
ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES
UMR CNRS 7641

91128 PALAISEAU CEDEX (FRANCE). Tél: 01 69 33 41 50. Fax: 01 69 33 30 11
http://www.cmap.polytechnique.fr/

Approximation of the anisotropic

mean curvature �ow

A. Chambolle, M. Novaga

R.I. 587 November, 2005



Approximation of the anisotropic

mean curvature �ow

A. Chambolle ∗ , M. Novaga †

Abstract

In this note, we provide simple proofs of consistency for two well-known
algorithms for mean curvature motion, Almgren-Taylor-Wang's [1] variational
approach, and Merriman-Bence-Osher's algorithm [3]. Our techniques, based
on the same notion of strict sub- and super�ows, also work in the (smooth)
anisotropic case.

1 Introduction

The Mean curvature �ow refers to the motion of a hypersurface Γ(t) ⊂ RN whose

normal velocity, at each point, is equal to (minus) its mean curvature. We will

consider only compact hypersurfaces Γ(t), that are the boundary of some evolving

set E(t) (bounded or unbounded). In this case, the motion is also known as the

�area-diminishing� �ow, and is in some sense the gradient �ow of the perimeter of

E(t). It is well-known that this motion can be characterized in terms of the distance

function to Γ = ∂E [19, 2]. More precisely, if we de�ne d(x, t) as

d(x, t) := dist(x,E(t))− dist(x,RN \ E(t))

(the signed distance function to ∂E(t)), then the exterior normal to E is given

by ∇d whereas the curvature is ∆d. On the other hand, the normal velocity of a

point of the boundary is given, at each time, by −∂d/∂t, so that the evolution is

characterized by
∂d

∂t
(x, t) = ∆d(x, t) (1)

at any x ∈ ∂E(t) (i.e., (x, t) such that d(x, t) = 0).

The Mean curvature �ow enjoys a comparison principle: if E, F are two (smooth)

evolutions such that E(t) ⊆ F (t) at some time t, then E(s) ⊆ F (s) at any sub-

sequent time s > t as long as the �ows are de�ned. This key property allows to

de�ne a generalized �ow for nonsmooth surfaces, by comparison with smooth �ows:

∗CMAP, CNRS UMR 7641, Ecole Polytechnique, 91128, Palaiseau Cedex, France,

e-mail: antonin.chambolle@polytechnique.fr
†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy,

e-mail: novaga@dm.unipi.it

1



basically, a generalized �ow will be a �ow such that any smooth �ow starting inside

remains inside while any smooth �ow starting outside remains outside. The formal

theory that provides such a generalization is known as the barrier theory and is

initially due to De Giorgi [17, 9, 6]. The theory of viscosity solutions (which is also

based on the comparison principle) de�nes the generalized �ow as the zero sub-

or superlevel set of a function u that solves an appropriate degenerate parabolic

equation, and yields the same generalized �ows as the barrier theory [7]. The gen-

eralized �ow starting from a set E is usually unique, except when the �fattening�

phenomenon occurs, which corresponds to the fattening of the level line {u = 0} of
the corresponding viscosity solution.

It is shown in [6] that a barrier solution can be characterized by comparison with

appropriate sub- and super�ow: in this case, a generalized �ow will be characterized

by the property that any smooth �ow starting inside and evolving (strictly) faster

than the Mean curvature �ow remains inside, while a smooth �ow starting outside

and evolving (strictly) slower than the Mean curvature �ow remains outside. The

de�nition of a strict super�ow of (1) is the following: E(t) will be a strict super�ow

(on a small time interval [t0, t1]) i� its signed distance function satis�es

∂d

∂t
(x, t) > ∆d(x, t) (2)

in a neighborhood of {d = 0}. A strict sub�ow is de�ned with the reverse inequality.

We show in this note that such a de�nition (which will be slightly adapted to

cover non-isotropic cases) makes very easy the proof of convergence for two well-

known approximation schemes for the Mean curvature �ow, namely, the Almgren-

Taylor-Wang [1] approach and the Merriman-Bence-Osher [3] approach. In both

schemes, a time step h > 0 is �xed and a discrete-in-time evolution is de�ned, by

providing a simple evolution operator E 7→ ThE that approximates the evolution of

a initial set E over a time interval of duration h. Given E0, the discrete evolution

Eh(t) is simply T
[t/h]
h (E0) where [·] denotes the integer part. One then wants to

know whether Eh(t) → E(t) as h → 0, where E(t) is the generalized evolution

starting from E0. The key to prove this convergence are the two properties of

monotonicity and consistency. The operator Th will be monotone if given any E, F

with E ⊆ F , one has ThE ⊆ ThF . The notion of consistency we will use is based on

our notion of strict super- and sub�ow: Th will be consistent if, given any super�ow

E on [t0, t1] and given h > 0 small enough, one has E(t + h) ⊆ ThE(t) for any

t ∈ [t0, t1 − h], while given any sub�ow, the same holds with the reverse inclusion.

It follows from the theory of barriers that if Th is monotone and consistent in the

above-de�ned sense, then ∂Eh(t) converges to ∂E(t) as h → 0 (in the Hausdor�

sense), at any time, as long as the generalized �ow ∂E(t) is uniquely de�ned (i.e.,

no fattening occurs).

In our cases, the set ThE(t) will be de�ned as a level set of some function u

(depending on h and E(t)), satisfying some elliptic or parabolic equation, and it
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will be quite easy to build from a function d satisfying (2) a sub- or supersolution v

of the same equation that will be compared to u, yielding a comparison of the level

sets.

This note is organized as follows: in Section 2 we introduce the anisotropic

curvature �ow and we give a rigorous de�nition of the corresponding super and

sub�ows. Then, in Section 3 we introduce the Merriman-Bence-Osher's scheme

and we prove its consistency. In Section 4 we do the same for the Almgren-Taylor-

Wang's algorithm. We observe that in this case, a result of consistency with smooth

�ows is already found in [1]. However, its proof is by far more complicated than

ours.

2 Anisotropic curvature �ow

We follow the de�nitions and notation in [8, 10]. Let us consider (φ, φ◦) a pair of

mutually polar, convex, one-homogeneous functions in RN (i.e., φ◦(ξ) = supφ(η)≤1 ξ·
η, φ(η) = supφ◦(ξ)≤1 ξ · η, see [25]). These are assumed to be locally �nite, and,

to simplify, even. The pair (φ, φ◦) is referred as the anisotropy (the isotropic case

corresponds to φ = φ◦ = | · |). The local �niteness implies that there is a constant

c > 1 such that

c−1|η| ≤ φ(η) ≤ c|η| and c−1|ξ| ≤ φ◦(ξ) ≤ c|ξ|

for any η and ξ in RN . We refer to [8, 10] for the main properties of φ and φ◦.

Being convex and 1-homogeneous, φ◦ (and φ) is also subadditive, so that the

function (x, y) 7→ φ(x − y) de�nes a distance, the �φ-distance�. For E ⊂ RN and

x ∈ RN , we denote by distφ(x,E) := infy∈E φ(x− y) the φ-distance of x to the set

E, and by

dφ
E(x) := distφ(x,E) − distφ(x,RN \ E)

the signed φ-distance to ∂E, negative in the interior of E and positive outside its

closure. One easily checks that

|dφ
E(x)− dφ

E(y)| ≤ φ(x− y) ≤ c|x− y|

for any x, y ∈ RN , so that (by Rademacher's theorem) dφ
E is di�erentiable a.e. in

RN . The former inequality shows moreover that ∇dφ
E(x) ·h ≤ φ(h) for any h ∈ RN ,

if x is a point of di�erentiability: hence φ◦(∇dφ
E(x)) ≤ 1. In this note we will

always assume that φ and φ◦ are at least in C2(RN \ {0}). In this case, one shows

quite easily that dφ
E is di�erentiable at each point x which has a unique φ-projection

y ∈ ∂E (solving miny∈∂E φ(x− y)). Then, ∇dφ
E(x) is given by ∇φ((x− y)/dφ

E(x)),

so that φ◦(∇dφ
E(x)) = 1. See [8, 10] for details.

The Cahn-Ho�man vector �eld nφ is a vector �eld on ∂E given by nφ(x) =

∇φ◦(νE(x)) = ∇φ◦(∇dφ
E(x)) a.e. on ∂E. Here, νE is the (Euclidean) exterior
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normal to ∂E. If E is smooth enough, then ∇dφ
E does not vanish near ∂E so that

one can de�ne nφ(x) = ∇φ◦(∇dφ
E(x)) in a neighborhood of ∂E.

Then, we de�ne the φ-curvature of ∂E by κφ = divnφ. The φ-curvature �ow is

an evolution E(t) such that at each time, the velocity of ∂E(t) is given by

V = −κφ nφ , (3)

where nφ is the Cahn-Ho�man vector �eld and κφ is the φ-curvature. It is shown

that, in some sense, it is the fastest way to diminish the anisotropic perimeter∫
∂E

φ◦(νE) dHN−1. If φ, φ◦ are merely Lipschitz (when, for instance, the Wul�

shape {φ ≤ 1} is a convex polytope), then nφ can be nonunique and the anisotropy

is called crystalline [28, 8]. We refer to [15] for a proof of convergence of Merriman-

Bence-Osher's scheme in the crystalline case.

The anisotropic variant of (1) is the following characterization of the anisotropic

mean curvature �ow: letting d(x, t) = dφ
E(t)(x), the smooth set E(t) evolves by

anisotropic curvature if

∂d

∂t
(x, t) = div∇φ◦(∇d(x, t)) , (4)

for any (x, t) with d(x, t) = 0. One therefore introduces the following de�nition of

(strict) super- and sub�ows, which is simpli�ed from [16]:

De�nition 2.1. Let E(t) ⊂ RN , t ∈ [t0, t1]. We say that E(t) is a super�ow of (4),

if there exists a bounded open set A ⊂ RN , with
⋃

t0≤t≤t1
∂E(t)×{t} ⊂ A× [t0, t1],

and δ > 0, such that d(x, t) = dE(t)(x) ∈ C1([t0, t1];C2(A)), and

∂d

∂t
(x, t) ≥ div∇φ◦(∇d)(x, t) + δ , (5)

for any x ∈ A and t ∈ [t0, t1]. We say that E(t) is a sub�ow whenever δ < 0 and

the reverse inequality holds in (5).

Considering now a time discrete evolution scheme E 7→ ThE (ThE needs not be

de�ned for all sets E, in our applications, it will be su�cient to de�ne it for closed

sets with compact boundary), parametrized by the time step h > 0, we introduce

the following de�nition of consistency:

De�nition 2.2. The scheme Th is consistent if and only if for any super�ow E(t),

t0 ≤ t ≤ t1, in the sense of De�nition 2.1, there exists h0 such that if h ≤ h0, then

ThE(t) ⊇ E(t + h) for any t ∈ [t0, t1 − h], while for any sub�ow, the same holds

with the reverse inclusion.

This de�nition means that given a super�ow, it will also go faster than the

discretized evolutions, as soon as h is small enough. The following results follows

from the theory of barriers (and the properties of the curvature �ow), see [6, 7, 9, 16].

Proposition 2.3. Assume Th is a consistent scheme, in the sense of De�nition 2.2

above, which is also monotone: for any E,F ⊂ RN , E ⊆ F ⇒ ThE ⊆ ThF . Let
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E0 ⊂ RN be a closed set with compact boundary such that the generalized anisotropic

curvature �ow E(t) starting from E0 is uniquely de�ned (no fattening). For any

t ≥ 0 let Eh(t) := T [t/h]E0. Then, for any t as long as E(t) is not empty, ∂Eh(t) →
∂E(t) in the Hausdor� sense.

In the next sections, we prove consistency (and monotonicity), �rst for the

(anisotropic) Merriman-Bence-Osher scheme, then for the Almgren-Taylor-Wang

scheme, yielding, by Proposition 2.3, convergence to the generalized solution, when

unique.

3 The Merriman-Bence-Osher algorithm

More than ten years ago, Merriman, Bence and Osher [3] proposed the following

algorithm for the computation of the motion by mean curvature of a surface. Given

a closed set E ⊂ RN , they let ThE = {u(·, h) ≥ 1/2}, where u solves the heat

equation with initial data u(·, 0) = χE , the characteristic function of E. They

then conjectured that Eh(t) := T
[t/h]
h E would converge to E(t), where E(t) is the

(generalized) evolution by mean curvature starting from E.

The proof of convergence of this scheme was established by Evans [18], Barles

and Georgelin [4]. Other proofs were given by H. Ishii [20] and Cao [12], where the

heat equation was replaced by the convolution of χE with a more general symmetric

kernel. Extensions and variants are found in [21, 27, 26, 29, 23].

As easily shown by formal asymptotic expansion, the natural anisotropic gener-

alization of the Merriman-Bence-Osher algorithm is as follows. Given E a closed set

with compact boundary in RN , we let Th(E) = {x : u(x, h) ≥ 1/2} where u(x, t)

is the solution of
∂u

∂t
(x, t) ∈ div

(
φ◦(∇u)∂φ◦(∇u)

)
(x, t) t > 0, x ∈ RN ,

u(·, 0) = χE (t = 0) .
(6)

The funtion u(x, t) is well de�ned and unique by classical results on contraction

semigroups [11]: if E is compact, it corresponds to the �ow in L2(RN ) of the

subdi�erential of the functional u 7→
∫

RN φ◦(∇u)2/2 dx if u ∈ H1(RN ), and +∞
otherwise. On the other hand, if RN \E is compact, one de�nes u by simply letting

u = 1 + v where v solves the same equation with initial data χE − 1.

We �rst observe that the monotonicity of this scheme is obvious. Indeed, it

follows from the comparision principle for equation (6)). We will show:

Proposition 3.1. Th, de�ned as above, is consistent in the sense of De�nition 2.2.

Proof. Let E be a super�ow on [t0, t1], in the sense of De�nition 2.1, and let A be

the associated neighborhood of ∂E(t), t ∈ [t0, t1].
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Let γ : R × [0,+∞) → [0, 1] be the solution of the 1D heat equation (∂γ/∂τ =

∂2γ/∂ξ2), with initial data the Heavyside function χ[0,+∞):

γ(ξ, τ) =
1

2
√
πτ

∫ ξ

−∞
e−

s2
4τ ds .

One sees that it is self-similar: indeed, the change of variables s′ = s/
√
τ yields

γ(ξ, τ) =
1

2
√
π

∫ ξ√
τ

−∞
e−

s′2
4 ds′ = γ

(
ξ√
τ
, 1

)
=: γ1

(
ξ√
τ

)
.

Fix t < t0. The simplest idea would be to introduce the function v(x, τ) :=

γ(−d(x, t + τ), τ), de�ned in A for small τ . It satis�es {v(·, τ) ≥ 1/2} = E(t + τ)

and one has (using (5))

∂v

∂τ
= −∂γ

∂ξ

∂d

∂t
− ∂γ

∂τ
≤ −∂γ

∂ξ
(div∇φ◦(∇d) + δ) − ∂γ

∂τ
.

Also: ∇v = −(∂γ/∂ξ)∇d, so that φ◦(∇v) = (∂γ/∂ξ) and ∇φ◦(∇v) = −∇φ◦(∇d),
hence

divφ◦(∇v)∇φ◦(∇v) = −div ∂γ
∂ξ
∇φ◦(∇d) = −∂γ

∂ξ
div∇φ◦(∇d)− ∂2γ

∂ξ2
.

Here, we have used the fact that φ◦ is even and one-homogeneous, ∇φ◦ is odd

and zero-homogeneous, φ◦(∇d) = 1, and ∇d · ∇φ◦(∇d) = φ◦(∇d) = 1 (by Euler's

identity). Using ∂γ/∂τ = ∂2γ/∂ξ2, we �nd:

∂v

∂τ
≤ divφ◦(∇v)∇φ◦(∇v)− δ

∂γ

∂ξ
.

Hence, v is a good candidate to be a subsolution of (6), with initial data v(x, 0) =

χE(t)(x). If this were the case, we would get that v ≤ u (where u solves (6) with

initial data χE(t)), so that {v(·, h) ≥ 1/2} ⊆ {u(·, h) ≥ 1/2}, in other words,

E(t+ h) ⊆ ThE(t), which is our consistency. However, we cannot show that this v

is less than u at the boundary of A (for instance), for t ≤ t+ τ ≤ t+h. This is why

we de�ne v in a slightly more complicated way: we let v(x, τ) := γ(−d(x, t + τ) +

δτ, τ) − ηh, where η < δ/
√

2π is �xed. Since now ∂v/∂τ di�ers from the previous

time derivative by δ∂γ/∂ξ, one still has

∂v

∂τ
≤ divφ◦(∇v)∇φ◦(∇v) . (7)

at any (x, τ) ∈ A × [0, h], hence v is a subsolution of (6). At τ = 0, v(x, 0) =

χE(t)(x)− ηh < χE(t)(x).

Let u solve (6) with initial data χE(t). First of all, we observe that since d ∈
C1([t0, t1];C2(A)), ∂E(t) is a C2 compact hypersurface, continuous in time. Hence

there exists ρ > 0, independent of t, such that each point x ∈ ∂E(t), E(t) satis�es

an interior and exterior Wul� shape condition of radius ρ: there exist z ∈ E(t)

and z′ 6∈ E(t) with {φ(· − z) ≤ ρ} ⊂ E(t) and {φ(· − z′) < ρ} ∩ E(t) = ∅, while
φ(x − z) = φ(x − z′) = ρ. One may always assume that {|d(·, s)| ≤ ρ} ⊂ A for all
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s ∈ [t0, t1]. Let B = {|d(·, t)| < ρ}. If h is small enough (independently of t), one

also may assume that |d(x, t + τ) − d(x, t)| ≤ ρ/2 in B for any τ ∈ [0, h], so that

distφ(∂E(t + τ), ∂B) ≥ ρ/2. We assume h ≤ ρ/(4δ). Let x ∈ ∂B with d(x, t) = ρ:

then d(x, t+τ) ≥ ρ/2 for any τ ∈ [0, h], so that −d(x, t+τ)+δτ ≤ δh−ρ/2 ≤ −ρ/4,
and v(x, τ) ≤ γ(−ρ/4, τ)− ηh for any τ ∈ [0, h]. Hence v(x, τ) ≤ γ1(−ρ/(4

√
τ))−

ηh ≤ γ1(−ρ/(4
√
h))− ηh which is negative if h is small enough. This shows that if

h is small enough, v(x, τ) < 0 ≤ u(x, τ) for any τ ≤ h and x ∈ ∂B ∩ {d(·, t) = ρ}.
If now x ∈ ∂B with d(x, t) = −ρ, we use the fact that u ≥ w, where w solves (6)

with initial data w0 = χ{φ(·−x)≤ρ}. One shows that w(y, τ) = U(φ(y − x)/ρ, τ/ρ2)

where U(|x|, τ) = Ũ(x, τ) and Ũ is the (radial) solution of the heat equation

∂Ũ/∂t = ∆Ũ with initial datum χB1 , the characteristic function of the unit ball.

It is well-known that

Ũ(y, τ) =
1

√
4πτ

N

∫
{|z|≤1}

exp
(
−|y − z|2

4τ

)
dz

so that

U(0, τ) = 1− 1
√

4π
N

∫
{|z|≥1/

√
τ}

exp
(
−z

2

4

)
dz .

Hence, u(x, τ) ≥ 1 − (1/
√

4π
N

)
∫
{|z|≥ρ/

√
τ} exp(−z2/4) dz ≥ 1 − c exp(−ρ/(4

√
h))

for some constant c > 0, and any τ ∈ [0, h]. Hence, for τ ∈ [0, h], v(x, τ)−u(x, τ) ≤
c exp(−ρ/(4

√
h)) − ηh: clearly, this is negative if h is small enough (depending

only on ρ). We have shown that v is below u on ∂B × [0, h], if h is small enough

(uniformly in t).

By standard results on parabolic equations, we �nd that v ≤ u onB×[0, h] and in

particular v(·, h) ≤ u(·, h) in B. Hence, {v(·, h) ≥ 1/2} ⊆ {u(·, h) ≥ 1/2}. Observe
that v(x, h) ≥ 1/2 i� −d(x, t + h) + δh ≥ (γ(·, h))−1(1/2 + ηh) =

√
2πηh + o(h),

that is, d(x, t+h) ≤ (
√

2πη−δ)h+o(h) =: σh. If h is small enough, σh > 0, so that

x ∈ E(t + h) ⇒ d(x, t + h) ≤ σh ⇔ v(x, h) ≥ 1/2: we deduce E(t + h) ⊆ ThE(t),

which was our claim. The proof of consistency with sub�ows is identical.

See [15] for a proof of consistency and convergence which works in more general

situations (namely, the crystalline case). See also K. Ishii [22]'s recent paper on an

optimal estimate on the rate of convergence of Merriman-Bence-Osher's algorithm,

in the isotropic case, where the proof of convergence is very close to ours.

4 The Almgren-Taylor-Wang algorithm

In Almgren, Taylor and Wang's paper [1], the transformation ThE is de�ned as a

solution of

min
F⊆RN

Pφ(F ) +
1
h

∫
F4E

|dφ
E |(x) dx , (8)

where now, F4E is the symmetric di�erence of the two sets F and E and Pφ(F )

is the anisotropic perimeter. This is rigorously de�ned by
∫

RN φ◦(DχF ), where the
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anisotropic total variation is given by∫
RN

φ◦(Dv) :=

sup
{∫

RN

v(x)divψ(x) dx : ψ ∈ C∞c (RN ; RN ), φ(ψ(x)) ≤ 1 ∀x ∈ RN

}
.

The same approach to curvature motion has also been proposed by Luckhaus and

Sturzenhecker [24], in the isotropic case.

It is shown in [14, 13, 5] that a monotone selection of ThE can be built in the

following way: one �xes a bounded open set Ω ⊃⊃ E, and one lets w be the (unique)

minimizer of ∫
Ω

φ◦(Dw) +
1
2h

(w(x)− dφ
E(x))2 dx , (9)

then, F = {w ≤ 0} is a solution of (8), as soon as the domain Ω is large enough.

Clearly, letting ThE be this solution de�nes a monotone operator, since E ⊂ E′ ⇒
dφ

E ≥ dφ
E′ so that w ≥ w′ (being w′ the solution of (9) with E replaced with E′), and

ThE ⊂ ThE
′. On the other hand, it is also shown in [14, 13, 5] that this choice gives

the largest solution, whereas {w < 0} would be the smallest (yielding uniqueness,

up to a negligible set, whenever |{w = 0}| = 0, which is "generically" true in some

sense). The proof of consistency we will next give would also work with this second

choice, yielding convergence of any selection of Almgren-Taylor-Wang's scheme to

the generalized solution, when unique. We now show:

Proposition 4.1. Th, de�ned as above, is consistent in the sense of De�nition 2.2.

Proof. Let E be a super�ow on [t0, t1], in the sense of De�nition 2.1, and let A be

the associated neighborhood of ∂E(t), t ∈ [t0, t1].

Observe that as in the previous section, there exists ρ > 0 such that {d(·, t) ≤
ρ} ⊂ A at any time t ∈ [t0, t1], and ∂E(t) satis�es both an interior and exterior

Wul� shape condition of radius ρ.

We �x t ∈ [t0, t1), and let B = {d(·, t) < ρ}. Consider ψ : R → R a smooth

increasing function with ψ(s) ≥ s and ψ(s) = s for |s| ≤ ε/2. We set, for x ∈ B,

v(x) := ψ(d(x, t+ h)). Then, from (5), it follows

v(x)− dE(t)(x)
h

≥ d(x, t+ h)− d(x, t)
h

=
1
h

∫ h

0

∂d

∂t
(x, t+ τ) dτ

≥ 1
h

∫ t+h

t

div∇φ◦(∇d)(x, t+ τ) dτ + δ .

Let now ω be a modulus of continuity for div∇φ◦(∇d) in {|d| ≤ ρ}: we �nd

v(x)− dE(t)(x)
h

≥ div∇φ◦(∇d)(x, t+ h) + δ − ω(h).

Observe that for any x ∈ B it holds ∇v(x) = ψ′(d(x, t + h))∇d(x, t + h), so

that (recall that ∇φ◦ 0-homogeneous), ∇φ◦(∇v(x)) = ∇φ◦(∇d(x, t + h)) hence
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div∇φ◦(∇d)(x, t + h) = div∇φ◦(∇v)(x). Therefore, if h is small enough so that

ω(h) ≤ δ, we get
v(x)− dE(t)(x)

h
≥ div∇φ◦(∇v)(x).

Let w solve (9), with E = E(t). We will show that we may choose ψ in order to

have v ≥ w on ∂B, so that v is a supersolution for the problem

min

{∫
B

φ◦(Du) +
1
2h

∫
B

(u(x)− dE(t)(x))2 dx : u = w on ∂B

}
(10)

(which is solved by w). We will deduce that v ≥ w in B, so that {w ≤ 0} ⊇ {v ≤
0} = {d(·, t+ h) ≤ 0}, that is, Th(E(t)) ⊇ E(t+ h).

First of all, d is uniformly continuous in time, so that if h is small enough, one

has d(x, t + h) ≥ 3ρ/4 if d(x, t) = ρ. If M > diamΩ, then one shows that M ≥ w

in Ω. We may choose a function ψ with ψ(3ρ/4) ≥M , so that v(x) ≥M ≥ w(x) if

d(x, t) = ρ.

On the other hand, since E(t) satis�es an interior Wul� shape condition of radius

ρ, one has dφ
E ≤ φ(· − x)− ρ at any point x ∈ ∂B with d(x, t) = −ρ. The analysis

in [13, 16] shows that the solution of (9) with dφ
E replaced with φ takes the value

2N
√
h/
√
N + 1 at the origin. We deduce that w(x) ≤ 2N

√
h/
√
N + 1−ρ: hence, if

h is small enough, we get w(x) ≤ −3ρ/4. We can choose ψ such that ψ(s) ≥ −3ρ/4

for any s, so that v(x) ≥ w(x) if d(x, t) = −ρ. We conclude that v ≥ w on ∂B.

Hence v is a supersolution for (10), which implies Tt,t+h(E(t)) ⊇ E(t+ h).

If E(t) is a sub�ow, we can reproduce the same proof to show that Tt,t+h(E(t)) ⊆
E(t+ h).

While a (much more di�cult) proof of consistency with smooth �ows is already

found in Almgren, Taylor and Wang's paper [1], our proof is more easily adapted

to other situations: in [16], we consider the case of a �ow driven by anisotropic

curvature with an additional time-dependent forcing term, possibly discontinuous.
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