any x ∈ [0, 1]N :

w(x) =
∑

k∈{0,1}N

w(k)∆(x− k)

where ∆ is de�ned in (16). Then, for any p ≥ 1,∫
(0,1)N

Wp(∇w(x)) dx ≤ 1
2N−1

N∑
i=1

∑
k∈{0,1}N

ki=0

|w(k + ei)− w(k)|p (30)
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Proof. We show that for each i,∫
(0,1)N

∣∣∣∣ ∂w∂xi
(x)
∣∣∣∣p dx ≤ 1

2N−1

∑
k∈{0,1}N

ki=0

|w(k + ei)− w(k)|p .

We will show this inequality for i = N . Let us denote, for x′ = (x1, . . . , xN−1),

∆N−1(x′) =
N−1∏
i=1

(1− |xi|)+ .

Then, for any x ∈ (0, 1)N ,

w(x) =
∑

k∈{0,1}N

w(k)∆(x− k)

=
∑

k′∈{0,1}N−1

∆N−1(x′ − k′)(wk′,0(1− xN ) + wk′,1xN )

so that
∂w

∂xN
(x) =

∑
k′∈{0,1}N−1

∆N−1(x′ − k′)(wk′,1 − wk′,0) .

Now, at any x, we have
∑

k′∈{0,1}N−1 ∆N−1(x′ − k′) = 1, so that this is a convex

combination of (wk′,1 −wk′,0)k′∈{0,1}N−1 . Hence, by convexity of the function | · |p,∫
(0,1)N

∣∣∣∣ ∂w∂xN
(x)
∣∣∣∣p dx ≤

∫
(0,1)N

∑
k′∈{0,1}N−1

∆N−1(x′ − k′)|wk′,1 − wk′,0|p dx .

We deduce (30) by simply observing that for any k′ ∈ {0, 1}N−1,∫
(0,1)N

∆N−1(x′ − k′) dx =
∫ 1

0

dxN ×
N−1∏
i=1

∫ 1

0

(1− |xi − ki|)+ dxi =
1

2N−1
.
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