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PIECEWISE RIGIDITY

ANTONIN CHAMBOLLE, ALESSANDRO GIACOMINI, AND MARCELLO PONSIGLIONE

Abstract. In this paper we provide a Liouville type theorem in the framework of fracture
mechanics, and more precisely in the theory of SBV deformations for cracked bodies. We prove
the following rigidity result: if u ∈ SBV (Ω, RN ) is a deformation of Ω whose associated crack Ju

has �nite energy in the sense of Gri�th's theory (i.e., HN−1(Ju) <∞), and whose approximate
gradient ∇u is almost everywhere a rotation, then u is a collection of an at most countable
family of rigid motions. In other words, the cracked body does not store elastic energy if and
only if all its connected components are deformed through rigid motions. In particular, global
rigidity can fail only if the crack disconnects the body.
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1. Introduction

A classical rigidity result in nonlinear elasticity, due to Liouville, states that if an elastic body

is deformed in such a way that its deformation gradient is pointwise a rotation, then the body

is indeed subject to a rigid motion. If the body is supposed to be hyperelastic with an elastic

energy density W de�ned on a natural reference con�guration Ω, a standard assumption for W
which comes from its frame indi�erence is that W is minimized exactly on the set of rotations

SO(3). Hence the rigidity result implies that the body doesn't store elastic energy if and only if

it is deformed through a rigid motion.

From a mathematical viewpoint, Liouville's Theorem can be stated as follows: if Ω ⊆ RN is open

and connected, u ∈ C∞(Ω; RN ) is such that ∇u(x) ∈ SO(N) for every x ∈ Ω, then u = a+ R · x
for some a ∈ R and R ∈ SO(N). The assumption on the regularity of u has been fairly weakened,

and now the same rigidity result is available for deformations in the class of Sobolev maps (see

Yu. Reshetnyak [17]). In this case the deformation gradient is de�ned only almost everywhere in

Ω, so that the assumption for rigidity is ∇u(x) ∈ SO(N) for a.e. x ∈ Ω.
A quantitative rigidity estimate has been provided recently by Friesecke, James and Müller [13],

in order to derive nonlinear plates theories from three dimensional elasticity. They proved that if

Ω is connected and with Lipschitz boundary, there exists a constant C depending only on Ω and

N such that for every u ∈W 1,2(Ω,RN )

(1.1) min
R∈SO(N)

‖∇u−R‖L2(Ω) ≤ C‖dist(∇u, SO(N))‖L2(Ω).
1
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As a consequence, if the deformation gradient is close to rotations (in L2), then it is in fact close

to a unique rotation. Estimate (1.1) is indeed true in Lp for every 1 < p < +∞ (see [10]).

The aim of this paper is to discuss the problem of rigidity in the framework of fracture mechanics,

that is for bodies that can not only deform elastically, but also be cracked along surfaces where

the deformation becomes discontinuous. The class of admissible deformations that we consider, in

this setting, will be the space of special functions of bounded variation SBV (Ω; RN ) (see Section 2

for a precise de�nition). Given u ∈ SBV (Ω; RN ), the approximate gradient ∇u (which exists at

almost every point of Ω) takes into account the elastic part of the deformation, while the jump

set Ju represents a crack in the reference con�guration. The set Ju is recti�able, that is, it can be

covered (up to a HN−1�negligible set) by a countable number of C1 submanifolds of RN . So Ju

is, in some sense, a (N − 1)�dimensional surface.

In the context of SBV deformations, we cannot expect a rigidity result as for elastic deforma-

tions, because a crack can divide the body into two parts, each of one subject to a di�erent rigid

deformation. We prove that this is essentially the only way rigidity can be violated, provided the

crack Ju has ��nite energy� (which, in the framework of Gri�th's theory, means that its total

(N − 1)�dimensional surface is �nite). If the body is not suitably divided by a crack in several

components, then rigidity as in the elastic case holds.

In order to formulate our result, we need some notions from geometric measure theory in order

to make precise the notion of a partition Ω in connection with SBV deformations. We refer to

Section 2 for more details. We say that a partition (Ei)i∈N of Ω is a Caccioppoli partition if∑
i∈N P (Ei,Ω) < +∞, where P (Ei,Ω) denotes the perimeter of Ei in Ω. Given a recti�able set

K ⊂ Ω, we say that a Caccioppoli partition (Ei)i∈N of Ω is subordinated to K if (up to a HN−1�

negligible set) the reduced boundary ∂∗Ei of Ei is contained in K for every i ∈ N. We say that

Ω\K is indecomposable if the only Caccioppoli partition subordinated to K is the trivial one, i.e.,

E0 = Ω.
The main rigidity result of the paper is the following Liouville's type theorem for SBV - defor-

mations.

Theorem 1.1. Let u ∈ SBV (Ω,RN ) such that HN−1(Ju) < +∞ and ∇u(x) ∈ SO(N) for a.e.

x ∈ Ω. Then u is a collection of an at most countable family of rigid deformations, i.e., there

exists a Caccioppoli partition (Ei)i∈N subordinated to Ju such that

u =
∑
i∈N

(Kix+ bi)1Ei(x),

where Ki ∈ SO(N) and bi ∈ RN (and, as a consequence, Ju ⊆ ∪i∈N∂
∗Ei). In particular, if Ω \ Ju

is indecomposable, then u is a rigid deformation, i.e., u(x) = a + R · x for some a ∈ RN and

R ∈ SO(N) (hence, Ju = ∅).

Let us observe that the assumption that HN−1(Ju) is �nite is essential in this result. Indeed,

it has been shown by Alberti [1, 5] that any N�dimensional L1 vector �eld can be the gradient of

a suitable SBV function, so that the rigidity clearly fails if one just assumes ∇u(x) ∈ SO(N) for
a.e. x ∈ Ω.

In the context of fracture mechanics, Theorem 1.2 implies the following fact. Assume that the

density of the elastic energy stored in the cracked body is represented by a function W vanishing

exactly on SO(N). Then a deformation u of class SBV does not store elastic energy if and only

if the crack Ju divides Ω in several subbodies, each of one subject to a rigid motion. If Ju is not

enough to create subbodies of Ω, then u is a rigid motion for the entire body (and there is no

jump Ju at all). In this respect, the space SBV seems to be appropriate for the study of elastic

properties of cracked hyperelastic bodies.
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The main di�culty to prove Theorem 1.1 is that the di�erential constraint curl∇u = 0, valid
for every Sobolev function, does not hold in general for SBV functions, because ∇u is only

a part of the distributional derivative of u. However we prove that if u ∈ SBV (Ω; RN ) with

∇u ∈ L∞(Ω;MN×N ) then curl∇u is a measure, which is absolutely continuous with respect to

HN−1 Ju. This result (up to our knowledge, new and interesting on its own), combined with the

quantitative rigidity estimate (1.1) is enough to obtain our rigidity result.

The set of rotations in RN can be replaced by any compact set of matrices K ⊆MN×N which

satisfy a Lp-quantitative rigidity estimate for 1 < p < N
N−1 , i.e., there exists C > 0 depending on

N and p such that, for every u ∈W 1,p(Ω,RN ),

(1.2) min
K∈K

‖∇u−K‖Lp(Ω) ≤ C‖dist(∇u,K)‖Lp(Ω).

Theorem 1.1 is obtained as a particular case of the following rigidity result.

Theorem 1.2 (The rigidity result). Let K ⊆MN×N be a compact set such that the quantitative

rigidity estimate (1.2) holds for some p ∈ (1, N/(N − 1)). Let u ∈ SBV (Ω,RN ) be such that

HN−1(Ju) < +∞ and ∇u(x) ∈ K for a.e. x ∈ Ω. Then there exists a Caccioppoli partition

(Ei)i∈N of Ω subordinated to Ju such that

u =
∑
i∈N

(Kix+ bi)1Ei
(x),

where Ki ∈ K and bi ∈ RN (and, as a consequence, Ju ⊆ ∪i∈N∂
∗Ei). In particular if Ω \ Ju is

undecomposable, then u = Kx+ b for some K ∈ K, b ∈ RN (hence, Ju = ∅).

In order to prove Theorem 1.2, the key point is to show that ∇u is a piecewise constant function

that can jump only on Ju, i.e., ∇u ∈ SBV (Ω,MN×N ) with ∇(∇u) = 0 and J∇u ⊆ Ju: this implies

that ∇u is constant on a Caccioppoli partition subordinated to Ju, and hence that u is a�ne on

the same partition.

In order to establish that ∇u is piecewise constant with jumps on Ju, we use an approximation

based on a covering argument inspired by [13]. First of all we split our domain in a disjoint union

of small cubes Qh of size h. On many of these cubes, HN−1(Ju ∩ Qh) will be small, showing

that curl∇u is close to zero in Qh. A Helmholtz' type estimate for L1 vector �elds with curl-

measure shows then that ∇u is close in Lp to the gradient ∇wh of a Sobolev function, which

by the quantitative rigidity estimate (1.2) is close in Lp to a unique matrix K(Qh) ∈ K. We

show that ∇u is approximated by the piecewise constant functions ψh such that ψh = wh on Qh.

The sequence (ψh)h∈N has a uniformly bounded total variation which is controlled by curl∇u
and so by HN−1 Ju: we prove this, as in [13], by using again the quantitative rigidity estimate

on the union of neighboring cubes. An application of Ambrosio's compactness theorem for SBV

functions [2, 3, 4] is then enough to get the conclusion.

Let us mention that a local version of Liouville Theorem on sets of �nite perimeter, for Lipschitz

mappings, was already given in [12]. There, Dolzmann and Müller prove that if u : Ω → RN is

in W 1,∞(Ω; RN ), det∇u ≥ c > 0, and ∇u ∈ SO(N) for a.e. x ∈ E, where E is a subset of Ω
with �nite perimeter, then ∇u1E ∈ BV (Ω), and D(∇u1E) (Ω \ ∂∗E) = 0. (So that the thesis of

Theorem 1.1 holds inside E.)

Rigidity results in the spirit of Liouville's Theorem play also an important role in order to

understand possible microstructures arising in elastic bodies. The problem of microstructures can

be stated mathematically in the following way: given a set of matrices K ⊆MN×N , �nd Lipschitz

mappings u : Ω → RN such that ∇u(x) ∈ K for a.e. x ∈ Ω. K is said to be rigid if it doesn't

admit nontrivial microstructures, i.e., if the only maps u ∈W 1,∞(Ω) such that ∇u(x) ∈ K for a.e.

x ∈ Ω are a�ne.
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An example of rigid set of matrices is provided by a famous result by Ball and James [6]:

K = {K1,K2} is rigid if and only if rank (K1−K2) ≥ 2. In this case, Ball and James proved that

rigidity holds also in the stronger sense of approximate solutions: for every sequence (uh)h∈N of

equi-Lipschitz functions such that dist(∇uh,K) → 0 in measure, then either dist(∇uh,K1) → 0,
or dist(∇uh,K2) → 0 in measure.

Theorem 1.2 can be used to infer a similar result in the framework of the discontinuous defor-

mations of class SBV . The quantitative rigidity estimate we need to apply our arguments has

been recently provided by De Lellis and Székelyhidi [11]: they prove that if K ⊆MN×N is a �nite

set of matrices which is rigid for approximate solutions, then the quantitative rigidity estimate

(1.2) holds for any p ∈ (1,+∞) provided that Ω is Lipschitz-regular. As a consequence, we can

deduce the following result.

Theorem 1.3. Let K := {K1, K2}, with rank (K1 −K2) ≥ 2. Let u ∈ SBV∞(Ω,RN ) such that

∇u(x) ∈ K for a.e. x ∈ Ω. Then there exists a Caccioppoli partition (Ei)i∈N of Ω subordinated to

Ju such that

u =
∑
i∈N

(Kix+ bi)1Ei
(x),

where Ki ∈ K and bi ∈ RN (and, as a consequence, Ju ⊆ ∪i∈N∂
∗Ei). In particular if Ω \ Ju is

indecomposable, then u = Kx+ b for some K ∈ K and b ∈ RN (hence, Ju = ∅).

The rigidity result with respect to approximate solutions by Ball and James has been generalized

to the case where K consists of three matrices without any rank-1 connection in [18], so that

Theorem 1.3 still holds in this case. For completeness, let us say that if K consists of four matrices

without any rank-1 connection, rigidity can fail for approximate solutions for a suitable choice of

the involved matrices (see [19], [20]), while K is always rigid with respect to exact solutions (see

[9]). The case N = 5 is nicely illustrated in [14] by a non-rigid �ve point con�guration without

any rank-1 connection.

The paper is organized as follows. In Section 2 we recall some facts from geometric measure

theory and from the theory of SBV spaces. In Section 3, we show that the curl of a function u

that satis�es the assumptions of the rigidity theorem is a Radon measure absolutely continuous

with respect to HN−1 Ju. Section 4 is devoted to the statement and proof of some Helmholtz

type estimates in cubes. The proof of Theorem 1.2 is then given in Section 5.

2. Notations and preliminaries

In this section we recall the de�nition of the space SBV and some facts from geometric measure

theory that will be used throughout the paper. We refer to [5] for further details.

The space SBV . Let Ω be an open set in RN . We say that u ∈ BV (Ω; RN ) if u ∈ L1(Ω; RN ),
and its distributional derivative Du is a vector-valued Radon measure on Ω. We say that u ∈
SBV (Ω; RN ) if u ∈ BV (Ω; RN ) and its distributional derivative can be represented as

Du(A) =
∫

A

∇u(x) dx+
∫

A∩Ju

(u+(x)− u−(x))⊗ νx dHN−1(x),

where ∇u denotes the approximate gradient of u, Ju denotes the set of approximate jumps of u, u+

and u− are the traces of u on Ju, νx is the normal to Ju at x, and HN−1 is the (N−1)-dimensional

Hausdor� measure. The symbol ⊗ denotes the tensorial product of vectors: (a ⊗ b)ij = aibj for

every a, b ∈ RN .
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Note that if u ∈ SBV (Ω; RN ), then the singular part of Du is concentrated on Ju which is a

countably HN−1-recti�able set: there exists a set E with HN−1(E) = 0 and a sequence (Mi)i∈N

of C1-submanifolds of RN such that Ju ⊆ E ∪
⋃

i∈N Mi.

We set, for d ≥ 1,

(2.1) SBV∞(Ω; Rd) := {u ∈ SBV (Ω; Rd) : ∇u ∈ L∞(Ω;Md×N ), HN−1(Ju) < +∞}.

and, as usual, SBV∞(Ω) := SBV∞(Ω; R) whenever d = 1.

Piecewise constant functions and Caccioppoli partitions. Let Ω be an open set in RN ,

and let E ⊆ Ω. We say that E has �nite perimeter in Ω if 1E ∈ SBV (Ω). The set of jumps of 1E

is denoted by ∂∗E and is called the reduced boundary of E: the derivative of 1E is concentrated

on ∂∗E, and its total variation is given by HN−1 ∂∗E. The perimeter of E in Ω is given by

HN−1 (∂∗E).
We say that a partition (Ei)i∈N of Ω is a Caccioppoli partition if

∑
i∈NHN−1 (∂∗E) < +∞.

Given a recti�able set K ⊂ Ω, we say that a Caccioppoli partition (Ei)i∈N of Ω is subordinated to

K if (up to a HN−1�negligible set) the reduced boundary ∂∗Ei of Ei is contained in K for every

i ∈ N. We say that Ω \K is indecomposable if the only Caccioppoli partition subordinated to K

is the trivial one, i.e., E0 = Ω.
Caccioppoli partitions are naturally associated to piecewise constant functions, i.e., functions

u ∈ SBV (Ω; RN ) such that ∇u = 0 a.e. on Ω. These functions are said piecewise contant in Ω
because they are indeed constant on the subsets Ei of a Caccioppoli partition of Ω. More precisely

(see [5, Theorem 4.23]) there exists a Caccioppoli partition (Ei)i∈N of Ω such that

(2.2) u =
∑
i∈N

bi1Ei ,

with bi 6= bj for i 6= j. Notice that if K is a recti�able set in Ω such that Ω \K is indecomposable,

then a piecewise constant function u in Ω with Ju ⊆ K is necessarily constant on Ω.

3. curl∇u is a measure for u ∈ SBV∞(Ω)

In this section, we show that the curl of a function u that satis�es the assumptions of the

theorem is in fact a measure, estimated with HN−1 Ju.

Theorem 3.1. Let u ∈ SBV∞(Ω). Then curl∇u is a measure µ concentrated on Ju such that

|µ| ≤ c‖∇u‖∞HN−1 Ju.

In this statement, the constant c depends on the dimension N . However, we conjecture that the

optimal constant is 2
√

2 (considering the Frobenius norm for matrices).

Remark 3.2. Clearly, if u ∈ SBV∞(Ω; Rd) is a vector-valued function (d ≥ 2), then the result

still holds (with the same constant c if the norm on tensors is still the Euclidean norm of the

associated matrix).

Proof. Let u ∈ SBV∞(Ω). We have: u ∈ L1(Ω), L := ‖∇u‖∞ < +∞, and HN−1(Ju) < +∞. The

distribution curl∇u is formally equal to the matrix (∂i(∂ju)− ∂j(∂iu))1≤i,j≤N and is de�ned by

〈curl∇u, ϕ〉 =
N∑

i,j=1

∫
Ω

∂iu(x)∂j(ϕi,j − ϕj,i)(x) dx ,
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for any ϕ ∈ C∞c (Ω;MN×N ). The thesis of the theorem is local, so that it is enough to prove that

if Q ⊂⊂ Ω is a hypercube in Ω, then for any ϕ ∈ C∞c (Q;MN×N ), one has

(3.1)

N∑
i,j=1

∫
Q

∂iu(x)∂j(ϕi,j − ϕj,i)(x) dx ≤ c ‖∇u‖∞‖ϕ‖∞HN−1(Ju ∩Q) .

Without loss of generality, we may assume that Q = (0, 1)N . We will approximate u in Q with

a piecewise smooth function, jumping only on facets of smaller hypercubes. This will be done

using a simpli�ed variant of the discretization/reinterpolation technique presented in [7, 8], and

inspired from [16].

Step 1. Consider the set J = Ju∩Q. Denote by (ei)N
i=1 the canonical basis of RN (ei = (δi,j)N

j=1).

One easily shows that for any i, the set

Jε
i := {−tei + x : t ∈ [0, ε], x ∈ J}

is Lebesgue-measurable. Indeed, up to aHN−1�negligible set N , J is a countable union of compact

sets: hence Jε
i is the union of [−εei, 0] +N , which has Lebesgue measure zero, and of a countable

union of compact sets. We have the estimate

|Jε
i | ≤ εHN−1(J) ,

which can be derived in several ways, and more precisely one can show

(3.2) |Jε
i | ≤ ε

∫
J

|νi(x)| dHN−1

where ν(x) = (ν1(x), . . . , νN (x)) is the normal to J at x, de�ned for HN−1-a.a. x ∈ J . For y ∈
(0, 1)N , we now also de�ne the discrete binary variable lyε,i(k) := 1Jε

i
(εy+k), for any k ∈ εZN ∩Q.

One shows that for any i = 1, . . . , N∫
(0,1)N

εN−1
∑

k∈εZN∩Q

lyε,i(k) dy = ε−1

∫
(0,ε)n

∑
k∈εZN∩Q

1Jε
i
(y + k) dy = ε−1|Jε

i | .

Hence using (3.2) and
∑N

i=1 |νi| ≤
√
N ,∫

(0,1)N

εN−1
N∑

i=1

∑
k∈εZN∩Q

lyε,i(k) dy ≤
√
NHN−1(J).

Using Fatou's lemma, we deduce∫
(0,1)N

lim inf
ε→0

εN−1
N∑

i=1

∑
k∈εZN∩Q

lyε,i(k)

 dy ≤
√
NHN−1(J),

so that for any δ > 0, there exists a set A of positive measure in (0, 1)N , such that

(3.3) y ∈ A ⇒ lim inf
ε→0

εN−1
N∑

i=1

∑
k∈εZN∩Q

lyε,i(k) ≤
√
NHN−1(J) + δ.

Step 2. Let now ∆(t) := max{1− |t|, 0} (t ∈ R) and ∆N (ξ) =
∏N

i=1 ∆(ξi) for all ξ ∈ RN (which

is known in �nite elements approximation as the �Q1� interpolation function). If we let

vy
ε (x) :=

∑
k∈εZN∩Q

u(εy + k)∆N

(
x− k

ε
− y

)
,

it is well known that for a.e. y ∈ (0, 1)N , vy
ε → u in L1(Q) (see for instance [7]).
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Step 3. The slicing properties of BV functions (see [5]) also ensure that for all i and HN−1-a.e.

z ∈ {x ∈ Q : xi = 0}, the function (0, 1) 3 t 7→ u(z + tei) is in SBV (0, 1), with �nite jump

set given by {t : z + tei ∈ J}, and whose derivative is given by t 7→ ∂iu(z + tei), which by

assumption is bounded by L. We deduce that for a.e. y ∈ (0, 1)N , the discrete function vy
ε satis�es

|vy
ε (k + εei) − vy

ε (k)| ≤ Lε for any i = 1, . . . , N and k ∈ εZN ∩ Q such that k + εei ∈ Q and

J ∩ [εy + k, εy + k + εei] = ∅, which is equivalent to lyε,i(k) = 0.

Step 4. From steps 1, 2 and 3, there exists y ∈ A such that:

(3.4) lim inf
ε→0

εN−1
N∑

i=1

∑
k∈εZN∩Q

lyε,i(k) ≤
√
NHN−1(J) + δ ,

vy
ε → u in L1(Q), and |vy

ε (k + εei)− vy
ε (k)| ≤ Lε for any i = 1, . . . , N and k ∈ εZN ∩Q such that

k + εei ∈ Q and lyε,i(k) = 0. We choose a sequence (εj)j≥1 such that the lim inf in (3.4) is in fact

a limit, and let vj := vy
εj
, and lj,i := lyεj ,i.

From now on, since we refer only to the grids {εjy+εjk : k ∈ ZN} which we use to interpolate u,
we can assume (up to translation) that y = 0, so that they coincide with the grids {εjk : k ∈ ZN}.

In a small cube k + (0, εj)N in Q (k ∈ εjZN ), as soon as J does not intersect any edge of the

cube, one has |∂ivj | ≤ L for all i = 1, . . . , N so that |∇vj | ≤
√
NL inside the cube. Given an edge

[k, k + εjei], if lj,i(k) = 1, then J intersects the edge. In this case, we cannot control |∇vj | in all

the cubes in Q that share this edge, whose total number is at most 2N−1. We let Kj be the union

of all such cubes: by (3.4) we have the estimate

(3.5) |Kj | ≤ 2N−1εN
j

N∑
i=1

∑
k∈εjZN∩Q

lj,i(k) ≤ cεj .

On the other hand we have

HN−1(∂Kj) ≤ (N + 1)2N−1εN−1
j

N∑
i=1

∑
k∈εjZN∩Q

lj,i(k) ,

so that (using (3.4), with the � lim infε→0� replaced with � limj→∞�)

(3.6) lim sup
j→∞

HN−1(∂Kj) ≤ C(N)(N + 1)2N−1(
√
NHN−1(J) + δ).

Let v′j = vj1Q\Kj
. By (3.5), we still have v′j → u in L1(Q) as j → ∞. The previous discussion

shows that in any Q′ ⊂⊂ Q, for j large enough, v′j ∈ SBV (Q′) with ‖∇v′j‖∞ ≤
√
NL, v′j is

piecewise smooth and S(v′j) ⊂ HN−1(∂Kj) is a subset of a �nite number of facets of hypercubes.

By Ambrosio's theorem [5, Theorem 4.36], we know that ∇v′j ⇀ ∇u in Lp(Q′) (for any p <

+∞). Hence curl∇v′j
∗
⇀ curl∇u as j →∞, in the distributional sense. On the other hand, since

Dv′j = ∇v′j(x) dx + v′j νKj
HN−1 ∂Kj ,

(where νKj
is the exterior normal to Kj and v′j stands here for the non-zero trace of v′j on the

exterior surface of Kj), and since curlDv′j = 0, one has

curl∇v′j = − curl (v′j νKj
HN−1 ∂Kj) ,

which can be shown to be equal to

− (∇τv
′
j) ∧ νKj

HN−1 ∂Kj

where a ∧ b denotes the antisymmetric tensor product a⊗ b− b⊗ a. Hence its total variation, as

a measure, is bounded by
√

2NLHN−1(∂Kj). If ϕ ∈ C∞c (Q;MN×N ) is �xed, one has therefore
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(choosing Q′ such that suppϕ ⊂⊂ Q′),〈
curl∇v′j , ϕ

〉
≤
√

2NL ‖ϕ‖∞HN−1(∂Kj) .

Passing to the limit and recalling (3.6), we get

〈curl∇u, ϕ〉 ≤
√

2NL ‖ϕ‖∞(N + 1)2N−1(
√
NHN−1(J) + δ) .

Sending δ to zero and recalling J = Ju ∩Q and L = ‖∇u‖∞, we conclude that (3.1) holds with a

constant c ≤
√

2N(N + 1)2N−1. This shows the thesis of the Theorem. �

Remark 3.3. The set Ju is recti�able: for HN−1-a.e. x ∈ Ju, if ρ > 0 is small enough, Ju∩B(x, ρ)
is a C1 hypersurface that cuts the ball B = B(x, ρ) into two disjoint Lipschitz sets, up to a set

of HN−1 measure o(ρN−1). Moreover, up to a change of basis, we have ν ' e1 (and |ν1| ' 1,
|νi| << 1 for i ≥ 2) in Ju ∩ B. A similar study (see again [7, 8]) will show that in such a ball B,

|curl∇u|(B) . 2
√

2N‖∇u‖∞HN−1(Ju ∩B). Passing to the limit ρ→ 0, we improve the constant

c in the Theorem: c ≤ 2
√

2N . We expect, however, that a di�erent approximation technique,

possibly not based on a discretization, would help remove the
√
N in that constant.

Remark 3.4. Notice that the assumption u ∈ SBV∞(Ω) is essential in order to obtain that

curl∇u is a measure absolutely continuous with respect to HN−1 Ju. In general, curl∇u is not

even a measure in Ω for u ∈ SBV (Ω). In fact it su�ces to consider f ∈ L1(Ω) such that curl f is

a distribution of order one in Ω, and the function u ∈ SBV (Ω) given by Alberti's result [1] such

that ∇u = f . More explicit counterexamples can be constructed as follows. We consider functions

de�ned on Ω ⊆ R2, so that we can identify curl∇u with the distribution

〈curl∇u, ϕ〉 :=
∫

Ω

(∂2u∂1ϕ− ∂1u∂2ϕ) dx,

where ϕ ∈ C∞c (Ω).

(a) If we drop the assumption ∇u ∈ L∞(Ω,RN ), we can consider Ω as the square Q1 =]−1, 1[2

of R2 and u ∈ SBV (Q1) de�ned as

u(x, y) :=

{
ln(x2 + y2) if y > 0

0 if y < 0.

It can be easily checked that curl∇u is a distribution of order one.

(b) If we drop the assumption HN−1(Ju) < +∞, we can reason as follows. Let ϑ be the

2-periodic function on R such that ϑ(x) = 1−|x| for x ∈ [−1, 1], and let ϑk(x) := 1
kϑ(kx).

Let Q1 =]− 1, 1[2, and let for n ≥ 1

Sn :=
{

(x, y) ∈ Q1 :
1

n+ 1
< y <

1
n

}
.

We can �nd kn ∈ N in such a way that kn ↗ +∞ and

u(x, y) :=

{
ϑ2kn (x) if (x, y) ∈ Sn

0 if y < 0

belongs to SBV (Q1). Moreover, |∇u(x, y)| = 1 a.e. on Q1, so that ∇u ∈ L∞(Q1,RN ).
Clearly curl∇u is a Radon measure on every open set An := {(x, y) ∈ Q1 : −1/2 < x <

1/2, 1
n+1 < y < 3

4} (which is compactly contained in Q1), but |curl∇u|(An) = n − 1. As
a consequence curl∇u cannot be a measure on Q1.
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4. Some estimates for vector fields in a cube

Let us �rst show the following estimate, valid for smooth vector �elds.

Proposition 4.1 (Helmholtz's type estimate). Let Q = (0, 1)N be the unit cube of RN , let

f ∈ L1(Q) and let ϕ ∈ C∞(Q; RN ) be a vector �eld such that
divϕ = 0 in Q,

curlϕ = f in Q,

ϕ · ν = 0 on ∂Q.

Then for every 1 ≤ p < N
N−1 there exists a constant C depending only on N and p such that

(4.1) ‖ϕ‖Lp(Q) ≤ C‖f‖L1(Q).

Proof. Let us consider η = (η1, . . . , ηN ) ∈ C∞c (Q; RN ), and let g = (g1, . . . , gN ) ∈ H1(Q; RN ) be
a solution of the equation

(4.2)


∆g = η in Q,

gi = 0 on ∂e⊥i
Q

∂gi

∂ν = 0 on ∂
e
‖
i
Q ,

where still, {ei : i = 1, . . . , N} is the canonical basis of RN , and ∂e⊥i
Q and ∂

e
‖
i
Q, denote the faces

of ∂Q orthogonal and parallel to ei respectively. (Observe that (4.2) corresponds to �nding g that

minimizes the energy
∫

Q
|∇g|2 + 2η · g, with boundary condition g · ν = 0 on ∂Q.)

It is quite standard that such a g is smooth, and we will show later on that for every 1 < q < +∞,

we have the estimate

(4.3) ‖g‖W 2,q(Q) ≤ C‖η‖Lq(Q),

where C depends only on N and q. If in particular q > N , by Sobolev's embedding theorem, (4.3)

yields

(4.4) ‖∇g‖L∞(Q) ≤ C‖η‖Lq(Q).

Let ϕ = (ϕ1, . . . , ϕN ). We observe (also g being smooth) that

(4.5)

∫
Q

curlϕ · ∇g dx =
∑
i,j

∫
Q

(∂iϕj − ∂jϕi)∂jgi dx

=
∑
i,j

∫
∂Q

(ϕj∂jgiνi − ϕi∂jgiνj) dHN−1 +
∑
i,j

∫
Q

(−ϕj∂
2
i,jgi + ϕi∂

2
j,jgi) dx .

We claim that

(4.6)
∑
i,j

∫
∂Q

(ϕj∂jgiνi − ϕi∂jgiνj) dHN−1 = 0.

Indeed, for i 6= j, in view of the boundary conditions in (4.2), we have that ∂jgi = 0 on ∂e⊥i
Q and

on ∂e⊥j
Q, so that (since by de�nition, ν = ±ei on ∂e⊥i

Q)∫
∂Q

ϕj∂jgiνi dHN−1 = ±
∫

∂
e⊥

i
Q

ϕj∂jgi dHN−1 = 0

and ∫
∂Q

ϕi∂jgiνj dHN−1 = ±
∫

∂
e⊥

j
Q

ϕi∂jgi dHN−1 = 0.
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By (4.5) and (4.6) we get∫
Q

curlϕ · ∇g dx =
∑
i,j

∫
Q

(−ϕj∂
2
i,jgi + ϕi∂

2
j,jgi) dx = −

∫
Q

ϕ · ∇(div g) dx+
∫

Q

ϕ ·∆g dx.

Since divϕ = 0 in Q and ϕ · ν = 0 on ∂Q, we have∫
Q

ϕ · ∇(div g) dx = 0,

so that ∫
Q

curlϕ · ∇g dx =
∫

Q

ϕ ·∆g dx =
∫

Q

ϕ · η dx.

By (4.4) we conclude that∫
Q

ϕ · η dx ≤ ‖∇g‖L∞(Q)‖curlϕ‖L1(Q) ≤ C‖curlϕ‖L1(Q)‖η‖Lq(Q) ,

hence (taking the supremum on η ∈ C∞c (Ω; RN ) with ‖η‖Lq(Q) ≤ 1),

‖ϕ‖Lq′ (Q) ≤ C‖curlϕ‖L1(Q)

where q′ = q/(q − 1). As q varies on (N,+∞), we get that p = q′ ranges over (1, N
N−1 ), so that

(4.1) holds.

In order to complete the proof, we need to justify the estimate (4.3). Consider the component

g1 of g (the proof for any other component is identical): we have

(4.7)


∆g1 = η1 on Q

g1 = 0 on ∂e⊥1
Q

∂g1
∂ν = 0 on ∂

e
‖
1
Q .

We proceed extending g1 and η1 to ĝ1 and η̂1 de�ned on RN and two-periodic in each variable, in

such a way that

(4.8) ∆ĝ1 = η̂1 on RN .

First of all, we extend g1 and η1 on the cube [0, 2]N . For 1 ≤ x1 ≤ 2 and 0 ≤ xi ≤ 1 with

i = 2, . . . , N , we set {
ĝ1(x) := −g1(2− x1, x2, . . . , xN )

η̂1(x) := −η1(2− x1, x2, . . . , xN ).

Then for 1 ≤ x2 ≤ 2 and 0 ≤ xi ≤ 1 with i = 3, . . . , N we set{
ĝ1(x) := ĝ1(x1, 2− x2, x3, . . . , xN )

η̂1(x) := η̂1(x1, 2− x2, x3, . . . , xN )

and we proceed in the same way for the coordinates x3, x4, . . . xN .

We can then extend ĝ1 and η̂1 by periodicity to the entire RN . We get immediately that

equation (4.8) is satis�ed, so that in particular ĝ1 is smooth. Moreover we have that ĝ1 = 0 on

the hyperplanes orthogonal to e1 and passing through the points of the form (k, 0, 0, . . . , 0) with
k ∈ Z.

By Lp-regularity estimates [15, Theorem 9.11] we get that there exists a constant C depending

only on N and q such that

‖ĝ1‖W 2,q(Q) ≤ C
(
‖ĝ1‖Lq(Q̃) + ‖η̂1‖Lq(Q̃)

)
,
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where Q̃ is the cube centered at the origin with side of length 4. In view of the periodicity of ĝ1
and η̂1, we obtain that

(4.9) ‖g1‖W 2,q(Q) ≤ C
(
‖g1‖Lq(Q) + ‖η1‖Lq(Q)

)
.

Let us assume by contradiction that claim (4.3) is false. Then there exist ĝn
1 and η̂n

1 periodic on

RN such that

(4.10) ‖ĝn
1 ‖W 2,q(Q) ≥ n‖η̂n

1 ‖Lq(Q).

We can assume that ‖ĝn
1 ‖Lq(Q) = 1. Then by (4.9) we obtain

‖ĝn
1 ‖W 2,q(Q) ≤ C

(
1 +

‖ĝn
1 ‖W 2,q(Q)

n

)
.

so that

(4.11) ‖ĝn
1 ‖W 2,q(Q) ≤ C̃.

In particular ĝn
1 is compact in W 1,α

loc (RN ) for all α < Nq
N−q (or in a suitable Hölder space). Then

there exists ĝ periodic in RN such that

ĝn
1 → ĝ strongly in W 1,α

loc (RN ).

In particular we get ‖ĝ‖Lq(Q) = 1. By (4.7), (4.10) and (4.11) we get

‖∆ĝn
1 ‖Lq(Q) ≤

C̃

n
→ 0,

so that ĝ is harmonic in RN . Since ĝ is periodic, we conclude that it is constant. As ĝn
1 = 0

on ∂e⊥1
Q, we �nally deduce that ĝ = 0. But this is against ‖ĝ‖Lq(Q) = 1, so that claim (4.3) is

proved. �

The following corollary will be used in the proof of Theorem 1.2.

Corollary 4.2 (Helmholtz's type estimate with a curl measure). Let Q = (0, 1)N be the

unit cube in RN . Let µ ∈ M(RN ;MN×N ) and ϕ ∈ L1(Q,RN ) be respectively a Radon measure

on Q and a vector �eld such that 
divϕ = 0 in Q,

curlϕ = µ in Q,

ϕ · ν = 0 on ∂Q,

Then for every 1 ≤ p < N
N−1 we have that

‖ϕ‖Lp(Q,RN ) ≤ C|µ|(Q),

where C depends only on N and p, and | · | denotes the total variation.

Proof. Let {ρε}ε>0 be smooth radial symmetric kernels. We claim that we can extend ϕ and µ to

ϕ̂ ∈ L1
loc(RN ; RN ) and µ̂ ∈M(RN ;MN×N ) in such a way that

(4.12) |µ̂|(∂Q) = 0,

and such that

(4.13) ϕε := ϕ̂ ∗ ρε, µε := µ̂ ∗ ρε
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satisfy

(4.14)


divϕε = 0 in Q

ϕε · ν = 0 on ∂Q

curlϕε = µε in Q.

If this is true, by (4.1) we will obtain that for all p < N
N−1

‖ϕ̂ε‖Lp(Q) ≤ C‖µ̂ε‖L1(Q),

where C depends only on N and p. Letting ε→ 0, in view of (4.12) we will deduce

‖ϕ‖Lp(Q;RN ) ≤ C|µ|(Q) = C|curlϕ|(Q).

As in the proof of Proposition 4.1, we now build the extension (ϕ̂, µ̂) satisfying (4.12) and (4.14).
First of all, we extend ϕ and µ to the cube Q(0, 2). For 1 ≤ x1 ≤ 2 and 0 ≤ xi ≤ 1 with

i = 2, . . . , N , let us set

ϕ̂ :=


−ϕ1(2− x1, x2, . . . , xN )
ϕ2(2− x1, x2, . . . , xN )

...

ϕN (2− x1, x2, . . . , xN )


For i, j 6= 1, and E Borel set contained in Q+ e1, let us set

µ̂1j(E) := −µ1j(T−1
1 (E)), µ̂j1(E) := −µj1(T−1

1 (E)), µ̂ij(E) := µij(T−1
1 (E)),

where T1(x) := (2− x1, x2, . . . , xN ).
Then we proceed in the same way for the components x2, x3, . . . , xN . We obtain

ϕ̂ ∈ L1(Q(0, 2); RN ) and µ̂ ∈Mb(Q(0, 2);MN×N ).

We extend now ϕ̂ and µ̂ to the entire RN by periodicity. We obtain

ϕ̂ ∈ L1
loc(RN ; RN ) and µ̂ ∈Mb(RN ;MN×N )

with µ̂ satisfying (4.12). By construction we have

(4.15)

{
div ϕ̂ = 0

curl ϕ̂ = µ̂ .

The �rst identity in (4.15) is easily checked by appropriate integration against test functions. For

the second, we need to show that for any ψ ∈ C∞c (RN ;MN×N ), one has

(4.16)

N∑
i,j=1

∫
RN

ϕ̂i∂j(ψi,j − ψj,i) dx =
N∑

i,j=1

∫
RN

ψi,j dµ̂i,j .

By construction, this clearly holds if ψ has compact support in
⋃

k∈ZN (k + Q). We thus need

to show that any other test function ψ can be approximated by functions with such a support,

without perturbing too much both terms of the equality in (4.16).

We observe that not only (4.12) holds, but also,

|µ̂|

( ⋃
k∈ZN

(k + ∂Q)

)
= 0.
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Hence, if ηε is a family of cut-o� functions that go locally uniformly to zero in RN \
⋃

k∈ZN (k+∂Q),
one has

(4.17)

N∑
i,j=1

∫
RN

ψi,j dµ̂i,j = lim
ε→0

N∑
i,j=1

∫
RN

(1− ηε)ψi,j dµ̂i,j

for any smooth test function ψ.

Let us choose a smooth, even η ∈ C∞c (−1, 1) with η ≡ 1 in a neigborhood of 0, and 0 ≤ η ≤ 1,
and let ηε(x) := η(x1/ε) for any x ∈ RN . We have

N∑
i,j=1

∫
RN

ϕ̂i∂j((1− ηε)ψi,j − (1− ηε)ψj,i) dx

=
N∑

i,j=1

∫
RN

(1− ηε)ϕ̂i∂j(ψi,j − ψj,i) dx −
N∑

i=1

∫
RN

η′(x1
ε )
ε

ϕ̂i(ψi,1 − ψ1,i) dx .

Hence, if we can show that the last sum goes to 0 as ε→ 0, together with (4.17), this will show that

ψ in (4.16) may be replaced with a function whose support avoids {x1 = 0}. In an obvious way, it

will be identical to show that ψ may be replaced with a function whose support avoids {xi = k}
for any i = 1, . . . , N and k ∈ Z. This will show that ψ may be replaced with a function with

compact support in
⋃

k∈ZN (k + Q), in which case, as observed, (4.16) clearly holds. It therefore

remains to show that

(4.18) lim
ε→0

N∑
i=1

∫
RN

η′(x1
ε )
ε

ϕ̂i(x)(ψi,1(x)− ψ1,i(x)) dx = 0 .

First of all, the �rst term in the sum is clearly zero. Then, since ϕ̂i is even with respect to x1 for

any i ≥ 2, and since η′ is odd, one has for i ≥ 2 (letting x = (x1, x
′) for any x ∈ RN )∫

RN

η′(x1
ε )
ε

ϕ̂i(x)(ψi,1(x)−ψ1,i(x)) dx =
∫ ε

0

∫
RN−1

η′(
x1

ε
)ϕ̂i(x)

ψ̃i,1(x1, x
′)− ψ̃i,1(−x1, x

′)
ε

dx′ dx1

where ψ̃i,1 := ψi,1−ψ1,i. The function x 7→ η′(x1
ε )(ψ̃i,1(x1, x

′)−ψ̃i,1(−x1, x
′))/ε is clearly bounded

(by c = 2‖η′‖∞‖∂1ψ̃i,1‖∞) so that this integral is less than c
∫ ε

0

∫
RN−1 |ϕ̂i| dx which goes to 0 as

ε→ 0. Summing from i = 2 to N shows (4.18).

Let us now consider the convolutions (4.13). Clearly we have, from (4.15),{
divϕε = 0

curlϕε = µε.

Moreover, since we have extended the i-th component oddly in the direction ei, it is readily checked

that

ϕε · ν = 0 on ∂Q.

Since the claims (4.12) and (4.14) are proved, the proof is concluded. �

5. Proof of Theorem 1.2

Let us �rst deduce from the results in the two previous section the following rigidity estimate,

which is valid for any compact K such that estimate (1.1) holds.

Proposition 5.1 (The rigidity estimate). Let Q = (0, 1)N be the unit cube in RN and let

1 ≤ p < N/(N − 1). Let u ∈ SBV (Q; RN ) be such that ∇u(x) ∈ K for a.e. x ∈ Q. Then

µu := curl∇u is a measure concentrated on Ju and there exists K ∈ K such that

(5.1) ‖∇u−K‖Lp(Q) ≤ C|µu|(Q),



14 A. CHAMBOLLE, A. GIACOMINI, AND M. PONSIGLIONE

where C depends only on N and p.

Proof. By Theorem 3.1 we have that µu := curl∇u is a measure concentrated on Ju such that

|µu| ≤ cHN−1 Ju,

where c is a constant depending only on ‖∇u‖∞.

Let us consider w ∈ H1(Q; RN ) solution of the minimization problem

min
{
‖∇v −∇u‖2 : v ∈ H1(Q; RN ),

∫
Q

v(x) dx = 0
}
.

Let ϕ := ∇u −∇w. We have that ϕ ∈ L2(Q;MN×N ), and by minimality, that
∫

Q
ϕ : ∇v dx = 0

for any v ∈ H1(Q; RN ), hence: {
divϕ = 0 in Q

ϕ · ν = 0 on ∂Q.

Moreover we have that

curlϕ = curl∇u− curl∇w = µu,

i.e., curlϕ ∈M(Q;MN×N ).
By corollary 4.2 (applied to each component of ϕ), there exists a constant C depending only

on p and N such that

‖ϕ‖Lp(Q) ≤ C|µu|(Q)

so that

(5.2) ‖∇u−∇w‖Lp(Q) ≤ C|µu|(Q).

Moreover, by the rigidity estimate (1.1) we have that there exists K ∈ K such that

(5.3) ‖∇w −K‖Lp(Q) ≤ C‖dist(∇w,K)‖Lp(Q)

(possibly changing C, which still depends only on p and N). In view of (5.2) and (5.3), and since

∇u(x) ∈ K for a.e. x ∈ Q, we deduce that

‖∇u−K‖Lp(Q) ≤ ‖∇w −K‖Lp(Q) + ‖∇u−∇w‖Lp(Q)

≤ C‖dist(∇w,K)‖Lp(Q) + ‖∇u−∇w‖Lp(Q)

≤ C‖dist(∇u,K)‖Lp(Q) + (1 + C)‖∇u−∇w‖Lp(Q)

≤ (1 + C)C|µu|(Q)

so that (5.1) holds. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Since ∇u(x) ∈ K for a.e. x ∈ Ω, by Theorem 3.1 we have that µu :=
curl∇u is a measure concentrated on Ju and such that

(5.4) |µu| ≤ cHN−1 Ju,

where c = c(‖∇u‖∞). Let us cover RN by means of disjoint cubes of side h, and let {Q(ai, h)}i∈I

be the family of these cubes contained in Ω. We carry out the proof in several steps.

Step 1: Piecewise constant approximation of ∇u. By Proposition 5.1, using a rescaling

argument, we have that for every i ∈ I there exists Kh
i ∈ K such that

(5.5) ‖∇u−Kh
i ‖Lp(Q(ai,h)) ≤ C

hN/p

hN−1
|µu|(Q(ai, h)),

where C depends only on p and N .
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Let us consider the piecewise constant function ψh de�ned on Ω such that

(5.6) ψh(x) :=

{
Kh

i if x ∈ Q(ai, h)

0 if x 6∈
⋃

i∈I Q(ai, h)

Step 2: Estimate for |Dψh|. Let us estimate the total variation |Dψh| of ψh. We con-

sider two neighbouring cubes Q(ai, h) and Q(aj , h). By applying estimate (5.1) to the rectangle

Rh
i,j = int(Q(ai, h) ∪Q(aj , h)) (of size 2h in one direction and h in the N − 1 other: the proof of

Corollary 4.2 in that case is identical to the proof in the case of a cube, or, alternatively, can be

easily deduced by an appropriate transformation of the cube), we have that there exists K ∈ K
such that

(5.7) ‖∇u−K‖Lp(Rh
i,j)

≤ C̃
hN/p

hN−1
|µu|(Rh

i,j)

where C̃ depends only on N and p. Then, in view of (5.5) we get that

|Kh
i −Kh

j | ≤ |Kh
i −K|+ |K −Kh

j | ≤ 21−1/p
(
|Kh

i −K|p + |K −Kh
j |p
)1/p

= 21−1/ph−N/p‖K − (Kh
i 1Q(ai,h) +Kh

j 1Q(aj ,h))‖Lp(Rh
i,j)

≤ 21−1/ph−N/p
(
‖K −∇u‖Lp(Rh

i,j)
+ ‖∇u− (Kh

i 1Q(ai,h) +Kh
j 1Q(aj ,h))‖Lp(Rh

i,j)

)
≤ 21−1/ph−N/p

(
‖K −∇u‖Lp(Rh

i,j)
+ ‖∇u−Kh

i ‖Lp(Q(ai,h) + ‖∇u−Kh
j ‖Lp(Q(aj ,h)

)
≤ 21−1/p C̃ + C

hN−1
|µu|(Rh

i,j)

so that

(5.8) hN−1|Kh
i −Kh

j | ≤ C|µu|(Rh
i,j)

for some C depending only on N and p. We conclude that the variation of Dψh accross the

interface ∂Q(ai, h) ∩ ∂Q(aj , h) is estimated with the variation of the measure µu in the union of

the two cubes Q(ai, h) and Q(aj , h) and their common interface.

Let now A,B be open and such that B ⊆ A ⊆ A ⊆ Ω. By (5.8) we get that for h large enough

(5.9) |Dψh|(B) ≤ C|µu|(A)

for some C depending only on N and p.

Step 3: ∇u is piecewise constant. Since K ⊆ MN×N is compact, we have that ψh is uni-

formly bounded in L∞(Ω;MN×N ). In view of (5.9), and since |µu| ≤ HN−1 Ju, we can use the

compactness in BV (see [5, Theorem 3.23]) obtaining ψ ∈ BV (Ω) such that

ψh → ψ strongly in L1(Ω,MN×N )

and

(5.10) |Dψ|(A) ≤ CHN−1(Ju ∩A)

for every open set A ⊆ Ω.
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Let us check that ψ = ∇u. Since ∇u and ψh are uniformly bounded in L∞(Ω;MN×N ), and
since p < N

N−1 , by (5.5) we have that

lim sup
h→+∞

‖∇u− ψh‖Lp(Ω) ≤ lim sup
h→+∞

∑
i∈I

‖∇u− ψh‖Lp(Q(ai,h))

≤ lim sup
h→+∞

∑
i∈I

C
hN/p

hN−1
|µu|(Q(ai, h)) ≤ lim sup

h→+∞
C
hN/p

hN−1
|µu|(Ω) = 0

so that ψh → ∇u strongly in Lp(Ω;MN×N ), and ψ = ∇u.
By (5.10) we get that ∇u ∈ SBV (Ω;MN×N ), and that D(∇u) is concentrated on Ju. Since

HN−1(Ju) < +∞, by [5, Theorem 4.23] we deduce that ∇u is piecewise constant, i.e. there exists

a Caccioppoli partition {Dj}j∈N and matrices Kj ∈ K such that

(5.11) ∂∗Dj ⊆ Ju,
∑
j∈N

HN−1(∂∗Dj) = 2HN−1(S(∇u)) ≤ 2HN−1(Ju)

and

(5.12) ∇u =
∑
j∈N

Kj1Dj
.

Step 4: Conclusion. Let us consider the map w ∈ SBV (Ω) de�ned by

w(x) :=
∑
j∈N

(Kj · x)1Dj
(x).

Since ∇w = ∇u, and Jw ⊆ Ju in view of (5.11), we deduce that D(u − w) is supported by Ju.

By [5, Theorem 4.23], we conclude that there exists a Caccioppoli partition {Fk}k∈N of Ω, and
bk ∈ RN , such that

∂∗Fk ∩ Ω ⊆ Ju,
∑
k∈N

HN−1(∂∗Fk ∩ Ω) = 2HN−1(Ju)

and

(5.13) u− w =
∑
k∈N

bk1Fk
.

Considering the Caccioppoli partition {Ei}i∈N determined by the intersection of the families

{Dj}j∈N and {Fk}k∈N, we deduce that there exist Ki ∈ K and bi ∈ RN such that

u =
∑
i∈N

(Ki · x+ bi)1Ei(x)

and the proof is concluded. �
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