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PRICING PARISIAN OPTIONS

C. LABART1 AND J. LELONG2

Abstract. In this work, we propose to price Parisian options using Laplace transforms. Not only, do we

compute the Laplace transforms of all the different Parisian options, but we also explain how to invert them

numerically. We discuss the accuracy of the numerical inversion and present the evolution of the Greeks through

a few graphs.

1. Introduction

With the development of stock exchanges around the world, more and more people have become interested in
derivatives and especially in options. Standard options provide its owner with the right to buy or sell a number
of stocks for a fixed amount of money at a given time, called the maturity time. There are more complex
options, known under the name of exotic or also path-dependent options. These options are valuable only if the
stock price has satisfied certain conditions before the maturity time, this is precisely this kind of options we are
going to study. More precisely, we will deal with options that give their owners the right to buy (call options)
or sell (put options) a number of stocks for a fixed amount of money (the strike) if the stock price has stayed
below (or above) a certain level (the barrier) for a certain time (the option window) before the maturity time.
This option is called a Parisian down-and-in option (or alternatively a Parisian up-and-in option). This is only
one example of all the different Parisian options. Basically, we will only consider European style options, which
means that one can only exercise his option at the maturity time. Parisian options are, to some extent, a kind
of barrier options. One could influence the value of a barrier option by buying a lot of stocks or on the contrary
by selling a lot of them. For instance, let us imagine that we own a lot of up-and-in barrier options which haven
not been knocked in yet. If the maturity time is close, then we could be tempted to buy a lot of stocks to have
the option knocked in. If we consider a Parisian up-and-in option, this is no longer possible since the asset price
has to remain above the level for a much longer period (several days). Therefore, Parisian options can be seen
as a guarantee against easy arbitrage.

As one will discover later on, there exist a lot of different Parisian options. There are two different ways of
measuring the time spent above or below the barrier. Either, one only counts the time spent in a row and starts
counting from 0 each time the stock price crosses the barrier, this type is referred to as the continuous Parisian
options, or one adds the time spent below or above the barrier without resuming the counting from 0 each time
the stock price crosses the barrier, these options are called cumulative Parisian options. In practice, these two
kinds of Parisian options raise different questions about the paths of Brownian motion. Therefore, we will only
stick to the continuous style options.

There already exist several studies on the Parisian Options. Basically, two techniques can be used to price
Parisian options either Laplace transforms or partial differential equations. The Laplace transform technique
was first introduced by Chesney et al. [3]. Schröder [9] and Hartley [6] have also tackled these options using
Laplace transforms. The PDE method was developed by Haber et al. [5] and Wilmott [10].
In this article, we present a way of computing the prices of Parisian Options. The real issue in pricing options is
to be able to hedge them. This can only be done if we are able to compute the prices at any time t smaller than
the maturity time. The computation of the prices at time 0 requires to study a little of the excursion theory
of Brownian motion. The most complex proofs will only be given in the Appendix. The pricing technique,
we expose here, is based on Laplace transforms. In this work, we compute the Laplace transforms of all the
different Parisian options and we also discuss in detail the accuracy of the numerical technique used to invert
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2 C. LABART AND J. LELONG

the Laplace transform. The numerical inversion is based on Abate et al. [1].

The article is divided as follows. First of all in Section 2 we give some definitions concerning Brownian Motions
and hitting time. We also explain how to write the price of such options in terms of hitting times. In Section
3, we explain how to compute the Laplace transform of the price of a Parisian Down Call at time 0. Section 4
is devoted to the computation of the Laplace transform of the prices of Parisian Up Calls still at time 0. Some
parity relationships are given in Section 5 to deduce the prices of Parisian Puts. At that stage we are able to
price any Parisian Options at time 0. In Section 6, we show how to compute the prices at some time t relying
on the prices at time 0.
Then, in Section 6 we will expose an algorithm to invert numerically a Laplace transform and we will also discuss
its accuracy and efficiency. This method is extremely accurate and fast compared with the PDE method.
To conclude this article we present a few graphs to try to better understand these options. We also give a few
hedging simulations.
We have implemented in C the technique presented here. All the prices were computed using this program.
The different graphs concerning the hedging of such options were generated using the C code we wrote.

A part of this work was done during an internship at TUDelft University in the Netherlands in 2003.

In tis article, we will use the following notations:

S the process representing the asset price,
K the strike,
T the maturity of the option,
L the barrier level for process S,
D the option window,
x the initial value of process S,
r the interest rate,
δ the dividend rate,
σ the volatility,
k 1/σ ln(K/x),
b 1/σ ln(L/x) (i.e. the barrier level for the Brownian motion),
λ the Laplace variable,

θ
√

2λ,

d
b− k√
D

,

m
1

σ

(
r − δ − σ2

2

)
.

2. Definitions

First, we will give a few definitions and notations used in the rest of the article. Then, we will present the
features of such options. We only focus on the down-and-in and down-and-out calls in this section since the
features of the other Parisian options can easily be deduceed from these two.

2.1. Some notations. Let us describe an excursion at (or away from) level L for an Itô process S. We define

gSL,t = sup{u ≤ t | Su = L}, dSL,t = inf{u ≥ t | Su = L}.
The trajectory of S between gSL, t and dSL, t is the excursion at level L, straddling time t.

Let S = {St, t ≥ 0} denote the price of the underlying asset. We suppose that under the risk neutral measure
Q, the dynamics of S is given by

dSt = St((r − δ)dt+ σdWt), S0 = x

where W = {Wt, t ≥ 0} is a Q Brownian motion and x > 0. It follows that

St = x exp

(
(r − δ − σ2

2
)t+ σWt

)
.

Let us introduce the following notations

m =
1

σ

(
r − δ − σ2

2

)
, b =

1

σ
ln

(
L

x

)
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Figure 1. Dynamic of an asset

where L is the excursion level. Under Q, the dynamics of the asset is given by St = x exp (σ(mt+Wt)). From
now on, we will consider that every option has a maturity time T . Relying on the Cameron-Martin-Girsanov
theorem, we can introduce a new probability P , which makes Z = {Zt = Wt +mt, 0 ≤ t ≤ T} a P-Brownian

motion and
dP
dQ |FT

= emZT −m2

2 T . Thus, S rewrites St = x eσZt .

2.2. The Parisian down-and-out call. A down-and-out Parisian option becomes worthless if S reaches L
and remains constantly below level L for a time interval longer than D before maturity time T , which is exactly
the same as saying that Brownian motion Z makes an excursion below b older than D.
Let us introduce

Tb = inf {t > 0 | Zt = b},
gbt = sup {u ≤ t | Zu = b},
T−
b = inf {t > 0 | (t− gbt ) 1{Zt<b} > D}.

One should notice that referring to the previous notations gbt = gSL,t .

The price of a down-and-out option at time 0 with payoff φ(ST ), in an arbitrage free model, is given by

e−rtTEQ
(
φ(ST )1{T−

b
>T}

)
= e−(r+ m2

2 )TEP
(
1{T−

b
>T}φ(xeσZT )emZT

)
. (1)

Let us denote by PDOC(x, T ;K,L; r, δ) the value of a Parisian down-and-out call. From (1), we have

PDOC(x, T ;K,L; r, δ) = e−(r+ 1
2m

2)TEP (1{T−
b
>T}(xe

σZT −K)+emZT ).

In many formulae involving a function Π of maturity T , as in (1), the discount factor
exp [−(r + 1

2m
2)T ] appears. In order to give more concise formulae, we introduce the following notation:

∗ Π(T ) = e(r+
1
2m

2)TΠ(T ). (2)

Hence, we will compute the Laplace transform of ∗Π rather than the one of Π. Any way the following obvious
relation between their Laplace transforms hold

Π̂(λ) = ∗̂Π(λ + (r +
1

2
m2)). (3)

Since the functions Π we will consider will stand for option prices, they are bounded. This remark will enable
us to state the accuracy of the numerical inversion in Section 7.
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Figure 2. Excursion of Brownian Motion

Using notation (2), we obtain

∗PDOC(x, T ;K,L; r, δ) = EP (1{T−
b
>T}(xe

σZT −K)+emZT ).

2.3. The Parisian down-and-in call. The owner of a down-and-in option receives the pay-off if S makes an
excursion below level L older than D before maturity time T , which is exactly the same as saying that Brownian
motion Z makes an excursion below b older than D. The price of a down-and-in option at time 0 with payoff
φ(ST ) is given by

e−rTEQ
(
φ(ST )1{T−

b
<T}

)
= e−(r+ m2

2 )TEP
(
1{T−

b
<T}φ(xeσZT )emZT

)
. (4)

Let us denote by PDIC(x, T ;K,L; r, δ) the value of a Parisian down-and-in call. From (4), we have

PDIC(x, T ;K,L; r, δ) = e−(r+ 1
2m

2)TEP(1{T−
b
<T}(xe

σZT −K)+emZT ). (5)

Using notation (2), we obtain

∗PDIC(x, T ;K,L; r, δ) = EP(1{T−
b
<T}(xe

σZT −K)+emZT ). (6)

The following scheme explains how to deduce the prices of the different kinds of Parisian options one from the
others.
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Figure 3. Organigram of how to deduce the prices one from the others
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3. The Parisian Down Calls

As shown in the previous scheme, all the different prices are deduced from their Laplace transforms. Now,
we will explain how to compute these Laplace transforms. In this section, we will only deal with down version
of the calls. We will follow exactly the previous scheme to deduce step by step all the needed Laplace transforms.

3.1. The valuation of a Parisian down-and-in call with b ≤ 0. We want to compute
∗PDIC(x, T ;K,L; r, δ). Let us denote by Ft = σ(Zs, s ≤ t) the natural filtration of Brownian motion Z =
{Zt; t ≥ 0}. One notices that T−

b is an Ft-stopping time. We have

∗ PDIC(x, T ;K,L; r, δ) = EP(1{T−
b
<T}(xe

σZT −K)+emZT ),

= EP(1{T−
b
<T}EP [(xeσZT −K)+emZT |FT−

b
])

and we can write

∗PDIC(x, T ;K,L; r, δ) = EP(1{T−
b
<T}EP [xe

σ(ZT −Z
T

−
b

+Z
T

−
b

) −K)+e
m(ZT−Z

T
−
b

+Z
T

−
b

)|FT−
b

]).

EP

[
(xe

σ(ZT −Z
T
−
b

+Z
T

−
b

) −K)+e
m(ZT −Z

T
−
b

+Z
T

−
b

)|FT−
b

]
=

EP

[
(xe

σ(ZT −Z
T

−
b

+z) −K)+e
m(ZT −Z

T
−
b

+z)|FT−
b

]

|z=Z
T

−
b

. (7)

Let Wt denote Zt+T−
b
−ZT−

b
. Relying on the strong Markov property, Wt is independent of FT−

b
and WT−T−

b
=

ZT −ZT−
b

. Let Yt denote (xeσ(WT−t+z) −K)+em(WT−t+z), Yt is independent of FT−
b

. Then, a well-known result

on conditional expectations, states that E(YT−
b
|FT−

b
) = E(Yt)|t=T−

b
. So, we obtain

EP

[
(xe

σ(ZT −Z
T
−
b

+Z
T

−
b

) −K)+e
m(ZT −Z

T
−
b

+Z
T

−
b

)|FT−
b

]
=

EP
[
(xeσ(WT−τ+z) −K)+em(WT−τ +z)

]
|z=Z

T
−
b

, τ=T−
b

. (8)

EP
[
(xeσ(WT−τ+z) −K)+em(WT−τ+z)

]
=

1√
2π(T − τ)

(∫ ∞

−∞
emu(xeσu −K)+ exp

(
− (u− z)2

2(T − τ)

)
du

)
.

So, we get

∗PDIC(x, T ;K,L; r, δ) = EP(1{T−
b
<T}PT−T−

b
(fx)(ZT−

b
)),

with

fx(z) = emz(eσz −K)+,

and

Pt(fx)(z) =
1√
2πt

∫ ∞

−∞
fx(u) exp

(
− (u− z)2

2t

)
du.

As recalled in Appendix D, the random variables ZT−
b

and T−
b are independent. By denoting the law of ZT−

b
by

ν(dz), we obtain

∗ PDIC(x, T ;K,L; r, δ) =

∫ ∞

−∞
EP(1{T−

b
<T}PT−T−

b
(fx)(z))ν(dz),

=

∫ ∞

−∞
fx(y)hb(T, y)dy, (9)

where

hb(t, y) =

∫ ∞

−∞
EP


1{T−

b
<t}

exp
(
− (z−y)2

2(t−T−
b

)

)

√
2π(t− T−

b )


 ν(dz). (10)
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Since we consider the case b < 0, we can use the following expression for the law of ZT−
b

,as it is proved in

Appendix D

P(ZT−
b

∈ dx) =
dx

D
(b− x) exp

(
− (x− b)2

2D

)
1{x≤b}. (11)

3.1.1. The Laplace transform of ∗PDIC(x, T ;K,L; r, δ). We can calculate ∗PDIC(x, T ;K,L; r, δ) by using a

Laplace transform. Let ̂∗PDIC(x, λ;K,L; r, δ) denote the Laplace transform of ∗PDIC(x, T ;K,L; r, δ) for any
λ with Re(λ) large enough such as all the integrals discussed below are convergent. This condition implies that

m+ σ −
√

2λ < 0. We have

̂∗PDIC(x, λ;K,L; r, δ) =

∫ ∞

0

e−λt
∫ ∞

−∞
fx(y)hb(t, y)dydt,

=

∫ ∞

−∞
fx(y)

∫ ∞

0

e−λthb(t, y)dtdy. (12)

The Laplace transform of hb(T, y). We would like to compute

ĥb(λ, y) =

∫ ∞

0

e−λthb(t, y)dt. (13)

We know that :

hb(t, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)
EP


1{T−

b
<t}

exp
(
− (z−y)2

2(t−T−
b

)

)

√
2π(t− T−

b )


 dz. (14)

We can write

hb(t, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)
γ(t, z − y)dz, (15)

where

γ(t, x) = EP


1{T−

b
<t}

exp
(
− x2

2(t−T−
b

)

)

√
2π(t− T−

b )


 , (16)

and we have

ĥb(λ, y) =

∫ b

−∞

b− z

D
exp

(
− (z − b)2

2D

)∫ ∞

0

e−λtγ(t, z − y)dt dz. (17)

So, we need to compute the Laplace transform of γ(t, x)

∫ ∞

0

e−λtγ(t, x)dt = EP



∫ ∞

T−
b

e−λt
exp

(
− x2

2(t−T−
b

)

)

√
2π(t− T−

b )
dt


 . (18)

The change of variables u = t− T−
b gives

∫ ∞

0

e−λtγ(t, x)dt = EP (e−λT
−
b )

∫ ∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du. (19)

Using results from Appendix A and B, we get
∫ ∞

0

e−λtγ(t, x)dt =
exp [−(|x| − b)θ]

θψ(θ
√
D)

.

Thanks to (17), we can rewrite

ĥb(λ, y) =
ebθ

Dθψ(θ
√
D)

∫ b

−∞
(b− z) exp

(
− (z − b)2

2D
− |z − y|θ

)
dz.

By changing variables x = b− z, we have

ĥb(λ, y) =
ebθ

Dθψ(θ
√
D)

∫ ∞

0

x exp

(
− x2

2D
− |b− x− y|θ

)
dx. (20)
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Let Kλ,D(b− y) denote

∫ +∞

0

x exp

(
− x2

2D
− |b− x− y|θ

)
dx.

valuation of Kλ,D(b− y). Relying on the definition of fx(y), we know that y is always bigger than
1

σ
ln

(
K

x

)
.

I Let us consider the case K ≥ L. In this case we have y − b ≥ 1
σ ln(KL ), then y − b ≥ 0. So we get

Kλ,D(b− y) =

∫ ∞

0

x exp

(
− x2

2D
+ (b− x− y)θ

)
dx

because x ≥ 0 and y − b ≥ 0.

Kλ,D(b− y) = e(b−y)θ
∫ ∞

0

x exp

(
− x2

2D
− xθ

)
dx,

= De(b−y)θψ(−θ
√
D).

From (20) we obtain

ĥb(λ, y) =
ψ(−θ

√
D)

ψ(θ
√
D)

exp[(2b− y)θ]

θ
. (21)

If we fill in (12) with the expression of ĥb(λ, y), we get

̂∗PDIC(x, λ;K,L; r, δ) =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

∫ ∞

1
σ

ln( K
x

)

e−yθemy(xeσy −K)dy. (22)

Let k denote
1

σ
ln

(
K

x

)
.

We come up with the following formula for ̂∗PDIC(x, λ;K,L; r, δ).

̂∗PDIC(x, λ;K,L; r, δ) =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
,

for K > L and x ≥ L.

I Let us consider the case K ≤ L. In this case we have k < b. We also have

̂∗PDIC(x, λ;K,L; r, δ) =
e2bθ

θDψ(θ
√
D)

∫ +∞

k

emy(xeσy −K)Kλ,D(b− y)dy

where

Kλ,D(b− y) =

∫ +∞

0

z exp

(
− z2

2D
− |b− z − y|θ

)
dz.

For y ∈ [b,+∞[ we have b− y ≤ 0. Kλ,D(b− y) has already been computed in this case. For y ∈ [k, b], we have
b− y ≥ 0. We have to compute Kλ,D in such a case. Let a denote b− y, a > 0.

Kλ,D(a) =

∫ ∞

0

z exp

(
− z2

2D
− | a− z | θ

)
dz,

=

∫ a

0

z exp

(
− z2

2D
− (a− z)θ

)
dz

︸ ︷︷ ︸
A

+

∫ +∞

a

z exp

(
− z2

2D
+ (a− z)θ

)
dz

︸ ︷︷ ︸
B

.

� The valuation of B

∫ +∞

a

ze

“

− z2

2D
+(a−z)θ

”

dz = eaθ
∫ +∞

a

ze

“

− z2

2D
−zθ

”

dz,

= eaθ
∫ +∞

a

D
( z
D

+ θ − θ
)
e

“

− z2

2D
−zθ

”

dz,

= eaθD

[
−e

“

− z2

2D
−zθ

”
]+∞

a

− eaθθD

∫ +∞

a

e

“

− z2

2D
−zθ

”

dz,

= eaθDe−
a2

2D
−aθ − eaθθD

∫ +∞

a

e
− 1

2

“

z√
D

+θ
√
D

”2
+λD

dz,

= De−
a2

2D − eaθθDeλD
∫ +∞

a

e
− 1

2

“

z√
D

+θ
√
D

”2

dz.
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By changing variables u =
z√
D

+ θ
√
D, we get

B = De−
a2

2D − eaθθDeλD
√
D

∫ +∞

a√
D

+θ
√
D

e−
1
2u

2

du,

= De−
a2

2D − eaθθDeλD
√

2πD(1 −N
(

a√
D

+ θ
√
D

)
.

We finally obtain :

B = D

[
e−

a2

2D − eaθθ
√

2πDeλD
(

1 −N
(

a√
D

+ θ
√
D

))]
. (23)

� The valuation of A
∫ a

0

z exp

(
− z2

2D
− (a− z)θ

)
dz = e−aθ

∫ a

0

ze−
z2

2D
+zθdz,

= e−aθ
∫ a

0

D(
z

D
+ θ − θ)e−

z2

2D
+zθdz,

= e−aθD
[
−e− z2

2D
+zθ
]a
0

+Dθe−aθ
∫ a

0

e−
z2

2D
+zθdz,

= −De− a2

2D +De−aθ +DθeλDe−aθ
∫ a

0

e
− 1

2 ( z√
D
−θ

√
D)2

dz,

= −De− a2

2D +De−aθ +DθeλDe−aθ
√
D

∫ a√
D
−θ

√
D

−θ
√
D

e−
u2

2 du.

By changing variables u =
z√
D

, we get

A = D

(
e−aθ − e−

a2

2D +
√

2πDθeλDe−aθ
(
N
(

a√
D

− θ
√
D

)
−N (−θ

√
D)

))
.

Finally, in the case a = b− y ≥ 0 we get

Kλ,D(a) = D

[
e−aθ + eλDθ

√
2πD

(
e−aθ

[
N
(

a√
D

− θ
√
D

)
−N (−θ

√
D)

]

−eaθ
[
1 −N

(
a√
D

+ θ
√
D

)])]
. (24)

So, we find

̂∗PDIC(x, λ;K,L; r, δ) =

e2bθ

θψ(θ
√
D)

[∫ b

k

emy(xeσy −K)

[
e−(b−y)θ + θ

√
2πDeλD

(
e−(b−y)θ

[
N
(
b− y√
D

− θ
√
D

)
−N (−θ

√
D)

]

−e(b−y)θ
[
1 −N (

b− y√
D

+ θ
√
D)

])]
dy +

∫ +∞

b

emy(xeσy −K)e(b−y)θψ(θ
√
D)dy

]
.

After doing long but not difficult computations we get, for K ≤ L ≤ x,

̂∗PDIC(x, λ;K,L) =
e(m+θ)b

ψ(θ
√
D)

(
2K

m2 − θ2

[
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN (−d−
√
Dm)

]

− 2L

(m+ σ)2 − θ2

[
ψ(−

√
D(m+ σ)) +

√
2πDe

D

2 (m+σ)2(m+ σ)N
(
−d−

√
D(m+ σ)

)])

+
Ke(m+θ)k

θψ(θ
√
D)

(
1

m+ θ
− 1

m+ σ + θ

) [
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)
]

+
eλD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m+ σ − θ
− 1

m− θ

)
, (25)

where d = b−k√
D

.
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3.2. The valuation of a Parisian down-and-out call with b ≤ 0. To find the valuation of a Parisian
down-and-out call we can use the relation between
∗PDIC(x, T ;K,L; r, δ), ∗PDOC(x, T ;K,L; r, δ) and the Black-Scholes price of an European call

∗PDOC(x, T ;K,L; r, δ) = ∗BSC(x, T ;K; r, δ)− ∗PDIC(x, T ;K,L; r, δ),

where
∗BSC(x, T ;K; r, δ) = EP(emZT (xeσZT −K)+).

Therefore, we obtain

̂∗PDOC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ;K; r, δ) − ̂∗PDIC(x, λ;K,L; r, δ).

Now, we need to find the valuation of ∗̂BSC(x, λ;K,L; r, δ)

∗BSC(x, T ;K; r, δ) = EP (emZT (xeσZT −K)+),

=

∫ +∞

−∞
emz(xeσz −K)+

1√
2πT

e−
z2

2T dz.

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

−∞
emz(xeσz −K)+

∫ +∞

0

e−λt√
2πt

e−
z2

2t dt dz.

Thanks to Appendix B we have ∫ +∞

0

e−λt√
2πt

e−
z2

2t dt =
e−|z|θ

θ
.

Then, we can write

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

−∞
emz(xeσz −K)+

e−|z|
√

2λ

θ
dz,

=

∫ +∞

1
σ

ln( K
x

)

emz(xeσz −K)
e−|z|θ

θ
dz.

3.2.1. case K ≥ x. In this case, we can easily compute ∗̂BSC(x, λ;K). Using the previous notations we have

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

k

emz(xeσz −K)
e−|z|θ

θ
dz

and in this case
1

σ
ln

(
K

x

)
≥ 0, so we get

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

k

emz(xeσz −K)
e−zθ

θ
dz,

=
1

θ

∫ +∞

k

e(m+σ−θ)zdz − K

θ

∫ +∞

k

xe(m−θ)zdz,

= −K
θ

e(m−θ)k

m+ σ − θ
+
K

θ

e(m−θ)k

m− θ
. (26)

Then, we get the formula for the Laplace transform of the Black-Scholes call in the case K ≥ x:

∗̂BSC(x, λ;K; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K ≥ x.

To obtain ̂∗PDOC(x, λ;K,L; r, δ) we only need to subtract ̂∗PDIC(x, λ;K,L; r, δ).

̂∗PDOC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
− ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
,

=

(
1

m− θ
− 1

m+ σ − θ

)
K

θ
e(m−θ)k

[
1 − e2bθψ(−θ

√
D)

ψ(θ
√
D)

]
. (27)

Furthermore,

ψ(−θ
√
D) = ψ(θ

√
D) − θ

√
2πDeλD . (28)

So, the following formula holds



PRICING PARISIAN OPTIONS 11

̂∗PDOC(x, λ;K,L; r, δ) =

[
1 − e2bθ +

θe2bθ
√

2πDeλD

ψ(θ
√
D)

]
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
for K ≥ x ≥ L. (29)

3.2.2. case K ≤ x. In this case the integral has to be split.

∗̂BSC(x, λ;K; r, δ) =

∫ +∞

1
σ

ln( K
x

)

emz(xeσz −K)
e−|z|θ

θ
dz,

=

∫ 0

k

emz(xeσz −K)
ezθ

θ
dz +

∫ +∞

0

emz(xeσz −K)
e−zθ

θ
dz,

=
1

θ

(∫ 0

k

xe(m+σ+θ)z −Ke(m+θ)zdz +

∫ +∞

0

xe(m+σ−θ)z −Ke(m−θ)zdz

)
,

=
1

θ

(
x

m+ σ + θ
− K

m+ θ
− Ke(m+θ)k

m+ σ + θ
+
Ke(m+θ)k

m+ θ
− x

m+ σ − θ
+

K

m+ θ

)
,

=
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ

(
1

m+ θ
− 1

m+ σ + θ

)
. (30)

So, we get

∗̂BSC(x, λ;K; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ(
1

m+ θ
− 1

m+ σ + θ

)
, for K ≤ x. (31)

Finally, we come up with the following formula for the valuation of a Parisian down-and-out call with b ≤ 0
I Case K ≥ L.

̂∗PDOC(x, λ;K,L; r, δ)

=
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
Ke(m+θ)k

θ

(
1

m+ θ
− 1

m+ σ + θ

)

−ψ(−θ
√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
, for x ≥ K ≥ L. (32)

I Case K ≤ L.

̂∗PDOC(x, λ;K,L) =

2K

m2 − θ2

[
1 − e(m+θ)b

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN (−d−
√
Dm)

)]

− 2

(m+ σ2) − θ2

[
x− Le(m+θ)b

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ)) +

√
2πDe

D(m+σ)2

2

(m+ σ)N (−d−
√
D(m+ σ))

)]

+
Ke(m+θ)k

θ
(

1

m+ θ
− 1

m+ θ + σ
)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN (d− θ

√
D)
)]

−e
λD

√
2πD

ψ(θ
√
D)

Ke2bθe(m−θ)kN (−d− θ
√
D)

(
1

m− θ + σ
− 1

m− θ

)
,

for K ≤ L ≤ x.

3.3. The valuation of a Parisian down-and-out call with b > 0.
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3.3.1. reduction to the case b = 0. If b is positive and T−
b ≥ T ≥ D, then Tb ≤ D.

Therefore, the discounted value of a down-and-out call in the case L > x is

∗PDOC(x, T ;K,L; r, δ) = EP(1{T−
b
≥T}1{Tb≤D}[xe

σZT −K]+emZT ). (33)

We can also write :

∗PDOC(x, T ;K,L; r, δ) = EP
(

EP [1{T−
b
≥T}1{Tb≤D}[xe

σ(ZT −ZTb
+b) −K]+em(ZT−ZTb

+b) | FTb
]
)
.

We have FTb
= {A ∈ A, ∀t ≥ 0, A

⋂{Tb ≤ t} ∈ Ft}, then {Tb ≤ D} ∈ FTb
, because

{Tb ≤ D}
⋂

{Tb ≤ t} = {Tb ≤ D ∧ t}

and

{Tb ≤ D ∧ t} ∈ Ft∧D ⊂ Ft.
Therefore 1{Tb≤D} is FTb

-measurable.
So we get

∗PDOC(x, T ;K,L; r, δ) = EP
(
1{Tb≤D}EP [1{T−

b
−Tb≥T−Tb}[xe

σZT −ZTb
+b −K]+em(ZT −ZTb

+b) | FTb
]
)
.

Relying on the strong Markov property we can write that T−
b − Tb

law
= T−

0 .
Hence

∗PDOC(x, T ;K,L; r, δ) = EP
(
1{Tb≤D}EP [1{T−

0 ≥T−Tb}[xe
σ(ZT −ZTb

+b) −K]+em(ZT −ZTb
+b) | FTb

]
)
.

Let Wt denote ZTb+t − ZTb
, relying on the strong Markov property Wt is independent of FTb

.
Let Yt denote 1{T−

0 ≥T−t}[xe
σ(WT−t+b) −K]+em(WT−t+b).

• Yt is independent of FTb
,

• Tb is FTb
-measurable so we can write E[YTb

|FTb
] = E[Yt]|t=Tb

.

Hence we have

∗PDOC(x, T ;K,L; r, δ) = E[1{Tb≤D}E[Yt]|t=Tb
],

=

∫ ∞

−∞
1{u≤D}EP [Yu]µb(du)

where µb(du) is the law of Tb recalled in Appendix A. We get

∗PDOC(x, T ;K,L; r, δ) =

∫ D

0

EP
(
1{T−

0 ≥T−u}[xe
σ(WT−u+b) −K]+em(WT−u+b)

)
µb(du).

So, we have

∗PDOC(x, T ;K,L; r, δ) = emb
∫ D

0

EP
(
1{T−

0 ≥T−u}[xe
σbeσWT−u −K]+emWT−u

)
µb(du).

As b = 1
σ ln

(
L
x

)
, we get

∗PDOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

EP
(
1{T−

0 ≥T−u}[e
σWT−u −K/L]+emWT−u

)
µb(du).

The price of a Parisian down-and-out call in the case b > 0 is given by

∗PDOC(x,T ;K,L; r, δ) = Lemb
∫ D

0

∗PDOC0(T − u;K/L; r, δ)µb(du) (34)

where

∗PDOC0(T ;K; r, δ) = EP
(
1{T−

0 ≥T}[e
σZT −K]+emZT

)
.
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3.3.2. The Laplace transform of ∗PDOC(x, T ;K,L; r, δ). If we consider the Laplace transform of ∗PDOC(x, T ;K,L; r, δ)
with respect to T , we get

̂∗PDOC(x, λ;K,L; r, δ) =

∫ +∞

0

e−λt Lemb
∫ D

0

∗PDOC0(t− u;K/L; r, δ)µb(du)1{t−u>0}dt,

= Lemb
∫ D

0

µb(du)

∫ +∞

u

e−λt ∗ PDOC0(t− u;K/L; r, δ) dt,

we change variables (v, u) = (t− u, u)

= Lemb
∫ D

0

µb(du)e
−λu

∫ +∞

0

e−λv ∗ PDOC0(v;K/L; r, δ) dv,

= Lemb
∫ D

0

µb(du)e
−λu ̂∗PDOC

0
(λ;K/L; r, δ).

If we compute

∫ D

0

µb(du)e
−λu, we find e−θbN

(
θ
√
D − b√

D

)
+ eθbN

(
−
√
Dθ − b√

D

)
as proved in Appendix A,

where N denotes the standard normal cumulative distribution. Finally, we come up with the following formula

̂∗PDOC(x, λ;K,L; r, δ) = L

[
e(m−θ)bN

(√
Dθ − b√

D

)
+

e(m+θ)bN
(

−
√
Dθ − b√

D

)]
̂∗PDOC0

(λ;K/L; r, δ), for L ≥ x. (35)

I Case K ≥ L. ̂∗PDOC
0
(λ;K/L) has already been computed in (29), and we had found

̂∗PDOC
0
(λ;K/L; r, δ) =

√
2πDeλD

ψ(θ
√
D)

K

L
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)
, for K > L.

Then, we now have an explicit formula for the Laplace transform of ∗PDOC(x, T ;K,L; r, δ) when K > L.

̂∗PDOC(x, λ;K,L; r, δ) =

[
e(m−θ)bN

(
θ
√
D − b√

D

)
+ e(m+θ)bN

(
−θ

√
D − b√

D

)]

√
2πDeλD

ψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
, for K ≥ L ≥ x. (36)

I Case K ≤ L. In this case, we have

̂∗PDOC
0
(λ;K/L) =

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm2

2 mN
(

ln(KL )

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln( K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ
σ

ln( K
L

)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D
))]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ
σ

ln( K
L

)N
(

ln(KL )

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)
.
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Hence,

̂∗PDOC(x, λ;K,L; r, δ) = L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln( K

L
)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN (

ln( L

K
)

σ
√
D

− θ
√
D)
)]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N (

ln(K
L

)

σ
√
D

− θ
√
D)

(
1

m− θ + σ
− 1

m− θ

)}
,

for K ≤ L and x ≤ L.

3.4. The valuation of a Parisian down-and-in call with b > 0. So far, we have managed to find explicit
formulae for the Laplace transforms of the down-and-out call prices with b > 0. Now, we will use the relationships
existing between down-and-out options and down-and-in options to compute the price of a down-and-in call in
the case b > 0. In fact, the following formula holds

̂∗PDIC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ,K, r, δ) − ̂∗PDOC(x, λ;K,L; r, δ)

where ̂∗PDOC(x, λ;K,L; r, δ) has already been computed above in the Section 3.3.2 for b > 0 and ∗̂BSC(x, λ,K, r, δ)
has been calculated in (31) and (27). We simply recall the formula

∗̂BSC(x, λ,K, r, δ) =





K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)
if K ≥ x,

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
if K ≤ x.

If we put all the terms together we find the following formula
I Case K ≥ L.

̂∗PDIC(x, λ;K,L; r, δ) =

K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)

−
(
e(m−θ)bN

(
θ
√
D − b√

D

)
+ e(m+θ)bN

(
−θ

√
D − b√

D

))

√
2πDeλD

ψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
, for K ≥ L ≥ x.
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I Case K ≤ L.

̂∗PDIC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m− θ + σ

)

−L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ)) +

√
2πDe

D(m+σ)2

2 (m+ σ)N
(

ln(K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D

))]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N

(
ln(K

L
)

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)}
, for x ≤ K ≤ L.

̂∗PDIC(x, λ;K,L; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

−L
(
e(m−θ)bN

(√
Dθ − b√

D

)
+ e(m+θ)bN

(
−

√
Dθ − b√

D

))
{

2K

L(m2 − θ2)

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
Dm) +

√
2πDe

Dm
2

2 mN
(

ln(K
L

)

σ
√
D

−
√
Dm

))]

− 2

(m+ σ2) − θ2

[
1 − 1

ψ(θ
√
D)

(
ψ(−

√
D(m+ σ))

+
√

2πDe
D(m+σ)2

2 (m+ σ)N
(

ln(K
L

)

σ
√
D

−
√
D(m+ σ)

))]

+
Ke

m+θ

σ
ln( K

L
)

Lθ

(
1

m+ θ
− 1

m+ θ + σ

)

[
1 − 1

ψ(θ
√
D)

(
ψ(−θ

√
D) + θeλD

√
2πDN

(
ln( L

K
)

σ
√
D

− θ
√
D

))]

−e
λD

√
2πD

ψ(θ
√
D)

K

L
e

m−θ

σ
ln( K

L
)N

(
ln(K

L
)

σ
√
D

− θ
√
D

)(
1

m− θ + σ
− 1

m− θ

)}
, for K ≤ x ≤ L.

4. The Parisian Up Calls

This section will go exactly through the same points as the previous one but considering the Up calls instead
of the Down ones this time. Once again the organisation of this section is based on the presentation scheme.

4.1. The valuation of a Parisian Up-and-in call with b ≥ 0. The owner of an up-and-in option receives
the pay-off if S makes an excursion above the level L older than D before the maturity time T , which is exactly
the same as saying Brownian motion Z makes an excursion above b older than D. Using the previous notations
we can write :

∗PUIC(x, T ;K,L; r, δ) = EP (1{T+
b
<T}(xe

σZT −K)+emZT ), (37)

where

T+
b = inf {t > 0|1{Zt>b}(t− gbt ) > D}. (38)
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The computation of ∗PUIC(x, T ;K,L; r, δ) for b > 0 is exactly the same as the computation of
∗PDIC(x, T ;K,L; r, δ) for b < 0. We just have to find the law of T+

b . We have

∗PUIC(x, T ;K,L; r, δ) =

∫ +∞

−∞
EP(1{T+

b
<T}PT−T+

b
(fx)(z))ν(dz), (39)

where

• fx(z) = emz(xeσz −K)+,

• Pt(fx)(z) = 1√
2πt

∫ +∞
−∞ fx(u) exp

(
− (u−z)2

2t

)
du,

• ν(dz) is the law of ZT+
b

.

We have

∗PUIC(x, T ;K,L; r, δ) =

∫ +∞

−∞
fx(y)hb(T, y)dy, (40)

where

hb(t, y) =

∫ ∞

−∞
EP


1{T+

b
<t}

exp
(
− (z−y)2

2(t−T+
b

)

)

√
2π(t− T+

b )


 ν(dz). (41)

Since we consider the case b > 0, we can use the following expression for the law of ZT+
b

,as it is proved in

Appendix D

P(ZT+
b
∈ dx) =

dx

D
(x− b) exp

(
− (x− b)2

2D

)
1{x≥b}. (42)

4.1.1. The Laplace transform of ∗PUIC(x, T ;K,L; r, δ). We still have

̂∗PUIC(x, λ;K,L; r, δ) =

∫ ∞

−∞
fx(y)

∫ ∞

0

e−λthb(t, y)dtdy. (43)

We would like to compute

ĥb(λ, y) =

∫ ∞

0

e−λthb(t, y)dt. (44)

We know that

hb(t, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)
EP


1{T+

b
<t}

exp
(
− (z−y)2

2(t−T+
b

)

)

√
2π(t− T+

b )


 dz. (45)

We can write

hb(t, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)
γ(t, z − y)dz,

where

γ(t, x) = EP


1{T+

b
<t}

exp
(
− x2

2(t−T+
b

)

)

√
2π(t− T+

b )




and we have

ĥb(λ, y) =

∫ +∞

b

z − b

D
exp

(
− (z − b)2

2D

)∫ ∞

0

e−λtγ(t, z − y)dt dz. (46)

So, we need to compute the Laplace transform of γ(t, x)

∫ ∞

0

e−λtγ(t, x)dt = EP



∫ ∞

T+
b

e−λt
exp

(
− x2

2(t−T+
b

)

)

√
2π(t− T+

b )
dt


 .

By changing variables u = t− T+
b , we get

∫ ∞

0

e−λtγ(t, x)dt = EP (e−λT
+
b )

∫ ∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du.
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Using results from Appendix D and B, we come up with

∫ ∞

0

e−λtγ(t, x)dt =
exp [−(|x| + b)θ]

θψ(θ
√
D)

. (47)

Thanks to (46) we can rewrite

ĥb(λ, y) =
e−bθ

Dθψ(θ
√
D)

∫ ∞

0

x exp

(
− x2

2D
− |b+ x− y|θ

)
dx. (48)

Let K1λ,D(y − b) denote

∫ +∞

0

x exp

(
− x2

2D
− |b+ x− y|θ

)
dx.

4.1.2. The valuation of K1λ,D(y − b). Let c denote y − b.

We have K1λ,D(c) =

∫ +∞

0

x exp

(
− x2

2D
− |x− c|θ

)
dx.

I Case K ≥ L. In such a case we have, for y ∈ [k,+∞[, y − b ≥ 0.

We can use the formula (24) to compute K1λ,D(c). Then for ĥb(λ, y) we get :

ĥb(λ, y) =
e−bθ

θψ(θ
√
D)

[
e−(y−b)θ + θ

√
2πDeλD

(
e−(y−b)θ[N (

y − b√
D

− θ
√
D) −N (−θ

√
D)]

−e(y−b)θ
(

1 −N (
y − b√
D

+ θ
√
D)

))]
. (49)

By plugging this result in(43) and by doing long but easy calculations we get:

̂∗PUIC(x, λ;K,L; r, δ) = e(m−θ)b
√

2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm
2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

+
e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

+
e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)
)
, (50)

for x ≤ L ≤ K.
I Case K ≤ L. If K ≤ L we have y − b ≥ 0 for y ∈ [b,+∞[ and y − b ≤ 0 for y ∈ [k, b]. So we get

̂∗PUIC(x, λ;K,L; r, δ) =
e−bθ

Dθψ(θ
√
D)

(∫ b

k

emy(xeσy −K)

∫ +∞

0

z exp

(
− z2

2D
− (z + b− y)θ

)
dzdy

+

∫ +∞

b

emy(xeσy −K)

∫ +∞

0

z exp

(
− z2

2D
− |z + b− y|θ

)
dzdy

)
.

After doing computations we get

̂∗PUIC(x, λ;K,L; r, δ) =
e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

+
e−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
, for K ≤ L and x ≤ L. (51)
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4.2. The valuation of a Parisian Up-and-out call with b ≥ 0. Thanks to the formula of ̂∗PUIC(x, λ;K,L; r, δ)

we can find ̂∗PUOC(x, λ;K,L; r, δ). By using the relations between ̂∗PUIC and ̂∗PUOC and the Laplace trans-
form of a Call when x ≤ K ( which has been computed in 3.2.1 ).
So, for x ≤ L ≤ K, we obtain

̂∗PUOC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

−e(m−θ)b
√

2πD

ψ(θ
√
D)

[
2K

m2 − θ2
e

Dm
2

2 mN (d+
√
Dm)

− 2L

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N (d+
√
D(m+ σ))

]

− e−2bθ

ψ(θ
√
D)

Ke(m+θ)keλD
√

2πDN (d− θ
√
D)

(
1

m+ σ + θ
− 1

m+ θ

)

− e(m−θ)k

θψ(θ
√
D)

K

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN (d− θ

√
D)
)
,

and for K ≤ x ≤ L, we have

̂∗PUOC(x, λ;K,L; r, δ) =

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

− e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]

−e
−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
. (52)

Finally, for the case x ≤ K ≤ L we get

̂∗PUOC(x, λ;K,L; r, δ) =

K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

− e(m−θ)b

ψ(θ
√
D)

[
2K

m2 − θ2
ψ(

√
Dm) − 2L

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

]
(53)

−e
−2bθψ(−θ

√
D)

θψ(θ
√
D)

Ke(m+ θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
. (54)

4.3. The valuation of a Parisian Up-and-out call with b ≤ 0. We proceed exactly the same way as for
the case b ≥ 0.
We have

∗PUOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

∗PUOC0(1, T − u;K/L, 1; r, δ)µb(du),

and for its Laplace transform we get

̂∗PUOC(x, T ;K,L; r, δ) = Lemb
∫ D

0

µb(du)e
−λu ̂∗PUOC

0
(1, λ;K/L, 1; r, δ).

To compute
∫ D
0 µb(du)e

−λu, we can refer to Appendix A, but by plugging −b instead of b. So we find

∫ D

0

µb(du)e
−λu = eθbN (θ

√
D +

b√
D

) + e−θbN (−θ
√
D +

b√
D

).

Therefore, for L ≤ x we get
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̂∗PUOC(x, T ;K,L; r, δ) = L

(
e(m+θ)bN (θ

√
D +

b√
D

)

+e(m−θ)bN (−θ
√
D +

b√
D

)

)
∗ P̂UOC0

(1, λ;
K

L
, 1; r, δ).

Depending on the relative position of K and L, one of the following formula for ̂∗PUOC(x, T ;K,L; r, δ) holds.
I Case K ≥ L.

∗ P̂UOC
0
(1, λ;

K

L
, 1; r, δ) =

K

Lθ
e

m−θ
σ

ln( K
L

)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm2

2 mN
(
− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(
− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ
σ

ln( K
L

)eλD
√

2πDN
(
− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

− e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

))
.

̂∗PUOC(x, T ;K,L; r, δ) = L

(
e(m+θ)bN

(
θ
√
D +

b√
D

)
+ e(m−θ)bN (−θ

√
D +

b√
D

)

)

{
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)
−

√
2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 m

N
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)
− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)

N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]
− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πD

N
(

− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)
− e

m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L
(

1

m− θ
− 1

m+ σ − θ

)(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

))}

for L ≤ K and L ≤ x.

I Case K ≤ L.

∗P̂UOC
0
(1, λ;

K

L
, 1; r, δ) =

2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+
K

Lθ
e

m+θ
σ

ln(K
L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ
σ

ln(K
L )
(

1

m+ θ
− 1

m+ σ + θ

)
.
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̂∗PUOC(x, T ;K,L; r, δ) =

L

(
e(m+θ)bN (θ

√
D +

b√
D

) + e(m−θ)bN (−θ
√
D +

b√
D

)

)

{
2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+
K

Lθ
e

m+θ

σ
ln(K

L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ

σ
ln(K

L )
(

1

m+ θ
− 1

m+ σ + θ

)}
, for K ≤ L ≤ x.

4.4. The valuation of a Parisian Up-and-in call with b ≤ 0. We will also use the relations between
̂∗PUIC(x, λ;K,L; r, δ) and ̂∗PUOC(x, λ;K,L; r, δ). We have

̂∗PUIC(x, λ;K,L; r, δ) = ∗̂BSC(x, λ,K, r, δ) − ̂∗PUOC(x, λ;K,L; r, δ)

where ̂∗PUOC(x, λ;K,L; r, δ) has already been computed above in Section 4.3 for b ≤ 0 and ∗̂BSC(x, λ,K, r, δ)
has been calculated in Section 3.2.1.
So we derive the three following formulae

̂∗PUIC(x, λ;K,L; r, δ) =
K

θ
e(m−θ)k

(
1

m− θ
− 1

m+ σ − θ

)

−L
(
e(m+θ)bN

(
θ
√
D +

b√
D

)
+ e(m−θ)bN

(
−θ

√
D +

b√
D

))

(
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 mN
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πDN

(
− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

−e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)

(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln(
K

L
) − θ

√
D

)))
, for L ≤ x ≤ K,
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̂∗PUIC(x, λ;K,L; r, δ) =

2K

m2 − θ2
− 2x

(m+ σ)2 − θ2
+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)

− L

(
e(m+θ)bN (θ

√
D +

b√
D

) + e(m−θ)bN (−θ
√
D +

b√
D

)

)

{
K

Lθ
e

m−θ

σ
ln( K

L
)

(
1

m− θ
− 1

m+ σ − θ

)

−
√

2πD

ψ(θ
√
D)

[
2K

L(m2 − θ2)
e

Dm
2

2 mN
(

− 1

σ
√
D

ln(
K

L
) +

√
Dm

)

− 2

(m+ σ)2 − θ2
e

D(m+σ)2

2 (m+ σ)N
(

− 1

σ
√
D

ln(
K

L
) +

√
D(m+ σ)

)]

− 1

ψ(θ
√
D)

K

L
e

m+θ

σ
ln( K

L
)eλD

√
2πDN

(
− 1

σ
√
D

ln(
K

L
) − θ

√
D

)(
1

m+ σ + θ
− 1

m+ θ

)

−e
m−θ

σ
ln( K

L
)

θψ(θ
√
D)

K

L

(
1

m− θ
− 1

m+ σ − θ

)

(
ψ(−θ

√
D) + θ

√
2πDeλDN

(
1

σ
√
D

ln

(
K

L

)
− θ

√
D

))}
, for L ≤ K ≤ x,

̂∗PUIC(x, λ;K,L; r, δ) =
2K

m2 − θ2
− 2x

(m+ σ)2 − θ2

+
K

θ
e(m+θ)k

(
1

m+ θ
− 1

m+ θ + σ

)
− L

(
e(m+θ)bN

(
θ
√
D +

b√
D

)

+e(m−θ)bN
(

−θ
√
D +

b√
D

)){
2K

L(m2 − θ2)
− 2

(m+ σ)2 − θ2
+

K

Lθ
e

m+θ

σ
ln(K

L )
(

1

m+ θ
− 1

m+ θ + σ

)

−
[

1

ψ(θ
√
D)

(
2K

L(m2 − θ2)
ψ(

√
Dm) − 2

(m+ σ)2 − θ2
ψ(

√
D(m+ σ))

)]

−ψ(−θ
√
D)

θψ(θ
√
D)

K

L
e

m+θ

σ
ln(K

L )
(

1

m+ θ
− 1

m+ σ + θ

)}
, for K ≤ L ≤ x.

5. Some parity relationships

Now we will explain how to find all the other prices by simply using the formulae we have established so far
and some parity relationships.

Let us consider a Parisian Down and Out Put.

PDOP (x, T ;K,L,D, r, δ) = E

(
emZT (K − xeσZT )+ 1{T−

b
>T}

)
e
−

“

r+ m2

2

”

T
. (55)

One notices that the first time the Z Brownian motion makes below b an excursion longer than D is the same
as the first time Brownian motion −Z makes above −b an excursion longer than D. Therefore, introducing the
new Brownian motion W = −Z we can rewrite

PDOP (x, T ;K,L,D, r, δ) = E

(
e−mWT (K − xe−σWT )+ 1{T+

−b
>T}

)
e
−

“

r+ m2

2

”

T
,

= Kx E

(
e−(m+σ)WT

(
1

x
eσWT − 1

K

)+

1{T+
−b
>T}

)
e
−

“

r+ m2

2

”

T
. (56)
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Let us introduce m′ = −(m + σ), δ′ = r, r′ = δ and b′ = −b. With these relations we easily check that

m′ = 1
σ

(
r′ − δ′ − σ2

2

)
and that r′ + m′2

2 = r + m2

2 . Moreover, we notice that the barrier L′ corresponding to

b′ = −b is
1

L
. Therefore, E

(
e−(m+σ)WT

(
1

x
eσWT − 1

K

)+

1{T+
−b
>T}

)
e
−

“

r+ m2

2

”

T
is in fact the price of a Up

and Out Call PUOC

(
1

x
, T ;

1

K
,
1

L
,D, δ, r

)
. Finally, we come up with the following relation

PDOP (x, T ;K,L,D, r, δ) = xK PUOC

(
1

x
, T ;

1

K
,
1

L
,D, δ, r

)
.

The same relation holds if we replace a call by a put and vice-versa and if we consider In options instead of Out
ones.

PUOP (x, T ;K,L,D, r, δ) = xK PDOC

(
1

x
, T ;

1

K
,
1

L
,D, δ, r

)
,

PUIP (x, T ;K,L,D, r, δ) = xK PDIC

(
1

x
, T ;

1

K
,
1

L
,D, δ, r

)
,

PDIP (x, T ;K,L,D, r, δ) = xK PUIC

(
1

x
, T ;

1

K
,
1

L
,D, δ, r

)
.

In the previous sections we computed the price of all the Down Calls an Up Calls. From these relationships, we
can deduce the prices of all the Parisian Puts. What we still have to find is how to invert the Laplace transform.

6. Prices at any time t

At this stage we can compute all the prices at time 0, but to be able to hedge such an option we besides need
the prices at some time t ≤ T . So we will consider a Down-and-In option to show how the price at some time
t can be deduced from the prices at time 0 of the Down-and-In options with different parameters. Relying on
this example one can easily prove similar formulae for other options.

6.1. Three different paths for the Brownian motion. The price of a Parisian Down and In Call at time
0 is given by the formula (4). From this formula, we can deduce the price of a Down and In call at any time t.

PDIC(St, t;x, T ;K,L,D, r, δ) = e−r(T−t)EQ
(
(xeσ(WT +mT ) −K)+ 1{T−

b
≤T}|Ft

)
. (57)

Now we can change the probability measure as we did at the beginning to make Z = {Wt + mt; t ≥ 0} a
Brownian motion under the new probability we called P , ( E will from now on denote the expectation under
the probability P ) . Then, we can write

PDIC(St, t;x, T ;K,L,D, r, δ) = e−r(T−t)
E

(
emZT − 1

2m
2T (xeσZT −K)+ 1{T−

b
≤T}|Ft

)

emZt− 1
2m

2t
,

= e−r(T−t)
E

(
emZtem(ZT−Zt)− 1

2m
2T (xeσZT −K)+ 1{T−

b
≤T}|Ft

)

emZt− 1
2m

2t
,

= e−(r+ m2

2 )(T−t)E
(
em(ZT −Zt)(xeσZT −K)+ 1{T−

b
≤T}|Ft

)
. (58)

Let us introduce a few notations

T ′ = T − t and b′ =
1

σ
ln

(
L

St

)
, (59)

T ′
b′ = inf {s > 0;Zt+s − Zt = b′}. (60)

In the case Zt < b, we introduce D′ the time Z has already spent in the excursion.

PDIC(St, t;x, T ;K,L,D, r, δ) = e
−

“

r+ m2

2

”

T ′
E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{T−
b
≤T}|Ft

)
. (61)

The indicator can be split up in several parts depending on which path you are on. On both paths the excursion
has already started. On the red one, the excursion will not last long enough, so the asset still has to do an
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Figure 4. Possible evolutions of an asset price

entirely new excursion below L longer than D, whereas on the green path the process only has to remain below
L for a time longer than D − d. All these remarks enable us to rewrite the indicator as follows

1{T−
b
≤T} = 1{Zt>b}1{T ′−

b′ ≤T ′} + 1{Zt≤b}
(
1{T ′

b′≥D−D′}1{D−D′≤T ′} + 1{T ′
b′<D−D}1{T ′−

b′ ≤T ′}

)
. (62)

PDIC(St, t;x, T ;K,L,D, r, δ)

= e
−

“

r+ m2

2

”

T ′ {
E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{Zt>b}1{T ′−
b′ ≤T ′}|Ft

)
,

+E

(
em(ZT−Zt)(Ste

σ(ZT −Zt) −K)+ 1{Zt≤b}1{T ′
b′≥D−d}1{D−d≤T−t}|Ft

)
,

+ E

(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{Zt≤b}1{T ′
b′≤D−D′}1{T ′−

b′ ≤T−t}|Ft
)}

,

= e
−

“

r+ m2

2

”

T ′ {
1{Zt>b}E

(
em(ZT−Zt)(Ste

σ(ZT −Zt) −K)+ 1{T ′−
b′ ≤T ′}|Ft

)
,

+1{Zt≤b}1{D−D′≤T−t}E
(
em(ZT−Zt)(Ste

σ(ZT −Zt) −K)+ 1{T ′
b′≥D−d}|Ft

)
,

+ 1{Zt≤b}E
(
em(ZT −Zt)(Ste

σ(ZT −Zt) −K)+ 1{T ′
b′≤D−D′}1{T ′−

b′ ≤T−t}|Ft
)}

.

T ′
b′ and T

′−
b′ are both independent of Ft, so we can write
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PDIC(St, t;x, T ;K,L,D, r, δ) = e
−

“

r+ m2

2

”

T ′ {
1{Zt>b}E

(
emZT ′ (Ste

σZT ′ −K)+ 1{T−
b′ ≤T ′}

)

+1{Zt≤b}1{D−D′≤T ′}E
(
emZT ′ (Ste

σZT ′ −K)+ 1{T−
b′ ≥D−D′}

)

+ 1{Zt≤b}E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}1{T−
b′ ≤T

′}

)}
,

= e
−

“

r+ m2

2

”

T ′





1{Zt>b}PDIC(St, T
′;K,L; r, δ)

+1{Zt≤b}1{D−D′≤T ′} E
(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≥D−D′}
)

︸ ︷︷ ︸
(i)

+ 1{Zt≤b} E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}1{T−
b′ ≤T

′}

)

︸ ︷︷ ︸
(ii)




.

6.2. The computation of the different expectations. Let us calculate (i) in the case D −D′ ≤ T ′

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≥D−D′}
)

= E
(
emZT ′ (Ste

σZT ′ −K)+
)
− E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}
)

= ∗BSC(St, T
′;K, r, δ) − E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}
)

(63)

The last expectation above can be computed by conditioning with respect to FTb′ since D −D′ ≤ T ′ .

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}
)

= E
(
E
(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}|FTb′

))
,

= E

(
1{Tb′≤D−D′}E

(
em(ZT ′−ZT

b′ )emb
′
(Ste

σb′e
σ(ZT ′−ZT ′

b′
) −K)+ |FTb′

))
.

If Wt = Zt+T ′
b
− ZTb−′ and Yt denotes emWT ′−t(LeσWT ′−t − K)+, then Yt is independent of FTb′ and Tb′ is

FTb′ -measurable

E
(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}
)

= E

(
1{Tb′≤D−D′}E

(
emWT ′−τ emb

′
(Ste

σb′eσWT ′−τ −K)+
)
|τ=Tb′

)
,

=

∫ D−D′

0

emb
′
E(emWT ′−u(LeσWT ′−u −K)+)µb′(u)du

︸ ︷︷ ︸
P (L,T ′)

. (64)

Now, we will consider the Laplace transform of P (L, T ′) with respect to T ′
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P̂ (L, λ) =

∫ +∞

0

e−λτ
∫ D−D′

0

emb
′
E(emWτ−u(LeσWτ−u −K)+)µb′(u)du dτ,

=

∫ D−D′

0

∫ +∞

0

e−λτemb
′
E(emWτ−u(LeσWτ−u −K)+)dτ µb′(u)du,

a change of variables (u, ξ) = (u, τ − u) gives

=

∫ D−D′

0

∫ +∞

0

e−λue−λξemb
′
E(emWξ(LeσWξ −K)+)µb′(u)du dξ,

relying on Appendix A we can write

= emb
′
{
e−θ|b

′|N
(
θ
√
D −D′ − |b′|√

D −D′

)

+eθ|b
′|N

(
−θ

√
D −D′ − |b′|√

D −D′

)}
∗ B̂SC(L, λ;K, r, δ). (65)

Let us now compute (ii). We can condition with respect to FTb′ since T−
b′ is bound to be bigger than D −D′

so Tb′ is almost surely smaller than T ′

E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}1{T−
b′ ≤T ′}

)

= E

(
E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}1{T−
b′ ≤T ′}|FTb′

))
,

= emb
′
E

(
1{Tb′≤D−D′}E

(
e
m(ZT ′−ZT ′

b′
)
(Leσ(ZT ′−ZT

b′ ) −K)+ 1{T−
0 ≤T ′−Tb′}|FTb′

))
. (66)

If Wt = Zt+T ′
b
−ZT ′

b
and Yt denotes emWT ′−t(LeσWT ′−t −K)+ 1{T−

0 ≤T ′−t}, Yt is independent of FTb′ and Tb′ is

FTb′ -measurable. So E(Yt|FTb′ ) = E(Yt)|t=Tb′ and therefore we can write

E

(
emZT ′ (Ste

σZT ′ −K)+ 1{Tb′≤D−D′}1{T−
b′ ≤T ′}

)

= emb
′
E

(
1{Tb′≤D−D′}E

(
emWT ′−u(LeσWT ′−u −K)+ 1{T−

0 ≤T ′−u}

)
|u=Tb′

)
,

=

∫ D−D′

0

emb
′
E

(
emWT ′−u(LeσWT ′−u −K)+ 1{T−

0 ≤T ′−u}

)
µb′(u)du

︸ ︷︷ ︸
Q(L,T ′)

. (67)

Let us consider the Laplace transform of Q(L, T ′) with respect to T ′.

Q̂(L, λ) =

∫ +∞

0

e−λτ
∫ D−D′

0

emb
′
E

(
emWτ−u(LeσWτ−u −K)+ 1{T−

0 ≤τ−u}

)
µb′(u)du dτ,

= Lemb
′
∫ +∞

0

e−λτ
∫ D−D′

0

∗PDIC0(1, τ − u,
K

L
, 1, D, r, δ)dτ µb′(u)du,

= Lemb
′
∫ D−D′

0

µb′e
−λudu ̂∗PDIC0(1, λ,

K

L
, 1, D, r, δ). (68)

Finally we obtain

̂∗PDIC(St, t;x, T ;K,L,D, r, δ)

= 1{Zt>b} ̂∗PDIC(St, T
′,K, L,D, r, δ) + 1{Zt≤b}1{D−D′≤T ′}(

Lemb
′

∫ D−D′

0

µb′e−λudu

(
̂∗PDIC0(1, λ,

K

L
, 1,D, r, δ)

−∗̂BSC(1, λ,
K

L
, r, δ)

)
+ ∗̂BSC(St, T

′,K, r, δ)

)
. (69)
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If we compute ̂∗PUIC(St, t;x, T ;K,L,D, r, δ) we get exactly the same result by changing
̂∗PDIC0(1, λ, KL , 1, D, r, δ) into ̂∗PUIC0(1, λ, KL , 1, D, r, δ) in the previous formula.

If one wants to value the Put Options, one can rely on the parity relationships given in the previous section and
then use again the price of the Calls at time t.

7. The inverse Laplace transform

This part is devoted to explaining how we compute the inverse Laplace transform of a function f , and how we
can use the Euler summation to get an accurate approximation of f .

7.1. An analytic formula for the inverse. Let us consider a function f integrable over R+, assume that
f(x) = 0 if x < 0. We will need a few notations

L(f)(z) = f̂(z) =

∫ +∞

0

f(t)e−ztdt for z ∈ C with Re(z) > 0, (70)

F(f)(ξ) =
1

2π

∫ +∞

−∞
f(t)e−iξtdt for ξ ∈ R. (71)

One straightaway notices that since f(x) = 0 if x < 0 the following equality holds

L(f)(σ + iξ) = 2πF(f(·)e−σ·)(ξ) for σ > 0. (72)

In our case f denotes an option price so it is bounded, therefore f(t)e−σt is square integrable for all positive σ.
Since the Fourier Transform is one-to-one on the set of square integrable functions, we have

f(t)e−σt = F−1

(
1

2π
L(f)(σ + i·)

)
(t)

So, using the inverse of operator F , we obtain

f(t) = eσt
1

2π

∫ +∞

−∞
L(f)(σ + iξ)eiξtdξ,

let us change variable u = σ + iξ (73)

=
1

2iπ

∫ σ+i∞

σ−i∞
eutL(f)(u)du. (74)

f(t) =
1

2iπ

∫ σ+i∞

σ−i∞
eutf̂(u)du,

=
eσt

2π

∫ +∞

−∞
f̂(σ + iu)(cos(ut) + i sin(ut))du,

f has real values so only the real part of the integral is worth taking into account

=
eσt

2π

∫ +∞

−∞
Re(f̂(σ + iu) cos(ut)) − Im(f̂(σ + iu) sin(ut)) (75)

Moreover, we notice that



PRICING PARISIAN OPTIONS 27

∫ +∞

−∞
Im(f̂(σ + iu) sin(ut))du =

∫ +∞

−∞

∫ +∞

0

f(z)eσz sin(uz) sin(ut)dzdu,

=

∫ +∞

−∞

∫ +∞

0

f(z)eσz
cos(u(z − t)) − cos(u(z + t))

2
dzdu,

this function is even with respect to u, so we can write

= 2

∫ +∞

0

Re
(∫ +∞

0

f(z)eσzeiuz
eiut + e−iut

2
dz

)
du,

= 2

∫ +∞

0

Re
(∫ +∞

0

f(z)eσzeiuzcos(ut)dz

)
du,

= 2

∫ +∞

0

Re
(
f̂(σ + iu) cos(ut)

)
du. (76)

If we put all the terms together we find the following expression for f

f(t) =
2eσt

π

∫ +∞

0

Re
(
f̂(σ + iu) cos(ut)

)
du. (77)

The only remaining problem is to compute numerically this non finite integral. We numerically evaluate the
integral above by means of the trapezoidal rule. If we use a step size h, then this gives : for any h ∈ R

fh(t) =
heσt

π
f̂(σ) +

2heσt

π

∞∑

n=1

Re
(
f̂(σ + inh)

)
cos(nht). (78)

Let us change the variable as following h =
π

2t
and σ =

A

2t
to get a new expression

fh(t) =
eA/2

2t
f̂

(
A

2t

)
+
eA/2

t

∞∑

n=1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n. (79)

Now, we would like to measure how well fh(t) approximates f(t). To do so we need to establish the so-called
Poisson summation formula.

7.2. The Poisson summation formula. First, one will notice that in any case f(t) is positive, continuous,
bounded by the initial value of the asset and f(t) = 0 if t < 0. Let us introduce

g(x) = f

(
t+

2πx

h

)
e−b(t+

2πx
h ), where b is a positive constant.

Relying on the definition of f , it is straightforward that

+∞∑

n=−∞
g(n+ x) converges uniformly for any real x. So

we can define G(x) =

+∞∑

n=−∞
g(n + x). Thanks to the uniform convergence, G is continuous with period 1 and

therefore equal to its Fourier series expansion

G(x) =

+∞∑

n=−∞
ane

2iπnx.
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where

an =

∫ 1

0

G(x)e−2iπnxdx,

=

∫ 1

0

+∞∑

k=−∞
g(k + x)e−2iπnxdx,

because the series converges uniformly we can interchange the summation and the integral

=

+∞∑

k=−∞

∫ 1

0

g(k + x)e−2iπnxdx,

let us change variable u = x+ k

=

+∞∑

k=−∞

∫ k+1

k

g(u)e−2iπnudu,

=

∫ +∞

−∞
g(u)e−2iπnudu.

Then, we come up with the following expression for G

G(x) =

+∞∑

n=−∞

∫ +∞

−∞
g(u)e−2iπnudu e2iπnx,

=

+∞∑

n=−∞
2πF(g)(2πn) e2iπnx,

let us put x = 0, we get the Poisson summation formula
+∞∑

n=−∞
g(n) = 2π

+∞∑

n=−∞
F(g)(2πn),

plugging in the definition of g, we get
+∞∑

n=−∞
f

(
t+

2πn

h

)
e−b(t+

2πn
h ) = 2π

+∞∑

n=−∞
F
(
f

(
t+

2π·
h

)
e−b(t+

2π·
h )
)

(2πn). (80)

Let us try to compute the Fourier transform

F
(
f
(
t+ 2π·

h

)
e−b(t+

2π·
h )
)

(ξ) =
1

2π

∫ +∞

−∞
f

(
t+

2πx

h

)
e−b(t+

2πx
h )e−iξxdx,

Let us change variable u = t+
2πx

h

= h
4π2

∫ +∞

−∞
f(u)e−bue−

iξh
2π

(u−t)du,

=
h

2π
e

iξht
2π F

(
f(·)e−b·

)(hξ
2π

)
,

=
h

4π2
e

iξth
2π f̂

(
b+

ihξ

2π

)
.
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Now, if we put this expression back into (80) and define h = π/t and b = A/2t, we get the following formula

+∞∑

−∞
f((1 + 2n)t)e−(1+2n)A/2 =

+∞∑

−∞

1

2t
einπf̂

(
A+ 2iπn

2t

)
,

f is positive so we get
+∞∑

0

f((1 + 2n)t)e−nA =

+∞∑

−∞

eA/2

2t
(−1)nf̂

(
A+ 2iπn

2t

)
,

f has real values so only the real part of the summation is worth taking into account
+∞∑

0

f((1 + 2n)t)e−nA =

+∞∑

−∞

eA/2

2t
(−1)nRe

(
f̂

(
A+ 2iπn

2t

))
,

it is easy to check that the real part of f̂
(
A+2iπn

2t

)
is even with respect to n

+∞∑

0

f((1 + 2n)t)e−nA =
eA/2

2t
f̂

(
A

2t

)
+

+∞∑

0

eA/2

t
(−1)nRe

(
f̂

(
A+ 2iπn

2t

))
.

We can deduce the value of f from this expression

f(t) =
eA/2

2t
f̂

(
A

2t

)
+

+∞∑

1

eA/2

t
(−1)nRe

(
f̂

(
A+ 2iπn

2t

))
−

+∞∑

1

f((1 + 2n)t)e−nA. (81)

If we compare with expression (79), we notice that the error made if we approach f by fh is bounded by
+∞∑

1

f((1 + 2n)t)e−nA. As recalled above, f is bounded by the initial value of the stock price So so the error is

bounded by So
e−A

1− e−A
. So is about 100, and if we take A = 18.4 the error is smaller than 10−6. One could be

tempted to increase the value of A, unfortunately it is not so simple as you discover later on in section 7.
The remaining problem is to numerically compute (79), which involves a non-finite summation and then we
would have a rather good approximation of f . We could simply truncate the summation and try to measure
how well it converges. Let us suppose we approach fh by

eA/2

2t
f̂

(
A

2t

)
+
eA/2

t

n∑

k=1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n. (82)

and let us find an upper bound for the error.

S,o we would like to bound

∞∑

k=n+1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n.

∞∑

k=n+1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n =

∞∑

k=n+1

∫ +∞

0

f(z) cos

(
inπh

t

)
e−Az/2t(−1)n,

|
∞∑

k=n+1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n | ≤

∞∑

k=n+1

∫ +∞

0

So | cos

(
inπh

t

)
| e−Az/2t,

f is bounded by So

≤ 2tSo

A

∞∑

k=n+1

1

1 + 4π2k2

A

.

Since we have ∫ n+1

n

1

1 + ax2
dx ≤ 1

1 + an2
≤
∫ n

n−1

1

1 + ax2
dx

and we know that

∫ ∞

n−1

1

1 + ax2
dx is equivalent to

1

an
we get

+∞∑

n=N

1

1 + an2
∼ 1

a N
.
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So, we come up with the following upper bound

|
∞∑

k=n+1

Re
(
f̂

(
A+ 2inπh

2t

))
(−1)n |≤ tSoA

2π2

1

n
.

Therefore, if we want an accuracy up to 10−6, we need 1.107 terms in the summation which is rather huge. For
this reason, we will present in the next section a way to accelerate the convergence of the series.

7.3. The Euler summation. Let sn(t) be an approximation of fh(t), the infinite series is truncated to n
terms,

sn(t) =
eA/2

2t
f̂

(
A

2t

)
+
eA/2

t

n∑

k=1

(−1)kak(t),

where

ak(t) = Re
(
f̂

(
A+ 2iπk

2t

))
.

We apply Euler summation to m terms after an initial n, so that the Euler sum (approximation to (79)) is

E(m,n, t) =

m∑

k=0

Cmk 2−msn+k(t), (83)

(83) is the binomial average of the terms sn, sn+1, ..., sn+m.
We will prove that E(m,n, t) goes to s when n goes to +∞.
In (83), the sum of the weights is equal to 1. So we have :

min
k∈[0, m]

sn+k ≤ E(m,n, t) ≤ max
k∈[0, m]

sn+k.

So, when n goes to +∞ min
k∈[0, m]

sn+k goes to s, as well as max
k∈[0, m]

sn+k. Then

lim
n→+∞

E(m,n, t) = s.

Now, we are interested in how fast E goes to s when n goes to ∞. To estimate the error associated with Euler
summation, we suggest to use the difference of successive terms, i.e., E(m,n+ 1, t) −E(m,n, t).

E(m,n+ 1, t) −E(m,n, t) =

m∑

k=0

Ckm2−m(−1)n+1+kan+1+k(t),

= 2−m
m∑

k=0

Ckm(−1)n+1+kRe
(∫ +∞

0

e−( A
2t

+ k+n+1
t

πi)sf(s)ds

)
,

= 2−m(−1)n+1

∫ +∞

0

e−
As
2t Re

(
e−

(n+1)πis

t

m∑

k=0

Ckm(−1)ke−
kπis

t

)
f(s)ds,

= 2−m(−1)n+1

∫ +∞

0

e−
As
2t Re

(
e−

(n+1)πis

t (1 − e−
πis

t )
)
f(s)ds.

So, we can bound the difference between E(m,n+ 1, t) −E(m,n, t),

| E(m,n+ 1, t) −E(m,n, t) |≤ So

2m

∫ +∞

0

e−
As
2t

∣∣∣∣cos

(
(n+ 1)πs

t

)
− cos

(
(n+ 2)πs

t

)∣∣∣∣ ds.

By changing variables x = As
2t , we obtain

| E(m,n+ 1, t) −E(m,n, t) | ≤ So

2m

∫ +∞

0

e−x
∣∣∣∣cos

(
2(n+ 1)πx

A

)
− cos

(
2(n+ 2)πx

A

)∣∣∣∣
2t

A
dx,

≤ 2tSo

A2m

∫ +∞

0

e−x
∣∣∣∣cos

(
2(n+ 1)πx

A

)∣∣∣∣+ e−x
∣∣∣∣cos

(
2(n+ 2)πx

A

)∣∣∣∣ dx.

Furthermore, we have ∫ +∞

0

e−x
∣∣∣∣cos

(
2πx(n+ 1)

A

)∣∣∣∣ dx =
A2

A2 + 4π2(n+ 1)2
.
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Then, we get

| E(m,n+ 1, t) −E(m,n, t) | ≤ 2tSo

A2m

(
A2

A2 + 4π2(n+ 1)2
+

A2

A2 + 4π2(n+ 2)2

)
,

≤ AtSo

2mπ2n2
.

Now, we can bound the difference | s−E(m,n, t) |.

| s−E(m,n, t) |≤ AtSo

2mπ2

+∞∑

n=N

1

n2
.

Since we have ∫ n+1

n

1

x2
dx ≤ 1

n2
≤
∫ n

n−1

1

x2
dx,

we get

1

N
≤

+∞∑

n=N

1

n2
≤ 1

N − 1
.

Then,

| s−E(m,n, t) |≤ AtSo

2mπ2

1

n
.

To have an 10−6 error, if we choose n = 15, we need m = 23. The number of iterations is really small compared
with the previous result we got for n ( we needed 107 terms). The improvement is tremendously significant.
However one must have noticed that most prices involved the function ψ or at least N and we only have an
approximation with a 10−7 precision on the computation of these functions. This means that we are not able
to compute the exact value of the Laplace transforms at a given point but only an approximation. We will now
try to measure the consequences of such an approximation.

7.4. Accuracy of the numerical inversion. A polynomial approximation of the cumulative normal distri-
bution is described in Lamberton and Lapeyre [7].

N (x) = 1 − 1√
2π
e−

x2

2 (b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5), for x > 0

where
b1 = 0.319381530,
b2 = −0.356563782,
b3 = 1.781477937,
b4 = −1.821255978,
b5 = 1.330274429,
p = 0.2316419,

t =
1

1 + px
.

The approximation is accurate up to 10−6 and pretty fast.

If one remembers the definition of the function ψ(x) = 1 + x
√

2πe
x2

2 N (x), one straightaway understands that
the accuracy of psi decreases as quickly as x increases. The purpose is then to reduce as well as possible the
absolute value of the argument of the function ψ. As we will show it this implies to decrease the value of A
which is in contradiction with what we have found just above (c.f. 7.2 where we have discussed the error due
to the trapezoidal approximation of the integral).

7.5. The accuracy of ψ.

ψ(x) − ψa(x) =
√

2πxe
x2

2 (N (x) −Na(x)),

|ψ(x) − ψa(x)| ≤ =
√

2π|x|e x2

2 10−7.

We will now measure the error made at the first order on the most often appearing factor in the Laplace
transforms of the prices and creating errors on them

B̂ =
ψ(−θ

√
D)e2bθ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
, when B ≤ 0.
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B̂a =
ψa(−θ

√
D)e2bθ

θψa(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)
,

|B̂ − B̂a| ≤ 10−7

∣∣∣∣∣
θ
√

2πDe2bθe2λ

θψ(θ
√
D)

Ke(m−θ)k
(

1

m− θ
− 1

m+ σ − θ

)∣∣∣∣∣ ,

we know that λ ∈
{
A

2T
+
ikπ

T
; k ∈ [|0,m|]

}

≤ 10−7Ke
A
2

√
2πD

∣∣∣∣
e2bθ

ψ(θ
√
D)

e(m−θ)k σ

2λ

∣∣∣∣ ,

≤ 10−7Ke
A
2

√
2πD

∣∣∣∣
e2bθ

ψ(θ
√
D)

e(m−θ)k σ

2λ

∣∣∣∣ ,

≤ 10−7Ke
A
2

√
2πD

∣∣∣∣
1

ψ(θ
√
D)

e(m−θ)k σ

2λ

∣∣∣∣ because b ≤ 0.

If we assume that
2

3
<

K

x
<

3

2
, D < 0.5, and we calculate how the error is transformed by the numerical

inversion we use for the Laplace transform we get

|B −Ba| ≤ 1.5 10−4, for A = 13.8.

The two other errors are bounded by 10−6 and e−A = 10−5, we are sure that the prices will be accurate up to
10−4.

The terms only involving the function ψ in their denominators are much more accurate since one notices that
considering the values of λ, the relative error on ψ is smaller than 10−7.

8. A few graphs

After all these technical computations, we would like to present Parisian options through a few graphs. First,
we can compare Parisian options with normal barrier options. Then, we will try to understand a bit more about
the different Greeks of Parisian options.

8.1. A comparison with standard barrier options. We would like to plot a graph of the evolution of a
down and in Call when D decreases up to 0, with the following parameters:
strike 100
maturity 1 year
barrier 75
volatility 0.2
interest rate 0.05
dividend rate 0

We can see that when D goes to 0, the down and in Call price goes to a down and in barrier price.

8.2. Hedging. Options become interesting for trading companies as soon as they can be hedged, which means
that they are able to find a replicating strategy based on the Black-Scholes’ theory. The underlying hypothesis
of Black-Scholes’ model is a continuous hedging, nevertheless this is not applicable in a real world. This discrete
time hedging creates an error, the burning issue of hedging such options is to reduce the error as close as possible
to zero. How well can replicate such an option? We will try to give some answers to these problems. First we
will present some graphs showing the evolution of the Greeks with respect to the initial value. One will realise
how much they differ from standard European options. Then we will generate a stock price over one year and
hedge it to see how the hedging error evolves and also the number of stocks you should own.

8.2.1. A glimpse of the different Greeks. Let us consider a down-and-in Call with the following parameter
K = 60, l = 80, D = 30 days, σ = 0.3, r = 0.045 and δ = 0. The graphs below show the evolution of the
different Greeks with respect to the initial value.
We notice that there are huge variations in the graphs when the initial stock price is close to the barrier. For
instance the delta suddenly drops down whereas the initial stock price tends to the barrier. This sensibility of
the delta around the barrier let us think that it may be difficult to hedge such an option. Now we will simulate
a stock path over one year and hedge an option.
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Figure 5. Evolution of the price with respect to the window length
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Figure 6. Price of a down-and-in call

8.2.2. Hedging simulation. We still consider a down-and-in call with parameters S0 = 82, K = 60, l = 80,
D = 30 days, σ = 0.3, r = 0.045, δ = 0 and a drift µ = 0.1. Now we are going to simulate the stock path over
the year with three steps per day. The graphs below show the results we obtain with our program within five
seconds.
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Figure 7. Delta of a down-and-in call
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Figure 8. Gamma of a down-and-in call
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Figure 9. Vega of a down-and-in call
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Figure 10. Evolution of the stock price
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Figure 11. Evolution of the option price
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Figure 12. Evolution of the delta
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Figure 13. Evolution of the hedging error
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It is pretty clear that when the underlying asset crosses the barrier or is about to cross the barrier whereas
the excursion has not been completes yet, the delta varies very sharply. These huge variations tend to increase
the hedging error. As a matter of fact, when the asset is in a excursion and the option has not been knocked
yet, the delta varies very quickly. As soon as the option has been knocked, the Greeks become smoother. This
volatility in the delta graph makes it pretty hard to hedge such options. The more often the stock price crosses
the barrier before being knocked, the bigger is the hedging error.

Appendix A. The valuation of
∫D
0 µb(du)e

−λu in the case b > 0

We already know that µb(du) =
| b |√
2πu3

e

“

−b2

2u

”

du.

∫ D

0

e−λuµb(du) =

∫ D

0

e−λu
b√

2πu3
e

−b2

2u du

with a change of variable t = 1√
u

we get,

=

∫ +∞

1/
√
D

b

√
2

π
e

−λ

t2 e
−b2t2

2 dt,

=

∫ +∞

1/
√
D

b

√
2

π
e

−λ

t2 e
−b2t2

2 dt,

let θ denote
√

2λ

=

∫ +∞

1/
√
D

b

√
2

π
exp


−θb

2


 1

(
√

b
θ t)

2
+ (

√
b

θ
t)2




dt,

let’s change variable again u =
√

b
θ t

=

∫ +∞

√
b√

θD

√
2bθ

π
exp

(−θb
2

(
1

u2
+ u2

))
du,

=

∫ +∞

√
b√

θD

√
2bθ

π
exp

(
−θb
2

(
1

u
− u

)2
)
e−θbdu,

a new change of variable v = 1
u − u gives

=

√
bθ

2π
e−θb

∫ √
θD
b

−
√

b√
θD

−∞
e

−θb
2 v2

(
1 − v√

v2 + 4

)
dv,

one more change of variable u =
√
θbv provides the following expression

=
1√
2π
e−θb

∫ θ
√
D− b√

D

−∞
e−u

2/2

(
1 − u√

u2 + 4θb

)
du,

a last change of variable v =
√
u2 + 4θb ends the calculation

= e−θbN
(
θ
√
D − b√

D

)
+ 1√

2π
e−θb

∫ +∞

θ
√
D+ b√

D

e−
v2−4θb

2 dv,

= e−θbN
(
θ
√
D − b√

D

)
+ eθbN

(
−θ

√
D − b√

D

)
.

If we let D go to infinity, we can deduce the Laplace transform of Tb, for any real b

E[e−λTb ] = e−θ|b|.

Appendix B. The valuation of

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du

Once again we introduce θ =
√

2λ.

A change of variable u = |x|t2
θ straightforward gives the new expression

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du =

∫ +∞

0

√
2 | x |
πθ

exp

(
−θ | x |

2

(
1

t2
+ t2

))
dt,

=

√
2 | x |
πθ

e−θ|x|
∫ +∞

0

exp

(
−θ | x |

2

(
1

t
− t

)2
)
dt.
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Once again, we can use the change of variable s = u − 1

u
, which maps [0,+∞[ into ] − ∞,+∞[ and we have

du =
ds

2

(
1 +

s√
s2 + 4

)
. The second of the last term is odd, so its integral over R cancels and we get

√
|x|
2πθ

e−θ|x|
∫ +∞

−∞
exp

(
−θ |x|

2
s2
)
ds.

So finally we obtain

∫ +∞

0

e−λu
exp

(
−x2

2u

)

√
2πu

du =
1

θ
e−θ|x|. (84)

Appendix C. The Brownian meander

In this section, we only recall some useful results on excursion theory and Brownian meander. To find the proofs
of the results announced, one can refer to Revuz and Yor [8] or Chung [4] for instance.
We denote by gt = sup{s ≤ t;Zs = 0} the left extremity of the excursion straddling time t. We define (F+

gt
, t ≥))

the slow Brownian filtration as F+
gt

= F−
gt

∨
σ(sgn(Zt)). F−

gt
is the σ−algebra generated by the random variables

Xgt
, where X is a predictable process for the natural filtration of Brownian motion Z.

We denote by g = g1 = sup{s ≤ 1;Zs = 0} the left extremity of the excursion straddling time 1.
The Brownian meander is defined as process

m =

{
mu =

1√
1 − g

|Zg+u(1−g)|; u ≤ 1

}
. (85)

It is known that process m is independent of F+
g . The law of m1 is given by

P(m1 ∈ dx) = xe−
x2

2 1x>0 dx. (86)

To find the law of m1 we begin to calculate P(m1 ≤ λ)

P(m1 ≤ λ) = P( 1√
1−g |Z1| ≤ λ)

= E[1{ 1√
1−g

|Z1|≤λ}].

Thanks to formula (116), we can write

P(m1 ≤ λ) =

∫ +∞

s=0

∫ +∞

−∞
1{ |x|√

1−s
≤λ}1{s≤1}

|x|
2π
√
s(1 − s)3

e−
x2

2(1−s) dxds.

For λ ≤ 0, P(m1 ≤ λ) = 0. From now on, we assume λ ≥ 0. So, we get

P(m1 ≤ λ) =

∫ 1

s=0

∫ +λ
√

1−s

x=−λ
√

1−s

|x|
2π
√
s(1 − s)3

e−
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2(1−s) dxds,

= 2

∫ 1

0
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√
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0

x

2π
√
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e−
x2
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∫ 1

0
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√
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e−
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]λ√1−s

x=0

ds,

= 2

∫ 1

0

1

2π
√
s(1 − s)

(1 − e−
λ2

2 )ds,

=
(1 − e−

λ2

2 )

π

∫ 1

0

1√
s(1 − s)

ds.
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Now, we have to evaluate

∫ 1

s=0

1√
s(1 − s)

ds.

The change of variables s = cos2 θ gives
∫ 1

0

1√
s(1 − s)

ds =

∫ 0

−π
2

−2
sin θ cos θ

| sin θ cos θ|dθ,

= −2

∫ 0

−π
2

sgn(sin(2θ))dθ,

= π.

So, we obtain

P(m1 ≤ λ) = (1 − e−
λ2

2 ).

For any λ ∈ R, we have

P(m1 ∈ dλ) = 1λ≥0λe
−λ2

2 dλ. (87)

Using Brownian scaling again, we can derive exactly the same results if we consider the excursion straddling
time t instead of 1. Namely, we define

m(t) =

{
m(t)
u =

1√
t− gt

|Zgt+u(t−gt)|; u ≤ 1

}
, (88)

which is a Brownian meander independent of the σ-field F+
gt

. In particular, the law of m(t) does not depend on t.

Moreover, these results still hold if we consider a F-stopping time instead of t. The remark is definitely essential
as far as we are concerned and makes it possible to compute the law of (T−

b , ZT−
b

), as we do it in appendix D.

C.1. The Azema martingale. We now introduce the so-called Azema martingale µt = sgn(Zt)
√

(t− gt),
which is a F+

gt
-martingale (see Azéma and Yor [2] for a detailed study on the µ martingale ). We have

E(exp(λZt −
1

2
λ2t)|F+

gt
) = E(exp(λm

(t)
1 µt −

1

2
λ2t)|F+

gt
)

and, from the independence property we have just recalled, we get

E(exp(λZt −
1

2
λ2t)|F+

gt
) = exp(−1

2
λ2t)ψ(λµt), (89)

where

ψ(z) = E(exp(zm1)) =

∫ +∞

0

x exp

(
zx− 1

2
x2

)
dx

Appendix D. The law of (T−
b , ZT−

b
) and (T+

b , ZT+
b

)

D.1. Case b = 0. In this case, we denote T− = T−
0 .

For any t > 0, we have

{T− ≤ t} = {∃u ≤ t; u− gu ≥ D and sgn(Zu) = −1},
=

⋃

u≤t
({u− gu ≥ D} ∩ {sgn(Zu) = −1}) . (90)

Since each term composing the union belongs to Ft, the random variable T− is an (Ft)t stopping time.

As recalled in Appendix C, we can use the definition of m
(t)
u for t = T−. Hence, process m(T−) defined by

m(T−) =

{
mT−

u =
1√

T− − gT−
|Zg

T−+u(T−−g
T− )|;u ≤ 1

}

is a Brownian meander independent of F+
g

T− .

As gT− +D = T−, 1√
D
ZT− = −m(T−)

1 , because ZT− is negative. Thus, ZT− is independent of F+
g

T− and we

can deduce the law of ZT− from equation (87).

P(ZT− ∈ dx) = − x

D
exp

(
− x2

2D

)
1x<0dx. (91)
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Moreover as T− is F+
g

T− -measurable, it comes out that ZT− and T− are independent.

Using equation (89), process {ψ(−λµt) exp(− 1
2λ

2t), t ≥ 0}, is a F+
gt

martingale for any λ > 0. By applying the

optimal stopping time theorem at T−, we obtain

E(ψ(−λµT−) exp(−1

2
λ2T−)) = ψ(0) = 1. (92)

Since µT− = −
√
D, we get

E(exp(−1

2
λ2T−)) =

1

ψ(λ
√
D)

. (93)

Similarly, 1√
D
ZT+ = m

(T−)
1 and the law of ZT+ is given by

P(ZT+ ∈ dx) =
x

D
exp

(
− x2

2D

)
1x>0dx. (94)

With exactly the same method, we find

E(exp(−1

2
λ2T+)) =

1

ψ(λ
√
D)

. (95)

D.2. Case b < 0. This case study can be reduced to the previous one, with the help of the stopping time Tb.
We can write T−

b = Tb + T−(W ), with

T−
0 (W ) = inf{t ≥ 0;1Wt≤0(t− gWt ) ≥ D} law= T−

0 ,

W = {Wt = ZTb+t − b; t ≥ 0},
gWt = sup{u ≤ t;Wu = 0}.

Moreover using the strong Markov property it is clear that Tb and T−
0 (W ) are independent.

E(exp(−1

2
λ2T−

b )) = E(exp(−1

2
λ2Tb))E(exp(−1

2
λ2T−

0 (W ))).

As E(exp(− 1
2λ

2Tb)) = exp(−|b|λ), we get

E(exp(−1

2
λ2T−

b )) =
exp(bλ)

ψ(λ
√
D)

. (96)

Now, we are trying to find the law of ZT−
b

P(ZT−
b

∈ dx) = P(ZT−
b
−Tb

o θTb
∈ dx),

= E[1Z
T

−
b

−Tb
o θTb

∈dx],

= E

[
E[1{Z

T
−
b

−Tb
o θTb

∈dx}|FTb
]

]
,

= E

[
Eb[1{Z

T
−
b

−Tb
∈dx}|FTb

]

]
,

= E

[
Eb[1{Z

T
−
b

−Tb
∈dx}]

]
,

= E

[
Eb[1{Z

T−∈dx}]
]
,

= E
[
Pb[ZT− ∈ dx]

]
,

= E [P[ZT− + b ∈ dx]] ,
= E [P[ZT− ∈ (dx− b)]] ,
= P[ZT− ∈ (dx− b)].

Finally we obtain

P(Z
T

−

b

∈ dx) =
b− x

D
exp

(
−(x− b)2

2D

)
1{x<b}dx. (97)
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D.3. Case b > 0. If b > 0, we can write T+
b = Tb + T+

0 (W ) with

T+
0 (W ) = inf{t ≥ 0;1Wt≥0(t− gWt ) ≥ D} law= T+

0 ,

W = {Wt = ZTb+t − b; t ≥ 0},
gWt = sup{u ≤ t;Wu = 0}.

It follows, from the independence of Tb and T+
0 (W ) by using the strong Markov property, that

E(exp(−1

2
λ2T+

b )) = E(exp(−1

2
λ2Tb))E(exp(−1

2
λ2T+

0 (W ))).

As E(exp(− 1
2λ

2Tb)) = exp(−|b|λ), we get

E(exp(−1

2
λ2T−

b )) =
exp(−bλ)

ψ(λ
√
D)

. (98)

The law of ZT+
b

can be computed in the same way as the law of ZT−
b

P(ZT+
b
∈ dx) = P[ZT+ ∈ (dx − b)].

Finally, we have

P(Z
T

+
b

∈ dx) =
x− b

D
exp

(
−(x− b)2

2D

)
1{x>b}dx. (99)

Appendix E. Around Brownian Motion

Let us consider a standard Brownian motion W = {Wt; t ≥ 0}. First of all, we recall two results on the joint
law of the Brownian motion and its extrema. A proof can be found in Revuz and Yor [8].

E.1. Law of (Wt, sup
0≤u≤t

Wu).

P(Wt ∈ dx, sup
0≤u≤t

Wu ∈ dy) = 1{0≤y}1{x≤y}
2(2y − x)√

2πt3
exp

(
−(2y − x)2

2t

)
dxdy. (100)

E.2. Law of (Wt, inf
0≤u≤t

Wu).

P(Wt ∈ dx, inf
0≤u≤t

Wu ∈ dy) = 1{y≤0}1{y≤x}
2(2y − x)√

2πt3
exp

(
−(2y − x)2

2t

)
dxdy (101)

We try to compute

P(Wt ≤ λ, inf
0≤u≤t

Wu ≤ µ)

= P(−Wt ≥ −λ, sup
0≤u≤t

−Wu ≥ −µ),

−W is also a standard Brownian motion, so we can write Wt instead of −Wt

= P(Wt ≥ −λ, sup
0≤u≤t

Wu ≥ −µ),

= P(Wt ≥ −λ) − P( sup
0≤u≤t

Wu ≤ −µ) + P(Wt ≤ −λ, sup
0≤u≤t

Wu ≤ −µ). (102)

Differentiating with respect to to µ and λ and using equation (100) give the result announced above.

E.3. Hitting time. The purpose is to find the law of Tb, which is defined as following :

Tb = inf{t ≥ 0 |Wt = b}.
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Case b > 0. We want to calculate P(Tb ≤ x) to find the law of Tb.
We have :

P(Tb ≤ x) = P (inf{t ≥ 0 |Wt = b} ≤ x) ,

= P

(
sup

0≤u≤x
Wu ≥ b

)
. (103)

Since we know the law of sup
0≤u≤x

Wu, which is

1{0≤y}
2√
2πx

e

“

−y2

2x

”

dy. (104)

we obtain

P(Tb ≤ x) =

∫ ∞

−∞
1{y≥b}1{0≤y}

2√
2πx

e

“

−y2

2x

”

dy,

=

∫ ∞

b

2√
sπx

e

“

−y2

2x

”

dy,

=

∫ ∞

b√
x

2√
2π
e

“

−u2

2

”

du. (105)

To find the law of Tb we just have to take the derivative with respect to x. Finally we find :

P(Tb ∈ dx) =
b√

2πx3
e

“

−b2

2x

”

dx. (106)

Case b < 0.

P(Tb ≤ x) = P (inf{t ≥ 0 | Bt = b} ≤ x) ,

= P

(
inf

0≤u≤x
Wu ≤ b

)
,

= P

(
sup

0≤u≤x
−Wu ≥ −b

)
.

W and −W follow the same law, −b > 0 so we can use what we have found in the first case, and we get :

P(Tb ∈ dx) =
−b√
2πx3

e−
b2

2x dx. (107)

For any b, we have

P(Tb ∈ dx) =
| b |√
2πx3

e− b
2

2xdx. (108)

E.4. Excursion. Let gt denote the last time before t that W hit the level 0.

gt = sup {u ≤ t |Wu = 0}. (109)

The purpose is to find the law of (gt,Wt). Let Px denote the probability starting at level x. The probability
starting at the level 0 is simply denoted by P.
First we would like to calculate Px(Wt ∈ dy, T0 > t), with x > 0 and y > 0.

Px(Wt ∈ dy, T0 > t) = Px(Wt ∈ dy) − Px(Wt ∈ dy, T0 < t). (110)

Using the reflexion principle, we can stop the Brownian motion at time T0 and reflect the rest of the trajectory. So
it is the same for the Brownian motion issued from x to cross 0 before time t and to end up in the neighbourhood
of y as to end up in the neighbourhood of −y. Thanks to the almost sure continuity of the Brownian motion
paths we can drop the condition that the Brownian motion has hit 0 before time t. So we come up with the
following equality

P(Wt−Tx
0

∈ −dy, T x0 < t) = Px(Wt ∈ −dy). (111)
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So, putting all the different terms together and using the law of the Brownian motion at time t, we come up
with the following formula :

Px(Wt ∈ dy, T0 > t) =
1√
2πt

(
e−(x−y)2/2t − e−(x+y)2/2t

)
1xy>0 dy. (112)

Now, we can try to compute the law of (gt,Wt). Let’s calculate P(Wt ∈ dy, gt ≤ s). If t < s, then gt is always
smaller than s because gt is bounded by t, so the probability does not depend on s anymore. Thus, its partial
differential with respect to s is identically null. Now we assume that s ≤ t, y > 0.

P(Wt ∈ dy, gt ≤ s, ) = E(1{Wt ∈ dy, gt≤s}),

= E(E(1{Wt ∈ dy, Wu 6=0 ∀u ∈ [s,t]} | Fs)),
= E(E(1{Wt−s◦θs ∈ dy, Wu◦θs 6=0 ∀u ∈ [0,t−s]} | Fs)),

Relying on the Markov property, we may write

= E(EWs(1{Wt−s ∈ dy, Wu 6=0 ∀u ∈ [0,t−s]})),

we calculated the second expectation above, so we get

= E

(
1√

2π(t− s)

(
e−(Ws−y)2/2(t−s) − e−(Ws+y)2/2(t−s)

)
dy

)
,

=

∫ ∞

0

dx
1√
2πs

e−x
2/2s 1√

2π(t− s)

(
e−(x−y)2/2(t−s) − e−(x+y)2/2(t−s)

)
dy,

=

√
s(t− s)

t

∫ ∞

y s
t(t−s)

e−z
2/2dze−y

2/2t. (113)

Finally, we only have to differentiate with respect to s to come up with the formula of the density of (gt,Wt).

P(Wt ∈ dy, gt ∈ ds) =
y

2π
√
s(t− s)3

exp

(
− y2

2(t− s)

)
1s≤t dsdy. (114)

If we assume that y < 0 then, since W and −W follow the same law, we can write

P(Wt ∈ dy, gt ≤ s) = P(Wt ∈ −dy, gt ≤ s), (115)

which enables us to refer to the previous case and the final formula for the law of the couple (gt,Wt) is given by

P(Wt ∈ dy, gt ∈ ds) =
|y|

2π
√
s(t− s)3

exp

(
− y2

2(t− s)

)
1s≤t ds dy. (116)
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[3] M. Chesney, M. Jeanblanc-Picqué, and M. Yor. Brownian excursions and Parisian barrier options. Adv. in
Appl. Probab., 29(1):165–184, 1997. ISSN 0001-8678.

[4] K. L. Chung. Excursions in Brownian motion. Ark. Mat., 14(2):155–177, 1976. ISSN 0004-2080.
[5] R. Haber, P. Schonbucher, and P.Wilmott. An american in paris. OFRC Working Papers Series 1999mf14,

Oxford Financial Research Centre, 1999. available at http://ideas.repec.org/p/sbs/wpsefe/1999mf14.html.
[6] P. Hartley. Pricing parisian options by laplace inversion. Decisions in Economics & Finance, 2002.
[7] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall,

1996.
[8] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
second edition, 1994. ISBN 3-540-57622-3.
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