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Abstract

We propose a mathematical model for m-dimensional nonlinear hypere-
lastic bodies moving in Rn for all m ≤ n, which enables frictionless contacts
or self-contacts but not (self-)intersection. To this end, we de�ne a set of
admissible deformations, and prove the existence of at least one minimizer
of the energy, under suitable assumptions on the stored energy. Moreover,
we give a partial equivalence result between the minimization problem and
the Euler-Lagrange equations.

1. Introduction

Although contacts and self-contacts arise in many practical situations
in nonlinear problems involving deformable bodies, surprisingly they have
not been extensively studied, at least from a theoretical point of view. Cia-
rlet and Ne£as [4] proposed a model for n-dimensional hyperelastic bodies
moving in Rn (see also Tang Qi [12], Giaguinta & al [5][6]). Their modeling
allows frictionless contacts or self-contacts and ensures almost everywhere
injectivity of the deformations. We address the case of m-dimensional de-
formable bodies moving in Rn for all m ≤ n.

For brevity and clarity, we will only consider the case of hyperelastic
bodies. Nevertheless, most of our work could be applied to other types
of materials. One way of describing a system of elastics bodies is to use
a variational approach. Minimizers of the energy over the set of admissi-
ble deformations are stable equilibrium states. The challenge is to de�ne a
good set of admissible deformations which allows for (self-)contacts while
forbidding (self-)intersection. First of all, this set must be chosen in such
a way that problems that are well-posed without the non self-intersection
constraint remain well posed with the constraint added. Secondly, we must
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be able (maybe under reasonable assumptions on the equilibrium state) to
show that solutions of the minimization problem ful�ll the expected Euler-
Lagrange equations. The importance of the �rst condition is obvious. The
second one is no less important: It ensures that we actually solve the right
problem.

Let M be a submanifold of Rn. The reference injection of M into Rn
is denoted jM . We de�ne the set of admissible deformations simply as the
closure of the embeddings isotopic to the reference injection jM for an ap-
propriate topology. With such a de�nition, it is straightforward to prove
the existence of minimizers of the energy (under suitable assumptions on
the stored energy). Nevertheless, the implicit de�nition of the admissible
set of deformation has at least one drawback: it is not obvious to recover
the Euler-Lagrange equations. In order to achieve such a goal, it is usual to
perform small variations around the minimizer in the admissible set. Then,
the di�erentiability of the energy functional leads to the Euler-Lagrange
equations. Unfortunately, the de�nition of the admissible set does not give
us an explicit description of the neighborhood of a minimizer, hence of the
allowed variations. To overcome this problem, we prove that admissible de-
formations ful�ll an explicit topological constraint. More precisely, we show
that the self-intersections of a deformation ϕ are, at least partially, described
by a topological invariant φ(ϕ). A deformation such that φ(ϕ) is equal to
φ(jM) is called φ-admissible. We prove that any admissible deformation is
φ-admissible. Conversely, in the cases dim(M) = n or dim(M) = 1 and
n = 2, every immersion which is φ-admissible belongs to the admissible set.
This allows us to prove that any immersion which is a minimizer of the
energy ful�lls the expected Euler-Lagrange equations.

The plan of the paper is as follows. We �rst recall some basic de�nitions
of di�erential geometry. Then, we give a description of the self-intersections
of a deformation and de�ne the φ-admissible set. The main properties of the
φ-admissible set are studied in 3.3. In section 4, we set up the minimization
problem for nonlinear hyperelastic bodies and prove the existence of at least
one solution. Section 5 is devoted to the study of the equivalence between
the minimization problem and the Euler-Lagrange equations. We consider
the case of n-dimensional bodies moving in Rn and compare our model with
the one introduced by Ciarlet and Ne£as [4]. Then, we examine the case of
one-dimensional structures moving in a two-dimensional Euclidean space
(proofs for this part have been postponed to the end of the article). Finally,
the case of shells, i.e, surfaces moving in R3 is discussed.

Let us specify the various notations that we shall us:

jBA : injection of A into B.
4(A) = {(x, y) ∈ A×A : x = y} : diagonal of A×A.
Ac : complement of the set A.
A \B = A ∩Bc.
Bn(x, r) : open ball centered in x ∈ Rn and of radius r.
Sn−1(x, r) : sphere centered in x ∈ Rn and of radius r.



The modeling of deformable bodies with frictionless (self-)contacts 3

ϕ̇ : derivative of ϕ (If ϕ is a regular one variable function).
Dxϕ : di�erential of ϕ at x (If ϕ is a multi-variable function).
TM : tangent bundle of the manifold M .
TxM : �ber at x of the tangent bundle TM .
Ωk(M) : set of di�erential forms of degree k on the manifold M .
Hk(M) : real cohomology group of M of degree k. f∗(α) : pull back by f
of the di�erential form α.

2. Preliminaries

We recall in this section basic de�nitions and notions of di�erential ge-
ometry and topology. For a comprehensive treatment of the topic, we refere,
for instance, to C. Godbillon [7] , V. Arnold [1] , R. Bott and L. Tu [3].

2.1. Di�erential geometry

Let M and N be di�erentiable manifolds of dimension m and n respec-
tively. Let f be a regular map from M into N . The map f is an immersion
if and only if Dxf is of rank m for every x. An injective immersion is an
embedding. Two embeddings f and g are said isotopic if there exists a reg-
ular map F from M × [0, 1] into N such that F (0) = f , F (1) = g, and F (t)
is an embedding for every t in [0, 1] (F (t) is the map fromM into N de�ned
by F (t)(x) = F (x, t)).

2.2. Di�erential forms

Let us recall the de�nition of di�erential forms for open subsets of Rn.
Let Λk be the set of k-linear antisymmetric forms on Rn. The exterior
product between a k form α and a l form ω is the k + l form α ∧ ω de�ned
by

α ∧ ω(X1, . . . , Xk+l) =
∑
σ

(−1)|σ|α(Xσ1 , . . . , Xσk)ω(Xσk+1 , . . . , Xσk+l),

where the sum is taken over the permutations σ of {1, . . . , k + l}. Let
(e1, . . . , en) be the canonical basis of Rn and (dx1, . . . , dxn) the canoni-
cal basis of (Rn)∗, that is dxk(ei) = δi,k. Let I = (i1, . . . , ik), with 1 ≤ i1 <
. . . < ik ≤ n, we denote dxI the k-linear alternate form de�ned by

dxI = dxi1 ∧ . . . ∧ dxik .

Let U be an open subset of Rn. A di�erential form of degree k on U is a
C∞-mapping from U to Λk. The set of k-di�erential from on U is denoted
Ωk(U).
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Let f : V → U be a C∞ mapping from an open subset V of Rp into an
open subset U of Rn. Let α ∈ Ωk(U) be a di�erential form. We de�ne the
pullback f∗α of α by f as the k-di�erential form on V de�ned by

f∗(α)(x)(X1, . . . , Xk) = α(f(x))(Dxf(X1), . . . , Dxf(Xk)).

The operator of di�erentiation d de�ned for any R valued function g by

dg =
∑
k

∂g

∂xk
dxk,

can be extended to an operator d : Ωk(V ) → Ωk+1(V ) de�ned by

dα =
∑
I

dfI ∧ dxI ,

where α =
∑
I fIdxI , and dfI is the di�erential of the real valued function

fI . By the Schwarz equality, we have d ◦ d = 0. The cohomology group
Hk(V ) of degree k of V is the quotient space of the kernel of d (as a mapping
from Ωk(V ) into Ωk+1(V ) by the image of d (as a mapping from Ωk−1(V )
into Ωk(V )). If f is a C∞ mapping from V → U , the mapping f∗ from
Ωk(U) → Ωk(V ) induced a mapping from Hk(U) → Hk(V ). Moreover, if
two mappings f and g are homotopic, then f∗ = g∗ as maps from H∗(U)
into H∗(V ).

All those notions can be extended to di�erentiable manifolds.

3. Description of the self-intersections of a deformation

Let M be a m-dimensional submanifold (with or without boundary)
of Rn and jM be the injection of M in Rn. We say that a deformation
ψ : M → Rn is admissible if it belongs to the C0-closure of the embeddings
isotopic to the reference injection jM . The set of admissible deformations
is denoted A(jM). In this section we address the problem of describing the
self-intersection of a deformation. This leads us to associate to any defor-
mation ϕ a topological invariant φ(ϕ) which describe, at least partially,
the self-intersections of the deformation ϕ. The set Aφ(jM) of deformations
which have the same topological invariant than the reference injection jM is
called the φ-admissible set. Every admissible deformation is φ-admissible. It
follows, for instance, that no deformation with transversal self-intersection
belongs to the set A(jM). Before broaching the general case, we focus our
attention on the case of thin structure moving in R2.

3.1. Case of thin structures in R2

The aim of this section is to give a pedestrian description of the self-
intersections of a continuous deformation. The approach in this section is
heuristic and is not meant to give complete proofs of the statements made.
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Fig. 1. Non-transverse intersections

We begin with the simplest case, that is the study of the intersection between
two deformations from one-dimensional manifolds M1 and M2 into R2. If
the intersection is transversal (see below), the intersection is completely
describe by a set of oriented points in M1 × M2. The de�nition of this
oriented set could be extend to the non transversal case. Nevertheless, this
generalization failed to detect some self-intersections of deformations of the
circle S1 into R2. A later de�nition is introduced in order to solve this
problem.

3.1.1. The transversal case

Let us consider two one-dimensional bodies M1 and M2 moving in R2

(M1 andM2 are assumed to be di�eomorphic either to [0, 1] or S1). For two
given deformations ϕ and ψ of M1 and M2 respectively, i.e, mappings from
M1 or M2 into R2, we want to de�ne the intersection between ϕ and ψ. We
de�ne the set of common points between ϕ and ψ as

K(ϕ,ψ) := {(x, y) ∈M1 ×M2 : ϕ(x) = ψ(y)}. (1)

The intersection is said transverse, if for every (x, y) ∈ K(ϕ,ψ), the family
(ϕ̇(x), ψ̇(y)) is free. In this case, the set K(ϕ,ψ) is a �nite set of points and
is stable under small C1-perturbations of ϕ and ψ. Furthermore, each of
them could be endowed with a sign sϕ,ψ(x, y), depending on the orientation
of the basis (ϕ̇(x), ψ̇(y)).

sϕ,ψ(x, y) := sign(det(ϕ̇(x), ψ̇(y))).

As transversal intersections are stable under small perturbation, a deforma-
tion without self-intersection could only have non transversal intersections.

3.1.2. The non transversal case

It remains to consider the non-transverse case. Figure 1 represents two
cases of non-transverse intersections. The image of M1 under ϕ and of
M2 under ψ are represented with a dashed line and a continuous line re-
spectively. In the �rst con�guration the beams are intersecting themselves
whereas they are just in contact in the second one. Let us �rst notice, that
it is clear, from this example, that only a global criterion will enable us to
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+ − +

s(U) = +1− 1 + 1 = 1

−
+

−+

s(U) = +1− 1 + 1− 1 = 0

Fig. 2. Perturbations of non-transverse con�gurations

distinguish deformations with intersection from deformations without inter-
section. Moreover, the set K(ϕ,ψ) is the same in both cases, and thus does
not fully describe the intersection between ϕ and ψ.

Let V be a small neighborhood of K(ϕ,ψ). There exists two deforma-
tions, ϕ̃ and ψ̃, close to ϕ and ψ respectively, such that K(ϕ̃, ψ̃) ⊂ V , and
such that the intersection between ϕ̃ and ψ̃ is transverse. To each connected
component U of V , one can associate an integer sϕ,ψ(U), equal to the sum
of the sign of the points (x, y) ∈ K(ϕ̃, ψ̃) ∩ U .

sϕ,ψ(U) :=
∑

(x,y)∈K(eϕ, eψ)∩U

seϕ, eψ(x, y).

This integer does not depend on the choice of ϕ̃ and ψ̃ made, as soon as ϕ̃
and ψ̃ are close enough from ϕ and ψ. If ϕ and ψ belongs to the admissible
set, one can choose ϕ̃ and ψ̃ such that K(ϕ̃, ψ̃) = ∅, thus,

sϕ,ψ(U) = 0 for every connected component U of V

and for any neighborhood V of K(ϕ,ψ). (2)

Let us compute sϕ,ψ(U) in the two con�gurations represented in the �gure
1. We obtain sϕ,ψ(U) = +1 in the �rst case. Thus, this con�guration is not
admissible. In the second case, sϕ,ψ(U) = 0 (see �gure 2).

3.1.3. The case of self-intersections

We investigate now the case of self-intersections. If ϕ belongs to the
admissible set A(jM), the condition (2) is satis�ed with M2 = M1 and ψ =
ϕ. Nevertheless, the converse is not true. Assume thatM1 is homeomorphic
to S1. For any integer k, the deformation ϕk de�ned by

ϕk : S1 → R2

θ 7→ (cos(kθ), sin(kθ)) (3)

where the circle S1 is parametrized by the angle θ ful�lls the criterion (2).
Indeed, let ϕ̃k = (1+ε)ϕk, where ε is a small positive real, thenK(ϕ̃k, ϕk) =
∅ and

sϕ,ϕ(U) =
∑

(x,y)∈K(eϕk,ϕk)
seϕk,ϕk(x, y) = 0.
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Even so the deformations ϕk are not always intersection-free: There is no
embedding close to ϕk, as soon as k 6= ±1. Thus, the mapping sϕ,ϕ does
not give us a complete description of the self-intersections of ϕ.

In order to solve this particular problem, let us go back to the study
of the intersections between two deformations. As before, ϕ and ψ denote
deformations from one-dimensional manifoldsM1 andM2 into R2. We de�ne
the mapping dϕ,ψ from M1 ×M2 \K(ϕ,ψ) into R2

∗ by

dϕ,ψ(x, y) := ϕ(x)− ψ(y).

Let φR2
∗
be the closed 1-form de�ned on R2

∗ by

φR2
∗

:=
1
2π

(
x

x2 + y2
dy − y

x2 + y2
dx

)
.

We denoted φ(ϕ,ψ) the pullback of φR2
∗
by dϕ,ψ

φ(ϕ,ψ) := d∗ϕ,ψ(φR2
∗
).

Let U be an oriented open set ofM1×M2, such that ∂U ⊂M1×M2\K(ϕ,ψ).
We assert that (see Proposition 5)∫

∂U

φ(ϕ,ψ) = sϕ,ψ(U). (4)

Hence, the mapping sϕ,ψ is completely described by the integration of the
1-form φ(ϕ,ψ) on loops inM×M \K(ϕ,ψ). It remains to apply this analysis
to the study of self-intersections.

Let ϕ be a deformation, we de�ne φ(ϕ) as the 1-form onM×M \K(ϕ,ϕ)

φ(ϕ) = φ(ϕ,ϕ).

If ϕ belongs to the set of admissible deformations, and if U is an open set
such that

|dϕ,ϕ(U)| > δ > 0,

then the restriction of dϕ,ϕ to U is homotopic to djM ,jM . Thus, there exists
a mapping u : U → R such that

φU (ϕ)− φU (jM) = du, (5)

where φU (ϕ) and φU (jM) are the restriction of φ(ϕ) and φ(jM) to the open
set U . In other words, φU (ϕ) and φU (jM) are equal up to an exact form. The
set of φ-admissible deformations will be de�ned in 3.2 as the deformations
which ful�ll this criteria. The condition (5) implies that the integration of
the 1-form φ(ϕ) and φ(jM) on any loop ofM×M \K(ϕ,ϕ) are equal. Thus,
by (4), this condition is at least as strong as the condition (2). Actually, the
1-form φ(ϕ) contains more informations about the intersection than sϕ,ϕ,
and the condition (5) is strictly stronger than (2). Indeed, let γ be the loop
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γ

γ

Fig. 3. The test loop γ in the tore S1 × S1, with ϕ = ϕ3

in S1 × S1 de�ned by
γ : S1 → S1 × S1

θ 7→ (θ, θ + h),

where h is a small positive real. A simple computation shows that∫
γ

φ(ϕk)ds = k,

The integer k is called the turning number of the deformation. The Figure
3.1.3 represents the loop γ in the tore S1 × S1 (a square which opposite
edges are identi�ed) for ϕ = ϕ3. The set K(ϕ3, ϕ3) is drawn with dashed
lines.
If j

S1 is the canonical injection of S1 into R2 (that is j
S1 = ϕ1), we have∫

γ

φ(j
S1)ds = 1.

As soon as k 6= 1, ∫
γ

φ(ϕk)ds 6=
∫
γ

φ(j
S1)ds,

φ(ϕk) − φ(j
S1) is not an exact form and the condition (5) is not ful�lled.

Hence, the deformation ϕk is not an admissible deformation as soon as
k 6= 1.

Remark 1. Using the de Rahm duality Theorem, one can prove that the
condition (5) is equivalent to

〈I(ϕ), ω〉 = 〈I(jM), ω〉 (6)
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for any closed form ω on M ×M with compact support included in the set
(K(ϕ,ϕ) ∪ ∂(M ×M))c, where

〈I(ϕ), ω〉 :=
∫
M×M

φ(ϕ) ∧ ω.

3.2. De�nition of the φ-admissible deformations

Let n be an integer and M be a submanifold of Rn. Let jM be the
injection of M into Rn.
For all mappings ϕ from M into Rn, we denote by dϕ the mapping

dϕ : M ×M → Rn
(x, y) 7→ ϕ(x)− ϕ(y)

and by K(ϕ) the non injective set, that is

K(ϕ) := {(x, y) ∈M ×M : ϕ(x) = ϕ(y)} .

For any open subset U of M ×M such that there exists a positive real δ for
which

|dϕ(U)| > δ > 0, (7)

we denote φU (ϕ) the element of Hn−1(U) de�ned as the pullback of φRn∗ by
dϕ,U , the restriction of dϕ to the open U ,

φU (ϕ) := d∗ϕ,U (φRn∗ ) ∈ Hn−1(U).

where φRn∗ is the canonical n− 1 non exact closed form on Rn∗ de�ned by

φRn∗ (x)(X1, . . . , Xn−1) := det(x/|x|, X1, . . . , Xn−1)/|Sn−1|

and |Sn−1| is the n− 1 Hausdor� measure of the unit sphere Sn−1 of Rn.

Remark 2. We recall that Hn−1(U) is the quotient space of n − 1-closed
forms by the n− 1 exact forms on U .

The mapping which maps any open subset U of M ×M for which (7)
holds to φU (ϕ) is denoted φ(ϕ).

We say that a deformation is φ-admissible if and only if for any open
subset U

φU (ϕ) = φU (jM), (8)

as element of Hn−1(U), that is, if φU (ϕ)− φU (jM) is an exact form on U .
We denote by Aφ(jM) the set of φ-admissible deformations, that is

Aφ(jM) :=
{
ϕ ∈ C0(M ; Rn) : φU (ϕ) = φU (jM) in Hn−1(U),

for any open set U such that |dϕ(U)| > δ > 0
}
. (9)
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Remark 3. The element φU (ϕ) of Hn−1(U) is well de�ned, even if ϕ is only
continuous. Indeed, if ϕ̃ is a regular approximation of ϕ, then φU (ϕ̃) ∈
Hn−1(U) is independent of ϕ̃ as soon as ‖ϕ− ϕ̃‖C0 is small enough.

Remark 4. One can de�ne φ(ϕ) as an element of the inverse limit of the
groups H1(U), where U is any open subset of M × M which ful�lls the
condition (7). Then φ(ϕ) is a mapping, which maps every open subset U
which ful�lls (7) to an element φU (ϕ) of H1(U). Moreover, if U ⊂ V , then

φU (ϕ) = jVU
∗(φV (ϕ)),

where jVU is the injection of U in V .

3.3. Elementary properties of the φ-admissible set

3.3.1. C0-Closure

The set of φ-admissible deformations is closed for the C0 topology. Fur-
thermore, the set of admissible deformations is included in the set of φ-
admissible deformations.

Proposition 1. Aφ(jM) is closed for the C0 topology.

Proof. Let ϕn be a sequence of φ-admissible deformations and ϕ be q defor-
mation of M such that ϕn converges toward ϕ for the C0(M ; Rn) topology.
Let U be an open subset of M ×M and δ be a positive real such that

|dϕ(U)| > δ > 0.

Let ϕ̃ be a C∞ regularization of ϕ such that

‖ϕ− ϕ̃‖C0 < δ/3.

Let ϕ̃n be C∞ regularization of ϕn such that

‖ϕn − ϕ̃n‖C0 < δ/3.

There exists N such that ‖ϕ−ϕN‖C0 < δ/3, so that if ϕ̃t = tϕ̃+(1− t)ϕ̃N ,
then for all (x, y) ∈ U ,

|ϕ̃t(x)− ϕ̃t(y)| > 0.

Thus, the restriction deϕt,U of deϕt to U de�nes a homotopy from deϕ,U :
U → Rn∗ to deϕN ,U : U → Rn∗ . As ϕ̃N belongs to the set of φ-admissible
deformations,

φU (ϕ) = φU (ϕ̃) = d∗eϕ,U (φRn∗ ) = d∗eϕN ,K(φRn∗ )
= φU (ϕ̃N ) = φU (ϕN ) = φU (jM).

Hence, we have proved that φU (ϕ) = φU (jM) for every open subset U ofM×
M , such that (7) holds. In other words that ϕ belongs to the φ-admissible
set Aφ(jM).
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Remark 5. The proof of the Proposition 1 shows that the element φU (ϕ)
is, as stated in the previous section, correctly de�ned for any continuous
deformation and any open subset U for which (7) holds.

Proposition 2. The admissible set A(jM) is included in the φ-admissible
set Aφ(jM).

Remark 6. Under some conditions on the dimension ofM and the dimension
n of the space, we proved thatA(jM)cap Imm(M ; Rn) = Aφ(jM)cap Imm(M ; Rn)
(see sections 5.1, 5.2 and 5.3).

Proof. Let ϕ be an embedding isotopic to jM . There exists an isotopy ϕt
such that ϕ0 = ϕ and ϕ1 = jM . Let U be an open subset of 4(M)c. Then
dϕt,U : [0, 1] × U → Rn∗ is a regular homotopy from dϕ,U : U → Rn∗ to
djM ,U : U → Rn∗ , and

d∗ϕ,U (φRn∗ ) = d∗jM ,U (φRn∗ ),

as element of H1(U). Hence, ϕ belongs to the set of φ-admissible deforma-
tions. The conclusion follows from the previous proposition.

Remark 7. As soon as n ≥ 3 and dim(M) ≥ 2, there exists deformations
ϕ : M → Rn which belong to the φ-admissible but not to A(jM) (see
section 5.3). Moreover, we do not know whether or not Aφ(jM) = A(jM)
when n = 2.

3.3.2. Right and left invariance

Proposition 3. Let g : M →M be a homeomorphism isotopic to the iden-
tity, then

(ϕ ∈ Aφ(jM)) ⇒ (ϕ ◦ g ∈ Aφ(jM)).

Proof. Let U be an open set of M ×M such that

|dϕ(U)| > δ > 0,

for a real δ. Let V = (g, g)−1(U). There exists regularization g̃ and ϕ̃ of g
and ϕ such that

φU (ϕ) = d∗eϕ(φRn∗ )

φV (ϕ ◦ g) = d∗eϕ◦eg,V (φRn∗ ).

Moreover, g̃ can be chosen such that it is di�eomorphic to the identity. In
the following, (g̃, g̃) will be understood as its restriction to v with values in
U .

deϕ,U ◦ (g̃, g̃) = deϕ◦eg,V
d∗eϕ◦eg,V (φRn∗ ) = (g̃, g̃)∗ ◦ d∗eϕ,U (φRn∗ ) = (g̃, g̃)∗ ◦ d∗jM ,U (φRn∗ )

= d∗jM◦eg,V (φRn∗ ) = d∗jM ,V (φRn∗ ).
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Proposition 4. Let g be a di�eomorphism from Rn into itself which pre-
serves the orientation, then

(ϕ ∈ Aφ(jM)) ⇒ (g ◦ ϕ ∈ A(jM)).

Proof. As g is a di�eomorphism which preserves the orientation, (g, g)
de�nes a di�eomorphism from Rn ×Rn \4(Rn) into itself and (g, g)∗ from
Hn−1(Rn × Rn \ 4(Rn)) into itself is nothing else but the identity. Let U
be a subset of M ×M such that

|dϕ(U)| > δ > 0

for a real δ. There exists a positive real δ′ such that

|dg◦ϕ(U)| > δ′ > 0.

Let p be the mapping

p : Rn × Rn \ 4(Rn) → Rn∗
(x, y) 7→ x− y.

Up to replace ϕ by as C∞ regularization, on can assume that ϕ is regular
and that

φU (ϕ) = d∗ϕ,U (φRn∗ ) and φU (g ◦ ϕ) = d∗g◦ϕ,U (φRn∗ ).

We have dg◦ϕ,U = p ◦ (g, g) ◦ (ϕ,ϕ)|U and

d∗g◦ϕ,U (φRn∗ ) = (p ◦ (g, g) ◦ (ϕ,ϕ)|U )∗(φRn∗ ) = (ϕ,ϕ)∗|U ◦ (g, g)∗ ◦ p∗(φRn∗ )
= (ϕ,ϕ)∗|U ◦ p

∗(φRn∗ ) = d∗ϕ,U (φRn∗ ) = d∗jM ,U (φRn∗ ).

3.3.3. Transversal self-intersections

In this section, we prove that any deformation with transverse self-
intersection does not belong to the set of φ-admissible deformations Aφ(jM)
and thus to the admissible set A(jM). More precisely,

Proposition 5. Let ϕ : M → Rn be a continuous mapping. Assume that ϕ
has a transverse self-intersection at one couple of points (x, y) ∈ M ×M
such that x 6= y, that is

� ϕ(x) = ϕ(y)
� The mapping ϕ is of class C1 in neighborhoods of x and y
� Dxϕ(TxM) +Dyϕ(TyM) = Rn.

Then ϕ does not belong to the set of φ-admissible deformations Aφ(jM).
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Proof. We will construct two functions γϕ and γjM from Sn−1 into Sn−1.
Their degree will depend respectively on φ(ϕ) and φ(jM). Moreover, we will
show that deg(γϕ) = 1 as deg(γjM ) = 0. It will imply that φ(ϕ) 6= φ(jM).
In other words, we obtain that ϕ does not belong to the set Aφ(jM) of
φ-admissible deformations.

As Dxϕ(TxM) +Dyϕ(TyM) = Rn, the mapping

dϕ : M ×M → Rn

(a, b) 7→ ϕ(a)− ϕ(b)

is a submersion at (x, y). From the Implicit Function Theorem, we deduce
that there exists a neighborhood V of 0 in R2m, a neighborhood W of (x, y)
in M ×M and a local di�eomorphism g : V → W such that g(0) = (x, y)
and

dϕ ◦ g(x1, . . . , x2m) = (x1, . . . , xn).

Furthermore, one can choose g such that the unit disk Dn is included in V ,
and such that W ∩4(M) = ∅ where

4(M) = {(a, b) ∈M ×M : a = b}.

Let δ = 1/2 and

Vδ = {(x, y) ∈ Rn × R2m−n ∩ V : |x| > δ}.

Let h : Vδ → U = g(Vδ) ⊂ W \ {(x, y)} be the restriction of g to Vδ. There
exists a real δ′ such that

|dϕ(U)| > δ′ > 0.

We set

γϕ = θ ◦ dϕ,U ◦ h ◦ jVδSn−1

γjM = θ ◦ djM ,U ◦ h ◦ j
Vδ

Sn−1 ,

where θ(z) = z/|z|. The degree of the mapping γϕ and γjM depends only on
φU (ϕ) and φU (jM). Indeed, denoting by φSn−1 the generator ofHn−1(Sn−1),
that is the n− 1 di�erential form de�ned by

φSn−1(x)(X1, . . . , Xn) = det(n,X1, . . . , Xn)/|Sn−1|,

we have

deg(γϕ) =
∫
Sn−1

γ∗ϕ(φSn−1)

=
∫
Sn−1

(h ◦ jVδ
Sn−1)∗ ◦ d∗ϕ,U (θ∗(φSn−1))

=
∫
Sn−1

(h ◦ jVδ
Sn−1)∗ ◦ d∗ϕ,U (φRn∗ ).
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Thus, the degree of γϕ is

deg(γϕ) =
∫
Sn−1

(h ◦ jVδ
Sn−1)∗(φU (ϕ)), (10)

whereas the degree of γjM is

deg(γjM ) =
∫
Sn−1

(h ◦ jVδ
Sn−1)∗(φU (jM)). (11)

As γϕ : Sn−1 → Sn−1, is nothing else but the identity,

deg(γϕ) = 1.

On the other hand,

deg(γjM ) =
∫
Sn−1

(h ◦ jVδ
Sn−1)∗(φU (jM))

=
∫
Sn−1

(h ◦ jVDn)∗(φW (jM))

=
∫
∂Dn

(h ◦ jVDn)∗(φW (jM))

=
∫
Dn

d ((h ◦ jVDn)∗(φW (jM))) = 0.

As claimed, deg(γjM ) 6= deg(γϕ) and from (10) and (11), we deduce that
φU (ϕ) 6= φU (jM) and that ϕ does not belong to the set of φ-admissible
deformations.

4. The minimization problem

In this section, we consider nonlinear hyperelastic bodies. With suit-
able assumptions on the stored energy W of the material, we show that
there exists at least one minimizer to the energy over the set of admissible
deformation. Moreover, this existence results remains true if one consider
φ-admissible deformations instead.

4.1. Setting of the problem

LetM be a di�erentiable submanifold of Rn (with or without border),m
the dimension of M and jM the injection of M into Rn. The manifold M is
implicitly endowed with the di�erential structure and the Riemann metric
induces by jM . Furthermore, the m−dimensional Hausdor� measure in Rn
induced a measure onM noted dx. We de�ne F(M ; Rn) as the vector bundle
of baseM whose �ber at x ∈M is the set of linear mappings from (T ∗xM)m

into Rn. Let π be the projection of this vector bundle on its base. The
stored energyW is a mapping from F(M ; Rn) into R+ . We assume thatW



The modeling of deformable bodies with frictionless (self-)contacts 15

is a Carathéodory function: The restriction of W to a �ber π−1(x) is C0 for
almost every x ∈M , and the restriction of W to any section is measurable
(for any regular mapping G : M → F(M ; Rn) such that π ◦ G = IdM , the
mapping W ◦ g is mesurable). We assume W to be quasi-convex, that is for
every F ∈ F(M ; Rn),∫

U

W (F )dx ≤
∫
U

W (F +Dϕ)dx,

where U is the unit square of Tπ(F )M , ϕ ∈ C∞0 (U ; R). Moreover, we as-
sume that there exists p > m such that the following growth and coercivity
conditions are ful�lled

∀F ∈ F(M ; Rn), |W (F )| ≤ C(1 + |F |p)

∀F ∈ F(M ; Rn), W (F ) ≥ α|F |p + β.

where C, α, β are constants and α > 0. We consider the case where M is
submitted to dead body forces f ∈ L2(M ; Rn) and clamped on a subset
N of M such that every connected component of M intersects N . Let I :
W 1,p(M ; Rn) → R be the energy functional

I(ψ) =
∫
M

W (Dψ)dx−
∫
M

f(x).ψ(x)dx. (12)

The set of admissible deformations of �nite energy is

Ap(jM) =
{
ϕ ∈W 1,p(M ; Rn) ∩ A(jM) : ϕ(x) = jM(x) for all x ∈ N

}
,

(13)
whereas the set of φ-admissible deformations with �nite energy is

Apφ(jM) =
{
ϕ ∈W 1,p(M ; Rn) ∩ Aφ(jM) : ϕ(x) = jM(x) for all x ∈ N

}
.

(14)
We consider the two following minimization problems

Find ϕ ∈ Ap(jM) such that I(ϕ) = inf
ψ∈Ap(jM )

I(ψ) (P)

and
Find ϕ ∈ Apφ(jM) such that I(ϕ) = inf

ψ∈Apφ(jM )
I(ψ). (Pφ)

Remark 8. We would like to emphasize that our formulation is not limited
to the study of a single body. If one considers two bodies whose reference
con�gurations are the submanifolds A and B respectively, we setM = A∪B.
Note that we assume for simplicity that all the connected components ofM
have the same dimension m. This assumption could be removed at no extra
cost.

Remark 9. The reference con�guration used in our formulation is a di�er-
entiable manifold M . Usually, an open subset of Rm is used instead. Our
choice allows us to treat more kinds of topology.



16 Olivier PANTZ

Remark 10. As we will see in the section 5, not only the minimization prob-
lem (P) has a physical meaning but also the minimization problem (Pφ),
at least if n = 2 or dim(M) = n. Indeed, in such cases, those minimization
problems are partially equivalent to the Euler-Lagrange equations, describ-
ing an elastic body with frictionless contacts.

4.2. Existence

Proposition 6. Both minimization problems (P) and (Pφ) have at least
one solution.

Proof. The quasi-convexity of W , coercivity and growing conditions imply
that the functional I is sequentially lower semi-continuous (see Morrey [9],
[10] and Ball [2]) for the weak topology of W 1,p(M ; Rn). Let ϕn be a mini-
mization sequence of I overAp(jM). The clamping conditions combined with
the coercivity ensure us that the sequence ϕn in bounded in W 1,p(M ; Rn).
One can extract a subsequence ϕnk weakly converging toward an element
ϕ ∈W 1,p(M ; Rn). As I is sequentially lower semi-continuous, we have

I(ϕ) ≤ inf
ψ∈Ap(M)

I(ψ).

Since p > m, the injection of W 1,p(M ; Rn) into C0(M ; Rn) is compact.
Hence, ϕnk converges in C0(M ; Rn) and as Ap(jM) is closed for the C0

topology, ϕ belongs to Ap(jM). Thus, the minimization problem (P) has at
least one solution. The existence of a solution to the problem (Pφ) ensues
from the closure of the set Apφ(jM) for the C0 topology given by Proposition
1.

Remark 11. Existence results could also be obtained if N does not intersect
every connected components of M . Yet, the loads f have to ful�ll compati-
bility conditions to ensure the existence of a minimizer. For instance, if M
has only one connected component and if

∫
M
f(x)dx = 0, then there exists

at least one solution to the minimization problem.

Remark 12. The existence could also be obtained under other assumptions
on the stored energy W . In particular, it remains true under the hypothesis
made by Ball [2], which allows for the case W (F ) → +∞, if det(F ) → 0 in
the case m = n. Furthermore, the de�nition of the admissible set given here
only holds for continuous functions and thus requires p > m. This condition
could probably be weakened using methods similar to the one used by Tang
[12] and �verák [11].

5. On the equivalence with the Euler-Lagrange equations

In this section, we examine whether or not solutions of the minimization
problems (P) or (Pφ) are solutions of the Euler-Lagrange equations describ-
ing the behavior of elastic bodies with frictionless contacts. All results and
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proofs are expressed with respect to the problem (Pφ). They can easily be
adapted to the study of the problem (P). To this end, it su�ces to use
that the admissible set A(jM) is included in the φ-admissible set Aφ(jM)
(Proposition 2).

5.1. The case of n-dimensional bodies in Rn

As recalled in the introduction, the case of n-dimensional bodies moving
in Rn has been studied by Ciarlet and Ne£as in [4]. Our modeling di�ers
from theirs in the de�nition of the admissible set of deformations. Further-
more, their assumptions on the stored energy W are stronger than ours.
They choose W in a way that forces local injectivity almost everywhere for
deformations with �nite elastic energy. To this end, they assume that W
takes its values in R+

and veri�es{
W (F ) = +∞ if det(F ) ≤ 0
W (F ) → +∞ as det(F ) → 0. (15)

Their admissible deformations are de�ned as those that satisfy∫
M

det(∇ϕ)dx ≤ Vol(Im(ϕ)). (16)

It is easy to show that if a deformation ful�lls this constraint and has a
�nite energy, it is almost everywhere injective not only locally but globally.
This follows from the equation (16) and the identity∫

ϕ(M)

Card(ϕ−1(y))dy =
∫
M

det(∇ϕ(x))dx

ful�lled by every W 1,p function such that det(∇ϕ) > 0 almost everywhere.
Using the notation introduced in the section 4.1, Ciarlet and Ne£as de�ne
their set of admissible deformations as

ApCN (jM) =

{
ϕ ∈W 1,p(M ; Rn) : ϕ(x) = jM(x) for all x ∈ N,

det(Dϕ) > 0 a.e.,
∫
ϕ(M)

Card(ϕ−1(y))dy =
∫
M

det(∇ϕ(x))dx

}
.

Under other assumptions on the stored energy W , Ciarlet and Ne£as prove
that there exists a minimizer of the energy on their set of admissible defor-
mations whenever the in�mum is �nite.

The condition φ(ϕ) = φ(jM) is at least as strong as the condition (16)
introduce by Ciarlet and Ne£as (see Proposition 8). In particular, every el-
ement ϕ ∈ Aφ(jM) is injective almost everywhere. Consequently, our model
inherits all the properties of theirs. This feature enables us to apply their
result of partial equivalence between the minimization problem and the
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M

ϕ

ϕ(M)

Fig. 4. Admissible deformation according to the Ciarlet and Ne£as model with
transversal self-intersection

Euler-Lagrange equations (see Proposition 7 and its proof). In our case,
the proof can be run word by word as they do. Actually, our criterion is
stronger: some deformations which belong to the set ApCN (jM) do not be-
long to Aφ(jM). For instance, the deformation represented in Figure 4 ful�lls
criterion (16) but does not belong to Aφ(jM) as it has a transversal self-
intersection. The existence of such deformations prevent us from hoping
that an asymptotic analysis, performed on the Ciarlet and Ne£as model,
could lead to a reasonable model of thin structure with frictionless self-
contacts, without self-intersection. Another unpleasant consequence of this
feature is that it will probably be di�cult to implement a robust numerical
scheme using their modeling: the thinner the structure is, the more trouble
is expected.

Finally, let us remark that every deformation ϕ belonging to Apφ(jM)
preserves the orientation, without any assumption on the stored energy
W (see Proposition 9). This is another important di�erence between our
model and the Ciarlet and Ne£as formulation. Nevertheless, a deformation
ϕ ∈ Apφ(jM) only satis�es

det(∇ϕ) ≥ 0,

and not

det(∇ϕ) > 0 almost everywhere.
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In the next proposition, we will assume that N ⊂ ∂M , that is the body is
only clamped on its boundary.

Proposition 7. LetM be a n-dimensional submanifold of Rn such that ∂M
is smooth. Let ϕ be a smooth enough solution of the minimization problem

ϕ ∈ Apφ(jM), I(ϕ) = inf
ψ∈Apφ(jM )

I(ψ), (Pφ)

where the set Apφ(jM) and the functional I are de�ned as in (12) and (13).
Assume that det(∇ϕ(x)) > 0 for every x ∈ M , then the minimizer ϕ is a
solution of the following boundary-value problem:

−divDW (∇ϕ) = f in M \ ∂M, (17)

ϕ = jM on N, (18)

DW (∇ϕ(x)).n′(x) = λ(x)n(x) with λ(x) ≤ 0, for all x ∈ ∂M \N ; (19)

the last equations correspond to one of the following situations (for all x ∈
∂M \N):

ϕ−1(ϕ(x)) = {x} whence λ(x) = 0, (20)

ϕ−1(ϕ(x)) = {x, y}, with y ∈ ∂M \N whence

n(x) + n(y) = 0 and λ(x)da(x) = λ(y)da(y), (21)

where n′(z) and n(z) denote the unit outer normal vectors along ∂M and
ϕ(∂M) at the point z and ϕ(z), respectively, and da(z) denotes the di�er-
ential area along ∂M at the point z.

Proof. Let ϕ be a smooth φ-admissible deformation such that det(∇ϕ) >
0. By Proposition 8, ϕ belongs to the Ciarlet and Ne£ase admissible set
ApCN (jM). In [4], Ciarlet and Ne£as prove there is engough variations F :
[0, 1] × M → R3 such that, F (0, x) = ϕ(x) and F (t, .) is an embedding
for every t > 0 to recover the given Euler-Lagrange equations, using the
di�erentiability of the energy I(.).

Proposition 8. Let M be an n-dimensional di�erentiable submanifold of
Rn (with border). Every deformation ϕ ∈ Aφ(jM) ∩W 1,p(M ; Rn) is such
that ∫

M

|det(∇ϕ)|dx = Vol(Im(ϕ)),

and ϕ is injective almost everywhere.

Proof. Let ϕ ∈ Aφ(jM)∩W 1,p(M ; Rn). Let x and y be two distinct elements
of the interior of M such that

ϕ(x) = ϕ(y).
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We consider a chart g : Bn(0, 2) → M such that y /∈ Im g (We recall that
Bn(0, 2) is the open ball of radius 2 centered at the origin). For all r > 1,
we set

Sn−1
r = g(Sn−1(0, r)),

and
Kr = {x} × Sn−1

r ∪ {y} × Sn−1
r .

Assume that
ϕ ◦ g(Sn−1

r ) ∩ ϕ(x) = ∅, (22)

then, Kr is a compact subset of dϕ
−1(Rn∗ ) and as ϕ belongs to the set of

admissible deformations Aφ(jM), we have∫
{x}×g(Sn−1

r )

d∗ϕ(φRn∗ ) =
∫
{x}×g(Sn−1

r )

d∗jM (φRn∗ ) = 1,

and ∫
{y}×g(Sn−1

r )

d∗ϕ(φRn∗ ) =
∫
{y}×g(Sn−1

r )

d∗jM (φRn∗ ) = 0,

On the other hand, as ϕ(x) = ϕ(y), we have∫
{x}×g(Sn−1

r )

d∗ϕ(φRn∗ ) =
∫
{y}×g(Sn−1

r )

d∗ϕ(φRn∗ ),

which can not hold together with the previous equations. Hence, our as-
sumption (22) is false. For all positive real r < 1, we have

ϕ ◦ g(Sn−1
r ) ∩ ϕ(x) 6= ∅.

We just have shown that for all x ∈M \ ∂M ,

Card(ϕ−1(x)) > 1 ⇒ Card(ϕ−1(x)) = +∞ (23)

(Here and in the following of the proof, ϕ is understood as a mapping from
M \ ∂M into Rn). Let P be the set of non injective points, that is

P = {z ∈ Rn : Card(ϕ−1(z)) > 1}.

For all z ∈ P , from (23) , we deduce that Card(ϕ−1(z)) = +∞. Moreover,
a theorem from Marcus & Mizel [8] shows that as ϕ ∈ W 1,p(Ω,Rn) with
p > n, ∫

M

|det(∇ϕ)|dx =
∫
ϕ(M)

Card(ϕ−1(z))dz.

It brings up∫
M

|det(∇ϕ)|dx =
∫
P

Card(ϕ−1(z))dz +
∫
ϕ(M)\P

Card(ϕ−1(z))dz

= +∞|P |+ Vol(Im(ϕ))− |P |.

It implies that the measure |P | of the set of non injective points is zero and
that ∫

M

|det(∇ϕ)|dx = Vol(Im(ϕ)).
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Proposition 9. Let M be a n-dimensional di�erentiable submanifold of Rn
(with boundary). Every deformation ϕ ∈ Aφ(jM)∩W 1,p(M ; Rn) is such that
det(∇ϕ) ≥ 0.

Proof. Let z ∈ Rn \ ϕ(∂M), the degree deg(ϕ,M, z) is de�ned as

deg(ϕ,M, z) =
∫
∂M

d(ϕ, z, ∂M)∗(φRn∗ )

where
d(ϕ, z, ∂M) : ∂M → Rn∗

x 7→ ϕ(x)− z.

The following formula holds (see [11], Corollary 1)∫
Ω

det(∇ϕ)dx =
∫

Rn
deg(ϕ,M, z)dz. (24)

Furthermore, if z ∈ Im(ϕ), there exists y ∈M such that ϕ(y) = z, and

deg(ϕ, ∂M, z) =
∫
∂M

d(ϕ, z, ∂M)∗(φRn∗ )

=
∫
∂M

(py ◦ dϕ,U )∗(φRn∗ )

where py : ∂M →M×M is de�ned by py(t) = (t, y) and U is a neighborhood
of ∂M × {y}. Thus,

deg(ϕ, ∂M, z) =
∫
∂M

d∗ϕ,U ◦ p∗y(φRn∗ )

As ϕ belongs to Aφ(jM), we have

deg(ϕ, ∂M, z) =
∫
∂M

d∗jM ,U ◦ p
∗
y(φRn∗ )

=
∫
∂M

d(jM , jM(y), ∂M)∗(φRn∗ )

= deg(jM , ∂M, jM(y))
= 1.

Moreover, if z /∈ Im(ϕ), deg(ϕ, ∂M, z) = 0. From (24), it follows that∫
M

det(∇ϕ)dx =
∫
ϕ(M)

1dx = Vol(Im(ϕ)),

and from Proposition 8, we deduce that∫
M

det(∇ϕ)dx =
∫
M

|det(∇ϕ)|dx.

Hence, det(∇ϕ) ≥ 0 almost everywhere.
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5.2. Case of thin structures in R2

In this section, we state a partial equivalence result between the mini-
mization problem and the Euler for thin structures moving in R2. To avoid
unnecessary technicalities, we will only consider the case of one not clamped
circle (M = S1 and N = ∅). The results given could be extended to other
cases, that is M = [−1, 1] or N 6= ∅ or even to a problem involving several
bodies. Let us �rst set the main result of this section

Proposition 10. Let M = S1 and N = ∅. Let ϕ : S1 → R2 be an immer-
sion, solution of the minimization problem:

ϕ ∈ Apφ(jM), I(ϕ) = inf
ψ∈Apφ(jM )

I(ψ), (Pφ)

where the functional I and the set Apφ(jM) are de�ned as in (12) and (13).
Then, for all z ∈ Im(ϕ), there exists a family (x0, . . . , xN ) of elements of
S1 given by Proposition 14, and a family (λ−1, . . . , λN ) of nonnegative reals
such that

ϕ−1(z) = {x0, . . . , xN},

λ−1 = λN = 0

and for all k ∈ {0, . . . , N},

−dDW (ϕ̇)
dx

(xk) = f(xk) + (λk−1 − λk)|ϕ̇(xk)|n,

where n is a unitary normal to Im(ϕ) independent of k.

This result relies on Proposition 14, which will be stated later. This propo-
sition just gives an e�ective (and unique) way to order ϕ−1(z).

The proof of Proposition 10 is rather long and technical, even if it is not
di�cult. The main idea is to give a geometrical de�nition of the φ-admissible
set of deformations. Next, we prove that this de�nition is equivalent with
the algebraic one (used before to prove the existence) for the immersion.
Then, using the geometric de�nition, we prove that the set of regular em-
beddings isotopic to j

S1 are dense in the set of φ-admissible immersions
for the C1 topology. This allows us to build enough �variations� around the
minimizer in the set of φ-admissible deformations Aφ(jS1) to obtain the
Euler-Lagrange equations. Moreover, we prove that (see Corollary 1), that
the φ-admissible immersions are the admissible immersions, that is

Aφ(jM) ∩ Imm(S1; R2) = A(jM) ∩ Imm(S1; R2).

The complete proof is postponed to the next section.

Remark 13. Actually, we conjecture that Aφ(jM) = A(jM) in the case n = 2.
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5.3. The case of shells

In the case of shells, that is n = 3 and dim(M) = 2, an equivalence re-
sult between the minimization problem (Pφ) and the Euler-Lagrange equa-
tions associated to elastic shells, for which frictionless contacts are allowed
is not expected. Indeed, even if a solution of the minimization problem
(Pφ) has no transversal self-intersection, it might have non-transversal self-
intersections. In such a case, not enough test functions can be build to
recover the Euler-Lagrange equations. Let us give an example of a deforma-
tion which belongs to the set of admissible deformations Aφ(jM), but which
has self-intersections and does not belong to the admissible set A(jM). Let
M = S1 × [0, 1]. We de�ne the reference deformation of M as the mapping

jM : M → R3

(θ, h) 7→ (cos(θ), sin(θ), h).

Let k be an integer and ϕk the deformation of M de�ned by

ϕk(θ, h) = (cos(kθ), sin(kθ), h).

One can easily show that for every k, the deformation ϕk belongs to Aφ(jM).
Nevertheless, if |k| > 1, it does not belong to the C0-closure of the embed-
dings. This counterexample is very similar to the one that we have met (and
solved) in the study of self-contacts of a body homeomorphic to S1, moving
in R2 (see section 3.1).

6. Proof of Proposition 10

6.1. A geometric criterion of non self-intersection

In all this section ϕ is an immersion from S1 into R2.

6.1.1. Contact set

We de�ne the contact set of ϕ as

K∗(ϕ) =
{
(x, y) ∈ S1 × S1 : ϕ(x) = ϕ(y) and x 6= y

}
.

We denote E(ϕ) the set of connected components of K∗(ϕ). Let Λϕ be the
function which maps every element of K∗(ϕ) to the connected component
it belongs.
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6.1.2. Tubular neighborhood

One can de�ne a tubular neighborhood gϕ : S1×]−T, T [→ R2 of ϕ with
the same regularity by setting

gϕ(x, t) = (ϕ1(x)− ϕ2(x+ t) + ϕ2(x), ϕ2(x) + ϕ1(x+ t)− ϕ1(x)). (25)

In this de�nition, we have implicitly identi�ed S1 to R/2πZ to give a mean-
ing to the addition between an element x of S1 and an element t of R. For
T small enough, gϕ is a local di�eomorphism at any point and

D(x,0)gϕ = |ϕ̇(x)|(τx, nx), (26)

where τx is the tangent unitary vector ϕ̇(x)/|ϕ̇(x)| and nx is the normal
vector to τx such that (τx, nx) is a direct base of R2. As S1 is compact,
there exists δx, δh and r0 nonnegative reals such that for every x ∈ S1, if

Vx(ϕ) =]x− δx, x+ δx[×]− δh, δh[,

then gϕ|Vx(ϕ) is a di�eomorphism on its image such that the ball B(ϕ(x), r0)
of radius r0 centered at ϕ(x) is included in gϕ(Vx(ϕ)). For simplicity, we
have dropped the dependence of δx, δh and r0 on ϕ. In the following, this
dependence will often be understood.

For all x ∈ S1, we de�ne the mappings

Hx(ϕ) : B(ϕ(x), r0) → ]− T ;T [
z 7→ PR ◦ (gϕ|Vx)

−1(z)

and
Πx(ϕ) : B(ϕ(x), r0) → S1

z 7→ PS1 ◦ (gϕ|Vx)
−1(z). (27)

where PS1 and PR are the projections of S1 × R on S1 and R respectively.
We de�ne a neighborhood of K∗(ϕ)

VK∗(ϕ) = {(x, y) ∈ S1 × S1; |ϕ(x)− ϕ(y)| < r0}. (28)

Finally, we set
hϕ : VK∗(ϕ) → ]− T ;T [

(x, y) 7→ Hx(ϕ(y)).

For all element (x, y) of VK∗(ϕ), hϕ(x, y) is the ordinate of the point ϕ(y)
in the local coordinate system induced by the tubular neighborhood gϕ at
the point x.

Remark 14. Whenever x and x′ are close enough, Πx(ϕ) = Πx′(ϕ) and
Hx(ϕ) = Hx′(ϕ) on their common set of de�nition. In particular, hϕ(x, y) =
hϕ(x′, y). In the following, we will make an extensive use of this simple
remark.
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Fig. 5. Deformation with transversal self-intersection

6.1.3. The geometric de�nition of smooth admissible deformations

Let P1(ϕ) and P2(ϕ) be the following propositions:
P1(ϕ) : For all Λ ∈ E(ϕ) connected component of K∗(ϕ), there

exists (x, y) ∈ Λ such that for every neighborhood V ⊂
VK∗(ϕ) of (x, y), hϕ|V 6= 0.

P2(ϕ) : For all Λ ∈ E(ϕ) connected component of K∗(ϕ), there
exists a neighborhood Vϕ(Λ) of Λ such that
either hϕ(x, y) ≥ 0 for all (x, y) ∈ Vϕ(Λ),
or hϕ(x, y) ≤ 0 for all (x, y) ∈ Vϕ(Λ).

If P2(ϕ) is true, then the ordinate hϕ(x, y) of the point ϕ(y) in the local
coordinate system induced by gϕ has a constant sign in the neighborhood
of Λ. Proposition P1 make sure that hϕ can not be equal to zero on a
neighborhood of Λ. In other words, if two parts of S1 are in contact under
ϕ, they must separate somewhere. We de�ne the set of immersions without
self-intersection as

AG = {ϕ ∈ Imm(S1; R2);P1(ϕ) and P2(ϕ) are true }.

6.1.4. Examples

It is not completely obvious that both P1(ϕ) and P2(ϕ) have to be true in
order for the immersion ϕ to be without self-intersection. If the deformation
ϕ has a transversal self-intersection, proposition P2(ϕ) is obviously false. On
the other hand, even if proposition P2(ϕ) is true, the deformation ϕ could
have a degenerate self-intersection. Typically, the deformation

ϕ : S1 → R2

θ 7→ (cos(2θ), sin(2θ))

has a self-intersection whereas P2(ϕ) is true. However, in this case, P1(ϕ)
is false, hence ϕ does not belong to AG.

6.1.5. Description of the contacts

Let σ be the mapping from S1 × S1 into itself which maps every couple
(x, y) to (y, x). For every immersion ϕ ∈ AG, we de�ne two mappings Pϕ
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and Oϕ from E(ϕ) into {−1;+1} by{
Pϕ(Λ) = sign(hϕ(x, y)) where (x, y) ∈ Vϕ(Λ) and hϕ(x, y) 6= 0
Oϕ(Λ) = nx.ny where (x, y) ∈ Λ.

The existence of a couple (x, y) ∈ Vϕ(Λ) such that hϕ(x, y) 6= 0 is ensured
by proposition P1(ϕ). The proposition P2(ϕ) makes sure us that the sign of
hϕ(x, y) does not depend on the choice of the couple (x, y) made to de�ne
Pϕ(Λ). Moreover, for all couples (x, y) ∈ Λ, nx.ny = ±1 (see Lemma 1).
As Λ is a connected and nx.ny is continuous, the scalar product nx.ny is
constant on Λ. Hence, the mapping Oϕ is also well de�ned.

Lemma 1. Let ϕ ∈ AG, for all (x, y) ∈ K∗(ϕ),

nx.τy = 0.

Proof. The canonical projection of R2 on the second coordinate is noted p2.
Let ϕ be an element of AG. Let (x, y) ∈ S1×S1 be such that (x, y) ∈ K∗(ϕ),
that is ϕ(x) = ϕ(y) and x 6= y. We recall that VK∗(ϕ) is a neighborhood of
K∗(ϕ). Therefore, there exists ε > 0 such that {x}×]y − ε, y + ε[⊂ VK∗(ϕ).
For all t ∈]− ε, ε[, we have

hϕ(x, y + t) = PR ◦ gϕ−1
|Vx(ϕ(y + t))

= PR ◦ gϕ−1
|Vx(ϕ(y)) +Dϕ(y)(PR ◦ gϕ−1

|Vx)ϕ̇(y)t+ o(t)

= Dϕ(y)(PR ◦ gϕ−1
|Vx)ϕ̇(y)t+ o(t)

= p2((D(x,0)gϕ)−1ϕ̇(y))t+ o(t)

From (26), D(x,0)g = |ϕ̇(x)|(τx, nx). Thus,

(D(x,0)gϕ)−1 = |ϕ̇(x)|−1 (τx, nx)

and

hϕ(x, y + t) = nx.
ϕ̇(y)
|ϕ̇(x)|

t+ o(t) =
|ϕ̇(y)|
|ϕ̇(x)|

(nx.τy)t+ o(t).

As P2(ϕ) is true, the sign of h is constant on a neighborhood of (x, y), hence
nx.τy = 0.

At this stage, it could be useful to give a little example in order to illustrate
the di�erent objects introduced.

In the case represented in Figure 6, the deformation has a self-contact
and without self-intersecting. The set E(ϕ) has two elements: the two con-
nected components Λ and σ(Λ) of the contact set K∗(ϕ) (see �gure 7). The
value Oϕ(Λ) indicates whether or not the two subsets of S1 put in con-
tact under the deformation ϕ are oriented in the same direction. In this
particular case, their orientations are opposite, thus

Oϕ(Λ) = Oϕ(σ(Λ)) = −1.
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ϕ(x1)

ϕ(y1)

ϕ(x0)

ϕ(x1)

Fig. 6. A deformation with contact
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Fig. 7. The contact set K∗(ϕ)

ϕ(x0)ϕ(x1)

ϕ(y1) ϕ(x1)

Fig. 8. How to remove the contact ?

As for the value of Pϕ(Λ), it indicates in which direction along the normal
one has to pull away the segment ϕ([y1, y0]) from ϕ([x0, x1]) in order to
remove the contact. In the case represented, Pϕ(Λ) = +1. The segment
ϕ([y1, y0]) has to be pushed in the direction of the normal to the segment
ϕ([x0, x1]) as shown in the �gure 8.

It remains now to study some basic properties ful�lled by the functions
Oϕ and Pϕ.

Proposition 11. For all deformations ϕ ∈ AG, for all Λ ∈ E(ϕ),

Oϕ(Λ) = Oϕ(σ(Λ)).
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Proof. Let Λ ∈ E(ϕ) and (x, y) ∈ Λ,

Oϕ(Λ) = nx.ny = ny.nx = Oϕ(σ(Λ)).

Proposition 12. For all deformations ϕ ∈ AG, for all Λ ∈ E(ϕ),

Pϕ(σ(Λ)) = −Oϕ(Λ)Pϕ(Λ).

Proof. Let ϕ ∈ AG. From Proposition P1(ϕ), there exists a couple (x, y) ∈
Λ such that the restriction of hϕ to any neighborhood of (y, x) is not equal
to zero. There exists a neighborhood W of ϕ(x) = ϕ(y), Ux and Uy small
enough neighborhoods of x× 0 and y × 0 respectively in S1 × R such that
gϕ|Ux and gϕ|Uy are di�eomorphisms into W .

For all y and x belonging respectively to small enough neighborhoods of
y and x,

sign(h(x, y)) = Pϕ(Λ) or sign(h(x, y)) = 0.

Thence,
gϕ(Uy ∩ S1 × {0}) ∩ gϕ(Ux ∩ S1 × R−Pϕ(Λ)

∗ ) = ∅, (29)

where gϕ is the tubular neighborhood de�ned at (25). One can choose Ux
such that gϕ(Ux ∩S1×R−Pϕ(Λ)

∗ ) is connected. It follows from (29) that one
of those two situations occurs:

gϕ(Ux ∩ S1 × R−Pϕ(Λ)
∗ ) ⊂

 gϕ(Uy ∩ S1 × R+
∗ )

or
gϕ(Uy ∩ S1 × R−

∗ ).

A straightforward computation leads to

(gϕ|Uy )
−1 ◦ gϕ(x, t) = (y, 0) + (0, t|ϕ̇(x)||ϕ̇(y)|−1nx(ϕ).ny(ϕ)) + o(t).

Thus, for t small enough, such that sign(t) = −Pϕ(Λ), we have

(gϕ|Uy )
−1 ◦ gϕ(x, t) ∈ Uy ∩ S1 × R−(nx.ny)Pϕ(Λ)

∗ .

In other words,

gϕ

(
Ux ∩ S1 × R−Pϕ(Λ)

∗

)
⊂ gϕ

(
Uy ∩ S1 × R−(nx.ny)Pϕ(Λ)

∗

)
.

As gϕ|Ux and gϕ|Uy are di�eomorphisms, we deduce that

gϕ

(
Ux ∩ S1 × R−Pϕ(Λ)

)
⊂ gϕ(Uy ∩ S1 × R−(nx.ny)Pϕ(Λ)). (30)

There exists (ỹ, x̃) in the neighborhood of (y, x) such that

hϕ(ỹ, x̃) = hϕ(y, x̃) 6= 0.

We have

ϕ(x̃) ∈ gϕ(Ux ∩ S1 × {0}) ⊂ gϕ(Ux ∩ S1 × R−Pϕ(Λ)).
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Finally, (30) implies that

ϕ(x̃) ∈ gϕ(Uy ∩ S1 × R−(nx.ny)Pϕ(Λ)),

and

Pϕ(σ(Λ)) = hϕ(ỹ, x̃) = hϕ(y, x̃),
= −(nx.ny)Pϕ(Λ) = −Oϕ(Λ)Pϕ(Λ).

Let us introduce another notation. For every ϕ ∈ AG, for every couple
(x, y) ∈ K∗(ϕ), we will denote Λϕ(x, y) the connected component of K∗(ϕ)
to which (x, y) belongs. We now state a technical proposition

Proposition 13. For all deformations ϕ ∈ AG, for all elements x, x− and
x+ of S1 such that

Pϕ(Λϕ(x, x−)) = −Pϕ(Λϕ(x, x+)),

we have

Pϕ(Λϕ(x−, x+)) = Pϕ(Λϕ(x−, x)).

Proof. Up to swapping x− and x+, one can assume that Pϕ(Λϕ(x, x+)) =
+1. Furthermore, by Lemma 2 below, we can also assume that for all neigh-
borhoods of (x−, x+), hϕ 6= 0. Following the same procedure as in the proof
of proposition 12, one can �nd Vx, Vx− , Vx+ neighborhoods of (x, 0), (x−, 0)
and (x+, 0) in S1 × R respectively such that

gϕ(Vx+ ∩ S1 × {0}) ⊂ gϕ(Vx ∩ S1 × R+) (31)

and
gϕ(Vx ∩ S1 × R+) ⊂ gϕ(Vx− ∩ S1 × RPϕ(Λϕ(x−,x))). (32)

There exists (x−, x+), in a small neighborhood of (x−, x+) such that

hϕ(x−, x+) 6= 0.

From (31) and (32),

ϕ(x+) ∈ gϕ(Vx− ∩ S1 × RPϕ(Λϕ(x−,x)))

thus,

sign(hϕ(x−, x+)) =

Pϕ(Λϕ(x−, x))
or
0

Moreover, hϕ(x−, x+) = hϕ(x−, x+) 6= 0. Hence,

Pϕ(Λϕ(x−, x+)) = sign(hϕ(x−, x+))
= sign(hϕ(x−, x+)) = Pϕ(Λϕ(x−, x)).
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Lemma 2. For all deformations ϕ ∈ AG, for all elements x, x− and x+ of
S1 such that ϕ(x) = ϕ(x−) = ϕ(x+), and

Pϕ(Λϕ(x, x−)) = −Pϕ(Λϕ(x, x+))

there exists x̃, x̃+ and x̃− in S1 such that

ϕ(x̃) = ϕ(x̃−) = ϕ(x̃+),

Λϕ(x̃, x̃−) = Λϕ(x, x−) ; Λϕ(x̃, x̃+) = Λϕ(x, x+)

Λϕ(x̃−, x̃+) = Λϕ(x−, x+),

and for all neighborhood of (x̃−, x̃+), hϕ 6= 0.

Proof. Let ϕ, x, x− and x+ such be as in Lemma. Without loss of gener-
ality, one can assume that

Pϕ(Λϕ(x, x−)) = −1 and Pϕ(Λϕ(x, x+)) = +1.

We set

Λ =
{

(x̄−, x̄+) ∈ Λϕ(x−, x+) : ∃x̄ ∈ S1 such that (x̄, x̄−) ∈ Λϕ(x, x−),

(x̄, x̄+) ∈ Λϕ(x, x+), and hϕ = 0 on a neighborhood of (x̄−, x̄+)
}
.

Assume that the lemma is false, then Λ is a closed non-empty subset of
Λϕ(x−, x+). Furthermore, we will show that Λ is also an open subset of
Λϕ(x−, x+). As Λϕ(x−, x+) is connected, this would imply that

Λ = Λϕ(x−, x+)

and that for all (x−, x+) ∈ Λϕ(x−, x+),

hϕ = 0 on a neighborhood of (x−, x+).

As P1(ϕ) is true, this cannot hold.
It remains to prove that Λ is actually an open subset of Λϕ(x−, x+). Let

(x−, x+) ∈ Λ. LetW be a small enough connected neighborhood of (x−, x+)
in Λϕ(x−, x+). Let (x̃−, x̃+) ∈W . We set

x̃ = Πx(ϕ)(ϕ(x̃+)) = Πx(ϕ)(ϕ(x̃+))

(see (27) for the de�nition of Πx(ϕ)). First of all, as (x̃−, x̃+) belongs to
Λϕ(x−, x+), we have ϕ(x̃+) = ϕ(x̃−) and

hϕ(x̃, x̃+) = hϕ(x̃, x̃−). (33)

As (x̃, x̃+) belongs to a small neighborhood of (x, x+) ∈ Λϕ(x, x+) and as
Pϕ(Λϕ(x, x+)) = +1, we have

hϕ(x̃, x̃+) ≥ 0. (34)
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On the other hand, we get

hϕ(x̃, x̃−) ≤ 0. (35)

From (33), (34) and (35), we deduce that

hϕ(x̃, x̃+) = hϕ(x̃, x̃−) = 0.

As x̃ = Πex(ϕ)(ϕ(x̃+)) = Πex(ϕ)(ϕ(x̃−)), we get

ϕ(x̃) = ϕ(x̃−) = ϕ(x̃+).

Let π1 and π2 be the projections of S1 × S1 onto S1,

π1(a, b) = a,

π2(a, b) = b.

We have just shown that

(Πx̄(ϕ) ◦ ϕ× π1)(W ) ⊂ K∗(ϕ)
and (Πx̄(ϕ) ◦ ϕ× π2)(W ) ⊂ K∗(ϕ).

Furthermore, as W is connected, both (Πx̄(ϕ) ◦ ϕ × π1)(W ) and (Πx̄(ϕ) ◦
ϕ× π2)(W ) are connected. Thus,

(Πx̄(ϕ) ◦ ϕ× π1)(W ) ⊂ Λϕ(Πx̄(ϕ) ◦ ϕ× π1(x̄−, x̄+)) = Λϕ(x̄, x̄−).

We have as well,

(Πx̄(ϕ) ◦ ϕ× π2)(W ) ⊂ Λϕ(x̄, x̄+).

It follows from these latter relations that every element of W belongs to Λ.
Hence, Λ is an open subset of Λϕ(x−, x+) and the proof is complete.

We are now in a position to state and prove the proposition called in the
main result of this section (Proposition 10).

Proposition 14. For all ϕ ∈ AG, for all z ∈ Im(z), and for all unitary vec-
tor n orthogonal to Im(ϕ) at z, there exists a family (xi)i=0,...,N of elements
of S1 such that

ϕ−1(z) = {x0, . . . , xN};

then for all l, k ∈ {0, . . . , N} such that l > k, we have

Pϕ(Λϕ(xk, xl)) = n.nxk(ϕ).

Proof. Let ϕ ∈ AG, z ∈ R2 and n a unitary vector orthogonal to Im(z) at
z. The relation

x � y ⇔ ((x = y) or (x 6= y and Pϕ(Λϕ(x, y)) = n.nx(ϕ)))

is a total ordering of the set ϕ−1(z). Indeed,
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1. Let x, y ∈ ϕ−1(z) be such that we do not have x � y. Then, x 6= y.
Thus,

Pϕ(Λϕ(x, y)) = −n.nx(ϕ).

From Proposition 12, we get

Pϕ(Λϕ(y, x)) = −Oϕ(Λϕ(y, x))(−n.nx)
= (nx.ny)(n.nx) = n.ny,

and y � x. We have shown that

x � y or y � x .

2. Let x, y ∈ ϕ−1(z) be such that x � y and x 6= y. Proceeding as above,
we show that Pϕ(Λϕ(y, x)) = n.nx implies that Pϕ(Λϕ(x, y)) = −n.ny.
Therefore, we do not have y � x. We have show that

(x � y and y � x) ⇒ (x = y) .

3. Let x−, x and x+ ∈ ϕ−1(z) be such that x− � x, x � x+, x− 6= x and
x 6= x+. We have

Pϕ(Λϕ(x, x+)) = n.nx = (nx.nx−)(n.nx−)
= Oϕ(Λϕ(x, x−))Pϕ(Λϕ(x−, x)));

Proposition 12 and 13, brings up

Pϕ(Λϕ(x, x+)) = −Pϕ(Λϕ(x, x−)).

and

Pϕ(Λϕ(x−, x+)) = Pϕ(Λϕ(x−, x)) = n.nx− ,

that is x− � x+. We have shown that

(x− � x and x � x+) ⇒ (x− � x+) .

It remains to sort ϕ−1(z) with this ordering relationship to obtain the family
expected.

6.1.6. Inclusion in the closure of the embeddings

We are now in a position to prove the following Proposition

Proposition 15. The set AG is included in the C1-closure of the embed-
dings.
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We split the proof of this proposition in several steps. For a given defor-
mation ϕ ∈ AG(ϕ), we will construct explicitly an embedding arbitrarily
close to ϕ for the C1 topology. To this end, we de�ne a set BG(ϕ) which is
more or less the set of admissible deformations which have at most as many
contact points as ϕ. Then we construct a �nite sequence ψk of deformations
belonging to BG(ϕ), close to ϕ, removing at each step another contact zone.
Finally, we prove that the last deformation obtained has no contact point.
In other words, it is an embedding.

For all deformations ϕ ∈ AG, we de�ne the set

BG(ϕ) =
{
ψ : S1 → R2 ; ψ immersion ; K∗(ψ) ⊂ K∗(ϕ) ;

For all (x, y) ∈ K∗(ψ), nx(ψ).ny(ψ) = Oϕ(Λϕ(x, y))
and sign(hψ) 6= −Pϕ(Λϕ(x, y))

on a neighborhood Wψ(Λϕ(x, y)) of Λϕ(x, y) ∩K∗(ψ)
}
. (36)

Let α ∈ C∞(R; [0, 1]) with support included in ] − 1/2, 1/2[ such that
α([−1/4, 1/4]) = 1. For all φ ∈ C1(S1; [0, 1]) such that ‖φ‖C0‖α‖C1 < 1 and
for all ε > 0, we de�ne the functions T+

ε (φ) and T−ε (φ) from the normal
bundle ν(S1) = S1 × R of S1 into itself by

T±ε (φ)(x, t) = (x, t± ε2φ(x)α(t/ε)).

The mappings T±ε (φ) are di�eomorphisms.
Let ψ ∈ BG(ϕ) and φ ∈ C1(S1; [0, 1]) be such that ψ is injective on the

support K of φ. The function gψ is injective on a neighborhood of K×{0}.
Thus, there exists a neighborhood U of K in S1 and a real r > 0 such
that the restriction of gψ to U×] − r, r[ de�nes a di�eomorphism onto its
image. We set V = gψ(U×] − r, r[). For all ε < r, we de�ne F+

ε (φ, ψ) and
F−ε (φ, ψ) : R2 → R2 by

F±ε (φ, ψ)(x) =
{
gψ ◦ T±ε (φ) ◦ gψ−1

|U×]−r,r[ if x ∈ gψ(U×]− r, r[) = V

x otherwise.

For ε small enough, F+
ε (φ, ψ) and F−ε (φ, ψ) are di�eomorphisms of R2 such

that
F±ε (φ, ψ)(V ) = V.

Moreover, F±ε does not depend on r. The �gure 9, illustrates the action of
F+
ε (φ, ψ) and F−ε (φ, ψ) respectively. The tubular neighborhood de�nes a

coordinate system on V . We set

ΠU : V → U
x 7→ PS1 ◦ gψ−1

|U×]−r;r[

and
HU : V → U

x 7→ PR ◦ gψ−1
|U×]−r;r[.
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F+
ε (φ, ψ) F−ε (φ, ψ)

Fig. 9. Action of F±
ε (φ, ψ) on R2.

We now de�ne three di�erent subsets A1, A2 and A3 of S1 such that S1 =
A1 ∪A2 ∪A3 by

A1 = U ∪ψ−1(V c); A2 = A1
c ∩ (HU ◦ψ)−1(R∗); A3 = A1

c ∩ (HU ◦ψ)−1(0).

Moreover, the intersection between two of these subsets is empty. Finally,
we de�ne two deformations S+

ε (φ, ψ) and S−ε (φ, ψ) from S1 into R2 by

� For all x ∈ A1,
S±ε (φ, ψ) = ψ(x);

� For all x ∈ A2,
If HU (ψ(x)) > 0, we set

S+
ε (φ, ψ)(x) = F+

ε (φ, ψ) ◦ ψ(x),
S−ε (φ, ψ)(x) = ψ(x).

If HU (ψ(x)) < 0, we set

S+
ε (φ, ψ)(x) = ψ(x),
S−ε (φ, ψ)(x) = F−ε (φ, ψ) ◦ ψ(x).

� For all x ∈ A3, we have (ΠU ◦ ψ(x), x) ∈ K∗(ψ) ⊂ K∗(ϕ). We set
Λ = Λϕ(ΠU ◦ ψ(x), x).

If Pϕ(Λ) = +1, we set

S+
ε (φ, ψ)(x) = F+

ε (φ, ψ) ◦ ψ(x),
S−ε (φ, ψ)(x) = ψ(x).

If Pϕ(Λ) = −1, we set

S+
ε (φ, ψ)(x) = ψ(x),
S−ε (φ, ψ)(x) = F−ε (φ, ψ) ◦ ψ(x).
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The deformation S+(φ, ψ) is obtained from the deformation ψ by pushing
away from ψ(K) the element x of S1 \K such that ψ(x) is just �located on
the top� of ψ(K). The deformation S−(φ, ψ) is obtained in the same way,
but acts on the point x of S1 \K �located on the bottom� of ψ(K). Hence,
the deformation S+(φ, S−(φ, ψ)) is such that ψ(K) has no double points.
Performing this transformation for a partition of the unity φk of S1, will
enable us to construct an embedding close to ψ. It remains to carry out this
reasoning rigorously.

Lemma 3. For all ϕ ∈ AG, for all ψ ∈ BG(ϕ), for all φ ∈ C1(S1; [0, 1])
such that the restriction of ψ to the support of φ is injective, F±ε converges
to the identity in R2 for the C1 topology.

Lemma 4. For all ϕ ∈ AG, ψ ∈ BG(ϕ), φ such that the restriction of ψ to
the support of φ is injective, we have, for all x ∈ S1,

Sµε (φ, ψ) = Fµε (φ, ψ) ◦ ψ, on a neighborhood of x
or Sµε (φ, ψ) = ψ on a neighborhood of x.

Proposition 16. For all ϕ ∈ AG, ψ ∈ BG and φ ∈ C1(S1; [0, 1]), such that
the restriction of ψ to the support of φ is injective, S±ε (φ, ψ) is an immersion
and

S±ε (φ, ψ) ε→0−−−→ ψ in C1(S1; R2).

Lemma 5. For all ϕ ∈ AG, ψ ∈ BG(ϕ) and φ ∈ C1(S1; [0, 1]), such that the
restriction of ψ to the support of φ is injective, then

K∗(S±ε (φ, ψ)) ⊂ K∗(ψ).

Lemma 6. For all ϕ ∈ AG, ψ ∈ BG(ϕ) and φ ∈ C1(S1; [0, 1]), such that the
restriction of ψ to the support of φ is injective, we have

nx(S±ε (φ, ψ)).ny(S±ε (φ, ψ)) = Oϕ(Λϕ(x, y)),

for all (x, y) ∈ K∗(S±(φ, ψ)).

Lemma 7. For all ϕ ∈ AG, ψ ∈ BG and φ ∈ C1(S1; [0, 1]), such that the
restriction of ψ to the support of φ is injective, we have for all (x, y) ∈
K∗(S±(φ, ψ)),

sign(hS±ε (φ,ψ)) 6= −Pϕ(Λϕ(x, y))

on a neighborhood of (x, y).

Proposition 17. For all ϕ ∈ AG, ψ ∈ BG and φ ∈ C1(S1; [0, 1]), such that
the restriction of ψ to the support of φ is injective, we have

S±ε (φ, ψ) ∈ BG(ϕ).
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Proposition 18. For all ϕ ∈ AG, ψ ∈ BG and φ ∈ C1(S1; [0, 1]), such that
the restriction of ψ to the support K of φ is injective. Let ε+ > 0 and ε− > 0
small enough for ψ̃ = S−ε−(φ, S+

ε+(φ, ψ)) to be correctly de�ned, we have

ψ̃(K) ∩ ψ̃(Kc) = ∅.

Proposition 19. For all ϕ ∈ AG, BG is included in the C1-closure of the
embeddings.

Proof (Proposition 15). The Proposition follows from the fact that ϕ
belongs to BG(ϕ) and Proposition 19.

Proof (Proposition 19). Let ϕ ∈ AG. There exists a partition of the
unity (Uk, φk)k=1,...,N such that for all k, φk ∈ C∞(S1; [0, 1]), Uk is an open
subset of S1, the restriction of the mapping ϕ to Uk is injective, the support
Kk of φk is included in Uk and

∑
k φk = 1.

Let ψ ∈ BG(ϕ) and ε > 0. We de�ne the family (ψk)k=0,...,N of elements
of BG(ϕ) by {

ψ0 = ψ
ψk+1 = S+

ε+k
(φk+1, S

−
ε−k

(φk+1, ψ)),

where ε+k and ε−k are small enough positive reals. The sequence ψk is, by
Proposition 17, well de�ned. Moreover, from Proposition 16, we can choose
them such that

‖ψk+1 − ψk‖C1 < ε/N. (37)

For all k, from Lemma 5,

K∗(ψk+1) ⊂ K∗(ψk).

Thus,

K∗(ψN ) ⊂
N⋂
k=0

K∗(ψk)

and
N⋃
k=0

K∗(ψk)
c ⊂ K∗(ψN )c. (38)

As the restriction of ϕ on Kk is injective for all k, we have

K∗(ϕ)c ⊃
N⋃
k=1

Kk ×Kk. (39)

Moreover, from Proposition 18,

K∗(ψk)
c ⊃ Kk ×Kk

c. (40)
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From (38), (39) and (40), we deduce that

K∗(ψN )c ⊃ ∪
(⋃N

k=0K
∗(ψk)

c
)
⊃

(⋃N
k=1Kk ×Kk

)
∪

(⋃N
k=1Kk ×Kk

c
)

= S1 × S1,

and K∗(ψN ) = ∅. The immersion ψN is injective, thus it is an embedding.
Furthermore, from (37), we have ‖ψ − ψN‖ < ε.

Proof (Proposition 18). We claim that for all elements ϕ, ψ and φ which
ful�ll the assumptions of the Proposition, for all ε small enough and for
µ = ±1,

K∗(Sµε (φ, ψ))∩K×Kc ⊂ K∗(ψ)∩{(x, y) ∈ K∗(ϕ) : Pϕ(Λϕ(x, y)) = −µ}.
(41)

Thus, by applying this relation successively to µ = −1 and µ = +1, we get

K∗(S−ε−(φ, S+
ε+(φ, ψ))) ∩K ×Kc

⊂K∗(S+
ε+(φ, ψ)) ∩K ×Kc ∩ {(x, y) ∈ K∗(ϕ) : Pϕ(Λϕ(x, y)) = +1}

⊂K∗(ψ) ∩ {(x, y) ∈ K∗(ϕ) : Pϕ(Λϕ(x, y)) = −1}
∩ {(x, y) ∈ K∗(ϕ) : Pϕ(Λϕ(x, y)) = +1} = ∅,

which is nothing more than the required result.
It remains to prove relation (41). We consider the case µ = 1. The

other case (µ = −1) can be treated in the same way. From Lemma 5 and
Proposition 17,

K∗(S+
ε (φ, ψ)) ⊂ K∗(ψ) ⊂ K∗(ϕ). (42)

Let (x, y) ∈ K∗(S+
ε (φ, ψ)) ∩K ×Kc. Assume that

Pϕ(Λϕ(x, y)) 6= −1,

that is Pϕ(Λϕ(x, y)) = 1. As (x, y) ∈ K∗(ψ), we get from the de�nition of
S+
ε that

S+
ε (φ, ψ)(y) = F+

ε (φ, ψ)(ψ(y))
= F+

ε (φ, ψ)(ψ(x)) 6= ψ(x)

and
S+
ε (φ, ψ)(x) = ψ(x).

Therefore, S+
ε (φ, ψ)(x) 6= S+

ε (φ, ψ)(y) and (x, y) /∈ K∗(S+
ε (φ, ψ)). There-

fore, for all (x, y) ∈ K∗(S+
ε (φ, ψ)), Pϕ(Λϕ(x, y)) = −1 and with (42), we

obtain the expected relation (41).

Proof (Proposition 17). The proposition follows from Proposition 16
and Lemmas 5 ,6 and 7.
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Proof (Lemma 3). Let us recall that

F±ε (φ, ψ)(x) =
{
gψ ◦ T±ε (φ) ◦ gψ−1

|U×]−r;r[ if x ∈ gψ(U×]−r; r[)
x if x /∈ gψ(U×]−r; r[)

where
T±ε (φ)(x, t) = (x, t± ε2φ(x)α(

t

ε
)).

We have

D(x,t)(T±ε (φ)) =
(

1 0
ε2φ̇(x)α

(
T
ε

)
1± εφ(x)α̇

(
T
ε

))
.

Thus,
D(x,t)(T±ε (φ)) ε→0−−−→ I2

for the C0 topology. The conclusion follows from

DxF
±
ε (φ, ψ) =

{
Dgψ ◦D(T±ε (φ)) ◦Dgψ−1

|U×]−r;r[ si x ∈ gψ(U×]−r; r[)
x otherwise.

.

Proof (Lemma 4). Let µ = ±1. We can check that Sµε (φ, ψ) = ψ on
the open set U ∪ ψ−1(gψ(K × [−ε/2, ε/2]c), (K is the support of φ). As
A1 ⊂ U ∪ ψ−1(gψ(K × [−ε/2, ε/2]c), the Lemma is true for every element
x ∈ A1. Moreover, let us remark that

A2 = {x ∈ S1;x ∈ ψ−1(V ) and HU (ψ(x)) 6= 0}.

Then, A2 is an open set and the Lemma is also true for every x ∈ A2 as the
sign of HU (ψ(x) is constant on each connected component of A2.

It remains to study the case x ∈ A3. As HU (ψ(x)) = 0 and x /∈ U ,
(ΠU ◦ ψ(x), x) ∈ K∗(ψ) ⊂ K∗(ϕ). Let Λ = Λϕ(ΠU ◦ ψ(x), x). There exists
a neighborhood Ux of x in S1 such that

ΠU ◦ ψ(Ux)× Ux ⊂Wψ(Λ),

where Wψ(Λ) is the open set introduce in the de�nition of BG (see 36). For
all x ∈ Ux, we have two di�erent cases:
First case HU ◦ ψ 6= 0.
In this case, sign(HU ◦ ψ(x)) = sign(hx(ΠU ◦ ψ(x), ψ(x))) = Pϕ(Λ). Hence,

Sµε (φ, ψ)(x̄) =
{
Fµε ◦ ψ(x̄) if µ = Pϕ(Λ),
ψ(x̄) otherwise. (43)

Second Case HU ◦ ψ(x) = 0.
In this case, (ΠU ◦ψ(x), x) ∈ K∗(()ϕ). Let Λ′ = Λϕ(ΠU ◦ψ(x), x). If Λ′ = Λ,
we have (43). Otherwise, without loss of generality, we can assume that
x > x (this has a meaning as x and x belong to Ux which is di�eomorphic
to an open interval of R). We set

x̃ = min{z ∈ Ux;HU (ψ([z, x)) = 0} > x.
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The element (ΠU (x̃), x̃) belongs to Λ′. Moreover, for all neighborhood W ⊂
Ux of x̃, there exists y ∈ W such that HU ◦ ψ(y) 6= 0 and (ΠU ◦ ψ(y), y) ∈
Wψ(Λ′) ∩Wψ(Λ). Hence,

Pϕ(Λ′) = sign(hϕ(ΠU ◦ ψ(y), ψ(y))) = Pϕ(Λ).

Finally, we get (43) once again and the proof is complete.

Proof (Propositon 16). It follows obviously from Lemmas 4 and 3.

Proof (Lemma 5). We set V + = gψ(U×]0, r[). From the de�nition of
S+
ε (φ, ψ), we deduce that

S+
ε (φ, ψ)(x) ∈ V + ⇒ S+

ε (φ, ψ)(x) = F+
ε (φ, ψ) ◦ ψ(x),

S+
ε (φ, ψ)(x) /∈ V + ⇒ S+

ε (φ, ψ)(x) = ψ(x).

One can easily check that in all of these cases,

S+
ε (φ, ψ)(x) = S+

ε (φ, ψ)(y) ⇒ ψ(x) = ψ(y).

Performing the same reasoning for S−ε (φ, ψ), we obtain thatK∗(S±ε (φ, ψ)) ⊂
K∗(ψ).

Proof (Lemma 6). Let µ = ±1. We set ψ̃ = Sµε (φ, ψ). Let (x, y) ∈ K∗(ψ̃).
From Lemma 4,

ψ̃ = Fµε (φ, ψ) ◦ ψ, on a neighborhood of x
or ψ̃ = ψ on a neighborhood of x.

et
ψ̃ = Fµε (φ, ψ) ◦ ψ, on a neighborhood of y

or ψ̃ = ψ on a neighborhood of y.

It is easy to check that the following cases cover all possible situations

1. ψ̃ = ψ on a neighborhood of x and y.
2. ψ̃ = ψ on a neighborhood of x, ψ̃ = Fµε ◦ ψ on a neighborhood of y and
ψ(x) = ψ(y) ∈ ψ(U), y /∈ U, Pϕ(Λϕ(ΠU ◦ ψ(y), y)) = µ.
(a) x ∈ U.
(b) x /∈ U and Pϕ(Λϕ(ΠU ◦ ψ(x), x)) = −µ.

3. ψ̃ = ψ on a neighborhood of y, ψ̃ = Fµε ◦ ψ on a neighborhood of x and
ψ(x) = ψ(y) ∈ ψ(U), x /∈ U, Pϕ(Λϕ(ΠU ◦ ψ(x), x)) = µ.
(a) y ∈ U.
(b) y /∈ U and Pϕ(Λϕ(ΠU ◦ ψ(y), y)) = −µ.

4. ψ̃ = Fµε ◦ψ on a neighborhood of x and y, ψ(x) = ψ(y) ∈ gψ(U×]−r; r[),
y /∈ U, x /∈ U et Pϕ(Λϕ(ΠU ◦ ψ(x), x)) = Pϕ(Λϕ(ΠU ◦ ψ(y), y)) = µ.
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Cases 2 and 3 are equivalent up to swapping x and y.
Case 1
In this case, nx(ψ̃).ny(ψ̃) = nx(ψ).ny(ψ) and the conclusion follows from
the fact that ψ ∈ BG(ϕ).
Case 2 and 3
Let us consider the case 2. We have

˙̃
ψ(y) = Dψ(y)F

µ
ε (φ, ψ).ψ̇(y)

with
Dψ(y)F

µ
ε (φ, ψ) = Dgψ ◦D(z,t)(Tµε (φ)) ◦Dψ(y)gψ

−1
|U×]−r;r[.

and (z, t) = (gψ |U×]−r,r[)
−1(ψ(y)). As ψ(y) belongs to ψ(U), we have

t = HU (ψ(y)) = 0.

Hence,
ψ̃(y) = gψ(z, ε2µφ(z)).

Moreover, ψ̃(y) = ψ̃(x) = ψ(x) ∈ U. Then, HU (ψ̃(y)) = 0 and φ(z) = 0. As
φ is a positive function of class C1, we deduce that φ̇(z) = 0. Let us recall
that

D(z,t)(Tµε (φ)) =
(

1 0
ε2φ̇(z)α

(
t
ε

)
1± εφ(z)α̇

(
t
ε

))
.

Thus, in the present case, we have

D(z,t)(Tµε (φ)) = I2.

Finally,
˙̃
ψ(y) = ψ̇(y),

and ny(ψ̃) = ny(ψ). We conclude as in the previous case.
Case 4
We have

˙̃
ψ(x) = Dψ(x)F

µ
ε (φ, ψ).ψ̇(x) = |ψ̇(x)|Dψ(x)F

µ
ε (φ, ψ).τxψ,

and
˙̃
ψ(y) = Dψ(x)F

µ
ε (φ, ψ).ψ̇(y) = |ψ̇(y)|Dψ(x)F

µ
ε (φ, ψ).τyψ.

Now τx(ψ) = Oϕ(Λϕ(x, y))τy(ψ), therefore

|ψ̇(y)| ˙̃ψ(x) = Oϕ(Λϕ(x, y))|ψ̇(x)| ˙̃ψ(y),

and
nx(ψ̃).ny(ψ̃) = Oϕ(Λϕ(x, y)).
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Proof (Lemma 7). Let µ = ±1. We set ψ̃ = Sµε (φ, ψ). Let (x, y) ∈ K∗(ψ̃).
We consider the same case than in the proof of Lemma 6.
Case 1
We have h eψ = hψ on a neighborhood of (x, y). The conclusion follows from
the fact that ψ ∈ BG(ϕ).
Case 2 and 3
In this case, ψ(x) = ψ(y) = ψ̃(x) = ψ̃(y) ∈ gψ(U×]−r, r[). Furthermore,
we set z = ΠU (ψ(x)) (Note that in the case 2a, z = x and in the case 3a,
z = y). As ψ̃ is an immersion, and as ψ(z) = ψ̃(x), we can choose connected
neighborhoods W̃x of (x, 0) and Wz of (z, 0) in the normal bundle S1 × R
such that

g eψ(W̃x) = gψ(Wz) ⊂ gψ(U×]− r, r[).

Moreover, Wz can be chosen such that Wz ∩ S1 × R∗
+ and Wz ∩ S1 × R∗

−
are connected. We introduce the integer s = ±1 de�ne by

s =
{
Pϕ(Λϕ(z, y)) if z 6= y
−Pϕ(Λϕ(z, x)) if z = y

On can check that in every case, by the de�nition of Sµε (φ, ψ),

gψ(Wz ∩ S1 × R∗
s) ∩ g eψ(W̃x ∩ S1 × {0}) = ∅.

As gψ(Wz ∩ S1 × R∗
s) is connected and included in g eψ(W̃x), we deduce

from the previous relation that gψ(Wz ∩ S1 × R∗
s) is included in one of the

connected components of g eψ(W̃x∩S1×R∗). In particular, gψ(Wz∩S1×R∗
s)

is included in g eψ(W̃x ∩ S1 × R∗
+) or g eψ(W̃x ∩ S1 × R∗

−). We are now going
to �nd out in which of these sets gψ(Wz ∩ S1 × R∗

s) is included. Using the
di�erentiability of g, we obtain that

PR ◦ (g eψ |U×]−r,r[
)−1 ◦ gψ(z, t) = nx(ψ̃).nz(ψ)|ψ̇(z)|| ˙̃ψ(x)|−1t+ o(t).

Moreover, as seen in the proof of Lemma 6, we have nx(ψ̃) = nx(ψ). There-
fore, for t small enough such that sign(t) = s, we obtain that

gψ(z, t) ∈ g eψ(W̃x × R∗
snx(ψ).nz(ψ)).

As (z, t) ∈Wz ∩ S1 × R∗
s, we deduce that

gψ(Wz ∩ S1 × R∗
s) ⊂ g eψ(W̃x × R∗

snx(ψ).nz(ψ)).

Furthermore, gψ |Wz
and g eψ |fWx

are di�eomorphisms thus,

gψ(Wz ∩ S1 × Rs) ⊂ g eψ(W̃x × Rsnx(ψ).nz(ψ)). (44)
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It is now easy to compute the sign of h eψ on a neighborhood of (x, y). Let

(x, y) be close to (x, y). By the de�nition of s and Sµε (φ, ψ), ψ̃(y) belongs
to gψ(Wz ∩ S1 × Rs). From (44), we deduce that

ψ̃(y) ∈ g eψ(W̃x × Rs(nx(ψ).ny(ψ)))

and that

sign(h eψ(x, y)) = sign(h eψ(x, y)) 6= −s(nx(ψ).nz(ψ)).

It remains to show that in every particular case,

s(nx(ψ).nz(ψ)) = Pϕ(Λϕ(x, y))

and the proof will be complete.
Case 2a
We have z = x and s = Pϕ(Λϕ(z, y)), thus

s(nx(ψ).nz(ψ)) = Pϕ(Λϕ(x, y)).

Case 2b and 3b
We have nx(ψ).nz(ψ) = Oϕ(Λϕ(x, z)) and

s = Pϕ(Λϕ(z, y)) = µ = −Pϕ(Λϕ(z, x)).

The Propositions 12 and 13 imply respectively

s(nx(ψ).nz(ψ)) = Pϕ(Λϕ(x, z)),

and
s(nx(ψ).nz(ψ)) = Pϕ(Λϕ(x, y)).

Case 3a
We have z = y and s = −Pϕ(Λϕ(z, x)) = −Pϕ(Λϕ(y, x)). Furthermore,

nx(ψ).nz(ψ) = nx(ψ).ny(ψ) = Oϕ(Λϕ(y, x)).

Then, using Proposition 12 we get

s((nx(ψ).nz(ψ)) = Pϕ(Λϕ(x, y)).

Case 4
As Fµε ◦ψ(x) = ψ̃(x), there exist Wx and W̃x neighborhoods of (x, 0) in the
normal bundle S1×R such that Fµε ◦ gψ |Wx

and g eψ |fWx

are di�eomorphisms

on the same image and

Fµε ◦ gψ |Wx
= g eψ |fWx

on Wx ∩ (S1 × {0}) = W̃x ∩ (S1 × {0}). Moreover, as det(D(Fµε ◦ gψ)) =
det(g eψ) > 0, thence

Fµε ◦ gψ(Wx ∩ S1 × R+) = g eψ(W̃x ∩ S1 × R+) (45)
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and

Fµε ◦ gψ(Wx ∩ S1 × R−) = g eψ(W̃x ∩ S1 × R−). (46)

For all (x̄, ȳ) in the neighborhood of (x, y), we have

hψ(x̄, ȳ) 6= −Pϕ(Λϕ(x, y)),

that is

ψ(ȳ) ∈ gψ(Wx ∩ S1 × RPϕ(Λϕ(x,y))).

From (45) and (46), we deduce that

ψ̃(y) = Fµε ◦ ψ(y) ∈ Fε ◦ gψ(Wx ∩ S1 × RPϕ(Λϕ(x,y)))

= g eψ(Wx ∩ S1 × RPϕ(Λϕ(x,y))).

Thence,

h eψ(x̄, ȳ) = h eψ(x, y) 6= −Pϕ(Λϕ(x, y)),

and the proof is complete.

6.2. Partial equivalence between the geometrical and algebraic de�nition of
the admissible set of deformations

Let ϕ be an immersion of S1 into R2. The winding number of ϕ is de�ned
as

]ϕ = deg(τ(ϕ)), (47)

where τ(ϕ) is the mapping from S1 into S1 which maps every element
x ∈ S1 to the unitary vector ϕ̇(x)/|ϕ̇(x)|.

Proposition 20. Aφ(jS1) ∩ Imm(S1; R2) = {ϕ ∈ AG; ]ϕ = +1}.

Proposition 21. The set of the embeddings isotopic to j
S1 is dense for the

C1topology in Aφ(jS1) ∩ Imm(S1; R2).

A straightforward corollary is that

Corollary 1. Every immersion of Aφ(jM) belongs to A(jM), that is

Aφ(jM) ∩ Imm(S1; R2) = A(jM) ∩ Imm(S1; R2).

The proof is split into two lemmas

Lemma 8. For all immersion ϕ ∈ Aφ(jS1), ]ϕ = +1.

Lemma 9. For all immersion ϕ ∈ Aφ(jS1), ϕ ∈ AG.
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Proof (Proposition 20). From Lemmas 8 and 9, we have

Aφ(jS1) ∩ Imm(S1; R2) ⊂ {ϕ ∈ AG : ]ϕ = +1}.

It remains to prove the converse inclusion. Let ϕ ∈ AG, such that ]ϕ = +1.
From Proposition 15, for all ε > 0, there exists an embedding ψε such that

‖ϕ− ψε‖C1 ≤ ε.

As the mapping which maps every ϕ ∈ Imm(S1; R2) to its winding number
]ϕ is continuous for the C1 topology, for ε small enough, we have

]ψε = ]ϕ = +1.

Moreover, it is well-known that immersions of S1 into R2 with the same
winding number are isotopic. As ]j

S1 = +1, ψε is isotopic to jS1 . Thus, the
deformation ϕ belongs to the C0−closure of the embeddings isotopic to j

S1

and it follows from Proposition 2 that ϕ ∈ Aφ(jS1).

Proof (Proposition 21). From Proposition 15, the set of embeddings
is dense in AG for the C1 topology. It is easy to deduce that the set of
embeddings isotopic to j

S1 is dense for the C1 topology to {ϕ ∈ AG : ]ϕ =
+1}, which is equal (Proposition 20) to Aφ(jS1) ∩ Imm(S1; R2).

Proof (Lemma 8). Let ϕ ∈ Aφ(jS1)∩ Imm(S1; R2). The winding number
]ϕ of ϕ (see de�nition (47)) could also be de�ned as the degree of the
mapping

τ(ϕ, h) =
ϕ(x+ h)− ϕ(x)
|ϕ(x+ h)− ϕ(x)|

,

for h small enough. In other words,

]ϕ =
∫
S1
τ(ϕ, h)∗(φS1).

As φS1 = j
S1
∗(φR2

∗
), we have

]ϕ =
∫
S1
τ(ϕ, h)∗ ◦ j

S1
∗(φR2

∗
)

=
∫
S1

(j
S1 ◦ τ(ϕ, h))∗(φR2

∗
).

We set

γh : S1 → S1 × S1 −K(ϕ)
x 7→ (x+ h, x).
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The function dϕ ◦ γh = ϕ(x + h) − ϕ(x) is homotopic to j
S1 ◦ τ(ϕ, h).

Therefore,

]ϕ =
∫
S1

(dϕ ◦ γh)∗(φR2
∗
)

=
∫
S1
γ∗h ◦ d∗ϕ(φR2

∗
)

As ϕ belongs to Aφ(jS1) , we obtain that

]ϕ =
∫
S1
γ∗h ◦ d∗j1 (φR2

∗
) = ]j

S1 = 1.

We split the proof of the Lemma 9 in two parts:

Lemma 10. For all ϕ ∈ Aφ(jS1)∩ Imm(S1; R2), Proposition P1(ϕ) is true,
that is: For all Λ ∈ E(ϕ), there exists (x, y) ∈ Λ such that for every neigh-
borhood V of (x, y),

hϕ|V 6= 0.

Lemma 11. For all ϕ ∈ Aφ(jS1)∩ Imm(S1; R2), Proposition P2(ϕ) is true,
that is: For all Λ ∈ E(ϕ), there exists Vϕ(Λ), neighborhood of Λ suh that
hϕ|Vϕ(Λ) ≥ 0 or hϕ|Vϕ(Λ) ≤ 0.

Proof (Lemma 10). Let us assume that the lemma is false, that is that
there exists ϕ ∈ Aφ ∩ Imm(S1; R2) such that P1(ϕ) is false. For the sake
of brevity, we will denote Px instead of Px(ϕ). There exists Λ ∈ E(ϕ),
such that for all element (x, y) of Λ, there exists small enough connected
neighborhoods Ux of x and Uy of y such that

h|Ux×Uy = 0.

Hence, we have

K∗(ϕ) ∩ (Ux × Uy) = {(x, y) ∈ Ux × Uy ; h(x, y) = 0 and x = Px(ϕ(y))}
= {(x, y) ∈ Ux × Uy ; x = Px(ϕ(y))} .

Up to choosing Uy small enough, we can assume that Px(ϕ(Uy)) ⊂ Ux.
Thus,

K∗(ϕ) ∩ (Ux × Uy) = {(x, y) ; x = Px(ϕ(y)), y ∈ Uy} .

This set is connected and

K∗(ϕ) ∩ (Ux × Uy) = Λ ∩ (Ux × Uy).

In particular,

Λ ∩ (Ux × Uy) = {(x, y) ; x = Px(ϕ(y)), y ∈ Uy} . (48)
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As the deformation ϕ belongs to the φ-admissible set, it has no transversal
self-intersection. In particular, ϕ̇(x) and ϕ̇(y) are collinear vectors. Hence,
d(Px ◦ϕ)/dy = ϕ̇(x).ϕ̇(y) 6= 0. The mapping Px ◦ϕ is of maximal rank on a
neighborhood of y, and the connected component Λ is locally di�eomorphic
to ] − 1, 1[. It is a compact submanifold of S1 × S1 without boundary and
of dimension one. It follows that Λ is nothing else but a circle. We set jΛ
the injection of Λ in S1 × S1 \ 4(S1).
Let U∗(0, π) be the open ball of R2 of radius π, centered on the origin ,
from which one has removed its center. The manifold S1 × S1 \ 4(S1) is
di�eomorphic to U∗(0, π) by the mapping

Θ : U∗(0, π) → S1 × S1 \ 4(S1)
reiθ 7→ (θ − r, r + θ),

where S1 is identi�ed to R/2πZ. We recall that θ is the mapping from R2
∗

to S1 de�ned by θ(x) = x/|x|.
The mapping Θ−1 ◦ jΛ is an embedding of S1 into R2. From the Theorem
of Jordan-Brouwer, the winding number of the curve Θ−1 ◦ jΛ around the
origin could be either zero or ±1,∫

S1
(θ ◦Θ−1 ◦ jΛ)∗(φS1) =

{
±1

0

We denote by π1 and π2 the projections of S1 × S1 \ 4(S1) onto its �rst
and second coordinate. The mappings π2 and θ ◦ Θ−1 are homotopic, thus
we have ∫

S1
(π2 ◦ jΛ)∗(φS1) =

{
±1

0 . (49)

From (48), π2 ◦ jΛ is an immersion of S1 into S1, thus,∫
S1

(π2 ◦ jΛ)∗(φS1) = deg(π2 ◦ jΛ) = ±Card((π2 ◦ jΛ)−1(y)).

From (49), we conclude that

Card((π2 ◦ jΛ)−1(y)) = +1,

and that π2 ◦ jΛ is a di�eomorphism. The same conclusion holds for π1 ◦ jΛ.
Let x0 ∈ S1. We de�ne the sequence (xk) by

xk+1 = (π1 ◦ jΛ) ◦ (π2 ◦ jΛ)−1(xk).

For all integer k, we have ϕ(xk+1) = ϕ(xk) = ϕ(x0). As the cardinal of
ϕ−1(0) is �nite, there exist a minimal integer N > 0 and an integer k such
that xk = xk+N . Up to applying k times the mapping (π2 ◦ jΛ) ◦ (π1 ◦ jΛ)−1

to this last equation, we can assume that k = 0. Once again, we consider S1

as R/2πZ. For simplicity, we will not do the distinction between an element
of R an its class in R/2πZ. We choose xk ∈ R such that xk+1 > xk and
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|xk+1 − xk| ≤ 2π. Let us denote by ck the mappings from [0, 1] into S1

de�ned by

c0(t) = tx0 + (1− t)x1

ck+1 =
(
(π1 ◦ jΛ) ◦ (π2 ◦ jΛ)−1

)
◦ (ck).

As (π1◦jΛ)◦(π2◦jΛ)−1 is a di�eomorphism from S1 into S1 which preserves
the orientation, it is clear that the mapping ck is homotopic to the mapping
which maps t to txk +(1− t)xk+1. Furthermore,

∑N−1
k=0 ck is a cycle, that is

N−1∑
0

∫ 1

0

c∗k(df) = 0,

for any mapping f : S1 → R. Thus, there exists an integer p such that for
every close form α,

N−1∑
k=0

∫ 1

0

c∗k(α) = p

∫
S1
α.

and p is nothing but the number of integers k, 0 ≤ k < N such that x0

belongs to [xk, xk+1[.
Let τ = ϕ̇/|ϕ| : S1 → S1. The chain τ#(ck) is a cycle. From

]ϕ =
∫
S1
τ∗(φS1),

we deduce that

p]ϕ =
N−1∑
k=0

∫ 1

0

c∗k ◦ τ∗(φS1) (50)

For all integers k, we set

dk = (π2 ◦ jΛ)−1(ck).

We have
τ ◦ ck = (τ ◦ (π2 ◦ jΛ)) ◦ dk.

As (ϕ ◦ π2)|Λ = (ϕ ◦ π1)|Λ, we get

τ ◦ ck = (τ ◦ (π1 ◦ jΛ)) ◦ dk,

that is,
τ ◦ ck = τ ◦ ck+1

From (50), it follows that

p]ϕ = N

∫
S1

(τ ◦ c0)∗(φS1).

As ϕ is an element of Aφ ∩ Imm(S1; R2), by Lemma 8, we have ]ϕ = 1.
Hence,

p = N

∫
S1

(τ ◦ c0)∗(φS1).
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Moreover, p is an integer such that 0 < p ≤ N, hence,∫
S1

(τ ◦ c0)∗(φS1) = 1

and p = N . It follows that, for all k, we have x0 ∈ [xk, xk+1[. In particular,

x0 ∈ [xN−1, xN [.

As |xN−1 − xN | ≤ 2π and x0 = xN , we have |xN−1 − xN | = 2π and
xN−1 = x0. We deduce that

(π1 ◦ jΛ)−1(x0) = (π2 ◦ jΛ)−1(x0).

Hence, (x0, x0) belongs to Λ. This could not hold as Λ ∈ S1 × S1 \ 4(S1).

Proof (Lemma 11). Let ϕ ∈ Aφ(jS1) ∩ Imm(S1; R2). We assume that
P2(ϕ) is false. For simplicity, we will note Px instead of Px(ϕ) and h in-
stead of hϕ. As P2(ϕ) is false, there exists Λ ∈ E(ϕ), such that, if VΛ
is the connected component of VK∗(ϕ) (see de�nition (28)), there exists
(x+, y+) ∈ VΛ, (x−, y−) ∈ VΛ with h(x+, y+) > 0 and h(x−, y−) < 0. As VΛ
is connected, there exists j = (j1, j2) : [0, 1] → VΛ such that j(0) = (x−, y−)
and j(1) = (x+, y+). Let ε > 0 be a small real. We de�ne the mapping Γ
from [0, 1]× [−ε, ε] by

Γ (t, s) =
(
Pj1(t)(ϕ ◦ j2(t)) + s, j2(t)

)
.

We denote by γ the restriction of Γ to the boundary of [0, 1]×[−ε, ε] which is
homeomorphic to S1. The mapping γ is a contractible loop in S1×S1\∆(S1)
with values in U = d−1

ϕ (R2
∗), and∫
S1
γ∗ ◦ d∗j

S1
(φR2

∗
) = 0.

As ϕ belongs to Aφ(jS1), we have∫
S1
γ∗ ◦ d∗ϕ(φR2

∗
) =

∫
S1
γ∗ ◦ d∗j

S1
(φR2

∗
) = 0.

Let ψ be close to ϕ, such that the intersections between ϕ and ψ are trans-
verse. We set

dϕ,ψ : S1 × S1 → R2

(x, y) 7→ ϕ(x)− ψ(y).

We have ∫
S1

(dϕ,ψ ◦ γ)∗(φR2
∗
) =

∫
S1

(dϕ ◦ γ)∗(φR2
∗
) = 0. (51)

As the intersection between ϕ and ψ is transverse, dϕ,ψ|−1
Γ (0) is a �nite set

of points endowed with a sign. One can show (as in the proof of Proposition
5) that∫

S1
(dϕ,ψ ◦ γ)∗(φR2

∗
) =

∫
S1

(dϕ,ψ ◦ ∂Γ )∗(φR2
∗
) =

∑
(x,y)∈dϕ,ψ|−1

Γ (0)

sϕ,ψ(x, y),
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where sϕ,ψ(x, y) is the orientation of the element (x, y) of dϕ,ψ|−1
Γ (0). From

(51), it follows that the cardinal of dϕ,ψ|−1
Γ (0) is even.

Card
(
dϕ,ψ|−1

Γ (0)
)

= 0 mod 2. (52)

Moreover, on the one hand

dϕ,ψ|−1
Γ (0) =

{
(x, y) ∈ S1 × S1 : x = (Pj1(t)(ϕ ◦ j2(t)) + s, y = j2(t),

x = Pj1(t)(ψ ◦ j2(t)), Hj1(t)(ψ ◦ j2(t)) = 0, with (t, s) ∈ [0, 1]× [−ε, ε]
}

For ψ close enough to ϕ, we have

dϕ,ψ|−1
Γ (0) =

{
(x, y) ∈ S1 × S1 : y = j2(t), x = Pj1(t)(ψ ◦ j2(t)),

Hj1(t)(ψ ◦ j2(t)) = 0, with (t, s) ∈ [0, 1]× [−ε, ε]
}
.

Hence,

Card
(
dϕ,ψ|−1

Γ (0)
)

= Card
({
t ∈ [0, 1] : Hj1(t)(ψ ◦ j2(t)) = 0

})
.

Furthermore,

sign(Hj1(0)(ψ ◦ j2(0)) = sign(Hj1(0)(ϕ ◦ j2(0)) = sign(h(x−, y−)) < 0

and on the other hand

sign(Hj1(1))(ψ ◦ j2(1)) > 0.

Thus, the function Hj1(t)(ψ ◦ j2(t)) has an odd number of roots and the
cardinal of dϕ,ψ|−1

Γ (0) is odd, whereas we have already proved that it is
even (52).

6.3. Proof of the partial equivalence between the minimization problem and
the Euler-Lagrange equations

In order to be able to prove the partial equivalence between the min-
imization problem and the Euler-Lagrange equation stated in Proposition
10, we will �rst prove the following lemmas:

Lemma 12. If ϕ is a regular immersion, solution of the minimization prob-
lem (Pφ), then∑

y∈ϕ−1(z)

(
d(DW (ϕ̇))

dx
(y) + f(y)

)
|ϕ̇(y)|−1 = 0 for all z ∈ Im(ϕ).
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Lemma 13. If ϕ is a regular immersion, solution of the minimization prob-
lem (Pφ), then (

f(x) +
dDW (ϕ̇(x))

dx

)
.τx = 0,

where τx = ϕ̇(x)
|ϕ̇(x)| .

Proof (lemma 13). Let u ∈ C2(S1; R2). We set γ(ε) = ϕ(x+ εu(x)). As,
from Proposition 3, γ(ε) ∈ AG, for ε small enough, we have

I(γ(ε)) ≥ I(γ).

Furthermore, I ◦ γ is di�erentiable and

˙(I ◦ γ) =
∫
S1
DW (ϕ̇(x)).

d(ϕ̇(x)u(x))
dx

− f(x).ϕ̇(x)u(x)dx.

Thus, the former inequality implies that∫
S1
DW (ϕ̇(x)).

d(ϕ̇(x)u(x))
dx

− f(x).ϕ̇(x)u(x)dx = 0

and ∫
S1

(
dDW (ϕ̇(x))

dx
.ϕ̇+ f.ϕ̇

)
u(x)dx = 0.

Proof (lemma 12). Let ϕ ∈ C2(S1; R2) be an immersion, solution of the
minimization problem (Pφ). Let z ∈ Im(ϕ) and

{x0, . . . , xN} = ϕ−1(z).

There exists U0 a neighborhood of x0 in S1 such that

g : U0×]−r, r[ → gϕ(U0×]−r, r[) = V0

x 7→ gϕ(x)

is a di�eomorphism. Let φ : S1 → R2 be a regular function with support
included in U0. We set

F (φ) : S1 × R → R2

(x, h) 7→ φ(x)α(h/r),

where α is a regular function from R to R, whose support is included in
]− 1/2, 1/2[ such that α([−1/4, 1/4]) = 1.

The support of F (φ) is included in U0×]− r, r[ and the mapping

G(φ) : R2 → R2

x 7→
{

(F (φ) ◦ g−1)(x) if x ∈ V0,
0 if x /∈ V0
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is regular. For t > 0 small enough, Id+tG(φ) is a orientation-preserving
di�eomorphism of R2. Thus, from proposition 4,

γ(t) = (Id+tG(φ)) ◦ ϕ ∈ Aφ(jM).

It follows that
I(γ(t)) ≥ I(ϕ)

and
˙(I ◦ γ)(0) ≥ 0.

The computation of the derivative of I ◦ γ is easy and we get

0 ≤
∫
S1
DW (ϕ̇)).

(
dG(φ) ◦ ϕ

dx
(x)

)
dx−

∫
S1
f(x).G(φ) ◦ ϕ(x)dx

= −
∫
S1

d(DW (ϕ̇))
dx

.G(φ) ◦ ϕ(x)dx−
∫
S1
f(x).G(φ) ◦ ϕ(x)dx

There exists a family (Uk)k=1,...,N of neighborhoods of the points xk such
that for every k,

PS1 ◦
(
g|U0×]−r/4,r/4[

)−1 ◦ ϕ|Uk
is a di�eomorphism onto its image.

As S1 is compact, there exists a neighborhood W of ϕ(x0) in R2 such
that

g−1
ϕ (W ) ⊂

N⋃
k=0

Uk.

We can assume that the support of φ is included in U0 ∩ g−1
ϕ (W ). Then,

0 ≥
∫
S1

(
d(DW (ϕ̇))

dx
+ f

)
.G(φ) ◦ ϕ(x)dx

=
∫
g−1(W )

(
d(DW (ϕ̇))

dx
+ f

)
.G(φ) ◦ ϕ(x)dx

=
N∑
k=0

∫
Uk

(
d(DW (ϕ̇))

dx
+ f

)
.G(φ) ◦ ϕ(x)dx.

Using the expression of G(φ), we get

N∑
k=0

∫
Uk

(
d(DW (ϕ̇))

dx
+ f

)
.φ(PS1 ◦ g−1(ϕ(x))α(PR ◦ g−1(ϕ(x))/r)dx ≤ 0.

(53)
For all x ∈ U0, PR ◦ g−1(ϕ(x)) = 0, and

α(PR ◦ g−1(ϕ(x))/r) = 1. (54)

Furthermore, for all k and yk ∈ Uk,

ϕ(yk) ∈ g(U0×]− r/4, r/4[),
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and
PR ◦ g−1(ϕ(yk)) ∈]− r/4, r/4[.

Thus, we have once again

α(PR ◦ g−1(ϕ(yk)) = 1. (55)

From (53), (54) and (55), we deduce that

N∑
k=0

∫
Uk

(
d(DW (ϕ̇))

dx
+ f

)
.φ(PS1 ◦ g−1(ϕ(x))dx ≤ 0.

On each open set Uk, we perform the change of variables induced by

sk = PS1 ◦ g−1 ◦ ϕ|Uk .

We obtain that

N∑
k=0

∫
U0

(
d(DW (ϕ̇))

dx
(s−1
k (y)) + f(s−1

k (y))
)
.φ(y)(Jk(s−1

k (y)))−1dy ≤ 0,

where Jk(z) = |ṡk(z)|. As this inequality holds for all φ with compact sup-
port in the neighborhood U0 ∩ g−1

ϕ (W ) of x0, we deduce that

N∑
k=0

(
d(DW (ϕ̇))

dx
(xk) + f(xk))

)
(Jk(xk))−1 = 0.

Furthermore, as Jk(xk) = |ϕ̇(x0)|−1|ϕ̇(xk)|, we have

N∑
k=0

(
d(DW (ϕ̇))

dx
(xk)) + f(xk)

)
|ϕ̇(xk)|−1|ϕ̇(x0)| = 0,

and
N∑
k=0

(
d(DW (ϕ̇))

dx
(xk)) + f(xk)

)
|ϕ̇(xk)|−1 = 0

as claimed.

We are now in a position to prove our result of partial equivalence between
the minimization problem and the Euler-Lagrange equations.

Proof (Proposition 10). Let ϕ be a solution of class C1 of the minimiza-
tion problem (Pφ). Let z ∈ Im(ϕ), n a normal vector to the image of ϕ at
z and (x0, . . . , xN ) the family obtained by proposition 14. We recall that

ϕ−1(z) = {x0, . . . , xN}

and that for every k < l,

Pϕ(Λ(xk, xl)) = n.nxk .
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Let m ∈ {0, . . . , N − 1}. We set µ = n.nxm . There exists a neighborhood
Um of xm in S1 and a real r0 > 0 such that

g : Um×]− r0, r0[ → gϕ(Um×]− r0, r0[)
x 7→ gϕ(x)

is a di�eomorphism. There exists a family of neighborhoods (Uk) of xk in
S1 (k ∈ {0, . . . , N}, k 6= m) such that for all k

PS1 ◦
(
g|Um×]−r,r[

)−1 ◦ ϕ|Uk

is a di�eomorphism onto its image and such that for all k and l ∈ {0, . . . N},

Uk ∩ Ul = ∅. (56)

As S1 is a compact set and as ϕ−1(ϕ(xm)) = {x0, . . . , xN}, there exists a
neighborhood W of ϕ(xm) in R2 such that

ϕ−1(W ) ⊂
N⋃
k=0

Uk.

There exists V ⊂ ∩Nk=0(PS1 ◦ g−1 ◦ ϕ)(Uk), neighborhood of xm and ε ≤ r
such that

gϕ(V×]− ε× ε[) ⊂W.

Let φ ∈ C∞0 (V ; R+) such that

‖φ‖C0 ≤ ε−1‖α‖−1
C1 ,

where α is de�ned as in the proof of Proposition 15. The mapping

γ(t) = Sµε (tφ, ϕ)

is well de�ned for all t < 1. By applying the same procedure as the one used
in the proof of Lemma 4, we can prove that

γ(t)(x) =
{
Fµε (tφ, ϕ) ◦ ϕ(x) if x ∈

⋃
k>m Uk,

ϕ(x) otherwise.

We de�ne
H :

⋃N
k=0 Uk → R

x 7→ PR
(
g−1(ϕ(x))

)
and

Π :
⋃N
k=0 Uk → Um

x 7→ PS1

(
g−1(ϕ(x))

)
.

From the de�nition of Fµε , we have

γ(t)(x) =
{
gϕ

(
Π(x),H(x) + µε2φ(Π(x))α(H(x)/ε)

)
if x ∈

⋃
k>m Uk,

ϕ(x) otherwise.
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A straightforward computation leads to

γ̇(0)(x) =

{
Dg−1

|V ◦ϕ(x)gϕ.(0, µε
2φ(Π(x))α(H(x)/ε) if x ∈

⋃
k>m Uk,

0 otherwise.

Using the expression of the di�erential of gϕ, we get

γ̇(0)(x) = µε2φ(Π(x))α(H(x)/ε)
(
−ϕ̇2(Π(x) +H(x))
ϕ̇1(Π(x) +H(x))

)
(57)

if x belongs to
⋃
k>m Uk, and γ̇(0)(x) = 0 otherwise. From Propositions 17

and 19, γ(t) ∈ BG and γ(t) belongs to the C1-closure of the set of embed-
dings. Furthermore, as ]γ(t) = ]ϕ = +1, every embedding close γ(t) for the
C1 topology is isotopic to the reference embedding j

S1 , as its winding num-
ber is equal to +1. Hence, γ(t) belongs to the set of embeddings isotopic to
j
S1 and γ(t) ∈ Aφ(jS1) is an admissible deformation (by Proposition 2). As
ϕ is a minimizer of I on the set of admissible deformations, we have

I(γ(t)) ≥ I(γ(0)).

By di�erentiation, we deduce that∫
S1

(
dDW (ϕ̇)

dx
(y) + f(y)

)
.γ̇(0)(y)dy ≤ 0.

Using the expression (57) of γ̇(0) and the property (56), we get

∑
k>m

∫
Uk

(
dDW (ϕ̇)

dx
(yk) + f(yk)

)
.

(
−ϕ̇2(Π(yk) +H(yk))
ϕ̇1(Π(yk) +H(yk))

)
φ(Π(yk))α(H(x)/ε)µdyk ≤ 0.

On each open set Uk, the mapping Π ◦ϕ is a di�eomorphism onto its image.
Thus, one can perform the change of variable x = Π ◦ ϕ(yk) on each open
set Uk. We get

∑
k>m

∫
Π◦ϕ(Uk)

(
dDW (ϕ̇))

dx
(yk) + f(yk)

)
.

(
−ϕ̇2(x+H(yk))
ϕ̇1(x+H(yk))

)
φ(x)α(H(yk)/ε) (Jm,k(yk))

−1
µdx ≤ 0,

where Jm,k(y) = |DyΠ ◦ϕ| and yk(x) = (Π ◦ϕ|Uk)−1(x). As the support of
φ is included in V ⊂

⋃N
k=0(Π ◦ ϕ)(Uk), we have

∑
k>m

∫
V

(
dDW (ϕ̇))

dx
(yk) + f(yk)

)
.

(
−ϕ̇2(x+H(yk))
ϕ̇1(x+H(yk))

)
φ(x)α(H(yk)/ε) (Jm,k(yk))

−1
µdx ≤ 0.
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As this inequality is true for every test function φ ∈ C∞0 (V ; R+) small
enough, one gets that

∑
k>m

(
dDW (ϕ̇))

dx
(yk) + f(yk)

)
.

(
−ϕ̇2(x+H(yk))
ϕ̇1(x+H(yk))

)
α(H(yk)/ε) (Jm,k(yk))

−1
µ ≤ 0.

We apply this inequality to x = xm. We have yk(xm) = xk, Jm,k(xk) =
|ϕ̇(xk)|/|ϕ̇(xm)|, H(xk) = 0, and α(0) = 1. Thus,∑
k>m

(
dDW (ϕ̇))

dx
(xk) + f(xk)

)
.

(
−ϕ̇2(x+H(xk))
ϕ̇1(x+H(xk))

)
|ϕ̇(xm)|
|ϕ̇(xk)|

n.nxm ≤ 0.

We have proved that for every m ∈ {0, . . . , N − 1},

∑
k>m

(
dDW (ϕ̇))

dx
(xk) + f(xk)

)
.n|ϕ̇(xk)|−1 ≤ 0. (58)

For all −1 ≤ m ≤ N , we set

λm = −
∑
k>m

(
dDW (ϕ̇))

dx
(xk) + f(xk)

)
.n|ϕ̇(xk)|−1 ≥ 0,

From Lemma 12,

λ−1 =
N∑
k=0

(
dDW (ϕ̇))

dx
(xk) + f(xk)

)
.n|ϕ̇(xk)|−1 = 0.

By de�nition, λN = 0. For all 0 < m < N − 1, we have

λm−1 − λm =
(
dDW (ϕ̇)

dx
(xm) + f(xm)

)
.n|ϕ̇(xm)|−1,

or as well (
dDW (ϕ̇)

dx
(xm) + f(xm)

)
.n = |ϕ̇(xm)|(λm−1 − λm).

Moreover, we have from Lemma 13,(
dDW (ϕ̇)

dx
(xm) + f(xm)

)
.τxm = 0.

We conclude that

dDW (ϕ̇)
dx

(xm) + f(xm) = |ϕ̇(xm)|(λm−1 − λm)n,

which completes the proof.
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7. Conclusion

The modeling presented in this article allows us to consider contacts
between elastic bodies of dimension m moving in Rn, for any m ≤ n. Even
if, for shells, there is no equivalence between the minimization problem and
the Euler-Lagrange equations, our modeling could be applied in such cases.
We have already performed numerical simulations, in the case n = 2. The
method will be presented in a forthcoming article. For higher dimension
(n = 3 and dim(M) = 2 or 3), similar numerical methods could be applied.
However, it leads to high-dimensional problems of dimension 4. To solve
them, one will have to use some adaptive methods, which could be di�cult
to carry out. We are currently working on another modeling, for which
the equivalence between the minimization problem and the Euler-Lagrange
equation could be proved, even for shells. To this end, one must add another
condition to the set of admissible deformations to forbid deformations with
degenerate intersections.
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